
The Generation of Binary Trees as a Numerical Problem

RENZO SPRUGNOLI

Unuemct6Dcgli Stadl DlPadoua, padoua, Italy

Abstract. The problem of generating random, uniformly distributed, binary trees is considered. A

closed formula that counts the number of trees having a left subtree with k – 1 nodes
(kal’J ,,+. ... n) is found. By inverting the formula, random trees with n nodes are generated

according to the appropriate probability distribution, determining the number of nodes in the left

and right subtrees that can degenerated recursively. The procedure is shown to run in time O(n),

occupying an extra space in the order of O(L).

Categories and Subject Descriptors: E.1 [Data Structures] —trees; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems—cornputaf~ ons and dtscrcte
strictures; G.2.1 [Discrete Mathematics]: Combinatorics—comzbinatoncdalgorithms.

General Terms: Algorithms.

Additional Key Words and Phrases: Binary trees; generation of binary trees.

1. Introduction

There exists a vast literature on the problem of generating random binary

trees. Apparently, the first algorithm was given by Knott [9], and successively

the problem received much attention because of its practical relevance. In fact,

whenever we wish to check or study, on a statistical basis, the performance of a

procedure using binary trees, we must generate random trees in a uniform way;

that is, according to their distribution. The algorithms that have been proposed

can be divided into two large categories:

(a) a 1-1 mapping rank is defined from the set B. of binary trees to the set

{1 ‘?,-,..., b.} (see [9], [18], [23]), where b,, = l/(n + 1)( ~ ) is the number

of different binary trees with n nodes; or
\)

(b) an injective mapping, also called rank, is defined from B. to some set S,, of

strings over a given alphabet (e.g., integers between 1 and n); the strings

that are the rank of a tree are called feasible (see [2–51, [1 1–22], and

[25-28]).

Ranking is the operation of passing from a tree T = B,l to the corresponding

rank(T); unranking is the inverse operation that, given an integer r ●

{1,2 ,..., b.} or a feasible string r = S,l, produces the unique tree T = B,,,

This work was supported by the Italian Ministry for University and Sclentiflc Research.

Author’s address: Universit6 Degli Studl Di Padova, Dipartimento di Matematica Pura e Appli-

cata, Via Belzoni, 1-35131, Padova, Italy.

Permission to copy without fee all or part of this material is granted provided that the copies arc
not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
01992 ACM 0004-5411/92/0400-0317 $01.50

Journal of the Assockmon fur Computmg M~chmcry. Vol 39, No 2, Apd 1992.pp 31 7–327

http://crossmark.crossref.org/dialog/?doi=10.1145%2F128749.128753&domain=pdf&date_stamp=1992-04-01


318 RENZO SPRUGNOLI

such that rank(T) = r. The problem of the random generation of a

uniform binary tree is then solved by extracting (in a uniform way) a

random integer r ● {1, 2, . . . . b,,} or a random feasible string r = S., and

then performing the operation of unranking.

These methods are usually of time complexity O(n log n) and space com-

plexity 0( n~). In this respect, the best results can be obtained by Remy’s

method [15], which requires only O(n) operations and an extra array of

O(n) elements.

In this paper, we present a new method to uniformly generate random trees.

It can be easily described by the following procedure generate:

procedure generate (n : integer);

begin
k = pickout (n);

generate (k – 1);generate (n – k)

end:

where the random variable generated by piclcout should have the correct

probability distribution corresponding to the tree process to be simulated. In

our case, we ought to know the probability that a binary tree with n nodes has

a left subtree with k – 1 nodes (k = 1,2, . . . . n), and hence the cumulative

probabilities

P,,, k = ~rob{ @CkOUt(?2) < k}.

In Section 2, we derive a closed form for p,, ~, and in Section 3, we show how

this closed form can be interpolated by an analytic function that can be

inverted numerically, e.g., by the Newton–Raphson method. This immediately

leads to an O(n )-time generation procedure for a random tree with ~~ nodes

and, since only a fixed amount of space is needed for pickout, the space

complexity of the procedure is only O(h), because of the well-known result of

Flajolet and Odlyzko [6] on the height of trees. Finally, in Section 4, we

consider an actual program implementing the procedure generate and show

some simulation data obtained from the program.

I wish to remark explicitly that, changing the pickout, we can use the same

procedure generate for other kinds of trees. As an example, for binary search

trees (i.e., binary trees obtained from permutations by leaf insertion), we have

P,,, k = kl~z and @CkOL~t reduces to a simple extraction, in a uniform way, of an
integer number between 1 and n. This can be used to generate random binary

search trees instead of the traditional method of shuffling the elements

{1,2 ,. ... n) and then inserting them in an initially empty tree (see Knuth [10]).

The shuffling procedure has 0( n log n) time complexity and 0(1) space

complexity; our procedure uses O(log n ) space for the recursion stack, but has

a time complexity of only 0(n).

2. The Probability Distribution

It is rather easy to count the number of binary trees with n nodes having a left

subtree with i – 1 nodes (i = 1.2, . . . . n). In fact, the right subtree has exactly

n – i nodes, and since there are b,_ ~ possible left subtrees and b,, _, possible

right subtrees, the total number is b,_ ~b. _,. Hence, if I’( n, k) denotes the

number of trees with n nodes having a left subtree with less than k nodes, we



Binay Trees as a Numerical Problem 319

have:

1
F(n, k) = ~ b,.lb.., = ~ ‘~1

inl ,=0 (i + l)(2n - 2i - 1) (:i)(2:=fil

(2.1)

Our probabilities p., ~ = p; are related to F(n, k) by the formula p; =

F(rz, k)/b,,. Obviously, given a well-known property of Catalan numbers, for

k = n, we will have F(n, n) = b., and thus p: = 1, as expected.

Formula (2.1) can be reduced to a closed form. In [24], we have shown how

this can be done using a rather complex manipulation of binomial coefficients.

However, the formula falls in the class of decidable sums according to Gosper’s

algorithm [8] and its closed form can be determined mechanically, e.g., by

systems like MACSYMA or MAPLE. In any case, the final result is:

1
F(n, k) =

(( 1

2n _

2(n + 1) n
n;zk(y)(z;:;k)). (2.2,

From frequencies, we can pass to probabilities:

In Section 4, we make some considerations on the computation of F(n, k)

and p:. In Table I we give the values of F(n, k) and pj for n = 12; the same

values are used in Figure 1 to plot p~2 as a typical example of the correspond-

ing graph.

We have immediately p: + p,;_ ~ = 1.As an example and for future use, we

compute the values of p: for k = 1,2,3:

n—2

2(2n – 1)

3(n –4)(n - 1) 5
for n-+~

4(2n – 3)(2n – 1) ‘~+z

5(n – 6)(n – 2)(n – 1) 11
for n ~ ~.

4(2n – 5)(2rz – 3)(2n – 1) p~+z

and k, we have the asymptotic:

(2.4)

which can be derived from the classical (~ ) N 4“/ F.

Formula (2.4) can be used to obtain a first approximation kO of k when the

probability p is given. Setting A = 1 – 2p, we find that kO is a solution ofi

(4 + A2mn)k2 – n(4 +A2mn)k + n’ = O,



320 RENZO SPRUGNOLI

TABLE I. THE DISTRIBUTION FOR n = 12.

k F(n, k) P; k. e k~

1 58786 0.2826087 1.1981349 0.1924190 1.0160393

2 75582 0.3633540 2.1435410 0.1435185 2.0064311

3 85306 0.4101013 3.1005290 0.1015625 3.0028674

4 92456 0.4444744 4.0638743 0.0648148 4.0012703

5 98462 0.4733477 5.0310239 0.0315394 5.0004801

6 104006 0.5 6.– o.– 6.–

7 109550 0.5266523 6.9689761 –0.0315394 6.9995199

8 115556 0.5555256 7.9361257 – 0.0648148 7.9987297

9 122706 0.5898987 8.8994710 –0.1015625 8.9971326

10 132430 0.6366460 9.8564590 –0.1435185 9.9935689

11 149226 0.7173913 10.8018651 –0.1924190 10.9839607

12 208012 l.– 11.7049706 – 0.25 11.9369772

1

0

that is:

, I 1 1 ,

)12245fj78 9 10 11 12

FIG. 1. The graph of probablhties for n = 12.

(2.5)

Obviously, the + sign corresponds to values k > n/2 and the – sign to

values k < n/2. Therefore, if we start with p < 0.5, we have to use the

negative sign in (2.5), and if we start with p > 0.5, we must use the positive
sign. If p = 0.5, then A = O and k = n/2. The 4th column in Table I gives the

value of k. when p = pp.

It is important to evaluate how good an approximation kO is to the true value

()
k. From the asymptotic expansion of 2,’ and (2.3) we have for the true k:

n–2k

((

1
A=

1
l–; #+—

mnk(n – k) n–k–; 1

11

-(

1 12

1}‘128 i+n–k–; ‘“”””



Binary Trees as a Numerical Problem 321

Setting k. = k + c and considering k a continuous variable, from formula

(2.4) we can develop A = A(k) in a Taylor series:

n–2k–2e
A=

mn(k + ~)(n – k – ~)

n–2k n2e A“(k)
—— +— ~~ + . . .

n-nk(n – k) – 2k(n – k)~mnk(n – k) 2

n–2k

(

n *C
l–

mnk(n – k) )2k(n –k)(n – 2k) + ““” “

Equating the first-order corrections, we obtain an estimate of e, a somewhat

noteworthy expression in n and k:

,=(n–k)3–k3

4n3 “
(2.6)

The 5th column in Table I gives the values of ● for n = 12. For 1 < k < n,

the estimate is fairly accurate, and we shall use this fact in the following

section.

3. Inuerting the Formula

In principle, it is now easy to find the number of nodes in the left subtree in a

random uniform binary tree: we extract a random, uniformly distributed real

number p e [0, 1) and find k according to formula (2.3). The ceiling operation

[kl = “smallest integer> k“ provides the desired number (plus 1), that is, the

result of the pickout procedure. The problem is now how to compute k or, in

other words, how to invert formula (2.3).

If we consider k as a continuous variable and pj as a function of k, p; is

increasing, as is a cumulative probability distribution. Furthermore, in the

interval corresponding to values of p G [~, ~], the function is also moderately

increasing, and from the formula for p; (and the analogous formula for p:., )

we see that this interval includes all k = 1,2, . . . . n. Thus, we are in the best

situation to apply the Newton–Raphson method to find the solution of

[

g(k) =p–; l– ‘-2k (T)(2:=:k) no

()

2n

)

>
n

n

starting with the initial approximation kO, which we found in the previous

section. To simplify our notation, instead of g(k), let us consider:

where A = 1 – 2p, as before. The successive approximations to the solution
of G(k) = O are given by:

G(k)
k C+l = ‘, – G,(k,) . (3.1)



322 RENZO SPRUGNOLI

(1To find the derivative G ‘(k), we have to evaluate the derivative of ~ , and

this can be done passing to the gamma function:

()

~ 2k r(2k + 1)

k
=D

rz(k + 1)

r’(2k + l)r(k + I) – r(2k+ l)rf(k+ 1)
=2

rs(k + 1)

“(:(%l;(~)- (t%’;:::;)

where ~ is the digamma function. Analogously we find:

‘(2: =:k)=-2(2:=:k)
(4(27z- 2k+l)-t(n-k+ l))

and hence:

“(k)=:(T)(2:=:k)(’+(’2-2k)q(nk~’
where W(n, k) = t/J(2n – 2k + 1) – #(n – k + 1) – ~(2k + 1) + @(k + 1).

The Newton–Raphson rule (3.1) can be reformulated as:

rzA@(rz, k,) – n – 2k,
k 1+1 =k, –

2 + 2(n – 2k, )W(rz, k,) ‘

where we have:

()
‘(’’’k)=(N!::k)

k(n – k) r(2~)r2(k)r2(n – k)
—

~n r2(n)r(2k)r(2n – 2k)

_ fik(n -k) r(n + ;) r(k) I’(n -k)
.

n r(n) r(k+~) r(n–k+ ~)’

because of the iterative formula flx + 1) = ,xIlx) and the duplication formula

17(2x) = 4X r(x)r(x + ~)/(2~) (see, e.g, [1]). Finally, introducing the func-

tion A(x) = Ilx + ~)/Ilx), we have:

Afikl(n – kZ)A(n)/(A(k, )A(n – k,)) – n – 2k,
k L+l =k, –

2 + 2(n – 2k, )W(n, kJ
. (3.2)



Binary Trees as a Numerical Problem 323

This formula, together with the evaluation of kO, represents the mathemati-

cal formulation of the procedure pickout. In fact, so far we have only consid-

ered the mathematical aspects of our problem. Let us now turn to computa-

tional considerations. We wish to show that the computation of k can be

performed (to the desired accuracy) in a time independent of k, n and p.

There are, we think, three main problems: (i) the computation of the r

function; (ii) the computation of the v function; (iii) the convergence of the

Newton–Raphson method.

Beginning with the I’ function, we remark that a direct calculation of A(x)

through 17(x) is not feasible because of the exponential growth of the latter

function. On the other hand, we have:

r(x + ~)
A(x) =

r(x)

Therefore, A(x) assumes moderate values for large x too, and can be

computed conveniently by A(x) = exp(log Ilx + ~) – log r(x)). Some com-

mercial subroutines for 11x) give log 17(x) directly, and this is computed as

follows for x >0:

(a)

(b)

(c)

if 2 < x s 3, use an appropriate Chebishev polynomial to approximate

log IXx) to the desired accuracy;

if O s x < 2 or 3 < x s 12, use the formula: log r(x + 1) = log x +

log 17(x) to reduce the calculation to the preceding case;

if x > 12, use an appropriate number of terms in the asymptotic develop-

ment:

()

Bz,
10gr(x)= x–~lOgx–x+~10g2x+ ~

,=1 2r(21” – l)x~”-1

where the Bz~ are the Bernoulli numbers.

In practice, the computation is always reduced to the evaluation of a

polynomial and to other functions (log and exp) of limited complexity. Thus,

the length of computation depends only on the precision we wish to achieve or

we can achieve on a particular computer.

The computation of the digamma function is slightly easier since ~(x) N

log x and therefore large values are never involved. Subroutines for 4(x)

follow the same lines as the r function; the recurrence relation is *(x + 1) =

~(x) + l/x and the asymptotic development is:



324 RENZO SPRUGNOLI

Finally, we recall that the convergence in the Newton–Raphson method is

quadratic and depends heavily on the initial approximation. The value /c. as

computed by (2.5) is a good starting point because of (2.6). However, the same

formula (2.6) suggests a better app~oximation, that is.

(n -ko)3 –k;
k~=kO–

4n3 “

The values of k; for n = 12 are listed in Table

limited number of iterations, from 4 to 6 according to

I. Consequently, a very

the required accuracy, is

sufficient to obtain the result of pickout and, in conclusion, its execution t’ime

will be bound by a constant C, independent of p, n, and the resulting k.

4. Programming and Simulation Results

The method described in the previous section, that is, finding a closed formula

for the cumulative probabilities and then inverting the formula using, for

example, the Newton–Raphson method, is theoretically sound and could

constitute the basic framework for this and other problems. However, although

bound by a constant C, the number of operations performed by the subroutine

pickout is very large, and the time to generate, say, 1000 random trees with

1000 nodes may be intrinsically and hopelessly long. Fortunately, formulas (2.5)

and (2.6) provide- a method to simplify pickout and reduce execution time

dramatically.

The basic consideration is as follows: Supposing p <0.5, if p > p: = 0.5 –

(n – 2)/(4n – 2), the first approximation kO is greater than the true value k

and, because of (2.6), differs very slightly from k, by less than 0.25. Since k

must be an integer number, we have k = [kO 1 or k = [ kO 1 – 1. Thus, we can

tentatively set k = [ kO 1 – 1 and compute p‘ = p;. However, if p‘ <p, then

our hypothesis was wrong and the correct result will be k = [ kO 1; otherwise,

the value of k is correct. Obviously, the parallel consideration holds true if

p >0.5.

The problem is now reduced to the computation of p:, with n and k

integers. Formula (2.3) gives the mathematical definition of p; and we can

show that it can be computed in a time bound by a constant C, independent of

n and k.

()
If we had the possibility of pre-computing the quantities ~ for r =

1,2, . . . . n, then a few operations would be sufficient to evaluate p:; however,

(;:)N y r4 / n-r grows very rapidly, and for large n precomputation is not

feasible. Let us consider an example. On many computers, the exponent of a

real number is contained in a single byte, corresponding to a decimal exponent

s 38. Since log11038
()

= 63, we can precompute ~ and store it in an array

only for r < rzO = 63,

The p[ is evaluated in the following way:

(a) if n < no, then we use formula (2.3) with the precomputed values of ~ ,()



Bina?y Trees as a Numerical Problem 325

(b)

(c)

if n > no, but k or n – k are less than or equal to nO, then let r be the

smaller and w the larger element between k and n – k; compute:

This is a direct application of Stirling’s formula and the correction:

1 1 5
a(x) =l–z+ —+—

128x2 1024x3 – “’”

is extended to the number of terms necessa~ to achieve the desired

()
accuracy. Finally, the precomputed value of ~ is used to evaluate p:;

if n, k and n – k are all greater than rq,, a new application of Stirling’s

formula yields:

L 2n–k a(k)a(n –k)
p:=; l–

mnk(n – k) 1a!(n) “

In every case, the execution time is 0(1),

Finally, from (2.4) we can easily deduce that the minimal distance between

two consecutive probabilities 8 = min~{p~+ ~ – p~} is asymptotic to 2(n~)- 1.

This means that p must be generated with an appropriate precision. For

example, if we wish to generate random trees with n = 1,000,000 = 220 nodes,

230. hence, p must have at least, say, 40 significant binary digits,we have 8 = ,

that is, a mantissa contained in 5 bytes.

On the basis of these considerations. I wrote a PASCAL program and

performed a series of simulations to check the effectiveness of the generating

procedure. For n = 1000,2000,..., 10000, four hundred random trees were

built, and the following quantities were recorded: the average path length

relative to each node, the corresponding variance with respect to the theoreti-

cal mean, the average height and corresponding variance from the experimen-

tal mean value. In fact, there is no exact analytic formula for the height of

trees, and the result of Flajolet and Odlyzko [6] only gives an asymptotic

estimate. The results obtained are listed in Table II.

For the path length, we have the well-known results (see, e.g., Gonnet [7]):

avg, = 6-3 + O(n-O’) = 1.7724546-3,

10

()

G
varP= —–wn —

3
y + o(1) = 0.191741n – 0.886227fi.

For the height, we have less precise analytic results (see Flajolet and Odlyzko

[6]):

varll = (8((2) - 4n)n + O(fi) = 0.593102n + /3~.

where a and ~ are unknown constants.



326 RENZO SPRUGNOLI

TABLE II. EXPERIMENTALRESULTS.

Average Var. from Average Var. from Avg. Time
n Path Length Theor. Mean Height Exper. Mean 100 gen.

1000
2000”
3000
4000
5000
6000
7000
8000
9000

10000

52.199
76.137
93.423

108.457

124.281

135.706

142.876
154.809

165.654

174.999

157.822
344.647
444.259

616.361
877.699

1144.369

1221.675
1437.361

1698.889

1889.400

105.468
152.113

185.748
~18.380

245.705
~fj8.yj3

287.655

306.240

329.383
350.610

498.616
1138.735

1383.488

1993.826
2808.439

3605.621

3992.750
4348.401

5203.127
6253.501

6’08”
l~116ft

18’24”

24’37

30’42”
36’5?
43’03”
49’10
55’20”
61’38”

Using the least square method on the data of Table II, we obtain:

avgP = 1.783762& – 3.883864,

varP z 0.~18373n – 3.0894926,

avg~ = 3.6456766 – 1.6590244&,

var,, = 0.694459n – 9.905166&.

We may consider these results sufficiently close to the expected values, and

conclude that the procedure generate gives an effective method to generate

random binary trees.

For what concerns the complexity of the procedure, two comments are in

order:

(1) the times given in Table II show a perfect linearity. The times obtained for
the four groups of 100 generations differ for a few seconds (6–7 at most);

(2) the range 1000< n <10000 used for simulation is only due to execution

time considerations and there is no intrinsic difficulty to build random

trees with several millions nodes. Note that the maximal height of the 400
trees with 10000 nodes generated for the simulation only was 891.

ACKNOWLEDGMENTS. I wish to thank Dr. Giotto Fioro for his advice in dealing

with the computational aspects of the gamma and digamma functions, and the

anonymous referee, whose remarks greatly helped in improving the presenta-

tion and readability of the paper.

REFERENCES

1. ABRAMOWITZ, M., AND STEGUN, I. A. Handbook oj Mathematlccd Functzons. National Insti-
tute of Standards and Technology, Washington, D. C., 1964.

2. BAYER,T., AND MITCHEL HEDETNIEMI, S. Constant time generation of rooted trees. SZAM J.
Compzt. 9 (1980), 706-712.

3. ER, M. C, Enumcratmg ordered trees ]exicographicd]ly. Compziter J. 28 ( 1985), 538-542.
4. ER, M. C. Lexicographic listing and ranking of t-ary trees. Computer J., 30 (1987), 569-572.
5. ER, M. C. A simple algorithm for generating non-regular trees in lexicographic order.

Computer J. 31 ( 1988), 61-64.
6. FLAJOLET, PH., AND ODLYZKO, A. The average height of binary trees and other simple trees.

J. Comput. Syst. Set. 25 (1982), 171-213.



Binary Trees as a Numerical Problem 327

7. GONWT, G. H Handbook of Algorithms and Data Structures. Addison-Wesley, Reading,
Mass.. 1984.

8. GOSPER, R. W., JR. Decision procedure for indefinite hypergeometric summation. Proc.

National Academv of Sciences USA 75 (1978), 40-42.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.

24.

25.

26.

27.

28.

KNOTT, G. D. A ~umbering system for binary trees. Comrnun. ACM 20, 2 (Feb. 1977)
113-115.
KNUTFI,D. E. The Art of Computer Programmazg, Vol. 1–3. Addison-Wesley, Reading, Mass.,
1968-1973.

LEE, C. C., LEE, D. T., AND WONG, C. K. Generating binary trees of bounded height. Acts

bzf. 23 (1986), 529-544.
NIJENHUIS, A., AND WILF, H. S. CombinatorialAlgorithms. Academic Press, New York, 1975.
PALLO, J., AND RACCA, R. A note on generating binary trees in A-order and B-order. Int. J.

Comput. Math. 18 (1985), 27-39.
PROSKUROWSKI,A. On the generation of binary trees. J. ACM 27, 1 (Jan. 1980), 1-2.

REMY, J.-L. Un proc~dil it6ratif de d6nombrement d’arbres binaires et son application a

leur g6n6ration a16atoire. RAIRO Zrzformatique Th40rique 19 (1985), 179-195.

ROELANTS VAN BARONEIGIEN, D., AND RUSKEY, F. Generating t-ary trees in A-order. Znf.

Proc. Letters 27 (1988), 205-213.

ROTEM, D. On a correspondence between binary trees and a certain type of permutations.

Inf. Proc. Letters 4 (1975), 58-61.

ROTEM, D., AND VAROL, Y. Generation of binary trees from ballot sequences. J. ACM 25,3

(July 1978), 396-404.
RUSKEY, F. Generating t-ary trees lexicographically. SZAM J. Comput. 7 (1978), 424-439.

RUSKEY, F., AND Hu, T. C. Generating binary trees lexicographically. SL41VI J. Comput. 6
(1977), 745-758.

SCOINS, H. Placing trees in lexicographic order. Mach. Zntell. 3 (1969), 41-60.
SKARBEK, W. Generating ordered trees. Theor. Comput. Sci. 57 (1988), 153-159.
SOLOMON, M., AND FINKEL, R. A. A note on enumerating binary trees. J. ACM 271 (Jan.
1980), 3-5.
SPRUGNOLI,R. Counting labels in binary trees. EMT (Copenhagen) 30 (1990), 62-69.

TROJANOWSKI, A. Ranking and listing algorithms for k-ary trees. SL4M J. Comput. 7 (1978),

492-509.

ZAKS, S. Lexicographic generation of ordered trees. Theor. Cornput. Sci. 10 (1980), 63-82.
ZAKS, S., AND RICHARDS, D. Generating trees and other combinatorial objects lexicographi-

tally. SL4M J. Comput. 8 (1979), 73–81.

ZERLING, D. Generating binary trees using rotations. J. ACM 32, 3 (July 1985), 694-701.

RECEIVED JANUARY 1989; REVISED JANUARY AND SEPTEMBER 1990; ACCEPTED SEPTEMBER 1990

Joumd of the Assoc,atum for Computmg Machmeg, Vol 39, No 2, ApIIl 1992


