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match models to symbolic data structures for situations involving reliable data and

complex models, (3) approaches that fit models to the photometry and are appropriate

for noisy data and simple models, and (4) combinations of these strategies, which must

be adopted in complex situations Representative examples of various methods are
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appropriateness for particular applications,

Categories and Subject Descriptors: 1.2.10 [Artificial Intelligence]: Vision and Scene

Understanding–archztectureandcontrolstructures: modelmg andrecoveryof

physical attributes; representations, data structures, and transforms; shape; I.48

[Image Processing]: Scene Analysis; 1.5,4 [Pattern Recognition [:

Applications—computer vunon

General Terms: Algorithms, Design, Experimentatiorl, Theory

Additional Key Words and Phrases: Image understanding, model-based vision, object

recognition

INTRODUCTION

This paper reviews practical computa-
tional strategies for recognizing objects
in digital imagery. It provides both an
introduction to the field of applied object
recognition for the nonspecialist and a
detailed guide to a representative body of

literature and techniques for those
beginning research in this domain. The
focus is on mature techniques with
explicit models and working applica-
tions.

The paper begins by defining the object
recognition task and establishing the
scope of the review. It then proposes a
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classification framework based on gen-
eral characteristics of object recognition
strategies. The central sections discuss
the categories of the general classifi-
cation, evaluate the applicability of the
techniques, and present summaries of
papers typifying each method. A list
of related books and review articles, as

well as more detailed analyses of selected

papers, are presented in appendices.

CHARACTERISTICS OF THE OBJECT

RECOGNITION TASK

Definitions

Object recognition is the task of finding
and labeling parts of a two-dimensional
(2D) image of a scene that correspond to
objects in the scene. Figure 1 shows an
example of the object recognition task as
it might be carried out by a human
observer with a marking pen; an aerial
image of an industrial complex has been
marked and labeled to show areas recog-
nizable as buildings and roads.

Photometry usually refers to light
intensities reflected from surfaces in a
scene and recorded on camera film; on
occasion, data originate from sources such
as ultrasound or x-ray absorption instead
of light. A digital computer image of a
scene is a 2D array of numbers called
pixels whose values represent the scene’s
photometry, that is, the strength of the
signal arriving at a particular point on
the recording medium. The image behind
the markings in Figure 1 originated from
an ordinary black and white photograph
that was digitized into a 2D array of
pixel values in computer memory. These
numerical values contain all the photo-
metric intensity information at our
disposal.

To carry out the object recognition task,
we must first establish models, or gen-
eral descriptions of each object to be
recognized. Typically, a model includes
shape, texture, and context knowledge
about the occurrence of such objects in a
scene. For example, the mathematical
description of a building model as a set
of shaded rectangles might have been
used to generate Figure 1. A three-
dimensional (3D) building object could be
modeled as a set of rectangular solids.
Texture information might include colors
or knowledge about the layout of a
building’s windows.

A model label is then attached to each
occurrence (or instance) of a model in the
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Figure 1. An aerial image of an industrial complex with
labels attached to buildings and roads.

label can be thought of
as a tag pinned to an area in the image
that we believe shows an instance of the
corresponding object model. The words
Roads and Buildings in Figure 1 are
examples of model labels; the outlined
2D areas indicate where we think the
photogaph shows 3D buildings. That is,
a model may be two- or three-dimen-
sional, whereas labels in an image always
refer to 2D model instances. (We note
that in certain cases the image and some
of its labeled model instances may be
three-dimensional.)

There are several important distinc-
tions about the kind of information we
deal with in a digital image and its cor-
responding scene. The most elementary
type of information is syntactic, which
deals only with the pixel values them-
selves, not their meaning. Semantic
information, by contrast, deals with
knowledge and meaning. Thus, when we
talk about a syntactic image operator,
we mean a procedure that blindly applies
an algorithm to the pixel values; an
example would be a procedure that as-
sembles groups of adjacent pixels that
have a high contrast with their other
neighbors. A semantic operator, in con-
trast, uses models of the scene and the

image production process that incorpo-
rate symbolic knowledge about the orga-
nization of the information, such as
“parts may be lying on top of one
another. ”

Closely related to the distinc-
tion between semantic and syntactic
information are terms describing the
spatial dependence of a procedure or con-
cept. We frequently use the term local to
refer to processes that look at a pixel and
its very nearest neighbors but use no
information about the rest of the image;
local processes are typically syntactic.
The term global, therefore, is used to
refer to the opposite situation, in which
context information from the entire
image or scene, usually semantic in na-
ture, is considered.

To sum up, we may think of object
recognition as the process of drawing
lines and outlining areas in an image
and attaching to each such structure a
label corresponding to the model that best
represents it, as illustrated in Figure 1.

scope

In this paper we consider only object
models that include knowledge of
object structure such as shape or seman-
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tic context. In particular, models that
rely strictly on local photometry are not
considered. Thus we do not treat in detail
models defined only by syntactic state-
ments such as “all contiguous pixels with
intensity value above 128. ”

The effect of these restrictions is to
focus our attention on object recognition
strategies that are generally associated
with the machine perception branch
of artificial intelligence. Among the
wide variety of object recognition prob-
lems that fall within the scope of this
review are such tasks as locating single
object instances, accurately determining
object boundaries in an image, choosing
an object’s best class membership from
among many possibilities, and extracting
object labels from complex, cluttered
scenes.

Role of Context in Object Recognition

Object recognition is difficult because a
combination of factors must be used to
identify objects. These factors may

include restrictions on allowable shapes,
the semantics of the scene context, and
the information present in the image
itself. We next present two examples
illustrating the importance of context in
interpreting images. Note that the
human reader will experience the same
types of confusion that computer systems
do if the scene context is not clearly
understood; even human beings require
training to interpret accurately images
of the type presented.

Consider first the image in Figure 2a
without reading the caption. In isolation,
it is nearly impossible to identify the
object in the center of this image. This
same object also appears in the same
position in the image of Figure 2b. With
no further information, it is still difficult
to identify the object. Finally, given the
context information that the image in
Figure 2b is an aerial image of a high-
way, the object is more easily recognized
as an automobile. Cultural context plays
a central role in enabling us to interpret
the scene.

As our second example, consider the
photograph in Figure 3a, showing a clus-
ter of rocks lying on light-colored ground.
What we want to illustrate here is the
importance of context assumptions about
lighting and shadows. If we have learned
to expect sunlight to fall on the top of the
dark-colored rocks, forming even darker
shadows on the soil, we can form a very
three-dimensional interpretation of Fig-
ure 3a. If, however, we interchange light
and dark, as in Figure 3b, our expecta-
tion is confounded, and most of us will no
longer see a consistent 3D picture.

Two more simple operations on the
images can help us isolate what is
important to our perceptual process: In
Figure 3c, we show a thresholded binary
image that effectively paints the shad-
ows black. This cartoonlike image is rel-
atively easy to see as a 3D scene; it may
help to squint your eyes slightly. If, how-
ever, we paint the shadows white in the
original gray-scale image, as in Figure
3d, most viewers will again find it impos-
sible to recover the 3D shapes. The
intended lesson is this: Although the
thresholded Figure 3C retains much of
the important visual information in the
original image, Figures 3b and 3d have
become uninterpretable because the 3D
cues we have learned to expect have been
obliterated. These examples argue
strongly that computer systems (or
humans, for that matter) need appropri-
ate context models even at a very low
level of the data processing procedure in
order to carry out object recognition and
scene interpretation.

Object recognition is analogous to
another difficult problem—the interpre-
tation of an audio signal as a sensible
sentence. For simple cases, it may work
to extract all the words from the audio
signal in one pass, then send the words
to a parser. In real-world applications,
it may be absolutely essential to exploit
the context of possible parses during the
processing of the audio signal to get the
correct set of idealized symbols and their
interpretation. The visual context is
equally important in object recognition.
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(a)

Figure 2. An illustration of the importance

au~omobiles in an aerial highway sce~e.

Illustrating the Drawbacks of Simple

Approaches

The simplest approaches to object recog-
nition rely entirely on local operators that
analyze the photometric statistics of the
image (e. g., measured light intensities).
Since real objects are defined by their
geometric and semantic characteristics as
well as their statistical properties, these
methods may fail to identify objects prop-
erly. Although we are excluding methods
relying exclusively on local image statis-
tics from our treatment, it is important
to have a qualitative understanding of
their characteristics.

For example, depending on arbitrary
parameter settings, edge detector meth-
ods will either produce so many edges
that relevant information cannot be per-
ceived in the clutter or will fail to extract
edges that are crucial for the inter-
pretation process. Similarly, region seg-
mentation algorithms will either

undersegment (combine semantically
meaningful objects) or oversegment
(break coherent objects into unrecogniz-
able pieces). These failure modes are
inevitable because the statistical
techniques used fail to take higher level

of context. (a

(b)

) One automobile in isolation; (b) image of

geometric and semantic knowledge into
account. Examples of these phenomena
are shown in Figure 4 for three such
methods: a histogram-based segmenta-
tion system [Laws 1984; Ohlander et al.
1978], an edge operator [Canny 1986],
and the zero crossings of differences of
gaussians [Marr 1982]. Many object
recognition approaches depend on the as-
sumption that the outlines appearing in
some chosen single image defined by such
methods will correspond directly to
objects (buildings in this case); often,
however, this assumption is simply not
true.

To reiterate: Since a major task in the
object recognition process is to outline
areas in an image identifiable as model
instances, it is tempting to use one of the
above edge detection or region segmenta-
tion methods by itself. This does not work
in general, because such methods have
no conceptual model for what they are
looking for—with a given set of parame-
ters, one of these methods will draw the
same outline whether it is looking for
tadpoles or airports! These simple tech-
niques may, however, be useful when we
need a starting point for a more
sophisticated analysis.

ACM Computmg Surveys, Vol 24, No 1, March 1992
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(a) (b)

/

(c) (d)

Figure 3. Four images of a rock scene: (a) Normal Image; (b) Image with the pixel mtensltles reversed; (c)
thresholded image with shadows black; (d) Image with shadowe replaced by white Shape cannot be
deduced from shading alone in these examples, as all shape perception disappears m (b) and (d)

We have now argued that local

photometry does not fully characterize
objects in the real world, so effec-
tive object recognition procedures must
incorporate model knowledge or context.
In order to implement procedures that
achieve this goal in a feasible fashion, we
must adopt appropriate computational
strategies. The classification and selec-
tion of such computational strategies is
the subject of the remainder of this paper.

CATEGORIZATION OF OBJECT

RECOGNITION SYSTEMS

We classify the computational strategies
used for object recognition according to
two main characteristics: their suitabil-
ity for complex image data and their
suitability for complex models. The moti-
vations for choosing these two features
are the following:

ACM Computmg Surveys, Vol 24, No 1, March 1992
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. (a) An image of an aerial suburban scene; (b) a segmentation with undersegmented roofs

[Ohlander et al. 1978; Laws 19841; (c) oversegmentation resulting from a different parameter choice; (d) (e)
(f) Canny edge images computed with progressively lower-edge strength thresholds [Canny 19861; (g) (h) (i)

zero crossings of differences of gaussians with progressively decreasing widths

* Complexity of the Image Data. First,
we define data complexity to corre-
spond roughly to the signal-to-noise
ratio in a digital image; an image with
semantic ambiguity therefore corre-
sponds to noisy, or complex, data. For
example, if the data naturally have
very good characteristics, we have the
analog of an error-free sentence given
to a sentence parser. Examples include
data consisting of perfect (e.g., human-
generated) outlines of model instances
~hroughout an image or image data in
which all houses in an aerial image
have perfectly lit white roofs against a
black backWound. Our only concern in
this situation is to produce a correct
set of labels without regard for how
the set of symbolic outlines to be
labeled were inferred from the data; in
this case we call the data simple. If the

modeled object characteristics are not
unambiguously and completely
encoded by an external process or by
the photometric statistics, however, the
task of extracting plausible model
instances from the data is a major
undertaking that often cannot be sepa-
rated from the symbolic interpretation.
Data with poor resolution, noise, or
photometric anomalies (e. g., occlusions
or cloud cover) typically require spe-
cially designed methods for the extrac-
tion of model instance hypotheses.
Similarly, in images with easily con-
fused false model instances, we need
special methods to distinguish the cor-
rect objects from the false ones. In these
latter cases, we refer to the data as
complex.

D Complexity of the Model. If the
model is defined by a simple criterion

ACM Computmg Surveys, Vol 24, No 1, March 1992
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like a single shape template or the
optimization of a single function
implicitly containing a shape model,
no other context may be needed to
attach model labels to the scene. If
many atomic model components must
be assembled or hierarchically related
to establish the existence of the desired
model instance, however, complex data
structures and nontrivial search tech-
niques may be required. Thus model
complexity is indicated roughly by the
levels of detail in the data structures
and in the techniques required to
determine the form of the data
organization.

We are thus led to the four major
classes of computational strategies that
populate our category space; they are
summarized schematically in Figure 5.

0 Feature Vector Classification. Fea -
ture vector methods rely on a trivial
model of an object’s image characteris-
tics and are typically applied only to
simple data. Feature vector methods
are well understood and treated in
many textbooks [Duds and Hart 1973;
Tou and Gonzales 1974]. However, for
completeness we have chosen to include
a brief description of these techniques
because thev can be verv useful start-
ing points” for more “ sophisticated
applications.

0 Fitting Models to Photometry. When

simple models are sufficient but the
photometric data are noisy and am-
biguous, a number of methods that ex-
tract simple model instances may be
effective. Such methods search for fea -
tures with predetermined global shapes
and ~hotometric tmo~erties Methods. .
may use rigid models, depending on a
limited set of parameters, or flexible
models, specified by a set of generic
constraints on object characteristics.
Detailed discussions of two typical
examples of this method, the Hough
transform and the snake method, are
given in Appendix C, Sections C. 1 and
C.2.

o Fitting Models to Symbolic Strut-

e

tures. When complex models are
required but reliable symbolic struc-
tures can be accurately inferred from
simple data, procedures that tie these
structures into complex model hierar-
chies may be appropriate. Such
approaches typically look for instances
of objects by matching data structures
that represent relations among object
parts and may use a hierarchy of inter-
mediate models to prune the search
tree. Detailed discussions of two typi-
cal examples of this method, the
HYPER and ACRONYM systems, are
given in Appendix C, Sections C. 3
and C.4.

Combined Strategies. When both the
data and the desired model instances
are complex, successful object recogni-
tion requires a combination of stra-
tegies. Detailed discussions of two
typical examples of this method, the
3DP0 and the minimal description
length (MDL) method, are given in Ap-
pendix C, Sections C. 5 and C. 6.

Subsequent sections deal systemati-
cally with each of the major approaches
to object recognition in the literature that
fall within our scope. Appendix A tabu-
lates and classifies the selected papers
reviewed in the main text. Appendix B
summarizes other reviews of our subject
area and contrasts the approaches used
with the one presented here. Appendix C
contains more detailed discussions of
selected papers representing each cate-
gory in our classification space.

Now we turn to the task of analyzing
and categorizing the literature on strate -
gies for object recognition. We summa-
rize a range of papers for each of our
strategy categories in order to paint a
broad picture of the possible applications
as well as to illustrate the breadth of
techniques that are available.

1. FEATURE VECTOR CLASSIFICATION

1.1 Summary of the Technique

The feature vector classification approach
is a well-established strategy that has
been described extensively in the litera-
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Suitability for Complex
Image Data

Fitting Models to Photoxnetrv
Combined !$tratcgics

w Hough . 3DP0

w Snakes e MDL

Fltthg Modek to symbolic
Structures

Feature Vector Classification e HYPER

● ACRONYM

Suitability for Complex Models

Figure 5. Classification space for object recognition strategies with
illustrative examples. Appendix C contains detailed summaries of

each example me~hod. -‘

ture [Duds and Hart 1973; Tou and
Gonzales 19’741 and has proven its useful-
ness in many industrial applications.
Here, we give a brief summary to estab-
lish conventional terminology.

In this approach, objects are modeled
as vectors of characteristic features, each
of which corresponds to a point in the
multidimensional feature space. Exam -
pies of features include gray value, color,
infrared or ultraviolet intensity, area,
perimeter, compactness, and number of
holes. To use the feature vector approach,
we must select which features are rele -
vant, determine a way to measure them,
and define a criterion for distinguishing
the desired objects from others. For
instance, to find chocolate doughnuts
using a feature vector approach, we might
construct groups of neighboring pixels
that had similar chocolate color, compute
the total number of pixels in each such
group, and compute the total number of
pixels in holes surrounded by each group.
For each pixel, plot its color, the area of
its group, and the area of its group’s
holes on separate axes. Pixels, all of
whose values lie within acceptable ranges
of these parameters, are then assigned
the label “chocolate doughnut, ” There
are, of course, many variations of such a
procedure, with widely varying accuracy.

We see that once the feature space is
defined, it must then be partitioned into

regions corresponding to different object
models; this allows the assignment of
unknown objects to known object classes.
The decision boundaries are usually con-
structed during a learning or training
phase; for example, we might take a large
number of sample objects with assorted
feature values, make a density plot of
their values, and note the boundaries
of the clusters containing objects with

different label names. Class selection
may also be based on such techniques as
bayesian decision analysis methods. The
two major philosophies of feature vector
classification are m follows:

0 Pixel Classification. Pixel classifica-
tion is the simplest and most straight-
forward application of the feature-space
strategy. Each pixel is potentially a
member of a different model class, and
the classification of pixels is based
solely on their intensities or frequency
spectrum. Spectral analysis [Richards
1986; Wheeler and Misra 1980] is a
well-known example of pixel classifica-
tion. In this method, we might take
two images of a large area of farmland
using different color filters, then deter-
mine experimentally the average val -
ues of each of the two colors seen in
known wheat fields. Unknown areas of
the image would be labeled as wheat
fields if the values of both their aver-
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age colors were close to those of known
wheat fields.

e Classification of Labels. Instead of
the pixel-based approach of the previ-
ous method, we may use features that
characterize regions of a partitioned
image; such regions are typically
obtained by some photometry-based
method that groups adjacent pixels into
coherent areas with homogeneous local
characteristics. This requires images
with simple photometric statistics.
Examples of label classification can be
found in the system of Green et al.
[1989] that classifies chromosomes in
images of dividing cells based on fea-
tures such as length of the chromo-
some, distance from the top to the
last band, distance from the top to
the darkest band, and so on, and in the
system of Bergman and Mulgaonkar
[1988] that uses a three-layer neural
network to recognize destination
address blocks in images of mail pieces
using position and shape.

1.2 When to Use this Strategy

The feature-space approach works well
when the problem involves simple mod-
els that do not include constraints relat-
ing different parts of a model and when
we can restrict ourselves to either pixel
classification or classification of labels
with good photometry. A variety of local
photometric methods and classification
techniques suffice to produce accurate la-
bels in such cases.

1.3 When to Avoid this Strategy

A major limitation of the feature-space
approach is its inappropriateness for the
representation and handling of models
that include constraints on the relation-
ships between the chosen features. The
technique does not easily make use of
more global information, such as spatial
relationships and model context. Fur-
thermore, unless local photometry is suf-
ficient to distinguish the desired object
completely, we cannot rely strictly on
feature-vector approaches.

Hanson

2. FITTING MODELS TO PHOTOMETRY

The most straightforward object recogni-
tion techniques are those that fit their
models directly to the photometric data.
These methods improve upon feature
classification by incorporating more
model knowledge into their procedures
and replacing local pixel classification by
more global considerations. As a simple
example, we could tell the procedure to
look for circles by finding portions of arcs
with a given radius and center, as
opposed to saying find any light-dark
boundary in the intensity data. We divide
the basic strategies into two categories:

Rigid Model Fitting. The shape or
photometry of the target object is
known a priori; the model can be either
rigid or parametric, depending on a
limited set of free parameters. For
more flexible models, a more sophisti-
cated strategy is required.

Flexible Model Fitting. The next level
of complexity supports-the use of mod-
els that are specified by generic
constraints. These methods rely

on an optimization procedure that finds
the best fit between the model
and the image data. Heuristics can be
used to control the search and reduce
the computation time at the possible
risk of finding a nonoptimal solution.

We now examine each of these strate-
gies in turn. The references reviewed
below for each category are summarized
in Appendix A.

2.1 Rigid Model Fitting

2. 1.1 Summary of the Technique

Template matching, one of the oldest
computational strategies, is the precur-
sor of a range of more recent strategies
described in this section. A template rep-
resents an object as a rigid curve or an
image. A metric or similarity measure
that reflects how well the image data
match the template is used to find the
optimal template location.

ACM Computmg Surveys, Vol 24, No 1, March 1992
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2.1.2 Quantifying Photometric Statistics

The simplest class of metrics quantifies
similarities between two images by cor-
relation (e. g., average absolute or squared
differences of image pixels, normalized
cross-correlation, statistical correlation)
and are described in basic textbooks on
image processing [Ballard and Brown
1982; Hall 19’79; Rosenfeld 19691. The
basic idea is that when a (small) pattern
matches up well with a local portion of a
(large) image, the pixel-by-pixel differ-
ences are very small and therefore
provide a clue that something special is
happening in that particular local region.
We refer the reader to the textbooks cited
above for details of these fundamental
statistical methods.

A classic example of the correlation
approach is optical matched filtering.
This technique actually implements cor-
relation using optical devices that simu-
late the operation of an appropriate
sequence of Fourier transforms [Reynolds
et al. 19891. These optical methods are
interesting because they are examples of
massively parallel, virtually instanta-
neous analog computing technology. The
results are also easily simulated using
(slower) digital correlation techniques.

To detect photometric similarities
between the object template and the
image, it is natural to use the raw image
data. When other object features are more
indicative, however, the raw image can
be processed first (e.g., by performing a
low-level operation such as edge filtering
or line filtering).

Template matching is also applicable
to binary images. Binary images can, for
example, be obtained as the output of a
low-level operator. Wallace [19881 applies
boundary correlation to match rigid
object-model contours geometrically with
image contours. The contours are repre -
sented as tangent angle versus length
curves (0 – s), and the two 19– s descrip-
tions are correlated in s-space. Mansouri
et al. [19871 first predict the existence of
a straight line segment of predefine
length at each pixel location where the
gradient magnitude is above a certain

threshold; they then verify the prediction

by applying template matching in the
form of a set of statistical tests on
the untlhresholded gradient data in the
predicted position.

This class of techniques is effective only
when the model is rigid. Small changes
in scale, orientation, and shape (depend-
ing on the template pattern used), and
photometry (depending on the metric
used) can strongly disturb the match.

2.1.3 Hough Transform Methods

The .Hough Transform uses templates
described by a set of parameters, such as
the slope and intercept of a line. By “ vot -
ing” in parameter space, patterns in the
image data conspire to produce local
extrema at the most likely parameter
values. 1 The results are relatively insen-
sitive to partially occluded or slightly
deformed sha~es but take into account.
only the shape of the object outline.

The standard Hough transform
[Ballard and Brown 1982; Rosenfeld 19691
detects curves whose shape can be
described as an analytic curve. The
method has been extended to detect arbi-
trary shape templates (the generalized
Hough transform, [Ballard 19$11), repre-
sented as a list of boundary points. The
method may incorporate parameters that
translate, rotate, and scale the template.

The interested reader will find more
details on the generalized Hough trans-
form (GIFIough) in Appendix C. Figure 6
shows am exampl,e of the generalized
Hough transform applied to a thresh-
olded gradient image of a lake. The use
of template matching of this sort is inter-
esting because a match can still be found
even with missing data.

The drawbacks of the method gener-
ally derive from the fact that a massive
amount of memory and computation may
be required to handle a general set of

1In this paper, we classify the Hough transform
under template matching. Many textbooks and
papers, however, cons ~der them as two different

techniques and restr~ct template matching to
strategies carried out entirely in the image domain.
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(a) (b)

Figure 6. (a) Image of a lake with overlaid Hough transform template The template does
not match the image; (b) generalized Hough transform match of a lake m an aerial image

The correct location. scale. and orientation relating the template to the observed object m the
image have been determined automatically by the Hough transform procedure

parameters. Extensive attention has been
paid in the literature to methods for
dynamically allocating sparse storage for
the accumulators using various tech-
niques to decrease parameter errors or
reduce computation time [Niblack and
Petkovic 1988] and improving perfor-
mance using hardware implementations
[Illingworth and Kittler 1988]. Grimson
and Huttenlocher [1990] present a
detailed evaluation of the reliability and
other characteristics of the Hough
transform.

2. 1.4 When to Use this Strategy

These techniques are without equal when
the object’s shape or photometry are pre-

cisely specified because they constrain
the search space effectively. Further-
more, they are relatively insensitive to
noise, thus making them useful in an
application where occlusions may occur.
In other words, these techniques work for
rigid models applied to complex data.

2. 1.5 When to Avoid th{s Strategy

The power of template-based approaches
stems from the exact knowledge of the
target object’s shape or photometry and
disappears when such knowledge is not
available. Another drawback is that it is
difficult to handle a large number of

model types at once; when a large num-
ber of models must be matched to the
data simultaneously, we should consider

variants such as geometric hashing
[Kalvin et al. 1986; Lamdan and Wolfson
1988]. When the template style of model
definition is not applicable, methods such
as those described in the following section
may be useful.

2.2 Flexible Model Fitting

2.2.1 Summary of the Technique

Whereas template matching is restricted
to rigid or parametric object models, our
next class of computational strategies
uses more fZexible models, specified
by a set of generic constraints on object
characteristics such as smoothness, recti-
linearity, curvature, compactness,
symmetry, and homogeneity y. The fit of
the model to the image data is usually
measured by an objective function, and
matching is performed by minimizing
this measure.

The basic idea of flexible model fitting
is similar to least-squares fitting. As a
simple example, suppose we have a col-
lection of data points and a randomly
chosen line; then the least-squares solu-
tion can be found experimentally by wig-
gling the line around until the sum of
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(a) (b)

Figure 7. (a) Image containing thin linear features; (b) Result of F’*; coherent linear data structures have

been automatically computed that closely correspond to the human perceptions of (a).

differences squared (this is the objective
function) is minimized (i.e., an optimiza-
tion procedure is carried out). See the
description of Kass et al. [1987] in
Appendix C for a more sophisticated
example.

Like template matching, the optimiza-
tion process in this method operates at
the pixel level, but because of the flexi-
bility of the model, the search may
become computationally expensive. The
papers discussed in this section typically
require an initialization in the form of a
limited search area and use only a small
number of generic constraints.

2.2.2 Dynamic Programming

Dynamic programming is an optimiza-
tion process that is expressed as a recur-
sive search [Bellman and Dreyfus 1962].
Dynamic programming is applicable only
if the objective function can be expressed
in terms of relationships among
neighboring pixels alone.

o Fischler et al. — F *: Iterative Path
Finding in a Xl Array. The F* algo-
rithm described by Fischler et al.
[1981] defines a path cost and itera-
tively finds an optimal path in an
image from a starting pixel (or a set of
candidate starting pixels) to a termi -

e

nating pixel (or a set of candidate ter-
minating pixels). The 2D image array
is considered to be a graph in which
each pixel is connected by a directed
weighted arc to its eight immediately
adjacent array neighbors. The pixels
and arcs have an associated cost that
reflects their local likelihood of belong-
ing to the optimal path, that is, the
path with minimum cost. The F* algo-
rithm is used to delineate thin linear
features such as roads and rivers on
low-resolution aerial images precisely
(Figure 7). The starting pixel and ter-
minating pixel, as well as a search
region, can be selected interactively
from a map data base or automatically
using some basic image processing op-
erations. In this technique, costs are
modified using the transform cost’ =
cost” + b. The constant bias b tends to
smooth and straighten the road track,
whereas raising each cost to a power a
causes the path to favor strong
intensities or derivatives.

Gerbrands et aL-Resampling the
Search Region. Whereas the F*
algorithm is iterative, the dynamic
programming algorithm proposed by
Gerbrands et al. [1986] finds an opti-
mal path in a cost matrix in one itera-
tion. To achieve this, the image data in
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e

a selected search region must be trans-
formed into a rectangular matrix. The
search region is preferably a thin,
curved, band of pixels in the image;
this strip is then viewed as a distorted
rubber sheet rectangle. The pixel val-
ues of the new undistorted rectangle
are typically quite different from grid
points in the distorted pixel band, so
the latter has to be resampled. That is,
the pixel values of the new undistorted
rectangle are obtained by interpolating
(averaging or smoothing) the pixel val-
ues near the corresponding points in
the distorted strip.

Gerbrands developed this method for
the accurate detection of the left
ventricular contour in cardiac scinti -
grams. As compared to F*, the compu-
tation time of Gerbrands algorithm
may be lower, depending on the com-
putational cost of the resampling
process and the computational gain
obtained by avoiding iterations. A
drawback, however, is that global
shape constraints of the final trajec-
tory (e.g., smoothness) in the original
image may not be simply expressible
in the resampled array.

Nuyts et al. — Parametric Search
Region. The only shape constraint that
can easily be expressed in the
Gerbrands algorithm is straightness in
the resampled rectangular array,
which is to be considered as a similar-
ity constraint in the original image

[Nuyts et al. 19891. This means that
the shape of the resulting path will
closely resemble the shape of the

selected search region. Nuyts et al.
[19891 further extend this idea by
developing an iterative dynamic pro-
gramming method that finds a path
similar to a parametric curve. The
authors approximate the shape of the
left ventricular wall on SPECT (single
photon emission tomography) images
by a piecewise elliptic curve. The
search region is centered around this
parametric model. After each itera-
tion, the parameters of the elliptic
curves are tuned to the shape of the
detected contour. The algorithm then

Hanson

Figure 8. Quantification of the myocardium in

SPECT images The black center line represents
the parametric model; the white lines represent the

detected contour

restarts with the updated model. This
procedure iterates until the model
parameters remain stable. In Figure 8
we see the results of applying this
method to the quantification of the
myocardium in SPECT images, where
parts of the object may be missing.

Tenenbaum et al. — Optimal Path
without Shape Constraint. If there
are no shape constraints, the optimal
path in the resampled array can be
found by taking the pixels with the
minimum cost along subsequent lines
perpendicular to the direction of the
search region. Tenenbaum et al. [19791
used this procedure to monitor the
water level of a reservoir from an aerial
image, using elevation contours to
guide the search for the land and water
boundary. Tenenbaum also used this
method to determine the precise loca-
tion of a road guided by a rough pre-
diction provided by a map and to detect,
measure, or count objects whose pos-
sible locations and orientations in the
image can be constrained by a map.

Yamada et al. —Noniterative Proce-
dure without Resampling. The
dynamic programming matching
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method by Yamada et al. [1988] does
not require resampling and finds the
solution in one iteration. The method
is applied to extract kidney glomeruli
in microscopic images. Glomeruli are
more or less circular structures. The
shape of the fitted curve is restricted to
be piecewise linear. (The direction of
each line segment is fixed.) Yet, the
length of’ each vector is allowed to vary
within a given range, and the number
of segments can easily be increased in
order to give the model the necessary
shape flexibility. Because of this flexi-
bility, the model is not comparable to
the parametric object model used in
template matching.

One difficulty of this application is
that the fitted contour has to be closed.
This constraint is added a posteriori by
applying a distance criterion to the
results of the dynamic programming
process. Further improvement is
obtained by cycling around the object
more than once. Although the fi~al
result is theoretically not globally opti-
mal, the method performs efficiently
on the examples shown in the paper.

e Maitre and Wu— Matching Seg-
mented Images with Line Draw-
ings. Maitre and Wu [1987] applied
dynamic programming to binary
images in order to match them with
line drawings such as cartographic
maps or sketches. They show results of
registering coast lines in satellite
images, where the data are subject to
noise, occlusions, and distortions, A
binary image is obtained by gradient
thresholding. Only the M highest edge
candidates are retained (M on the or-
der of 400). Due to the ambiguous pho-
tometry, this binary image contains

noise, breaks, and distortions. Only
planar translations between the binary
image pattern and the model are fur-
ther allowed, yet the concepts could
also be directly applied to rotated and
perspective views. Problems of distor-
tions are easily overcome using dy-
namic programming to match the edge
candidates to the lines in the map. To
bridge existing gaps between the dif-

ferent parts of the path and to find the
starting and final point automatically,
the authors have introduced the
concept of the “virtual state,” which
suspends broken paths until they can
be reconnected.

The method appears to be well suited
to problems of image registration, in
which the model is available as a line
drawing. It is not applicable to models
expressed by some generic constraints
like smoothness and rectilinearity,
which imply that the optimal path may
not coincide with the edge candidates
extracted by a local operator.

2.2.3 Gradient Descent

The above tracking algorithms find a
global optimum of the objective func-
tion in their search window but require
the use of constraints that are local in the
image data. In contrast, the energy-
minimizing approach of Kass et al. [19871
can use nonlocal geometric constraints
but may converge to local optima instead
of global ones.

In this technique, contours are defined
as curves. called snakes. that can deform
themselves from a given initial position
to the nearest local optimum of an
objective function. This measure typi-
cally includes shape constraints, image
constraints, and external constraints.
Kass et al. [1987] use the shape con-
straints to enforce rigidity and elasticity
by constraining the first and second
derivatives of the curve. Other examples
of shape constraints are rectilinearity,
parallelism [Fua and Leclerc 1990], and
radial symmetry [Terzopoulos et al.
1988]. The image constraints can be
designed so that lines or maxima of the
image gradient, for example, attract
the curve. These constraints can also
take the area enclosed by the curve into
account and force the curve to find homo-
geneous regions [Fua 1989]. Finally,
external constraints can be introduced to
attract the curve toward ~articular ~laces.
in the image; these constraints may cor-
respond to either interactively specified
forces or forces relating model compo -
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nents [Kass et al. 1987; Witkin et al.
1987a]. The optimization procedure may
even involve multiple snakes inter-
related by constraints. Kass et al. [19871
mention the example of a stereo snake,
which is a pair of correlated curves with
smoothly varying disparities in a pair of
stereoscopic images.

In the absence of sha~e constraints,
gradient descent techni~ues converge
slowly because there are an extremely
large number of degrees of freedom. If
snakes are treated as ~hvsical curves
with linear shape constr~ints moving in
the potential defined by the objective
function. the o~timization can be ~er-
formed by solvi~g the dynamic equations
of the system. Other approaches to opti-
mization can be found in Gardin and
Meltzer [19881, where messages are
passed between neighboring snake
“molecules.” and in Fua [19891, where
global geometric constrain~s are applied
at every iteration. All these implemen-
tations can be parallelized by allowing
all the points on the curve to move
simultaneously.

Snakes tend to get caught in undesir-
able local minima. One wav to overcome
this problem is scale-spat; continuation

[Kass et al. 1987; Witkin et al. 1987bl,
which initiallv smooths the search s~ace.
so gradient descent is likely to fi~d a
good approximation for the global mini-
mum, then repeatedly reduces the
smoothing. Another approach is simu-
lated annealing [Kirkpatrick et al. 19831,
which randomlv chooses to chamze its.
state up, out of the local minimum, to
see if there is another more desirable
minimum nearbv. More details about
gradient descent” methods are given in
Appendix C.

2.2.4 Closed-Form Solution

Both dynamic programming and snakes
search for the optimum of an objective
function derived from the pixel data. A
closed form solution may exist when the
constraints are carefully chosen.

e Premoli et al. — KAMRI: Knowl -

edge-Aided Minimum Radial Iner-
tia, Knowledge-aided minimum radial
inertia (KAMRI) [Premoli et al. 19891
uses the following constraint functions:
(1) radial inertia defined over the gra-
dient image (the image resulting from
numerically differentiating the pixel
intensity values of an image), (2) the
distance to a shape template of
the searched contour, and (3) a smooth-
ness constraint. (The radial inertia is,
roughly speaking, the sum of the
squared difference between the radius
of a pixel in the gradient image and
the corresponding radius of the shape
template contour expected along the
same line from a chosen origin. ) Mini-
mizing the radial inertia forces the
curve to follow rapidly changing (high
gradient) areas, while the shape tem-
plate imposes a similarity constraint.
This model is roughly comparable to
the model used by Nuyts et al. [19891,
except that the parametric template
used by Nuyts is more flexible. The
method of Premoli et al. uses a scale
factor as the only parameter and fur-
thermore requires that the centroid and
orientation of the projected template in
the image approximate those of the
image pattern to be outlined.

The fitted curve must be a cubic
spline. Theoretically, this further con-
strains the shape of the optimal
contour, yet the high number of ana-
lytic curve parameters makes this
constraint quite weak. Using the para-
metric form of the curve and all the
constraints, Premoli et al. show that
the objective function is a quadratic
form in the unknown variables. Hence,
the minimal value can be expressed as
a closed form in terms of known values.

2.2.5 Re/axat/on

The relaxation strategy iteratively
locates and eliminates—or relaxes–the
relational inconsistencies among the can-
didate interpretations. Its computational
mechanisms are well suited to paral -
lelization. Relaxation has been used for
grouping coherent pixels with similar
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(a) (b)

Figure 9. The results of Quam’s road tracker are shown in the white overlays. Both the road trajectory
and potential anomalies are marked, (a) When the tracker encounters a surface change, it extrapolates
ahead and tries to reacquire the road; (b) result for a freeway interchange on-ramp loop; this example is
interesting since the road curves rather tightly, and the road surface changes at approximately the same

place where the road trajectory changes from a circular arc to a straight line,

characteristics into the most likely inter-
pretation. By propagating the elim-
ination of relational inconsistencies
throughout the image, photometric ambi-
guities such as image noise can be
resolved if the relaxation scheme con-
verges to the desired optimum.

* Murray and Buxton—Image Seg-
mentation into Spatiotemporally
Continuous Regions. Murray and
Buxton [1987] use stochastic relaxation

to segment scenes consisting of a fixed
number of moving planar surface
patches. The algorithm looks for the
interpretation of a field of optical flow
data with the maximum a posteriori
probability (MAP). As shown by
Geman and Geman [1984], stochas-
tic relaxation is a form of simu-
lated annealing that converges if the
annealing schedule is slow enough. The
MAP criterion includes terms express-
ing how well the current inter-
pretation explains the measured data
and how well the interpretation con-
forms to the prior expectations of a
sensibly organized flow field. To for-
mulate the objective function, it is
assumed that each surface patch in the

scene is spatially and temporally con-
tinuous and that the optical flow data
contains Gaussian distributed noise.
An additional term is added to express
the cost of introducing various line dis -
continuities, such as corners and
T-junctions.

2.2.6 Heuristic Prwwg

The previous strategies rely on analytic
optimization techniques. When the
search space is too large, intelligent
heuristics are needed to constrain the
search. In such cases, the objective func-
tion is not necessarily explicitly stated
but may be embedded in the heuristic
procedure (e.g., A*, described in Pearl

[19851 and Fischler et al. [19811). Below
are some examples in which heuristics
are used to prune the search space at the
possible risk of finding a nonoptimal
solution.

o Quam–Heuristic Road Tracking
Using Context-Adaptive Cross
Correlation. In Quam’s [1978] proce-
dure for tracking roads and detecting
vehicles in aerial images, a context-
adapting heuristic search method is
used to support a dynamically chang-
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ing model of road photometry. The
approximate position of the road center
ahead is defined based on past road
center ~oints and directions using

●

parabol;c extrapolation. This positio~
is optimized by cross correlating (tem-
plate matching) road cross-section
intensities along a line perpendicular
to the road direction with the current
road cross-section model. Deviations
from the model indicate potential road
markings and vehicles. Figure 9 shows
an example of the application of this
approach; note particularly how dra-
matic changes in the road characteris-
tics can be accommodated.

Quam’s method uses a flexible model
in the sense that the model template is
dynamically updated based on the
history of previously aligned road cross
sections. Similarity between image
areas centered around neighboring
pixels is in fact the only constraint
that characterizes the model.

Although the road tracker yields a
Zocally optimal path, a globally opti-
mal solution is not guaranteed. Typi-
cal of such heuristic line trackers is
that slight intermediate displacement
errors may extrapolate into large devi-
ations. To avoid this effect, it is neces-
sary that each step along the trajectory
be reliable. In the case of Quam’s road
tracker, for example, it is assumed that
the local shape of a road is approxi-
mately parabolic and that the photom-
etry changes smoothly along the road
trajectory (a few anomalies and
road surface changes are allowed).

Zhan~ and Simaan—Model-Driven
Seed “Growing. The system by Zhang
and Simaan [19871 partitions seismic
images into meaningful regions. In
particular, they analyze a seismic
image of the Gulf of Mexico. The image
is partitioned into regions that differ
in sediment compaction and regions
that include shale ridges and salt
domes. Initially, small clusters, called
islands, are found by clustering dis -
criminant texture features with high
(.9) probability of belonging to a par-
ticular region of common signal char-

acter, that is, a region with a typical
sediment compaction or a region that
includes shale ridges and salt domes.
The islands provide a context that is
subsequently used as a constraint when
growing the seeds into larger regions
of common signal character. This con-
text includes knowledge about the rel-
ative position of the regions, their
size, and their topology. For example,
regions composed of salt domes and
shale ridges are not layered but are
expected to have nearly vertical sides.

2.2.7 When to Use this Strategy

Strategies that support flexible models
are best adapted to situations in which
an initial guess for a model shape
instance can be easily supplied. Compu-
tation time is then reduced by an initial-
ization in the form of a limited search
region. The effectiveness of the method
depends strongly on the appropriateness
of the modeling primitives that are
searched for and thus is a natural strat-
egy when well-known models, described
by a limited number of photometric and
shape constraints, are available. Com-
plex scenes may require models with
multiple components; these components
typically need to be combined in a non-
trivial way in order to find a practical
strategy for finding the optimal solution.
This method can work well in the pres-
ence of incomplete or noisy data, pro-
vided natural limitations on the size of
the search space can be imposed. Its
effectiveness is further enhanced when
appropriate algorithms for minimizing
the cost function are available.

2.2.8 When to Avoid this Strategy

Fitting flexible models directly to the
photometric data is very sensitive to
the completeness of the model and the
appropriateness of the image data. For
example, the snake evaluated using edge
data alone will give spurious bleeding or
premature termination if the situation
requires a model that checks the area
signature of the hypothesized object in
addition to the edge signature. With-
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out additional information or control of
the search strategy, apparently optimal
solutions that do not correspond to the
desired objects are found. As the model
complexity further increases, these
strategies become computationally too
expensive and multilevel (hierarchical)
strategies become necessary. Approaches
to remedying this deficiency are the
subject of Section 4.

3. FITTING MODELS TO SYMBOLIC

STRUCTURES

Fitting models to symbolic structures
assumes that a set of features has been
reliably extracted from the image data
by some preprocessing operation. These
features are usually found by a local
statistics-based operator, without using
shape information or contextual scene
knowledge. This process is often referred
to as segmentation. The features, how-
ever, may also be the raw pixel intensi-
ties or even labels produced by a method
such as template matching or gradient
descent, discussed in Section 2, thereby
yielding a hybrid strategy. In these cases,
the subsequent matching processes use
the symbolic output of the initial process
without referring back to the image. The
major categories are as follows:

e

e

Graph Matching. Objects are mod-
eled as a relational structure or graph
of primitives. The nodes are compo-
nents of the object or scene, whereas
the arcs denote relationships. Labels
are assigned by searching for the opti-
mal match between the model graphs
and the graph derived from the image
data. Heuristics can be used to prune
the search tree and reduce the compu-
tation time at the possible risk of find-
ing a nonoptimal solution.

Com~osite (Hierarchical) Model Fit-
ting.’A reduction of the search space is
obtained by working hierarchically,
that is, by finding partial matches
using a hierarchy of intermediate
models and then refining them.

We now examine each of these cate-
gories in turn. Appendix A summarizes

the references reviewed below for each
category.

3.1 Graph Matching

3. 1.1 Summary of the Technique

Relational matching overcomes the major
inadequacies of pattern recognition by
providing a representation for relational
constraints. Objects or scenes are repre-
sented as relational structures whose
nodes are subparts and whose arcs are
relationships between the nodes they
connect. The problem of matching rela-
tional structures is representable as one
of optimizing some objective function.
Heuristic search can be used to prune the
search tree and ~educe the computation
time at the possible risk of finding a
nonoptimal solution.

3.1.2 Search

The simplest form of relational matching
techniques searches for sets of labels and
relations that match subparts of the
graph, assuming that an initial set of
labels and relations has been extracted
from the image by some preprocessing
operation.

e Murray— De]pth-First Recursive
Search. The most straightforward
approach to graph matching is to
require that both graphs be identical
(isomorphic). This strategy is used by
Murray [1987] to recognize rigid poly-
hedral objects using sparse and error-
prone point measurements of surface
orientations and scaled depth. Rela-
tional constraints to be satisfied are of
the following type: “If an inter-
pretation pairs sensed data points P.
and Pb with model faces i and k,
respectively, then the range of angles
between the vector in the direc-
tion between the two points and the
sensed normal at P. must overlap the
range of possible angles measured from
the model.” That is, points on a side
face of a cube can only lie in a specific
region when viewed from a point on
the top face of the cube; families of
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such relations place severe restrictions
on what face a point can belong to. The
process of matching sensed data points
and model facets is performed by a
depth-first recursive search.

Although Murray [1987], in princi-
ple, could be thought of as a hybrid
model that also involves hypothesis
verification, it is placed here because
its treatment of graphs makes it an
ideal example of the process of isomor-
phic graph matching.

Belles and Horaud—3DPO: Maxi-
mum Clique Finding. Slight photo-
metric anomalies, such as occluded
parts of 3D objects, may make the
requirement of finding identical graphs
too strong for many real-world applica-
tions. A less stringent criterion is to
require that both graphs contain a
subisomorphism, that is, an identical
subgraph. Subisomorphisms in two
graphs can efficiently be detected by
maximum clique finding in an associa-
tion graph. This method has been used
in the 3DP0 system [Belles and
Horaud 1986] to find the best match
between features extracted from a
range image and their corresponding
interpretations.

The elementary matching process of
3DP0 is an ideal example of subiso-
morphic graph-matching methods;
however, the system also has the capa-
bility of using more elaborate strate-
gies, which are discussed in more detail
in Section 4 and Appendix C.

The graph-matching techniques de-
scribed so far are acceptable provided the
graphs or subgraphs to be identified are
identical; this is rarely the case unless
the criteria for finding compatible nodes

or arcs are weak. To com~are nonidenti-.
cal graphs or to compare identical graphs
obtained with weak similarity measures
we must use a distance measure to eval-
uate the similarity between graphs.

@ Mulgaonkar et al. —Matching Non-
identical Graphs. The recognition
scheme implemented by Mulgaonkar
et al. [1984] uses relational and rough

●

geometric information about 3D, man-
ufactured objects (table, chair, etc. ) to
recognize instances of the objects in
single, perspective normal views of
scenes. An example showing how the
pieces of a chair are recognized is given
in Figure 10. All models are decom-
posed into three basic shapes: sticks,
plates, and blobs. The model further
consists of binary and ternary rela-
tions and related angles. For example,
the back of a chair and the seat form a
plate-plate connection in which the
edges of the plates touch each other.
Using the shape and relational con-
straints, graph matching is performed
as a sequential tree search. The rela-
tional distance measure is defined as
the sum of the number of relations of
the model that fail to carry over to the
image, normalized by the total number
of relations in the model.

Horaud and Skordas— Rankin~
Maximal Cliques. The method ~f
Horaud and Skordas [1989] matches
linear edge segments and their rela-
tionships in a stereo image to solve the
correspondence problem. A relational
graph is built from each image. Com-
patible subgraphs in both images are
found as maximal cliques in a corre-
spondence graph. Each maximal clique
is evaluated by a benefit function, cal-
culated as the sum of the individual
benefits of the nodes. These indi-
vidual benefits express the similarity
between the corresponding line pairs,
so the best maximal clique is not nec-
essarily the largest one.

The work of Jain and Hoffman [1988]
is another example that makes strong
use of a distance measure to match
relational structures. Because the
strategy is hybrid and hierarchical, it
is described in Section 3.2.

3. 1.3 Dynamic Programming

Dynamic programming is a process that
recursively searches for an optimal path
in the graph [Bellman and Dreyfus 1962].
It allows the solution to be efficiently
computed but requires that the graph
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L!

Figure 10. Matching results for a chair object. The lines from

the model part to the various partitioned 2 D views show how the
parts map. The structural matching error is shown in parenthe-

ses as the first number. (Courtesy of P. Mulgaonkar )

distance measure involve only local rela-
tionships among neighboring nodes in the

graph. Dynamic programming may be
used to increase the computational effi -
ciency of the optimization procedure at
the expense of using additional storage
in the search.

@ Eshera and Fu— Inexact Contour
Matching. Eshera and Fu [1986] per-
form inexact graph matching by mini-
mizing a graph distance measure. The
contours of the object models and of the
segmented patterns are represented as
attributed relational graphs (ARG),
that is, graphs whose nodes and
branches can have attributes. The
authors present two examples. The first
deals with finding a 2D industrial part
in an image of overlapping 2D objects.
The second is concerned with the
detection of an airport in synthetic
aperture radar (SAR) images. Graph
nodes are straight line segments,
arc segments, and closed curves With

length and span as attributes.
Branches represent relations such as
joint, intersecting, nonjoint and ncm-

●

intersecting, and parallel, with
attributes joint angle, angle of inter-
section, distance between the two line
segments, and angle between the two
line segments. Hence, objects are nec-
essarily rigid 2D models. Costs are lo-
cally assigned proportional to the simi-
larity between pairs of nodes and pairs
of branches. The optimization problem
can therefore be solved by means of
dynamic programming.

Fist Mer and Elschla~er— Heuristic
Dynamic Programming. Fischler-and
Elschlager [1973] represent a scene by
a number of rigid components held
together by springs. The springs join-
ing the rigid pieces served both to con-
strain their relative movements and to
measure the cost of the description by
how much they are stretched. As shown
in Figure 11, a face can be represented
as a nose, mouth, eyes, and ears held
by springs. The dynamic programming
technique is used to match the various
elements in the image and optimize
their respective locations. Although the
storage and time requirements for
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dynamic programming in this work
grow exponentially with the number of
nodes in the graph, not all dynamic
programming formulations lead to
exponential algorithms. For example,
if we could linearize the graph (not
necessarily possible for spring-loaded
templates), the dynamic programming
algorithm is of polynomial complexity.

3. 1.4 Relaxation Labeling

Direct serial search can easily become
combinatorially explosive but can be
replaced by parallel techniques to make
the computation feasible. Relaxation
labeling [Kittler and Illingworth 1985;
Rosenfeld et al. 1976] is such a tech-
nique. It is computationally identical to
relaxation discussed in Section 2.2. It
iteratively locates and eliminates incon-.
sistent node interpretations. Because
its computational mechanisms are well
suited to ~arallelization. relaxation
labeling has’ become an attractive strat-
egy for grouping similar pixels, feature
vectors. or data structures into the most
likely (interpretation. It has further been
extended from discrete labeling to prob-
abilistic labeling, in which the labels
extracted from the image are assimed a
probability that is iter~tively inc~eased
or decreased based on its compatibility or
incomnatibilitv with related labels in the. .
structure. As discussed by Faugeras and
Berthod [1981], relaxation labeling can
be an optimization process. The proce-
dure is generally expected to converge to
an optimal solution; however, in many of
the proposed relaxation schemes this is
not guaranteed. Even if the scheme con-
verges, the result may be a local optimum
that depends on the initial labeling. This
may or may not be desirable. Stochastic
optimization may be more appropriate if
a global minimum is required [Kittler
and Illingworth 19851.

. Huffman and Clowes —Line Draw-
ing Interpretion. The line drawing

interpretation approach associated
with Huffman [19711 and Clowes [19711
is an early example of relaxation
labeling [Ballard and Brown 1982;

Mackworth 19731. This strategy can
analyze line drawings of complicated
polyhedral scenes such as that in
Figure 12. Initially, each trihedral cor-
ner in the line drawing and the lines
meeting at that corner are considered
as candidates for all possible inter-
pretations. A line can correspond to a
concave, convex, or a discontinuous
edge in the 3D space, depending on the

e

type of vertex with wh<ch it i; associ-
ated. Conflicting line interpretations
are eliminated by applying the
coherence rule, which states that in a
real polyhedral scene no line may
change its interpretation (label) be-
tween vertices. By iteratively applying
the coherence rule, this constraint
propagates throughout the image and
produces a consistent interpretation.

Recently, the Huffman-Clowes
approach has been further extended by
Malik [1987] to deal with the more
general class of line drawings of curved
objects. Although this line-drawing
work appears promising, its applic-
ability to real-world applications is
restricted because of the model sim-
plicity and the unrealistic assumptions
of good image data.

MSYS—Discrete Relaxation Label-
ing. A more practical example of
relaxation labeling is discussed by
Tenenbaum and Barrow [1977]. The
goal of this system is to partition an
image into meaningful regions by
merging small initial regions in accor-
dance with their candidate interpre-
tations. An example of such an
interpretation for a scene of an indoor
room is shown in Figure 13. Experi-
mental results are reported in three
scene domains: landscapes, mechanical
equipment, and rooms. The system
starts from an initial partitioning of
the scene, in which the regions may
have multiple interpretations. This
initial interpretation set can, for exam-
ple, be obtained from a training phase,
during which a representative set of
images is presented and pixels with
the same set of possible interpretations
are grouped into regions. Maps or a
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(a) (b) (c)

Figure 11. Dynamic programming approach of Fischler and Elschlager [19731. (a) Model description of a
face; (b) image of a face; (c) solution of the matching procedure. (Used with permission of IEEE; (~ 1987
IEEE,)

Figure 12. Example of the level of complexity m

line-drawing scenes that can be dealt with using

the Huffman-Clowes approach.

previous analysis of a similar image
may also be used instead of the train-
ing samples. (An alternative method,
not explicitly mentioned by the
authors, would be to calculate local
features, classify them using the fea-
ture-vector approach, and retain groups
of pixels (islands or seeds) with a high
probability of having a unique
interpretation.) The result after relax-
ation is a set of regions with a unique
interpretation, obtained by iteratively
merging adjacent regions with the low -
est contrast boundary and with nondis -
joint interpretation sets. In contrast to
line-drawing interpretation, this

method has been tested on real image
data and incorporates more sophisti-
cated semantic constraints.

Mohan and Nevatia— Constraint
Satisfaction Network. The method
described in Mohan and Nevatia [1988,
19891 is an example of relaxation where
a cost function associated with a net-
work of constraints is minimized.
Linear segments extracted from aerial
images are combined into structural
patterns. The structural elements con-
sidered are lines, parallels, U’s, and
rectangles. Initially, all possible struc-
tural elements found in the image are
considered as candidates. Structural
patterns that are consistent, such as a
line and a U it belongs to, are mutu-
ally supportive. Inconsistent patterns,
such as two overlapping U‘s that share
components, are mutually competitive.
The structural patterns and the rel ~-
tionships of support and conflict among
them define a network, with the strut-
tures serving as nodes and the rela-
tionships and compatibilities as arcs.
A cost function is associated with the
network, and the problem of locating
the best groupings reduces to that of
minimizing this cost. In Figure 14, we
show the sequence of analysis. Begin-
ning with a bare image, the approach
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(a)

Figure 13. (a) An outdoor

(b)

scene. (b) result of labeling the picture usin

first extracts every reasonable straight
line candidate; these are grouped into
patterns and the costs evaluated,
resulting in the final optimal cluster of
rectangles shown.

3. 1.5 Heuristic Pruning

To speed up the optimization procedure,
heuristics may be used to decide which
among several alternative courses of
action promises to be the most effective
and should be explored first [Pearl 1985].
Moreover, heuristics can prune the
search tree at the possible risk of finding
a nonoptimal solution.

“ Am ini, Weymouth, and
Anderson—Hill Climbing. The
method of Amini et al. [1989] is an
intriguing medical application of the
heuristic pruning approach. The task
is to distinguish inner-ear hair cells in
images containing cross sections of the
hair cells. An edge operator is used to
find edge segments in the image. The
centers of these edge segments then
are treated as the vertices for groups of
possible convex polygons. A depth-first
search for a polygon is started in paral-
lel for every edge segment in the
image. The search ends if the initial
segment and the final segment are
identical. This search for polygonal
structures is controlled by a heuristic

Interpretations

Sky
Tree
Tree and Sky
Shrubs
Grass
Path

g MSYS.

Reg[ons

6,9

2

7,8

3,5

4

●

rule that picks the best segment at
every step. The cost function used to
rank the edge fragments is a weighted
sum of length, distance, and curvature.
The intuitive idea is that segments that
are longer and closer to the current
segment should be more desirable
because there will be less possibility of

meaningless noise segments and empty
gaps. In addition, the curvature of the
segment decreases or increases the cost
depending on its consistency with
the shape of the hypothesized cell.
After each step, every edge segment
corresponds to a single cell-contour
hypothesis.

The advantage of hill climbing, that
is, depth-first search with a heuristic
procedure that orders choices, is the
reduction of the computation time. The
main drawback, however, is that the
solution obtained by this sequence of
locally optimal decisions is not neces-
sarily globally optimal.

Ayache and Faugeras—HYPER:
Heuristic Tree Pruning Including
Hill Climbing. As shown in Figure 15,
the HYPER (Hypotheses Predicted and
Evaluated Recursively) system of
Ayache and Faugeras [1986] identifies
and accurately locates touching and
overlapping flat industrial parts in an
image; the problem of handling such
incomplete data is a common one in
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(a) (b)

Q
(c)

Figure 14. Results from Mohan and Nevatia [19891. (a) Aerial image of a suburban scene: (b) linear
segments detected in (a); (c) rectangles selected by the constraint ‘satisfaction network (Used with
permission of R. Nevatia and IEEE; @1989 IEEE,)

other applications as well. Object mod-
els and segmented image patterns are
described by first-degree polynomial
approximations to their contours.
Matching is performed by a heuristic
tree search procedure. The rigid model
contour is iteratively matched to the
image pattern segments by succes-
sively adding compatible segments to
the available partial contour match.
At each iteration, a dissimilarity mea-
sure between the active model segment
and each image pattern segment is cal-
culated. This dissimilarity measure is
a weighted sum of three terms: the
difference between the orientation of
the model segment and the image seg-
ment, the euclidean distance between
their midpoints, and the difference
between their lengths. As in Amini
et al. [1989], Ayache and Faugeras
[19861 heuristically match the consid-
ered model segment with the best
image segment, that is, the image seg-
ment with the minimal dissimilarity.
More details of this approach are given
in Appendix C.

3.1.6 When to Use this Strategy

The strategy of optimizing the match to
information represented as a graph works
best when a comprehensive graph
model is available and if one has good

local operators that reliably discover the
features used as nodes and relationships
of the graph.

3.1.7 When to Avoid this Strategy

This approach assumes that most ele-
ments of the relational structure are
directly available, that is, nodes can
be extracted from the data without the
use of contextual knowledge. Although
inexact graph matching may overcome
some problems due to image ambiguities,
such as occlusions [Ayache and Faugeras
19861, this assumption is generally unre-
alistic for images with ambiguous photo-
metric statistics because local operators
cannot be expected to achieve the
required level of performance.

3.2 Composite (Hierarchical) Model Fitting

3.2.1 .%rrrmary of the Technique

In Section 3.1 we saw how simple heuris-
tics were used to limit the range of label-
ing possibilities to be considered. In this
section, we discuss a class of methods
that uses hierarchical modeling tech-
niques to limit the search; a sequence of
intermediate and progressively more
complete models is used to find and refine
partial matches. The intermediate states
in the computational process have an

ACM Computmg Surveys, Vol 24, No 1, March 1992



30 “ P. Suetens, P. Fua, and A. J. Hanson

(b) (c)

Figure 15. HYPER system of Ayache and Faugeras [1986] (a) Model contours; (b) original
image of overlapping flat electromechanical device parts; (c) highest ranked model instances
(in white) superimposed onto original image For example, the leftmost model in (a)

corresponds to the actual object seen at the left of the image (c) rotated half a turn (Used
with permission of the IEEE; @ 1986 IEEE )

. . . . . . .. . . .
obvious semantic meanmg and create a
context for the subsequent analysis. For
example, if the problem is to recognize
yellow cars in an aerial image, we might
first look for all yellow patches in the
image, then see which of the patches had
the characteristics of a car.

3.2.2 Structural Grouping

The most basic methods of this class use
a sequence of models that range from
generic, with few attributes, to complex,
with multiple attributes. The problem is
divided into tasks, with particular mod-
els applied to solve each case in sequence.
The gross features are dealt with first,
the more specific ones next.

Since the semantic characteristics of
objects are not necessarily independent,
the process of finding an instance of a
partial model is often heuristic. Unless
these partial solutions are considered as
hypotheses that can still be changed after

verlhcatlon, the hnal solutlon may not be

optimal.

o Lowe— SC ERPO: Locating Percep-
tual Structures. Hierarchical object
recognition may or may not produce
optimal solutions. This strategy is more
likely to produce an optimal solution
if the control structure is powerful
enough to backtrack when necessary,
thereby permitting the investigation of
the complete state space. The SCERPO
system [Lowe 1987], whose goal is to
recognize and locate rigid 3D manufac -
tured parts in a single gray-scale
image, is a typical example of such a
system. Figure 16 shows SCERPO’S
results for partial and final matches in
an image of a bin of disposable razors.
Pairs of straight lines are combined
into perceptual structures, that is,
instances of collinearity, end-point
proximity, and parallelism. Next, these
primitive relations are combined into
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larger, more complex structures, such
as trapezoid shapes. These “generic”
structural patterns are finally used to
limit the search by hypothesizing the
position of the manufactured part (e.g.,
a razor, a stapler, etc.), which is then
backprojected onto the edge data to
verify the hypothesis.

0 Brooks — ACRONYM: Hierarchical
Models and Constraints. ACRONYM
[Brooks 1981; 19831 has been used in
applications involving a wide variety
of models ranging from motors to air-
craft. One of its most challenging
applications is the location and identi-
fication of airplanes in aerial views of
airfields. Three-dimensional geometric
object classes, (e. g., airplanes) and spe-
cific objects (like a Boeing-747) are
modeled as generalized cones and their
spatial relationships. Initially, edges

are combined into features such as rib-
bons and ellipses, which are the shapes
generated by the body and the ends of
generalized cones. The interpreter then
looks for matches between the model
as a set of generalized cones and the
observed features based on the pre -
dieted ways the generalized cones could
appear in the image. Interpretation
proceeds by combining local matches of
shapes to individual generalized cones
into more global matches for more
complete objects, requiring consistency
among related families of constraints.
In Figure 17, we show a typical
ACRONYM application, with a bare
image, a set of edges, the derived fea-
tures, and the final consistent match to
a particular aircraft model. The ability
to handle families of aircraft models
via the properties of their subparts in
this way illustrates the use of a more
complex modeling procedure than, for
example, a system like SCERPO. This
paper is discussed in detail in
Appendix C.

● Huert as and Nevatia — Finding Lin-
ear Structures. The approach of
Huertas and Nevatia [1988] uses a
combination of information about lin-
ear cultural objects and their context
in the identification process. In an

application designed to detect runways
in aerial images, Huertas et al. [1987]
group line segments into apars, that
is, antiparallel line pairs or parallel
lines of opposing contrast. Broken
apars are joined using some properties
of connectedness and collinearity. The
remaining long apars are candi-
date runways. Verification of these
hypotheses is accomplished primarily
by detection and identification of run-
way markings among the set of ori-
ginal apars and line segments. In
Huertas and Nevatia [19881, the au-
thors use a similar strategy to detect
buildings in aerial images. Initially,
edges are approximated by piecewise
linear segments. Next, corners, defined
as near orthogonal L junctions, are
found and labeled as objects or shadow
as a function of the direction of the
illumination. Corners that share a
line segment are grouped into more
complex structures. Finally, a closed
outline is classified as a building
boundary if it contains a corner with a
corresponding shadow.

D Jain and Hoffman—Merging Adja-
cent Surface Patches. The recogni-

tion method described by Jain and
Hoffman [1988] matches models of 3D
objects, described by a set of con-
straints on the relationships among
their parts, to the detected structure of
surface patches produced by a range
image. (Typical constraints would
involve the relative orientation of the
faces of a rectangular solid.)

The process used to produce these
range-image surface patches typically
produces an oversegmentation of natu-
ral object faces. The first task of the
recognition system is therefore to
merge adjacent surface patches into
meaningful structures based on model
knowledge about the boundary angles
of the 3D objects. The result of this
merging process is a separate rela-
tional structure of surface patches for
each candidate object model.

Next, the recognition system calcu-
lates a similarity measure between
each object model and its correspond-
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Figure 16. The SCERPO system [Lowe 1987]. (a) Original image of a bin of disposable razors; (b) straight

line segments; (c) the most highly ranked perceptual groupings detected from among the set of line

segments; (d) the model projected onto the image from the final calculated viewpoints. Model edges are

shown dotted where there was no match to a corresponding image segment. (Used with permission of
Elsevier Science Publishers.)

ing relational structure of surface
patches. The model knowledge consists
of a set of constraints on these rela-
tions giving supporting or refuting evi-
dence for identification hypotheses.

The papers of Fua and Hanson [1987,
1988, 19911, McKeown et al. [19851, and
Suetens et al. [1989] are other examples
of methods that initially search for sim-
ple structural patterns in the image.
They are described in Section 4 because
their hybrid strategy makes strong use of
methods for complex data.

3.2.3 Refining Matches Using Multiple

Information Sources

In this class of strategies, equivalent or
complementary information sources are

ACM Computmg Surveys, Vol. 24, No 1, March 1992

sequentially exploited. Further reliabil-
ity in the object-labeling procedure can
be achieved by integrating information
from multiple sources. Such additional
information can be either in the form of
data (e. g., stereo images) or independent
sources of semantic knowledge (e. g.,
using a library of alternately applicable
road-finding operators). As in the sys -
terns just examined, the individual infor-
mation sources themselves are typically
used in a hierarchical fashion, with ini -
tial hypotheses being progressively
refined by the application of further
knowledge. Conflicts may occur and must
be resolved.

c Herman et al. —3D MOSAIC: Object
Completion Using Additional Im-
ages. The 3D MOSAIC system
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(a)
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Figure 17. Application of the ACRONYM system [Brooks 1981, 1983] to aircraft identification.

(a) Original image; (b) edges extracted from (a); (c) features such as ribbons; (d) ACRONYM
result, identifying an aircraft by combining part models. (Used with permission of the IEEE;

OIEEE 1983.)

[Herman and Kanade 19861 recon-
structs buildings from a sequence of
monocular or stereoscopic aerial im-
ages taken from different viewpoints.
It uses the multiple images as addi-
tional information sources that can
be used to improve an existing inter-
pretation.

Initially, an edge detector is applied
to the images to extract straight lines.
The shapes of the junctions formed by
pairs of lines are labeled as an L, a T,
an arrow, or a fork. Next, the 3D posi-
tions of the junctions and converging
lines are calculated. If a stereo image
pair is available, a cost optimization

strategy is applied to find the optimal
set of matching structural features. For
single images (monocular analysis),
new lines are first heuristically added
to the image to form linear connected
structures of junctions. Using depth
cues that characterize scenes consist-
ing of horizontal and vertical lines, the
relative 3D positions of the junctions
and linear segments are then calcu-
lated by propagating constraints
among the line interpretations.

The result is a 3D wire frame
description of the scene. It is elabor-
ated into a surface-based description
(object completion) in the next step.
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e

e

Incomplete faces are completed as
parallelograms or as polygons by
hypothesizing missing vertices and
edges, Finally, this result is improved
when new views become available.
Inconsistent hypothesized edges and
vertices of the existing partial inter-
pretation are replaced by newly ob-
tained elements, and modifications
propagate throughout the wire frame
to maintain overall consistency. In this
way the redundancy of image data
partly corrects for the inaccuracies
introduced by the heuristics of the
system.

Fan et al. —Matching Image Inter-
pretations Using Heuristic Search.
Like the 3D MOSAIC system, the sys-
tem of Fan et al, [1988, 19891, matches
the individual interpretations of two
images, taken from different view-
points, in order to arrive at an
improved interpretation.

The images are range images parti-
tioned into surface patches. These
patches are further grouped into graphs
whose nodes represent the patches
and whose arcs express geometric rela-
tionships between the patches. The
result is several unlinked subgraphs
that are supposed to correspond to the
distinct physical objects in the scene.
The subgraphs of both images are sub-
sequently matched using heuristic
search. A global match measure based
on all the matched nodes defines
whether the match is good enough to
be accepted.

This system uses some form of non-
monotonic reasoning; the initial group-
ing of surface patches into linked node
structures may not be perfect. By
examining the matches of different

views, graphs may be merged and/or
split to improve the correspondence
and, as a result, also the inter-
pretation. An example is shown in
Figure 18.

Bobick and Belles—Integration of
Visual Information Ov-er Time.
Bobick and Belles [1989] incrementally
construct the interpretation of an object
as new views with changing resolution
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become available over long periods of
time. The method implemented by the
TraX system recognizes various out-
door objects when applied to a sequence
of range images.

The basic strategy is to consider dif-
ferent models when they become suit-
able; the selection of models is guided
by the computed characteristics of the
object. The models are arranged in a
directed dependency graph, called the
representation space. The TraX system,
for example, includes 2D blobs, 3D
blobs, superquadrics,z sticks, and sev-
eral semantic representations includ-
ing bush and tree. A new node in the
representation space can become active
only if one of its connecting nodes is
valid. For example, if a reliable 3D
blob description has been computed for
the object, the superquadrics and sticks
nodes can be activated. The principal
indication of validity is stability over
time, meaning that the same object
description is computed repeatedly in
subsequent images.

The work by Wang and Srihari [1988]
and McKeown and Denlinger [1988] (au-
tomatic road follower, or ARF) are other
typical systems that make use of multi-
ple information sources. The y are
described in Section 4 because their
strategy is hybrid and includes features
to cope with ambiguous data.

3.2.4 Knowledge-Based Systems

Solving problems by using a large
amount of domain-specific knowledge has
led to the notion of knowledge-based, or
expert, systems. Typically, the system
designer’s knowledge about a complex
domain evolves rapidly during develop-
ment. For such applications, it is useful
to state this knowledge in a form that

2See Barr [19811 Typical superquadric solid models
are implicit functions of the form I z I “ + I y I ~ +
I z I ~ = 1 that have spheres as hmiting forms as
the exponents approach 2.
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(a)

(b)

(d)
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Figure 18. Example of the matching procedure of Fan el, al. [1988, 1!389]. (a) Original
images; (b) segmentation; (c) graph of the left scene; (d) two possible matches before

splittin~ (e) graph of the right scene; (f) final match. The table and the chair in the left

image touch each other In (d) there is only one object in the left view. By examining
the graphs and the matches, however, it is possible to split the two objects in the left
scene. (Used with permission of R, Nevatia and the IEEE; @ 1988 IEEE. )

offers flexibility. Knowledge-based sys - meaning. Such systems therefore typi -
tems attempt to achieve this goal by tally have a high degree of human
using declarative languages, as in rule- understandability.
based systems. Rules are to be considered e Ohta—- Rule-Based System for Out-
as small pieces of domain knowledge, door Scene Analysis. The goal of
and their activation produces interme- Ohta [1985] is to interpret color images
diate states with an obvious semantic of outdoor natural scenes. The model is
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represented as a semantic net that con-
tains properties of scene entities and
their relational constraints. An initial
set of labels is obtained by the feature-
space approach. A rough interpreta-
tion—called a plan—is obtained by
probabilistic relaxation labeling oper-
ating on large patches, tentatively
merged with surrounding small
patches into homogeneous compact
regions. Subsequently, a set of heuris-
tic rules operates both on the prelimi-
nary patches and the plan in order to
produce a detailed interpretation. The
control structure of the rule-based part
distinguishes two phases—one for ana-
lyzing the overall structure without
attending to details and one for analyz-
ing detailed structures. In contrast
with the plan generator, which uses an
optimization strategy, the assignment
of labels by the rule-based system is
heuristic and may not be optimal.
This disadvantage is partly overcome
by feeding decisions back to the
relaxation-labeling process to reevalu-
ate and update the plan, thus main-
taining the overall plan consistency. A
typical result of Ohta’s procedure,
showing the effectiveness with which
various confusing scene components is
separated, is shown in Figure 19.

Wu, Suetens, and Oosterlinck—

Rule-Based System for Chromo-
some Classification. Wu et al. [1987]
propose a rule-based system to classify
chromosomes in metaphase images.
The result of a feature-space analysis

[Green et al. 19891 is used as a hypoth-
esis. Hypotheses are verified and mod-
ified by constraints imposed by the
context and represented as if–then
rules. The gross hierarchical strategy
consists of a group classification, fol-
lowed by a more specific type classifi-
cation. The performance of the rule-
based system is a clear improvement
over conventional techniques based on
the feature-space approach alone. This
work has further been extended by us-
ing belief functions and evidential rea-
soning in order to achieve constraint

tianson

satisfaction by probabilistic relaxation

[Wu et al. 19891, a strategy that be-
longs to those described in Section 3.1.

e Nagao and Matsuyama —Rule-
Based Resegmentation. Nagao and
Matsuyama [1980] use a rule-based
system to recognize various objects
such as crop fields, forests, roads,
rivers, cars, and buildings in color
aerial images. The image is initially
partitioned into regions based on the
feature-space approach. This initial
classification uses strict conditions in
order to avoid false recognition. The
acceptance thresholds are relaxed when
additional contextual evidence is per-
ceived in the environment. This strat -
egy has the advantage that initial
decisions using the feature space are
reliable and need not be revised
afterward. Regions giving strong pho-
tometric evidence for a particular object
are classified first; they constitute a
context for other regions with weaker
photometric properties.

An important property of this sys-
tem is its ability to correct for some
segmentation errors. Rules exist that
activate a split-or-merge algorithm on
irregularly shaped regions. Although
this resegnzentation is simple and oper-
ates on the contours of the regions
instead of on the raw image data, it
contains the beginnings of some of the
methods discussed in Section 4.

In the previous systems, rules are
grouped into larger knowledge blocks,
called phases or classes, which are
initiated by metarules and applied
sequentially as the analysis progresses.
The organization of these knowledge
blocks defines the overall control struc-
ture of the system. Increasing the number
of classes, each having a few complex
coarse-grained rules, naturally leads to a
blackboard style of control, which is
characterized by a dynamically updated
list of goals, tasks, and their subparts to
keep track of what the system is trying
to do and what it will do next.

0 Draper et al. —The Schema System.
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(a) (b)

Figure 19. (a) Image of an outdoor scene; (b) Ohta’s [1985] resulting labeled image, with

S = skv. T = tree. B = buildinz. R = road. U = Unknown. (Used with permission of Pitman
Publis~ing; 0 Pittman Publish~ng, 1985.) ‘

The Schema System [Draper et al.
1988] has adopted much of the struc-
ture of the basic blackboard system,
with a few significant adjustments. It
is demonstrated in 2D images from
natural domains (four road scenes and
three house scenes). The Schema
System partitions the available knowl-
edge about the scene in terms of natu-
ral object classes. Each class of objects,
object configurations, and object parts
has a corresponding schema that stores
the object and control knowledge spe-
cific to that class. Each schema is an
expert at recognizing one type of object.
General-purpose programs or tools,
which are not object specific, are stored
in separate knowledge sources and can
be called by the schema strategies.
Schema instances run concurrently and
exchange information through a global
blackboard mechanism.

Draper et al. [1988] serves here as
an excellent example of the blackboard
form. However, the authors state that
the low-level knowledge sources, such
as the region segmentation and the
line extraction routines, may in princi-
ple be reactivated with new parameter
values tuned to the specific image con-
tent that becomes available during the
analysis. The possibility of integrating

this knowledge-directed resegmenta-
tion [Draper et al. 1988] into the sys-
tem puts this paper on the borderline
of the combined strategies discussed in
Section 4. Other knowledge-based sys-
tems such as those of McKeown et al.
[1985] and Hwang et al. [19861 depend
strong] y on combining strategies in
order to recover missing features
in the image and are described in the
next section.

3.2.5 When to Use ibis Strategy

These methods are appropriate for scenes
with moderately complex photometry
combined with semantic complexity.
Therefore, in controlled environments
where we can depend upon low-level op-
erators to extract relevant features, the
techniques described in this section can
be very efficient. We need only run the
initial local operator once to get a set of
symbols that can then be parsed quickly
and reliably using semantic representa-
tions of the domain knowledge.

3.2.6 When to Avoid this Strategy

This strategy should be restricted to situ-
ations with reliable intermediate states
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in order to avoid backtracking that may
result in a combinatorially explosive
search. Furthermore, in uncontrolled
environments, such as natural outdoor
scenes, images will usually contain noise
and ambiguities that may completely
disrupt the reliability of most local oper-
ators. Although the semantic context
may correct for the inaccuracies intro-
duced by analyzing the local photometry,
there is usually little reason to hope that
the features found initially can be assem-
bled into reliable object labels without
using substantial additional domain
knowledge. In the next section, we dis-
cuss alternative strategies for achieving
this goal.

4. COMBINED STRATEGIES

For complex models with complex
semantics, direct optimization as

described in Section 2 may become com-
putationally impractical. In this case,
direct search can be replaced by more
complex search strategies that systemat-
ically constrain the search space by find-
ing and refining partial matches. This
approach allows the feature extraction
process to continuously refer to the image
data and to be dynamically dependent
upon the current context of the parse.
The parsing process typically includes
different methods for recovering missing
features, such as template matching,
gradient descent, and assorted low-level
operators. We now consider in detail
a number of systems exploiting hybrid
methods and hierarchical search
philosophies.

4.1 Refining Matches by Resegmentation

Refining matches by resegmentation
effectively recovers missing object fea-
tures when the image is initially under-
segmented or when additional low-level
feature data are available for use in later
stages of the analysis. This technique
exploits the fact that object features giv-
ing weak supportive evidence may be
discovered by semantically associating
them with strong (often sparse) features.

● McKeown et al. — SPAM: Region
Enlargement, Extension, Join/
Merge, and Recovering Missing
Regions by Low-Level Reseg -
mentation. The SPAM system
[McKeown et al. 19851 is an example
of a method that continually refers
back to the original image data to
refine its hypotheses of how the image
should be divided into recognizable
objects. SPAM’S specific application is
the interpretation of airport scenes
using maps and domain-specific
knowledge.

SPAM begins with an image of the
scene and a trial segmentation of
the scene into regions. The basic
premise of the system is that these
initial regions are adequate building
blocks from which to begin a rule-based
analysis. Next, domain knowledge and
image data are combined to resegment
the image (i.e., make a new version of
the segmentation regions). The
processes that can be invoked by the
context rules include region enlarge-

ment (add area to a region), region

extension (grow in a particular direc-
tion), join / merge (coalesce multiple
regions into a single one), and recover-
ing missing regions. For example, given
several linear image regions that are
collinear with one another, a new lin-
ear region is hypothesized that encom-
passes each original region. The rules
attempt to verify this hypothesis by
invoking a linear feature extraction
module using the new (hypothesized)
linear region as a guide. If, for exam-
ple, a terminal function area contains
roads and parking lots, but no parking
aprons, SPAM’S rules invoke image
analysis tools that look for regions
whose shape and texture properties
match the model of SPAM for parking
aprons. Substantial additional progress
on the process of acquiring and effi-
ciently expressing the domain knowl-
edge needed for systems of this type is
described in McKeown et al. [1989].

● Hwang, Davis, and Matsuyama—
Recovering Missing Object Parts by
Resegmentation Using a Different
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Threshold or a Different Low-Level
Operator. In Hwang et al. [19861,
an image-understanding framework
is proposed, and its performance is
demonstrated on a high-resolution
aerial image of a suburban housing
development in which houses, roads,
and driveways are located.

*

The system creates an initial context
by finding bright, compact, rectangu-
lar blobs (house hypotheses) and bright,
elongated ribbons (road hypotheses).
Using this context and the topological
model knowledge, hypotheses and com-
posite hypotheses are iteratively gen-
erated and verified. Missing parts
(houses, road pieces, driveways) are
searched for in the image by using a
different low-level segmentation opera-
tor and/or different threshold values to
obtain the necessary evidence.

Wang and Srihari— Repairing
Oversegmentation and Underseg-
mentation by RethreshoIding/
Resegmemtation. Wang and Srihari

[19881 find destination address blocks
on mail pieces using a blackboard
framework. Mail pieces include
machine-written and handwritten let-
ters, magazines, newspapers, and ir-
regularly shaped parcels.

The computational solution includes
provisions for rethresholding and
resegmenting a portion of an image
using different parameters if the ini-
tial segmentation is found to overseg-
ment or undersegment the object. For
example, if the system examines the
result of machine-generated text seg-
mentation on hand-generated address
data, it may find a cluster of neighbor-
ing small blocks or a block whose size
is within the acceptable range for a
hand-generated address but too large
for a machine-generated address. In
these cases, the system will invoke the
hand-generated text segmentation tool
on that area.

@ Nazif and Levine — Expert Segmen-
tation System. The goal of the rule-
based system by Nazif and Levine
[19841 is to outline structures that sat-

isfy some basic grouping principles,
such as similarity, proximity, uniform
density, good continuity, and closure.
The system starts from edges and
homogeneous regions, extracted from
the image using standard segmenta-
tion routines. Next, a collection of
heuristic perceptual grouping rules is
applied. A region can be split along an
intersecting edge or be based on the
histogram of a feature. Regions are
merged or deleted based on continuity
and good closure. A line, for example,
may be extended by expanding the end
point along the maximum local gradi-
ent. Lines can be joined if their end
points are close together and/or if the
lines are collinear.

4.2 Refining Matches by Template

Matching

When the missing features have a pre-
cisely known shape or photometry but
cannot be found by low-level feature
extraction due to noise or occlusions in
the image data, template-matching tech-
niques may help solve the problem.

@ Shneier et al. -—Model-Driven Fea-
ture Extraction. The goal of the
system of Shneier et al. [1986] is to
maintain a description of a workspace
that consists of moving industrial parts
and fixed surfaces such as buffer tables
and machine tools. The process com-
putes how the workspace will appear
at the next cycle of sensing and how it
will be perceived by each individual
sensor; then, it predicts the images—
usually small regions— of features such
as corners. Model-driven feature
extraction is performed by processing
the image in tb e windows where fea-
tures m-e expected and by tailoring the
feature detectors to the expectations.
For example, if a corner is expected
with a particular angle, lower thresh-
olds can be set (resegmentation) to find
it. If a corner is detected, the result of
the matching process is a new feature
with ideal properties, that is, the cor-
ner’s angle is derived from the model
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●

and the position and orientation are
derived from the data. Detected fea-
tures are combined into objects and
objects into assemblies. This result is
sent back to the predictive process for
use in the next iteration.

BoIles and Horaud—3DPO: Model-
Driven Correlation-Based Hypothe-
sis Verification. The 3DP0 system
[Belles and Horaud 1986] recognizes
and locates 3D overlapping industrial
parts jumbled together in a bin, as
shown in Figure 20a. When the 3DP0
system believes it has found the pose of
an object, it verifies this hypothesis
and refines the pose estimate by back-
projecting the prediction onto the range
data, as in Figure 20b. Figure 20 illus-
trates the complexity of the 3DP0
problem domain and shows the
system’s ability to function with
incomplete information. The approach
resembles that of the SCERPO Vision
System [Lowe 1987]. But whereas
SCERPO backprojects the industrial
part onto the segmented edge data,
3DP0 compares the predicted data with
the original range data based on corre-
lation. This template-matching
approach to hypothesis verification is
restricted to rigid objects and requires
a detailed model of the physics of the
data acquisition, which is typically
more straightforward for range data
than for intensity images. More details
are given in Appendix C.

4.3 Refining Matches by Flexible Model

Matching

When complex models cannot be defined
in terms of rigid shapes but must instead
be specified by a set of generic con-
straints, template matching must be
replaced by flexible model matching.
Typically, selected model cues are used
to initiate the search for the presence of
missing model components and avoid
combinatorial explosion.

“ Levy -Mandel, Venetsanopoulos,
and Tsotsos —Model-Driven Line
Tracking. The rule-based system of

e

Levy-Mandel et al. [1986] automati-
cally localizes characteristic points
(landmarks) on x-rays of the human
skull. The system contains a heuris-
tic line tracker that starts from an
anatomical seed that provides a context
to constrain the search. The strategy is
hierarchical: The most important lines
are tracked first, and the location of
detected lines defines the appropriate
location of the seed of the subsequent
line.

Suetens et al. —lilecovering Flexible
Object Parts in the Image data. The
approach of Suetens et al. [1989]
focuses on the recognition of the coro-
nary blood vessels in single and in
stereoscopic angiograms. At each level
of the model hierarchy, an optimi-
zation procedure is started to find
missing object attributes. Blood vessel
segments are found in the image by
propagating two wave fronts, starting
from lines of maximum local intensity,
until sharp edges are encountered. The
method is similar to that used by
Tenenbaum et al. [1979] to monitor the
water level of a reservoir using aerial
images. These segments form a set of
largely disconnected blood vessels. To
create a connected tree structure, the
edges of each disconnected segment are
extrapolated in the direction of that
segment by means of the dynamic pro-
gramming technique of Gerbrands
et al. [1986]. To find long missing seg-
ments, the direction of the search is
continuously updated using the history
of the path, similar to the procedure of
Quam [1978]. Finally, missing or spu-

rious patterns in the image are
detected by exploiting the anatomical
model knowledge described m text-
books and acquired from cardiologists.
Again, missing segments are recovered
using a combination of dynamic pro-
gramming [Gerbrands et al. 1986] and
heuristic tracking [Quam 1978].

If stereoscopic images are available,
they can be used at any time to improve
the existing interpretation. We have
seen this characteristic before in the
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(a]

Figure 20. (a) Optical image of a bin of industrial
image. (Courtesy of R. Belles.)

3D MOSAIC system [Herman and
Kanade 1986]. In Suetens et al. [19891,
it is shown how missing segments in
one image are recovered using dynamic
programming and the property that
contiguous segments in one image nec-
essarily correspond to contiguous seg-
ments in the other image.

Fua and Hanson—MDL Finding
Complete Generic Objects Using
Model-Driven Optimization. The
approach of Fua and Hanson [1987,
1988, 1991] describes generic objects in
terms of a language that specifies both
photometric and geometric constraints
on the objects and their appearance in
the image. Figure 21 illustrates the
ability of the generic model approach
to generate a complex building model
instance in 3D spontaneously.

Buildings in aerial images are mod-
eled as rectilinear structures whose
internal gray level intensities are
planar, whereas roads are modeled by
pairs of parallel, smoothly curved edges
enclosing a planar intensity area. To
generate optimal descriptions, a hier-
archy of increasingly complex models
is fitted to the photometric data. These
models range from elementary edges
with the appropriate geometry to con-

e

tours that enclose areas with specific
photometric and geometric properties.
This technique frequently produces sets
of plausible but conflicting possible
parses and therefore includes a mecha-
nism based on the MDL criterion
[Leclerc 1989] to ,choose the most likely

scene labels. More details about this
work are given in Appendix C.

Pentland—Recosmizing a Generic
Part Structure tising optimization.
Pentland [1990] uses a general-purpose
“parts” representation to recognize
natural 3D objects in range images.
Objects are described in terms of shapes
of the component parts, which are
modeled as deformable superquadrics.
The system is illustrated on three
range images, one of a ThingWorld,
one of a goose, and one of a rabbit and
book.

A binary image is first obtained by
automatic thresholding of texture,
intensity, or range data, whichever is
available. A set of 2D binary patterns,
whose shapes are 2D projections of
3D superquadrics, is then fit to the
binary image by template matching.
The detected parts are considered as
hypotheses, and the MDL criterion
[Leclerc 1989] is used next to select the
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(a) (b)

Figure 21. (a) Original Image with a complex bmldmg: (b) hl~hest scoruw SD roof hwothesis Produced by
the system, with projected walls

subset of part hypotheses that best
describes the binary image data. Given
the segmentation into 2D patterns, the
corresponding 3D parts of similar
width, length, and orientation are sub-
sequently deformed in order to
minimize the error between the visible
surface of the 3D object and the avail-
able range measurements.

McKeown and Denlinger—ARF:
Road Tracking Driven ‘by Multi-
ple Road Models. The automatic road
follower (ARF) by McKeown and
Denlinger [19881 invokes two different
road trackers independently. The
first road tracker is Quam’s
correlation-based technique [Quam
19781 with several improvements. The
second is an edge tracker. Normally
they generate the same center line; but
if one of the road followers fails, the
system is able to switch from one road
tracker to the other. The authors state
that “the combined tracker is better
than either tracker alone in a signifi-
cant number of cases. ”

As compared to Quam’s road tracker,
ARF uses a second road tracker, which
exploits additional knowledge (e. g.,
additional typical road characteristics)
in order to improve the performance.
The principle of using multiple comple-

mentary information sources (cf. 3D
MOSAIC [Herman and Kanade 19861)
partly corrects for inaccuracies intro-
duced by the highly heuristic nature of
the search and the heuristic definition
of the features used to recognize roads.

4.4 When to Avoid this Strategy

A combined strategy provides additional
power but should be reserved for prob-
lems that cannot be solved in a simpler
way. Because of the potential need for
elaborate models, complex control strate-
gies, and time-consuming computation in
this method, every effort should be made
to transform a particular application into
a simpler domain. In other words, we
should make a conscientious effort to
understand each particular application
and find the least complex way to solve it
before resorting to the level of complex-
ity required to apply combined strategies.

4.5 When to Use this Strategy

Use this strategy when all else fails.

SUMMARY

When attempting to solve a complex
object recognition problem, it is difficult
to choose an appropriate strategy from
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the wealth of available techniques. In We classified the strategies according

this paper, we provided a basic introduc - to their suitability for complex models
tion to this problem and proposed an and for complex data. Using our classifi -
organizational framework that gives cation framework, we delimited the
some insight into making these difficult domains of the various techniques and
choices and understanding the tradeoffs illustrated their characteristics with

involved. selected examples from the literature.

APPENDIX A. INDEX OF LITERATURE REVIEWED

Fitting Models to Photometry

Method and Author Summary

Rigid Model Fitting

Image Statistics

Rosenfeld 1969; Hall 1979 Image subtraction and correlation

Ballard and Brown 1982
Reynolds et al. 1989
Wallace 1988 Template matching on segmented images

Mansouri et al. 1987
Hough Transform

Ballard and Brown 1982 Hough transform

Ballard 1981
Illingworth and Kittler 1988

Niblack and Petkovic 1988

Flexible Model Fitting

Dynamic Programming
Fischler et al, 1981 F*: Iterative path finding

Gerbrands et al. 1986 Resampling the search region

Nuyts et al. 1989 Parametric search region

Tenenbaum et al. 1979 Optimal path without shape constraint

Yamada et al. 1988 Noniterative procedure without resampling

Maitre and Wu 1987 Matching segmented images with line
drawings

Gradient Descent
Kass et al. 1987 Snakes: Deforming a flexible curve

Fua and Leclerc 1990

Terzopoulos et al. 1988
Fua 1989; Witkin et al. 1987a

Gardin and Meltzer 1988
Witkin et al. 1987b

Closed-Form Solution
Premoli et al. 1989 KAMR1: Closed-form solutlon

Relaxation

Murray and Buxton 1987 Region segmentation using relaxation
Heuristic Pruning

Quam 1978 Heuristic road tracker
Zhang and Simaan 1987 Model-driven seed growing

Fitting Models to Symbolic Structures

Method and Author Summary

Graph Matching

Search
Murray 19s7 Depth-fwst recurswe search

Belles and Horaud 1986 3DPO: Maximum clique finding
(see also combined strategies)

Mulgaonkar et al. 1984 Matching nonidentical graphs

Horaud and Skordas 1989 Ranking maximal cliques
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Dynamic Programming
Eshera and Fu 1986
Fischler and Elschlager 1973

Relaxation Labeling

Huffman 1971
Clowes 1971

Mahk 1987
Tenenbaum and Barrow 1977
Mohan and Nevatla 1988
Mohan and Nevatia 1989

Heuristic Pruning
Ammi et al. 1989
Ayache and Faugeras 1986

Dynamic programming

Heuristic dynamic programming

Line drawing interpretation

MSYS: Discrete relaxation labeling
Constraint satisfaction network

Heuristic best-first search
HYPER: Heuristic tree pruning

Composite (Hierarchical) Model Fitting

Structural Grouping

Lowe 1987
Brooks 1981

Huertas et al 1987

Huertas and Nevatia 1988

Jain and Hoffman 1988
Refining Matches Using

Multiple Information Sources
Herman and Kanade 1986

Fan et al 1988.1989

Bobick and Belles 1989
Knowledge SelectIon by Rules

Ohta 1985

Wu et al. 1987

Nagao and Matsuyama 1980

Draper et al. 1988

SCERPO: Locating perceptual structures
ACRONYM: Invariant observable

Findmg hnear structures

Merging adjacent surface patches

3D MOSAIC: Object completion using
additional images

Match image interpretations vla heurlstlc
search

Integration of visual information over time

Rule-based system for outdoor scene
analysis

Rule-based system for chromosome
classification

Rule-based resegmentation
Schema System

Combined Strategies

Method and Author Summary

Refining Matches
by Resegmentation
McKeown et al 1985

Hwang et al 1986

Wang and Srihari 1988

Nazif and Levine 1984

Refining Matches
by Template Matching
Shneier et al 1986
Belles and Horaud 19?5

Refining Matches
by Flexlble Model Matching
Levy -Mandel et al. 1986
Suetens et al. 1989

Fua and Hanson 1991

Pentland 1990

McKeown and

Denlinger 1988

SPAM: Region recovery, enlargement,
extension, Join/merge by resegmentation

Part recovery by rethresholdmg/
resegmentation

ABLS: Repammg over and under-
segmentatlon by rethresholdmg/
resegmentation

Expert segmentation system

NBS: Model-driven feature extraction
3DP0: Model-driven correlation-based

hypothesis verification

Model-driven line tracking
Recovering flexible object parts in the

image data
MDL: Finding complete generic objects

using model-driven optimization
Recognizing a Generic Part Structure

Using Optimization
ARF: Road tracking driven by multiple road

models
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APPENDIX B. RELATED REVIEW PAPERS

AND BOOKS

B.1 Related Review Papers

The literature contains diverse survey
papers covering different aspects of comp-
utational vision. The distinctive feature
of the present article is that we system-
atically categorize a wider variety of
computational strategies than previous
articles, as well as analyzing their appro-
priateness to particular applications.
Since there have been a number of other
review papers, some of whose contents
are similar to ours, it may be useful for
us to summarize the salient features of
these articles and to contrast our
approach.

B. 1.1 Nagao: Control Strategies

Nagao [1984] uses his own research
results to illustrate merits and weak-
nesses of a number of computational
strategies. The main strategies he dis-
cusses are the feature-space approach and
hierarchical parsing. He recognizes the
need for dynamically exploiting the
image data. He says, however, that be-
cause a process that includes low-level
image processing in the scope of control
is complicated, most of the control struc-
tures are restricted to the symbolic level,
and only a few have feedback to the
image level. The paper by Nagao was
written in 1982; in the meantime, the
idea of feedback had been further elabo-
rated and had given rise to additional
computational strategies, which are dis-
cussed in our paper. Nagao further em-
phasizes the importance of declarative
programming— which we do not consider
as a computational strategy but rather
as a programming methodology— and of
the need for powerful software tools for
the development of sophisticated control
structures.

B. 1.2 Rao and Jajn: Knowledge

Representation and Control

Rao and Jain [19881 discuss the pros and
cons of different knowledge representa-

tion formalisms and different control
strategies used in computational vision.
Using their classification, they review
some well-known systems such as
Acronym and Visions. The discussion,
however, is restricted to strategies for
perfect data. The authors account for this
limitation by pointing out that the num-
ber of papers that describe some form of
top-down feedback referring to the image
data is small. They state that “all vision
systems use some form of feedback, in
fact, but people have not made an effort
to isolate and focus on this particular
aspect. ” In this paper, we emphasize the
role of this feedback in object recognition
and clearly distinguish strategies deal -
ing with interpretation of labels from
other strategies that repeatedly exploit
the image data at the pixel level to find
model instances.

B. 1.3 Kanade: The Segmentation Problem

Kanade [1980] gives a unified view of
what he calls “the problem of segmenta-
tion. ” “ Often,” according to the author,
“the ultimate goal of image analysis is to
obtain a segmentation which separates
out semantically meaningful objects or
parts of objects. ” TO discuss the problem
of region segmentation, Kanade provides
the following problem-solving paradigm:
“Given an image, cues (picture domain
cues or scene domain cues) are extracted,
which are then used to access the generic
model of the task world to generate
hypotheses, which are verified by project-
ing them back to the picture level and by
matching them w~th the input image. ”
The ~icture domain cues are the features.
observed in the image, such as line seg-
ments, homogeneous regions, and inten-
sity gradients. The scene domain cues
are the features that give rise to the
picture domain cues, such as edge
configurations, surface orientations, and
reflectance. Rather than dealing with
computational strategies, this paper dis-
cusses the role of different information
sources (signal, physical, and semantic)
to obtain a “semantic region segmenta-
tion;” that is, to assign semantic labels
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to pixels that best satisfy both the local
image feature properties and the seman-
tic constraints. In particular, the impor-
tance of exploiting the physical level of
knowledge, “the bridge between a pic-

ture and a scene,” is emphasized.

B. 1.4 Pavlidis: Progress in Image Analysis

Pavlidis [19861 surveys major trends in
the literature and identifies the reasons
that have hindered progress. He focuses
on typical works rather than striving for
completeness. The author distinguishes
image analysis (the topic of his paper)
from pattern recognition or image under-
standing, the latter implying the assign-
ment of name labels or descriptions by
matching the results of image analysis to
world models. Image understanding, such
as line-drawing interpretation work
(Huffman-Clowes, etc.) and symbolic rea-
soning systems (Acronym, etc. ) are not
covered by Pavlidis’ paper. Our paper, on
the other hand, does review such
approaches since they encompass impor-
tant computational strategies.

nition, that is, the “automated extraction
of information from signals,” using a cat-
egorization into conventional techniques
and the AI-based approach. The conven-
tional approach combines the statistical
methodology (template matching and
feature space) with the structural
methodology (syntactic pattern recog-
nition and relaxation labeling). The
AI-based approach emulates the
hypothesize-and-test paradigm and uses
heuristics to reduce the search space.
Whereas the conventional techniques
involve large amounts of numerical com-
putation and analytically well-formed
models, the AI approach is characterized
by symbolic reasoning, which implies the
importance of a suitable knowledge rep-
resentation and control structure, and
focuses on the efficient use of different
knowledge sources in various forms. The
paper by Nandhakumar and Aggarwal
mainly emphasizes the distinctions be-
tween these two broad categories and
does not discuss their domains of applica-
bility, which is one of the principal goals
of our treatment.

B. 1.5 Mantas: Methodologies m Pattern

Recognition

Mantas [19871 presents an overview of
existing “methodologies in pattern
recognition and image analysis. ” Like
Pavlidis, he makes a distinction between
image analysis, “the description of image
features into a parsable string of numbers
or characters,” and pattern recognition,
“the classification or parsing process of
the created patterns.” Segmentation and
image-to-image matching methodologies
are classified under image analysis. Sta-
tistical, syntactic, and hybrid classifica-
tion methods are the author’s main
categories of pattern recognition method-
ologies. Unlike our paper, this paper does
not review heuristic approaches to struc-
tural pattern recognition, nor does it dis-
cuss methodologies that integrate image
analysis and pattern recognition.

B. 1.6 Nandhakumar and Aggarwal: Contrast

of Conventional and Al Approaches

Nandhakumar and Aggarwal [19851
review the approaches to pattern recog-

6. 1.7 Bmford: Model-Based Vision

Binford [1982] gives a good survey and
critique of the state of the art (up to
1982) of what he calls “model-based
image analysis system s.” Model-
based image analysis is to be considered
as that part of computational vision that
involves the use of high-level models,
such as aircrafts, buildings, and ribs in
chest x-rays. The author nicely summa-
rizes the limitations of the systems that
existed at that time. One major limita-
tion, he says, is the poor performance of
“segmentation.” For example, few sys-
tems used shape information in segment-
ing regions. A second shortcoming is the
weak definition and use of models.
Models are usually image models and are
viewpoint dependent (except for
Acronym). Consequently, the ability to
relate three-space models (world knowl-
edge) to image structures is lacking. Fur-
thermore, the models described are of
specific objects, so hypothesis generation
is limited to restricted scene domains.
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Generally, this paper focuses on the mod-
eling issue rather than on computational
strategies. Since the publication of the
paper, the field of computational vision
has made progress toward overcoming
each of the limitations mentioned above.
In particular, recent developments have
led us to introduce new classes of compu-
tational strategies not discussed by
Binford.

B. 1.8 Rosen feld: Scene Descriptions from

Image Analysis

The paper by Rosenfeld [19871 reviews
the basic stages of an image analysis
process, that is, the “construction of scene
descriptions on the basis of infor-
mation extracted from images or image
sequences. ” The specific areas covered

are feature extraction, texture analysis,
surface orientation estimation, image
matching, range estimation, segmenta-
tion, object representation, and model
matching. For each of these areas,
Rosenfeld summarizes the state of the
art, then presents limitations and future
directions. With respect to computational
strategies, the author laments the lack of
a general theory of control in image
analysis and points out the need for
incorporating geometric constraints and
object semantics into the segmentation
process. Our review attempts to alleviate
both shortcomings: First, we categorize
and discuss the computational strategies
found in the literature. Second, we intro-
duce additional categories of strategies
that instantiate geometric and semantic
constraints directly in the image.

B. 1.9 Wallace; Computational Strategies for

Object Recognition in Line-Segmented

Images

The following computational strategies,
applicable to segmented images, are dis-
cussed by Wallace [19881: boundary
correlation, generalized Hough trans-
form, relational distance measures, graph
matching, heuristic search, and relax-
ation labeling. To illustrate and compare
these strategies, the problem of identify-
ing a line-segmented image of a metallic

bracket is used throughout the text.
Using a single application has the
advantage that a quantitative assess-
ment of each of Lhe strategies can be
made. On the other hand, it narrows the
study of available strategies in the liter-
ature to those that are useful for that
particular application. For example, the
class of computational strategies that
supports flexible models (see Section 2.2)
is not discussed. This derives from
the author’s particular view of the com-
putational vision process: “Image
interpretation may be considered as
a three-stage sequential process, consist-
ing of primitive extraction, grouping of
primitives into extended features, and
matching of scene descriptions to pre-
formed models.”

B. 1.10 Matsuyama: Categorization of Expert

Systems for Image Analysis

Matsuyama [19891 classifies expert sys-
tems for image analysis into four cate-
gories: (1) consultation systems for image
processing for users with little experi-
ence, (2) knowledge-based program com-
position systems that build complex
programs from abstract programs speci-
fied by the user, (3) rule-based design
systems for image segmentation repre-
senting the various heuristics common to
a segmentation method explicitly [Nazif
and Levine 1984], and (4) goal-directed
image segmentation systems that auto-
matically extract image features, such as
a rectangle with a specified area, by using
knowledge about the image processing
operators and the way to combine them.
Except for the third category, the discus-
sion is restricted to expert systems for
image analysis that use only control
knowledge about how to use image pro-
cessing operators, as in program

libraries In this paper they are called
expert systems for image processing
(ESIP). They are different from the expert
systems described in Section 3.2 and typ-
ically uae a large amount of domain-
specific knowledge of the scene and its
objects. The knowledge in ESIPS is
described explicitly and declaratively.
The author states that most ESIPS were
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developed to examine their feasibility and
cites only one commercial ESIP. ESIPS
do not solve basic computer vision prob-
lems but should rather be considered as a
new programming style and as a step
toward new flexible software environ-
ments for developing image analysis
programs.

B.2 Related Books

This paper provides a guide to the litera-
ture dealing with applied object recogni-
tion. Object recognition is a topic under
intensive study in different research
fields, such as image processing and arti-
ficial intelligence. Some familiarity with
each of these broader domains can be
acquired from the following textbooks:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.
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APPENDIX C. DETAILED DISCUSSION OF

SELECTED KEY PAPERS

C.1 Ballard —GHough: The Generalized

Hough Transform

The Hough transform [Hough 1962;
Rosenfeld 1969] was originally developed
as a statistically reliable technique for
finding parameters of straight lines in
data consisting of collections of points.
The basic concept is to take an equation
described by a certain number of param-
eters, for example, the straight line

xcos O+ysin O=c

parameterized by (0, c) and plot the val-
ues of (0, c) for all the lines passing
through a particular data point ( xl, yl).
For each additional data point ( XZ, y,),
we plot the corresponding curve in (I9, c)
space. An example of such a plot is shown
in Figure 22. The point where the den-
sity of intersecting curves is the highest
is the best candidate for the values of the
straight line parameters describing the
data. In practice, the (0, c) space is quan-
tized as an array in computer memory,
and the memory cells are treated as
counters that are incremented whenever
the (0, c) curves pass through the partic-
ular cell. This array is called the Hough
accumulator, and it is clear that its cells
contain, in effect, the number of votes
cast by the data points for each sampled
value of the line parameters (0, c).
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The concept of the Hough transform
can be extended in several directions.
The simplest is to treat other algebraic
curves with a manageable number of
parameters; circles and ellipses are typi-
cal examples. The idea is always to map
the data into a weighted space of param-
eters describing the shape to which
the data are expected to conform. The
Hough transform takes input in a data
space and produces output in an abstract
parameter space.

There is a conceptual problem, how-
ever, when we want to locate a shape
that has no straightforward parametriz-
ation as a space curve. How do we for-
mulate the accumulator array for a shape
that is a complex collection of points
rather than a straight line or a circle?
This problem was first solved by Ballard
[1981], who noted, in effect, that the rele-
vant parameter space corresponds to the
space of spatial transformations that can
be made on an arbitrary rigid curve. For
an arbitrary curve what is relevant
for the object recognition problem is the
location, rotation angle, and scale of
the curve in the image relative to the
object’s defining shape template. If an
object has orientation-determining
and/or fixed-scale features, these proper-
ties can be exploited to restrict the possi-
ble angles and scales of the template
candidates, thus decreasing the dimen-
sion of the required Hough accumulator.
For 3D objects, we can in principle
extend this concept to the space of 313
transformations of a rigid object [Ballard
and Sabbah 1981]; in practice, this may
be difficult and is less likely to be suc-
cessful than the 2D method.

C. 1.1 Implementation

For objects that appear in image data as
2D rigid curves, Ballard’s generalized
Hough transform (often abbreviated as
GHough) is formulated as follows

([Ballard 19811, or Ballard and Brown
[1982] pp. 123-131: beware of pomible
misprints):

● Digest the shape template. Define a

c

Figure 22. A plot of the allowed values of r and 0

in the equation x cos 0 + y sin 8 = c. Each curve
corresponds to a different data point (x, y); we may

deduce that the set of data points considered lies on
the straight line y = x – 1.

shape template as a discrete set of
points lying on the desired shape,
choose a reference point as the tem-
plate center, and record the angle and
distance of the reference point relative
to the points chosen on the shape out-
line. Finally, group these into bins with
the same gradient direction, deter-
mined, for example, by measuring the
normal to the template curve at each
sample point. This is called the R-table.

Define the range of the parameter
space. We may know some restrictions
on the location, orientation, and scale
of the expected objects in the image
relative to the template. If so, define a
Hough accumulator array that has the
appropriate parameter ranges and
quantization steps. For straightfor-
ward implementations of GHough, the
smaller this array, the better off you
are.

Process the image data. Run an edge
operator such as the Sobel derivative
over the image, producing both an edge
strength and a direction at each pixel.
Typically, some sort of threshold is
applied to select a strong set of edges.

Compute the index into the Hough
accumulator. Loop through the
selected image edges ( xl, y,), noting
the direction of d, of each edge. When
this direction falls in the same direc-
tion as an edge in the template
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description, look in the R-table for the
possible relative locations (r-, a) in po-
lar coordinates of the reference point
as seen from the image edge. Compute
the predicted template reference point
using the basic formula

xc= x,+ Srcos(a+ @)

y, = y, + srsin(a + d),

where (s, O) are the discrete values of
scale and orientation, respectively,

being considered. If a range of these
parameters is being considered, com-
pute separate values of ( XC, yC) for each
value of scale and orientation.

Increment the Hough accumulator.
For each image edge,-we now have the
coordinates (XC, yC) and possibly (s, O)
of a cell in the Hough accumulator
array. Increment this cell by one count.
Note that several template edges might
have the same gradient angle, so one
data point might cause several incre-
ments to the Hough accumulator, one
for each distinct value of (r, a) in the
R-table bin corresponding to that
gradient direction.

If the Hough accumulator has indis-
tinct peaks, we may achieve better results
either by changing the parameter quan -
tization or by performing local averaging
in the accumulator to produce broader
but higher peaks enabling a clearer
choice of preferred parameter values.

This method works well for particular
applications such as the location of
uniquely shaped lakes or similar land-
marks in high-altitude aerial imagery,
where the object is essentially two
dimensional and rigid. Because the pro-
cess of voting into the Hough accumula-
tors is statistical, the results continue to
be reliable even in the presence of noise,
partial data, and occlusions that can dis-
rupt techniques that use semantically
driven matching techniques. Thus
GHough is appropriate for simple models
and complex data situations.

A careful study of the limits of applica-
bility of the Hough transform has
recently been presented by Grimson and

Hanson

Huttenlocher [1990], to which we refer
the reader for additional evaluation
information.

C.2 Kass, Witkin, and Terzopoulos —

Snakes: Active Contour Models

Snakes [Kass et al. 1987] are deformable
curves that can be used to delineate
salient image contour edges, lines, and
subjective contours. These curves are
implemented as splines that deform
themselves under the influence of image
constraints designed to attract them to-
ward features of interest and of internal

continuity constraints that force them to
remain smooth, except at a selected num-
ber of discontinuity points. Both of these
constraints are represented as additive
energy fields; the best compromise
between them is achieved by deforming
the curve so as to minimize its total
energy.

C. 2.1 Constraint Formulation

The image constraint field E, used in the
snake approach is a weighted sum of
three terms:

*

*

A term proportional to the image
intensity that attracts the snake
toward either black or white lines,
depending on the sign of the weight.

A term proportional to the image gra -
client th-at ‘attracts the snake toward
edges.

e A term proportional to the curvature of
lines of constant gray level in a
smoothed image that attracts the snake
toward edge terminations.

The internal constraint field E, is the
sum of two terms: one proportional to the
integral of the square of first derivatives,
the other proportional to the integral
of the second derivatives along the curve.

Given a starting point, the snake is
described by its vertices and is viewed as
a massless object embedded in a viscous
medium and moving under the influence
of the image and internal constraint
fields. Its optimal position is found by
recursively solving the dynamic equa -
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tions until it stabilizes. Given the fact
that the smoothness term is quadratic
and its derivatives are linear, this re -
duces to solving a linear system of equa-
tions at every iteration. This system is in
fact sparse and can be solved quickly (the
computation time grows linearly with
the number of vertices).

C. 2.2 Implementation

In the implementation of the snake
method, the curves are described as poly-
gons with n equidistant vertices X =

{(~l$~,),i = 1,. ... n}. The total energy
E is the weighted sum of El derived from
the internal constraint field and E, from
the external image constraint field.

The explicit form of E, is

E, = ~lEll + P2E27

Eil = x (x, – $,.1)2 + (Y, –Y,-1)2,
i

+(~Y1 –Yt-l –Y2+1 )2

where Eil and E,2 account for the
first and second derivatives along the
curve, and Ml, p2 are weights.

E, is computed by integrating the
image field along the curve %?.For exam-
ple, when image gradients are used,

where # represents the image intensi-
ties and f(s) is a vector mapping arc
length s of the curve C to points (x, y) of
the image. In fact, VY can be precom-
puted, allowing for fast optimization.

To perform the optimization, the curve
is imbedded in a viscous medium and the
dynamical equation of the resulting
system is written as

aE dX

dX
—+a~=o,

where E = E, + AEl and a is the viscos-
ity of the medium. Since the internal
energy El is quadratic, its derivative with

respect to X is linear and, therefore,

aE*
—. = KX,
ax

where K is a pentadiagonal matrix.
Thus, each iteration of the optimization
amounts to solving the linear equation:

aEe
KXt+a(X, –X,_l)=m ~.

t–1

Because K is pentadiagonal, the solution
to this set of equations can be computed
efficiently in 0(n) time using LU decom-
position and backsubstitution. Note that
the LU decomposition need be recom-
puted only when a changes.

C. 2.3 Properties

Snakes have two key properties that
make them especially useful for delineat-
ing linear features:

e Geometric constraints are used at the
lowest level to guide the search.

e The information is integrated along the
entire length of the curve, providing
a large support while ignoring the
irrelevant information from points not
belonging to the actual contour.

The snake method has proven useful
for interactive specification of image con-
tours and can be applied to a wide range
of problems such as motion tracking and
interpretation of seismic data.

C.3 Ayache and Faugeras —HYPER:

Heuristic Pruning

The HYPER system [Ayache and
Faugeras 19861 is an example of a robust
tree-pruning approach. It identifies and
accurately locates touching and overlap-
ping flat industrial parts in an image.
Object models and segmented image pat-
terns are described by first-degree poly-
nomial approximate ions of their cent ours.
The number of model segments is typi-
cally less than 100 for effective operation
of the system.
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C. 3.1 Issues in Search Heuristics

Search efficiency can be improved if
heuristics are used to explore the most
promising paths first. For example,
depth-first search becomes equivalent to
hill climbing if the choices are ordered
according to an accurate heuristic mea-
sure of the remaining distance. Beam
search explores only the best n nodes at
each level of the search tree. Best-first
search improves the efficiency of a
breadth-first search by choosing the best
open node, no matter where it is in the
partially developed tree. In systems such
as HYPER, the heuristic measure is used
to prune the search tree, incurring the
possible risk of excluding the desired
solution and arriving at a dead end. The
appropriateness of the search heuristic is
therefore of critical importance.

C. 3.2 Implementation

The HYPER system assumes that both
the model and the image descriptions are
given by a set of linear segments, M, =
(x,, y,, l,, a,) and SJ = (x~, y~, l;, a;),

respectively; x and y are the coordinates
of the segment midpoint; 1 is the seg-
ment length, and a is the segment orien-
tation relative to the horizontal axis. It
further assumes that an image descrip-
tion of an object can be transformed into
a model description by a rotation, a seal-
ing, and a translation. This transforma-
tion is described by the parameter vector

u=(kcos 6,ksin0, tZ, tY)

that transforms an arbitrary model point

(x, y) into an image point (x*, y*) as
follows:

●

x* =tZ+xkcos O–yksin O,

y*=tY+xk sin6+ykcos0.

The method consists of three phases:

Initialization. Given a model descrip-
tion and an image description, an ini-
tial hypothesis about the position of
the model instance in the image is gen-
erated by matching a privileged
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segment, that is, one of the 10 long-
est segments of the model, to an
image segment. Matching is performed
by solving the above equations for the
two pairs of end points of the model
segment and the image segment, yield-
ing a value for the parameters k, 0, t,,

and ty and an initial estimate of the
transformation vector UO. Typically, a
few hundred hypotheses are generated.
By comparing local intrinsic features,
the compatibility between the pairs of
matched segments is calculated and
only the best hypotheses are consid-
ered for further evaluation.

Heuristic Pruning. Each generated
hypothesis is verified by a heuristic
tree search procedure. The rigid model
contour is iteratively matched to the
image segments by successively adding
compatible segments to the available
partial contour match. At each
iteration i, a dissimilarity measure dz~

between the active model segment Ml
and every image segment S1 is cal-
culated. The active model segment M,
is by definition the one closest to M,_ ~.
The active segment MZ is first trans-
formed into M,* by using the transfor-
mation vector U,_ ~; M,* is then
compared to each of the candidate
image segments S~ using both local
intrinsic features and positional con-
straints imposed by the available par-
tial contour instance. The dissimilarity
measure therefore includes terms that
encode the absolute value a,~ of the
difference between the orientation of
the two segments M: and S~, the
euclidian distance D,~ between the
midpoints of the segments, and the ab-
solute value 1,~ of the relative differ-
ence between their lengths, that is, 1.,

= (l: – ll)/ll. The terms a,,, D,J, and
1,~ have empirical upper bounds a~a,,
D ~~X, and l~,X, respectively; d,~ is then
computed as follows: If one of the terms
a ,~, D,], or 1,]is aboue its correspond-
ing upper bound, then d,~ = 1;

otherwise,

qD,l rlll
d,l=~+—— —

a m ax D max + lmax ‘
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where p, q, and r are positive weights
whose sum equals 1. The model seg-
ment M, is heuristically matched with
its best corresponding image segment
Sj; that is, the segment whose dissimi-
larity d,~ is minimal subject to the
constraint that it be less than 1. A
recursive least-squares technique is
then used to update the estimate of the
transformation vector U,.

Terminating the matching process.
For each of the hypotheses a quality
measure Q, at each iteration of i of

the search measures the length of the
identified model relative to the total
model length. The quality is maximal
if the model is perfectly identified in
the image. It decreases if there are
occlusions or other anomalies such as
noise, tilted objects, or segmentation
errors. At the end of the heuristic
search procedure, a final test is done
on the hypothesis with the high-
est quality measure by restarting
the whole evaluation procedure with
the more accurate value of the trans-
formation vector U. This process is
repeated until no additional model seg-
ments can be matched. The hypothesis
is accepted if the quality measure is
above a prespecified threshold;
otherwise it is rejected.

The above method is robust in the
presence of bad lighting conditions, par-
tial occlusions up to 60 percent, and scale
variations up to 40 percent. It was suc-
cessfully tested on a large number of
industrial scenes and was implemented

on a vision system coupled to a pick-and-
place robot to grasp and reposition un-
oriented and partially overlapping
industrial parts.

C.4 Brooks —ACRONYM: 3D Image

Interpretation Guided by invariant

Model Relationships

The ACRONYM system [Brooks 1981,
1983] approaches model-based vision

using the following basic concepts:

@ Generic Model Classes. ACRONYM’s
models are volumetric, 3D models

*

●

based on conjunctions of generalized
cylinders. At the lowest level, object
parts are generalized cones with data
structures containing slots called
spine, cross section and sweeping rule.
A specific object such as a motor is
then constructed from a set of these
elementary units and their geometric
relationships. ACRONYM’s modeling
philosophy, however, allows not only
specific models, it also specifies generic
classes of objects constructed by replac-
ing numbers in the structure definition
by variables obeying constraints on
their values. !%nce these constrained
variables may describe relationships
among subparts, as well as the slots
parametrizing generalized cones, a
wide variety of spatial relationships
characterizing generic model classes
may be supported.

Generic Scene Constraints. Besides
supporting flexible local models,
ACRONYM’s constraint system allows
the description of the entire scene in
terms of relevant constraints. Con-
straints on the camera coordinate
system or constraints imposed by the
terrain can limit the values of the coor-
dinate origins of individual objects.
Thus the knowledge that the camera
was pointing straight down from a
range of altitudes constrains the sizes
of object model instances on the ground,
as well as their relative positions—
airplanes, for instance, would then be
constrained to lie at the same eleva-
tion in the world and to have only the
freedom to translate at that elevation
and to rotate about the vertical axis.

Availability of preprocessed
images. Although ACRONYM is not
limited to preprocessed images at the
conceptual level, it has in practice
required data derived from images by
an independent process. This process
has no relevant knowledge of the use
to which ACRONYM will put the pro-
cessed data. Lines and simple line
structures were found by a universal
line finder and grouped into 2D rib-
bons and ellipses—the basic structures
that a 3D generalized cone might pro-
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ject to the 2D image. The original
image data are not incorporated into
the analysis, so errors in the prepro-
cessing persist throughout the proce -
dure; the original implementation of
ACRONYM is thus best suited for
images that are relatively simple pho-
tometrically, although the scene itself
may be complex.

Geometric reasoning about invari-
ant features and - relationships.
ACRONYM’s analysis relies heavily on
a geometric reasoning system that
allows constraints on obiects and their.
components to be translated into pre-
dictions about image-invariant rela-
tionship. These m-edictions are then
used /o drive ~ hierarchical local
matching system that suggests ranges
of likelv locations for clusters of
semanti~ally related ribbons and/or
ellipses. When matches consistent with
the model constraints are located in
this way, the position and orientation
of 3D model instances are determined.
ACRONYM thus deduces a 3D inter-
pretation of the scene, along with
constraints on the camera position.

The core of ACRONYM is the predic-
tion procedure, which is organized into
four principal sections, each with many
complex subcomponents. The basic con-
cepts involved can be summarized as
follows:

“ Constraint Manipulation System.
Constraints are already supported at
the level of model data structures by
allowing the replacement of numerical
values by expressions involving alge-
braic variables. Constraints then take
the form of possibly nonlinear rules
relating these variables. The system

then handles numeric and algebraic
bounds of the form

Lower-bound ( UI, Uz, . . . )

s expression

s upper-bound ( VI, Uz, . . . )

Specific examples might include a

constraint such as

10< DISK.RADIUS*DISK.RADIUS*m

to indicate a disk of area less than 10
in appropriate units.

Prediction Process. A backward-
chaining control program sets up goals
and invokes a database of about 280
rules to achieve the goals. Multiple
parameters can be passed to and from
rules, and modifications to the predic-
tion data structure itself are carried
out as side effects. The task of these
rules for a specific problem domain
(e.g., finding airplanes in an airport) is
to gather the coordinate transforma-
tions that relate objects to one another
and find features such as generalized
cone pairs that have a viewpoint-
invariant characteristic.

Shape Prediction. The discovery of
ribbons corresponding to projections
of generalized cylinders into the image
is carried out in several steps: Possible
contours of visible object parts consis-
tent with the camera position are
determined, and their dependence on
camera parameters is estimated. Then,
geometric relationships within the
parts of a generalized cone are found.
Finally, a coarse filtering process that
uses backprojection of image features
to the model is invoked to select ac-
ceptable shape matches.

Feature Relation Prediction. At this
point, families of single image features
have been identified and collected into
prediction nodes. The next step is to
create prediction arcs that relate mul
tiple shapes on a single generalized
cone, as well as shapes from different
generalized cones that characterize
composite objects. The arc types include
(1) exclusive arcs–relating features
that cannot coexist, like opposite ends
of a cylinder, (2) collinear arcs–
relating collinear features, (3) coinci-
dent arcs— when two features must
touch, (4) angle arcs—relating two
generalized cones (like a pair of verti-
cally viewed airplane wings) that must
obey a relative orientation constraint
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in the image, (5) approach ratio arcs—
relating parts that must divide one

another in fixed proportions (like the
position of a wing on a fuselage), (6)
distance arcs–for object parts that
have rigid but noncoincident relation-
ships, and (7) ribbon-contains arcs—
when one ribbon in the image must
contain another.

Once the preprocessed image data have
been analyzed in this way and matches
of invariant features have been carried
out, the scene can be labeled according to
the model instances that have been dis-
covered. An example of ACRONYM’s
analysis is shown in Figure 17. Typical
results also include constraints on the
camera position. For example, in an
aerial image of an airport, ACRONYM
may find alternative interpretations cor-
responding to a large airplane and a high
camera altitude or a small airplane and
a low camera altitude; either is consis-
tent with the image and some gen-
eric airplane model classes. The main
strengths of an ACRONYM style
approach are the generality of its

modeling philosophy and the concept of
constraining its search based on local
invariance of feature relationships. Its
weaknesses stem from the complexity of
the constraint-based modeling and con-
straint manipulation system and the lack
of a hypothesis verification step that
refers back to the original image data;
thus the range of data complexity that
can be treated is limited. This limitation,
however, can in principle be overcome by
incorporating techniques like those of the
3DP0 system, which we describe next.

C.5 Belles and Horaud —3DPO: Model-

Driven Correlation-Based Hypothesis

Verification

The 3DP0 system [Belles and Horaud
19861 addresses the question of how to
find objects having straightforward CAD
models in a bin full of overlapping parts
(Figure 20a). They assume that both
monocular gray-level imagery and range
data from a structured-light system are

available and concentrate on the ques-
tion of finding and gripping a particular
part using rapid heuristics that would
be practical in a controlled industrial
environment.

C. 5.1 Object Models

Much of 3DP0’s speed derives from the
fact that its hypothesis generation step
relies on considering a few distinctive
features, then verifying whether other
expected features of the object are found
in the original image. Such features
are determined by carrying out a
preliminary planning step to digest the
best feature clusters and evaluate their
use. This eliminates a great deal of time-
consuming computation during the
search process.

Object models in 3DP0 also have some
unique characteristics. In particular,
each model provided to the recognition
system is analyzed to provide answers to
the following questions:

● How many features are there of each
type and size?

* Which surfaces intersect to form a
particular edge?

● Do other features lie in a given plane?

● What neighboring features are avail-
able to make onle of a class of similar
features distinct from its neighbors?

The answers to these questions are
essential in constructing feature clusters
that can be used to distinguish a good
match from a bad hypothesis efficiently
with minimal effort.

Another aspect of 3DP0’s object mod-
eling philosophy is to incorporate multi-
ple object models for use in different
phases of the search strategy. A complete
model consists of a CAD model, a wire-
frame model, a planar patch model, and
a set of feature classification networks
generated by preprocessing the model to
isolate distinguishing features and fea-
ture groups. Three types of features are
used extensively in 3DP0, although for
different applications one might choose
other types. The three types are straight
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dihedrals (straight edges at the inter-
section of two planar surfaces), circular
dihedrals (like the edge around the top of
a cylinder), and straight tangential (like
the occlusion edge at the side of a cylin-
der). Each feature has its own peculiar
signature; for example, a straight dihe -
dral is characterized by its length, the
size of the included angle, and the prop-
erties of the adjacent surfaces, such as
their width and areas. To detect such
features, the system begins by detecting
discontinuities in the range data, linking
the discontinuities into edge chains, and
finding those that lie in a plane; the
procedure then analyzes the surfaces
adjacent to planar arcs and lines and
refines the edge positions based on
surface information.

C. 5.2 System Design

To implement the 3DP0 philosophy, we
would carry out the following steps:

c Primitive feature detection

0 Feature cluster formation

* Hypothesis generation

* Hypothesis verification

0 Parameter refinement

The system starts by extracting edges
from a range image, that is, locations
where orientation changes sharply or is
discontinuous. The thresholds for accept-
ing edges are set relatively low in order
to avoid missing any features. Then
the three types of edges—straight dihe -
drals, circular dihedrals, and straight
tangentials— are extracted. The recogni-
tion strategy first locates a key feature,
then adds additional related features to
form a cluster.

The accumulated feature clusters are
then used to generate hypotheses about
the potential locations of a part. This is a
critical step in the search process since, if
the chosen clusters are not sufficiently
unique, combinatorics can quickly
become overwhelming. Once a set of
hypotheses has been put forward, the
system looks back in the original image
data to locate verifying information; in

principle, we could either predict the
location of other features and search for
them or could take the features already
tabulated and see which match the pre-
dictions. The latter is less reliable in
principle since it does not reanalyze the
data and therefore is not as likely to find
things that were lost in the original
analysis. 3DP0 uses the planar patch
model of the object to predict surface nor-
mals and compare them to the range
data; this technique is effective when key
verifying features are missing due to
noise or occlusion by other parts.

The final step, parameter refinement,
is needed to improve the accuracy of the
part location and uses a method such as
least-squares fitting to accomplish its
goal. If multiple objects are to be recog-
nized in the image data, the features of
each object are deleted from the global
list of features as they are found in order
to reduce the search space for subsequent
objects.

This procedure appears to be well
suited to industrial applications because
it is fairly robust. The use of a high-level
strategy that can generate good hypothe -
ses when the feature detection system
loses features is combined with a low-
level verification step that can go back
and check hypotheses in the raw data.
The low-level comparisons complement
the feature-level hypothesis verification
procedures and reduce 3DP0’s depen-
dence on the feature extraction step.
Furthermore, direct comparison of the
hypothesis with featureless regions in
the range data can handle smooth objects
for which few distinguishing features can
be found in the original model.

C.6 Fua and Hanson — MDL: Finding

Complete Generic Objects Using

Model-Driven Optimization

Fua and Hanson [1991] describe generic
objects in terms of a language that speci-
fies both photometric and geometric
constraints on the objects and their
appearance in the image. Buildings in
aerial images are modeled as rectilinear
structures whose internal gray level
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intensities are planar, whereas roads are
modeled by pairs of parallel, smoothly
curved edges enclosing a planar intensity
area. The authors define an information-
theoretic objective function that express-
es the quality of fit to the models in an
algebraic form, then treat the problem of
finding objects as one of generating an
optimal description of the image in terms
of both the language and the objective
function.

C. 6.1 Theory

The problem of generating the best image
description in terms of a set of models is
phrased as one of maximizing the proba-
bility P = p(mo, ml,. . . . rn~l cl, . . . . e~)
that, given the evidence E = { et; i =

1 ,.. n}, describing the scene in terms of
a particular set of model instances M =
{ m,; i = 1 ...n} and a background m. is
correct. Each m, is taken to be a model
instance, whereas e, is the measurable
evidence specific to the ith model
instance, typically a set of associated
pixel intensities. Assuming that the
objects’ photometric properties are inde-
pendent, it can be shown that the proba-
bility of the parse can be rewritten as

where p(ml, . . . , m.) is the prior proba-
bility that these n instances appear in
the scene.

The objective function is taken to be
S = log, P and can be inter~reted in
terms OF encoding cost [Hamm&g
Shannon 1948]:

S=logz P= F–G,

where

+log p(e, I m,)}

G= –logp(ml, . . ..mn)

F is defined to be the encoding
tiveness of the set of models. The

1985;

effec-
– log

p(e,) terms give the number of
bits needed to describe the evidence in
the absence of the model, whereas the

– log P( e, / m,) terms give the number of
bits needed to describe the evidence using
the modeling language. The use of the
term effectiveness is thus motivated by
the fact that F represents the number of
bits saved by representing the evidence
using the model; F increases as the fit
improves. For example, the interior
intensities of an 8-bit image region are
modeled by a smooth intensity surface
with a gaussian distribution of devia-
tions from the surface. A region of area
A can be described in terms of a model
requiring p bits to describe the parame-
ters of the surface and kA bits to describe
the image intensities. Here we define

k = log u + (1/2) log (2xe),

where o is the measured variance of the
deviations from the smooth surface.
Describing the same intensities with-
out the lmodel would require 8 bits per
pixel, and the value of F therefore is
(8-k)A -p.

G is the number of bits needed to
encode the evidence-free model represen-
tation information and quantifies the
elegance of the chosen set of model
instances with respect to the model lan-
guage as well as their dependencies. For
example, G can be taken to be propor-
tional to the length of the instance
boundaries, thereby favoring compact
objects. Because all the measures are
expressed in terms of bits, distinct sources
of information can be used simul-
taneously and their output made
commensurate.

C. 6.2 Implementation

To generate optimal descriptions, a
hierarchical procedure carries out the
following steps: (1) Extract edges with
the appropriate geometry, (2) find ele-
mentary geometric relationships between
edges (such as corners or parallels), (3)
build closed cycles of related edges that
enclose areas with acceptable photomet -
ric and geometric properties, (4) invoke a
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contour completion procedure that gener-
ates closed contours, optimizes their loca-
tion, and computes their elevation, and
(5) select the highest scoring contours.

Each parsing step is designed as a fil-
tering process that both enforces some
model constraints and limits the size of
the search space, thereby preventing
combinatorial explosion of the search.
Multiple information sources (edge data,
interior pixel intensities, stereographic
information, and geometric constraints)
are combined to build and rank hypothe-
ses for generic objects of arbitrary com-
plexity, such as the one in Figure 21.

C. 6.3 Properties

The framework described here accom-
plishes the following objectives:

e

e

Generic shape extraction. For many
important tasks, the exact shapes of
objects of interest are not known. The
models used in this approach describe
common cartographic objects that obey
specific geometric constraints but can
be arbitrarily complex. The objective
function balances the goodness of fit of
model instances to the image data
against their geometric quality. The
system can therefore pick the best
object hypotheses without using rigid
geometric constraints or templates.

Integration of multiple data
sour~es. In general, obje&s are not
characterized solely by their edge or
area signatures. As a result, data-
driven edge and region segmentation
processes often fail to extract objects as
such. Geometric constraints are com-
bined with the photometric character-
istics of the enclosed areas and their
boundaries to generate and evaluate
shape hypotheses simultaneously.
When two or more images are avail-
able, stereoscopic construction can also
be carried out. All available informa-
tion is thus effectively exploited.
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