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ABSTRACT
Recently, there has been substantial interest in the designof cross-
layer protocols for wireless networks. These protocols optimize
certain performance metric(s) of interest (e.g. latency, energy, rate)
by jointly optimizing the performance of multiple layers ofthe
protocol stack. Algorithm designers often use geometric-graph-
theoretic models for radio interference to design such cross-layer
protocols. In this paper we study the problem of designing cross-
layer protocols for multi-hop wireless networks using a more real-
istic Signal to Interference plus Noise Ratio (SINR)model for radio
interference. The following cross-layer latency minimization prob-
lem is studied: Given a setV of transceivers, and a set of source-
destination pairs, (i) choose power levels for all the transceivers, (ii)
choose routes for all connections, and (iii) construct an end-to-end
schedule such that the SINR constraints are satisfied at eachtime
step so as to minimize the make-span of the schedule (the time
by which all packets have reached their respective destinations).
We present apolynomial-time algorithm with provable worst-case
performance guaranteefor this cross-layer latency minimization
problem. As corollaries of the algorithmic technique we show that
a number of variants of the cross-layer latency minimization prob-
lem can also be approximated efficiently in polynomial time.Our
work extends the results of Kumaret al. (Proc. SODA, 2004) and
Moscibrodaet al. (Proc. MOBIHOC, 2006). Although our algo-
rithm considers multiple layers of the protocol stack, it can natu-
rally be viewed as compositions of tasks specific to each layer —
this allows us to improve the overall performance while preserving
the modularity of the layered structure.
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1. INTRODUCTION
Recently, there has been substantial interest in the designof cross-

layer protocols for wireless multi-hop networks: see [6,10,19] and
the references therein. The work is motivated by two primaryob-
servations: (i) the performance of current protocols is farfrom sat-
isfactory, and classical paradigms based on wireline networks are
unlikely to scale; and (ii) wireless multi-hop networks arebeing
used in diverse application domains that often force designers to
optimize different performance-objectives.

This paper considers the problem of minimizing the make-span
of schedules in wireless multi-hop networks byjointly considering
the routing, scheduling and power control layers. Recall that the
make-span (or length) of a schedule is the time by which the last
packet has reached its destination; thus, we have a min-max (la-
tency) metric. Our goal is to develop polynomial-time algorithms
with provable worst-case performance guarantees. A more gen-
eral form of the problem we study is informally stated as follows:
Given (i) a set of pointsV in the plane at which transceivers are lo-
cated, (ii) gainβ and path-loss exponentα, (iii) source-destination
pairsK = {(s1, t1), . . . , (sk, tk)}, (iv) a set of packetsQ for all k
connections, and (v) a power range[pmin, pmax], theCross-layer
latency minimization(CLM) problem is to (a) assign power levels
to individual transceivers, (b) choose routes for the packets, and
(c) construct an end-to-end schedule for the packets such that all



the transmissions that happen simultaneously satisfy the MAC in-
terference constraints, so that the overall latency is minimized; the
overall latencyor make-spanis the time elapsed before all packets
successfully reach their respective destinations. Variations of the
problem where the solution to one or more layers is already pro-
vided (e.g., routes are already given) are discussed in Section 1.1.

In order to fully formalize theCLM problem, interference at the
MAC layer needs to be modeled. Since wireless interference is
quite complex, discrete combinatorial and geometric models are
commonly used: the wireless network is modeled as a graphG =
(V, E), in which link (u, v) ∈ E implies that nodev can receive
the signal from nodeu. A disk is associated with each node to spec-
ify its range. Interference in such a graph is modeled through inde-
pendence constraints (see e.g., [26]):if a nodeu transmits, no node
in its vicinity can transmit. A number of papers have studied MAC
protocols with these geometric models of interference [3,15,26,27].
Clearly, this abstraction is an oversimplification of the real process
– the signal from a radio does not end abruptly at a boundary, and
signal collision does not always lead to lost messages. In reality, a
signal from a transmitteru is successfully received by a receiver at
v, if the ratio of u’s signal strength atv and the combined interfer-
ence from other transmitters along with ambient noise exceedsv’s
antenna gain; this is commonly known as theSignal to Interference
Plus Noise Ratio (SINR)model [10, 21, 22]. The difficulty of ana-
lyzing algorithms using SINR models and obtaining potential per-
formance gains in theory as well as in practice has been discussed
in [21, 22], and is due to the following two reasons. First, SINR
based models usually lead to non-convex constraints. Further, by
including SINR constraints, problems such as routing, schedul-
ing, power-control etc. sometimes becomeNP-hard; thereby ren-
dering traditional convex-programming-based techniquesinappli-
cable. Second, the geometric-graph-theoretic modelslocalize the
interference of a transceiver. This makes the analysis tractable;
however, the independence constraints put severe and oftenartifi-
cial restrictions on scheduling algorithms in their ability to schedule
links that are close to each other.

1.1 Overview of results and techniques
The CLM problem isNP-hard to solve exactly. The proof fol-

lows by restriction: the minimum-length link-scheduling problem
for the SINR model isNP-hard [1]. Since this problem is a spe-
cial case of theCLM problem in which all the connections are
on adjacent links, it follows that theCLM problem with SINR
constraints is alsoNP-hard. Therefore, we focus on approxima-
tion algorithms. Our goal is to devise polynomial-time approxima-
tion algorithms with provable worst-case performance bounds [29].
Specifically, we obtain a bi-criteria approximation algorithm: given
a range[pmin, pmax] from which the power level of each node
must be chosen, as well as some parameterǫ > 0, we present
an efficient algorithm which results in the overall latency being at
most a polylogarithmic factor more than that of an optimal solu-
tion for the problem in which all power-levels are constrained to
lie in [pmin, (1 − ǫ)pmax]: see Theorem 2. Logarithms such as
those of Theorem 2 are to the base two, unless specified otherwise.
Also, the terms such as “log ∆” and “log Γ” should be interpreted
as “1 + log ∆” and “1 + log Γ” to ensure that such quantities are
bounded away from0; we do not do this explicitly, in order to avoid
notational clutter.

Here we describe a general algorithmic approach and use this
approach to design a polynomial-time randomized approximation
algorithm (MinDelay) for the CLM problem, with rigorous prov-
able bounds on the overall latency compared to the optimal solu-
tion. Note that this is a worst-case approximation guarantee, i.e.,

this holds for every instance, and for special instances (e.g., ran-
dom), our algorithms might have much better performance guar-
antees. In addition, we do not need to know the optimal solution
in order to prove the approximation guarantees on our algorithm.
To our knowledge, this is the first result to extend the link schedul-
ing work of Moscibroda et al. [21] to theCLM problem, with SINR
constraints. While our algorithm solves theCLM problem, it can be
naturally decomposed into specific tasks at each layer of thepro-
tocol stack combined with appropriate information-exchange be-
tween these layers. This allows us to improve the overall perfor-
mance and simultaneously preserve the modularity providedby the
layered architecture. As corollaries of the algorithmic and lower
bounding techniques, we obtain polynomial-time randomized ap-
proximation algorithms for the following additional problems: (a)
joint routing and end-to-end scheduling to minimize latency, when
the power levels are pre-specifiedfor all nodes; (b) end-to-end
scheduling to minimize latency, when both the routes and power
levels are pre-specified; and (c) theCLM problem with an addi-
tional constraint that the total energy consumed is at most some
givenB: our algorithm can be modified so that the latency is opti-
mized, with the total energy used being at most(B log n), wheren
is the number of transceivers. It is important to note that ingeneral,
being able to solve theCLM problem efficientlydoes notimmedi-
ately mean that one can solve these variants efficiently.

Our algorithmMinDelay combines two powerful techniques in
order to solve theCLM problem: linear-programming rounding for
path selection, and random delays for the end-to-end scheduling.
In addition, we have introduced a number of new technical ideas.
First, we introduce a new congestion measure that incorporates the
SINR constraints, and show that the overall latency can be related
to this congestion measure. Our formulation of the linear program
(LP) and the lower bounds crucially depends on the new congestion
measure. In contrast to the congestion measures proposed in[14,
16], the new congestion measure needs to account for the SINR
model and is thus not purely graph-theoretic. It is easy to construct
examples where using the congestion measure of [16] would give
much higher latency. Second, while the random-delays technique
is well-known, it requires much more involved analysis in our case
in order to derive good bounds. Finally, to prove our upper bounds,
we extend a very useful technique given in [22].

We believe that the algorithmic techniques and models described
in this paper can increase overall network-performance. Asmen-
tioned earlier, our algorithms use the SINR model of interference.
It has been shown in [20] that SINR models can obtain significant
performance gain in theory and practice. Further, [22] demon-
strates that using SINR models for link-layer scheduling can in-
crease overall performance and decrease link-delays. The problem
studied in this paper can be viewed as a special case of the problem
discussed in [22]. Further, we use congestion control for routing
and scheduling. Congestion-aware routing and scheduling has been
shown to improve performance gains in [4,5].

We note that the algorithms presented in this paper are theoretical
in nature. Nevertheless, our theoretical results suggest an interest-
ing class of congestion-aware link-metrics that can be usedto guide
the design and performance analysis of realistic protocols. Further-
more, the mathematical analysis and the congestion measurepro-
posed here are likely to be of independent interest and applicable to
a more wide class of problems. For example, we are currently ex-
ploring similar algorithms for throughput maximization and design
of congestion-aware routing protocols.



Citation Layers Objective Interference model Type of algorithm
[2] R, S, P Min-P link centralized, approximation
[8] R, S, P Min-P SINR centralized
[17] Ra, S Max-Rate link centralized
[18] Ra, S Max-Rate SINR,link distributed

(for restricted interference model)
[4] R, S Max resource utilization SINR,link centralized and

distributed(for scheduling)
[12] Ra, R, S Max-Rate link centralized
[9] S, P Min-P SINR,link (only for power control),

distributed heuristic
[13] S, P, Ra, Max-Rate SINR centralized, heuristic
[21] S, P Min-D (not end-to-end) SINR centralized
[14] S, R Min-D (end-to-end) Disk centralized and

distributed

Table 1: Some papers related to this work. R denotes Routing,S denotes Scheduling, P denotes Power control and Ra denotesRate
control. Min-P denotes minimizing power, Min-D denotes minimizing delay, and Max-Rate denotes maximizing data rates

2. RELATED WORK
Cross-layer optimization has an extremely active area of research

in recent years [2,4–6,8,9,12,13,17–19,22,23]. In Table 1, we com-
pare our work with some of the most relevant previous results. Re-
cent work by [2] presents a polynomial-time3-approximation algo-
rithm for joint routing, scheduling and power control problem. The
authors however use a weaker interference model of synchronous
time-slotted TDMA/CDMA. Similar work by [8] presents an in-
tegrated routing, link scheduling and power-allocation policy with
the SINR model of interference. The authors present an algorithm
for minimizing total average power of a multi-hop wireless net-
work by considering link scheduling and power control. The algo-
rithm presented appears to be efficient, however as acknowledged
in [8] the algorithm suffers from a worst-case exponential complex-
ity as a function of the number of transmission nodes. Recentwork
by [4, 5] considers the problem of congestion control and resource
allocation (via routing and scheduling). The paper aims to maxi-
mize resource allocation by using a duality approach to decompose
the main problem into sub-problems of congestion control and rout-
ing/scheduling. The works [12, 17, 18] study the joint problem of
allocating data rates and finding a stabilizing scheduling policy in
a multi-hop wireless network. However, our problem is different
than the ones considered in [4,5,12,17,18]; we consider theprob-
lem of minimizing end-to-end delay by jointly optimizing routing,
scheduling and power control.

Our work is most closely related to [21, 22] and [14]. The pa-
per [21] studies the problem of scheduling packets with SINRcon-
straints to ensure strong-connectedness of the graph. Thisis a
topology-control problem that aims at finding a schedule of mini-
mal length in which all transmitted links form a strongly-connected
network. In [22], the authors study the MAC level schedulingprob-
lem with SINR constraints. The authors present a schedulingalgo-
rithm that successfully schedules a set of links in polylogarithmic
time by assigning non-uniform power to the transmitting nodes.
They do not compare the performance of their algorithm with the
optimal schedule. Further, the non-linear power assignment is ex-
ponential in the number of nodes. Therefore for large networks, the
power assignment for individual nodes could be very high, thereby
increasing the overall power-consumption of the network. There
are crucial differences between the work presented here andthose
of [14,21,22]. First, the results of [22] do not directly give bounds
on the end-to-end latency – their result is mainly applicable for
scheduling a given set of edges, and does not suggest which set
of waiting packets to schedule first. The second important differ-
ence is in the power control step: the specific power-level choice

in [22] helps to minimize the link-layer delays. During the end-to-
end scheduling problem, the same nodev might have to transmit
along different links(v, w) and(v, w′) at different times. Using the
algorithm from [22] directly might result in different power assign-
ments forv at different times. In contrast, we focus on choosing a
single power-level for each node, so that the overall latency is min-
imized. The paper [21] studies the scheduling complexity ofcon-
necting a given number of nodes located at arbitrary positions by
some communication tree. Our problem is slightly differentfrom
the one of [21]: for given source-destination pairs, we initially find
paths, and then schedule packets on the selected paths. Finally, al-
though the work in [14] does deal with end-to-end latencies,the
algorithm and its analysis is based on geometric-graph models of
radio-interference.

3. PRELIMINARIES AND MODELS
Let V denote the set of transceivers located in the plane – we

will sometimes refer to these transceivers as nodes. Letd(u, v)
denote the Euclidean distance between any two nodesu, v ∈ V .
Sometimes we will consider a linke = (u, v), and we will use
ℓ(e) = d(u, v) to denote its length. We let

∆ = max
u,v∈V

d(u, v)/ min
u,v∈V : u 6=v

d(u, v)

be the ratio between the maximum and minimum inter-point sep-
aration. Without loss of generality, we assume that the minimum
distance between any pair of nodes is1. If J(u) denotes the power
assigned to nodeu, we denote

Γ =
maxu J(u)

minu′ J(u′)
.

3.1 The SINR Physical Model
We use the SINR model of interference as described in [21]. In

this setting, for any given linke = (u, v) with u as the sender
andv as the receiver, the received signal powerJv(u) at nodev

due to senderu, can be expressed asJv(u) =
J(u)

d(u, v)α
where

J(u) denotes the transmission power of the senderu andα denotes
the path-loss exponent. As suggested in [22] we assumeα > 2.
Table 2 gives a list of most of the notation used in this paper.For a
given setE′ = (u1, v1), (u2, v2), . . . , (uk, vk) of simultaneously-
communicating links, the interferenceIr(v, E′) at receiverv from



all the senders is

Ir(v, E′) =
X

e′=(u′,v′)∈E′,u′ 6=u

J(u′)

(d(u′, v))α
.

Whenever the setE′ is clear from the context, we will simply de-
note this asIr(v). The nodev can successfully receive transmis-
sion fromu, if

SINR(v) =
J(u)

d(u, v)α[N + Ir(v)]
≥ β,

whereN denotes the ambient noise (some given constant) andβ
denotes the antenna gain.

3.2 Congestion and Dilation
Our algorithms and their analyses are based on two important

quantities:congestion and dilation. Let Pi be the path chosen for
connection(si, ti), and letP be the collection of these paths. Let
E(Pi) denote the set of edges inPi. We define a multi-setE =
E(P) = ∪iE(Pi). We define the dilationD(P) as the length of
the longest path inP . We next define the congestionC induced by
P through a definition of “interference sets”C(e):

DEFINITION 1.

∀e = (u, v) ∈ E, C(e) = {e′ = (u′, v′) ∈ E :

a · d(u′, v′) ≥ d(u, u′)
^

d(u′, v′) ≥ d(u, v)}

C = max
e∈E

|C(e)|.

Note thata is a constant. In our analysis, we would require

a ≥ α

s

2α
96β(1 + ǫ)

ǫ(α − 2)
and α > 2.

anda ≥ 2. Hereǫ is a small positive constant. It can be seen from
Lemma 2 that these lower bounds ona andα are required for the
validity of the final schedule. Figure 1 demonstrates the congestion
measure for linke = (u, v). Intuitively, any linke = (u, v) with
high congestion value could have the SINR constraints violated at
its receiverv. Our definition of congestion is motivated by the
definition of congestion used in [14,16] but has differencesin order
to account for the SINR model of radio interference.

4. THE LATENCY-MINIMIZATION ALGO-
RITHM

We now present the paper’s main technical contribution, theal-
gorithm MinDelay (Algorithm 1) for joint power control, end-to-
end scheduling and routing to minimize the overall latency.In Sec-
tion 5 we show that for any input instance, the latency achieved
by algorithmMinDelay is within a polylogarithmic factor of the
optimal latency for that instance. We first describe the algorithm
informally. It has three parts:PathSelection selects paths for each
connection,PowerControl assigns a power level to each sender
that lies on the selected paths, andSchedule schedules the packets
on their respective paths. Although the three procedures are mod-
ular, there is significant interplay between these three components
and they jointly minimize the end-to-end latency. These procedures
are described in the following subsections.
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Figure 1: Illustrating congestion measure for a link. The
solid lines represent edges along with edge lengths (e.g.,l(e) =
2). The dotted lines represent distance between two nodes
(e.g., d(u,u1) = 5). Let a = 6. Then C(e) = {e, e1, e3}
for link e = (u,v). By definition, e4, e2 6∈ C(e) since
a · d(u4,v4) < d(u,u4) and d(u2,v2) < d(u, v).

Algorithm 1 : MinDelay

Input : V , E , K, [pmin, pmax], Q, α, β
Output : (i) P (ii) J , (iii) A valid scheduleS that moves

packets along their paths to the destinations
successfully

P = PathSelection(V,K, E , [pmin, pmax]) , E = E(P)1

J = PowerControl (V, K,P , E)2

S = Schedule(V,K,P , Q, J, E)3

ProcedurePathSelection
Input : V , K, E , and[pmin, pmax]
Output : P

//Solve the LP
Solve the LP as described in equations 1..7 to get the solutions1
({yf (i, e)}, wf ).
//Path Decomposition
Decompose the flow into path flows — letMi denote the set of paths2
from si to ti, with h(P ) denoting the flow on pathP ∈ Mi. Also let
|P | denote the length (number of links) of pathP .
//Path Filtering
foreach P ∈ Mi do3

γ =
P

P ′∈Mi:|P
′|>2w h(P ′).4

if |P | ≤ 2w then5
z(P ) = h(P )/(1 − γ).6

else7
z(P ) = 08

end9
end10
//Randomized Rounding
foreach i do11

choose exactly one pathP ∈ Mi with probabilityz(P ).12
Let Pi = P be the path chosen fromMi13

end14
LetP = {P1, . . . , Pk}.15

ProcedurePowerControl
Input : V , K, P , multi-setE = E(P)
Output : J
Choose power levelsJ(u) for each nodeu as1
J(u) = maxe=(u,v)∈E{(1 + ǫ)βNd(u, v)α}



ProcedureSchedule

Input : V , K, Q, P , E, J
Output : A valid scheduleS that moves packets along their paths to

their destinations

//Random Delay
foreach packetqi at sourcesi do1

Choose a delayXi ∈ {1, ..,C} uniformly at random2
end3
//Construct an invalid schedule S′

foreach packetqi do4
wait at sourcesi for timeXi before starting5
move one edge at a time alongPi after waitingXi steps, i.e.,6
move on thejth edge ofPi at stepXi + j

end7
//Convert S′ into a valid schedule S
//|S′| denotes the length (make-span) of S′

for t = 1, 2, . . . , |S′| do8
//Construct a partial schedule St

Et = set of links scheduled byS′ in time t.9
Ct(e) = |C(e) ∩ Et|,∀e ∈ Et10
//Set partitioning
PartitionEt into setsB = {B0, B1, . . . , B⌊log ∆⌋} such that11

Bi = {e ∈ Et : 2i ≤ ℓ(e) < 2i+1}
for i = ⌊log ∆⌋ down to0 do12

Partition links in setBi into sets13

Wi = {W i
0, W i

1, ...,W i
⌊log Γ⌋

} such thatW i
j =

{e = (u, v) ∈ Bi : 2j ≤ J(u) < 2j+1}
for j = ⌊log Γ⌋ down to0 do14

//Greedy Coloring
Order the edges inEt ∩ W i

j in non-increasing order of15
length{e1, e2, . . . , es}
for k = 1 to |Et ∩ W i

j | do16
Let f(ek) be a positive integer denoting the color17
that is to be assigned to edgeek

Assignek the smallest numbered color that is not18
used by any edge in
C(ek) ∩ {e1, . . . , ek−1},i.e.,f(ek) is the smallest
positive integer not in the set
{f(ek′ ) : k′ < k, ek′ ∈ C(ek)}.

end19

Construct a scheduleSt,i,j for edges inEt ∩ W j
i by20

scheduling all edgese with color f(e) = r in therth
step, forr = 1, 2, . . ..

end21
Construct scheduleSt,i = St,i,log Γ• . . . • St,i,0 (The•22
operator implies concatenation of different schedules)

end23
Construct scheduleSt = St,log ∆ • . . . • St,024

end25
Construct scheduleS = S1 • . . . • Sℓ, whereℓ = |S′|26

n number of nodes
V set of nodes
E = {(u, v) ∈ V × V } set of all edges
K = {(s1, t1), . . . , (sk, tk)} k source-destination pairs
[pmin, pmax] power range
Q = {Q1, . . . , Qk} set of packets fork sources
P = {P1, . . . , Pk} set of paths fork connections
E = E(P) set of edges on pathsP
C(e) congestion set for linke
C = maxe∈E |C(e)| = Congestion max. cardinality of anyC(e)
D = Dilation length of longest path inP
J = {J(u1), . . . , J(un)} set of power assignments
Γ ratio of max. to min. power assignments
∆ ratio of max. to min. node-distances
S a valid schedule
Nout(u) set of outgoing edges fromu
Nin(u) set of incoming edges tou
α path-loss exponent
β antenna gain
N ambient noise
a positive constant
ǫ small positive constant

Table 2: Notation used in this paper

4.1 Path Selection
ProcedurePathSelection deals with selectinggoodpaths, i.e.,

paths with a “low” value ofC + D; recall the definitions from
Section 3. We formulate this problem as an integer program (IP),
following the methods of [28]. LetE = {(u, v) ∈ V × V } be the
set of all edges. Lety(i, e) be a flow-indicator variable for each
connectioni and edgee ∈ E : y(i, e) is 1 if the path for connection
i passes throughe, andy(i, e) = 0 otherwise. LetNout(u) =
{(u, v) : v ∈ V } andNin(u) = {(v, u) : v ∈ V } denote the
set of outgoing and incoming edges, respectively, fromu. Let L =
{(u, v) ∈ V × V : pmax < (1 + ǫ)βNd(u, v)α} denote the
set of links(u, v) that are infeasible if we requireJ(u) ≥ (1 +
ǫ)βNd(u, v)α. The following is the natural integer programming
(IP) formulation.

min w subject to:

∀i ∈ 1, . . . , k :
X

e∈Nout(si)

y(i, e) −
X

e∈Nin(si)

y(i, e) = 1 (1)

∀i, ∀v 6= si, ti :
X

e∈Nout(v)

y(i, e) =
X

e∈Nin(v)

y(i, e) (2)

∀e ∈ E :
X

i

X

e′∈C(e)

y(i, e′) ≤ w (3)

∀i :
X

e

y(i, e) ≤ w (4)

∀i, ∀e ∈ L : y(i, e) = 0 (5)

∀i, e : y(i, e) ∈ {0, 1} (6)

In the IP formulation, constraints (1) ensure that exactly one out-
going edge is selected from each source. Constraints (2) capture
flow conservation. Constraints (3) ensure thatC(e) ≤ w for each
edgee, and constraints (4) guarantee that each path selected has
length at mostw. Constraints (5) ensure that the chosen paths do
not include edges inL. Let ({yint(i, e)}, wint) denote the integer
program solution. Solving the IP isNP-hard, and so we use the
LP-relaxation by relaxing constraints (6) to obtain constraints of
the form

∀i, e : y(i, e) ≤ 1. (7)



Let ({yf (i, e)}, wf ) denote the linear program solution. The LP
solution gives flows between the connections, instead of paths. So
thePathSelection procedure first decomposes this flow into paths
Mi, with flow h(P ) for eachP ∈ Mi. See [28] for details on flow
decomposition. However, we still have|Mi| > 1, i.e., we have a
number of paths that carry the flow. The filtering step discards long
paths in eachMi, and the final step uses randomized rounding [25]
to choose paths; in the next subsection, we show that the resulting
paths have congestion plus dilationO(wf log n).

4.1.1 Analysis of procedurePathSelection

We now derive an approximation on the congestion plus dilation
of the paths selected by the above procedure.

LEMMA 1. In procedurePathSelection after the path filtering
step the fractional solutionz obtained satisfies the following prop-
erties:

1. z(P ) is positive only if|P | ≤ 2w for anyP ∈ M̂i, for any
i.

2. For eachi,
P

P∈M̂i
z(P ) = 1.

3. For any edgee,
P

e′∈C(e)

P

P :e′∈P
z(P ) ≤ 2w.

THEOREM 1. ProcedurePathSelection constructs a set of paths
P such thatC +D is O((COPT +DOPT ) log n) with high proba-
bility (i.e., with probability at least1−1/n), whereCOPT +DOPT

denotes the smallest “congestion plus dilation” possible (provided
the paths contain no edges from the setL = {(u, v) ∈ V × V :
pmax < (1 + ǫ)βNd(u, v)α}).

PROOF. Recall that in the randomized rounding step, each path
P is selected with a probabilityz(P ). In order to prove the above
theorem, we first calculate the expected congestion on a linke due
to set of paths chosen. We then apply the Chernoff bounds [7]
to obtain an upper bound on the total congestion produced by the
randomized-rounding procedure.

Let y(P ) ∈ {0, 1} be an indicator variable such thaty(P ) = 1
if path P is selected in the rounding procedure. It can be seen
that Pr[y(P ) = 1] = z(P ). Sincey(P ) is an indicator vari-
ableE[y(P )] = z(P ). Let P(y) = {P : y(P ) = 1}, be the
set of paths chosen in the rounding procedure. For any edgee,
cong(e,P(y)) =

P

e′∈C(e)

P

P :e′∈P y(P ), therefore,

E[cong(e,P(y))] =
X

e′∈C(e)

X

P :e′∈P

Pr[y(P ) = 1]

=
X

e′∈C(e)

X

P :e′∈P

z(P ).

We know from Lemma 1 that
X

e′∈C(e)

X

P :e′∈P

z(P ) ≤ 2w.

We have

E[cong(e,P)] ≤ 2w.

Since the variablesy(P ) are independent, we can now apply the
Chernoff bounds.

Pr[cong(e,P(y)) ≥ 3 log n max{2w, 1}] ≤ 2−3 log n max{2w,1}

≤
1

n3
.

Since the number of edges isO(n2), by union bound we get

Pr[∃ e s.t. cong(e,P(y)) ≥ 3 log n max{2w, 1}] ≤
1

n
.

Therefore with high probability, the congestion of the solution
produced by the randomized rounding procedure is at most
3 log n max{2w, 1}. Sincew ≤ wint, the congestion produced by
the randomized rounding procedure isO(wint log n), which is an
O(log n)-approximation.

We note that thePathSelection step can be derandomized using
standard techniques from [24].

4.2 End-to-end Scheduling
At this point, we have already chosen a pathPi for each con-

nection(si, ti), and the packets need to be scheduled along these
paths so that the overall latency is minimized. ProcedureSched-
ule is based on the ‘random delays’ technique of Leighton, Maggs
and Rao [16], and on the techniques used to adapt this to geometric
graphs in [14]. The congestion and dilation are important because
we show that they are good lower bounds on the optimum, and it is
possible to construct a schedule with length proportional to the con-
gestion+dilation. The following is an informal description of the
main steps in ProcedureSchedule; see the procedure-description
for the details.

1. Random Delays and an Invalid Schedule: At the outset of pro-
cedureSchedule, every packet waits at its sourcesi for a delay
Xi chosen randomly from{1.., C}, and then moves one edge at a
time on the pathPi. This gives an invalid scheduleS ′, which could
be invalid because there could be simultaneous senders thatviolate
the SINR constraints.

2. Partial Schedule Construction: We break down the invalid sched-
ule S ′ into different time stepst to obtain a partial scheduleS ′

t.
This schedule consists of all linksEt scheduled inS ′ at timet and
we define partial congestionCt(e) to be the congestion at linke at
time t. We now convert the invalid schedule at each time step to a
valid schedule by partitioning all the links into appropriate sets and
then coloring all the links in the same set.

3. Partitioning: In this step we initially partition links inEt into
disjoint setsB = {B0, B1, . . . , B⌊log ∆⌋} such thatBi = {e ∈

Et : 2i ≤ ℓ(e) < 2i+1}, i = 0, . . . , ⌊log ∆⌋. We further parti-
tion each setBi into a family of subsets{W i

0 , W i
1 , ..., W i

⌊log Γ⌋}

such that forj = 1, . . . , ⌊log Γ⌋, W i
j = {e = (u, v) ∈ Bi :

2j ≤ J(u) < 2j+1}. The motivation behind partitioning links
into different sets is to bound the number of nodes that can transmit
simultaneously without violating the SINR constraints.

4. Greedy Coloring: After set partitioning, we color the links in
eachW i

j using a greedy coloring scheme.

5. Combining different schedules: After partitioning and greedy
coloring, we combine all the sub-schedules formed to get thefinal
scheduleS .

4.2.1 Analysis of procedureSchedule

The analysis of procedureSchedule consists of the following
parts: (i) Validation, where we prove that the schedule produced by
Schedule is indeed valid, i.e., that the SINR constraints are satis-
fied at each step, (ii) Length of the schedule, where we derivean
upper bound on the length of the schedule produced bySched-
ule and (iii) Length of the optimal schedule, where we derive a
lower bound on the length of any optimal schedule in which the
maximum power assigned to any node is constrained to be at most
(1 − ǫ)pmax.



Validity of Schedule
LEMMA 2. The scheduleS produced by procedureSchedule

is valid in the sense that the SINR constraints are satisfied at all
receivers at every step of the schedule, ifaα ≥ 2α 96β(ǫ+1)

ǫ(α−2)
, a ≥ 2,

andα > 2.

PROOF. We exploit the geometric nature of the problem to ob-
tain an upper bound on the number of links that can be simultane-
ously scheduled. We then show that for every receivervk, the SINR
atvk due to simultaneous transmissions is always at leastβ.

Recall that the final scheduleS is obtained by putting together
the partial schedulesSt in order; each partial scheduleSt is in turn
constructed by putting together partial schedulesSt,i, which are
in turn constructed by putting together partial schedulesSt,i,j for
edges inEt ∩ W i

j . Therefore, it suffices to prove that each partial
scheduleSt,i,j is valid, which we argue next.

Consider any stept′ of scheduleSt,i,j . LetT = {ek = (uk, vk) :
k = 1, . . . , τ} denote the set of edges that are simultaneously
scheduled at stept′ of St,i,j . In order to show thatSt,i,j is valid,
we have to argue that all the transmissions inT happen success-
fully, i.e., the SINR at eachvk for ek = (uk, vk) ∈ T is at least
β; we will show here that the SINR at any receiverv1 such that
e1 = (u1, v1) ∈ T is at leastβ.

We will first show that disks of radiusa
4
ℓ(e1) (whereℓ(e1) de-

notes the length of edgee1) centered at eachuk, whereek =
(uk, vk) ∈ T are disjoint. By construction, all edges inT have
the same color (i.e., have been assigned same time slot for trans-
mission). Therefore, we must haveek 6∈ C(ek′), for any distinct
ek, ek′ ∈ T (otherwise, the coloring step would have assigned dif-
ferent colors to these two edges). This means thatd(uk, uk′) >
a max{ℓ(ek), ℓ(ek′)}. Further due to the partitioning (steps 11
through 14) we haveT ⊆ (Bi∩W j

i ). Therefore,ℓ(ek) ∈ [2i, 2i+1)
for eachek ∈ T and∀ek = (uk, vk) ∈ T , J(uk) ∈ [2j , 2j+1).
This impliesd(uk, uk′) > a2i ≥ a

2
ℓ(e1) for any distinctek, ek′ ∈

T . Therefore, disks of radiusa
4
ℓ(e1) centered at eachuk where

ek = (uk, vk) ∈ T are disjoint.

R0

R1

v1

u1

e1

aℓ(e1)

2aℓ(e1)

Figure 2: For a given link e1 = (u1,v1), construct rings of
radius aℓ(e1) around u1. We calculate the interference expe-
rienced by nodev1 due to other simultaneously transmitting
links.

We will now calculate theSINR(v1) due to all the other trans-
missions inT . As in [22], we will partition the plane into rings
centered atu1, in order to compute the interference atv1. Consider
ringsRm, m = 0, 1, . . . of width aℓ(e1) aroundu1. Rm contains
all links ek = (uk, vk) ∈ T for which maℓ(e1) ≤ d(u1, uk) <

(m + 1)aℓ(e1) (cf. Figure 2). We know that any given linkek =
(uk, vk) ∈ T , does not interfere with linke1 = (u1, v1). There-
fore∀ek ∈ T , ek 6= e, we haved(u1, uk) > amax{ℓ(e1), ℓ(ek)}.
Therefore the first ringR0 will not contain any other links from set
T , except for linke1. The area of the ringRm can be calculated
as,

A(Rm) = π[((m + 1)aℓ(e1))
2 − (maℓ(e1))

2]

= πa2(2m + 1)ℓ(e1)
2

≤ 3πma2ℓ(e1)
2.

Next, the non-overlapping disks property above also implies that
the number of nodes transmitting inRm for m ≥ 1 is at most

3πma2ℓ(e1)
2

πa2ℓ(e1)2/16
≤ 48m.

Also, for m ≥ 1, for eachek ∈ T ∩ Rm, we haved(uk, v1) ≥
(am−1)ℓ(e1). Since we havea ≥ 2, we haved(uk, v1) ≥ (am−
1)ℓ(e1) ≥

am
2

ℓ(e1). Therefore, the interference atv1 due to nodes
in Rm, denoted byIm(v1), can be upper bounded as follows, since
J(uk) ≤ 2J(u1) for all k we have,

Im(v1) ≤ 48m2α 2J(u1)

(amℓ(e1))α

= 2α 96J(u1)

aαmα−1ℓ(e1)α
.

Summing up the interference over all ringsRm, we have,

∞
X

m=1

Im(v1) ≤ 2α 96J(u1)

aαℓ(e1)α

∞
X

m=1

1

mα−1

≤ 2α 96J(u1)

aαℓ(e1)α

Z ∞

1

dx

xα−1

≤ 2α 96J(u1)

aαℓ(e1)α(α − 2)
.

Therefore the SINR at receiverv1 is

SINR(v1) ≥
J(u1)

ℓ(e1)α[N + 2α 96J(u1)
aαℓ(e1)α(α−2)

]

≥
J(u1)

ℓ(e1)α[N + 2α 96J(u1)
ℓ(e1)α

ǫ
96β(1+ǫ)

]

=
J(u1)

ℓ(e1)α[N + 2α ǫJ(u1)
(1+ǫ)βℓ(e1)α ]

where the second inequality above follows from the condition that
aα ≥ 2α 96β(ǫ+1)

ǫ(α−2)
. The last expression above is at leastβ if J(u1) ≥

(1+ǫ)βNℓ(e1)
α, which is ensured in the path selection and power

control stage. Therefore, the scheduleS produced by procedure
Schedule is valid.

Length of the schedule
We shall now prove that the length of the schedule obtained bypro-
cedureSchedule is a polylog-factor away from that of the optimal
schedule length. We first obtain an upper bound on the number of
colors used by the greedy coloring scheme (steps 15 through 18),
then by applying the Chernoff bounds, we show that the probabil-
ity of congestion on any link being high is very low. Therefore the
upper bound obtained on the length of the schedule holds withhigh
probability.

LEMMA 3. |S ′| ≤ C + D.



Lemma 3 is straightforward; the proofs of Lemma 4 and Lemma 5
are provided in the appendix.

LEMMA 4. The length of the partial scheduleSt produced by
procedureSchedule in step 9 isO(maxe |C(e)∩Et| log ∆ log Γ).

LEMMA 5. For eacht = 1, . . . , |S ′|,

Pr[max
e

Ct(e) ≥ 4 log max{n, C + D}] ≤
1

n(C + D)

whereCt(e) = |C(e) ∩ Et|.

LEMMA 6. |S| is O((C + D) log n log ∆ log Γ), with proba-
bility at least1 − 1

n
.

PROOF. Applying the union bound along with Lemma 5 and
Lemma 3 we get

Pr[∃ t : max
e

Ct(e) ≥ 4 log max{n, C + D}] ≤
C + D

n(C + D)
,

i.e., at most1/n. Thus,|St| ≤ 4 log max{n, C + D} log ∆ log Γ
for all t, with probability at least1 − 1

n
, which implies that the

length ofS is at mostO((C+D) log n log ∆ log Γ) with this prob-
ability.

Note that the bound on the schedule length holds, irrespective of
the constraints on the constanta, and on the power level. It is for the
validity of the schedule that we need these additional constraints.

Length of Optimal Schedule
We now derive a lower bound on the length of the optimal schedule
assuming that the power levels are chosen from the range[pmin, (1−
ǫ)pmax].

LEMMA 7. Consider any scheduleSOPT (pmin, (1− ǫ)pmax)
of optimal length for the given problem, that uses power levels
from the range[pmin, (1 − ǫ)pmax]. Then, |SOPT (pmin, (1 −
ǫ)pmax)| = Ω((COPT + DOPT )/ log Γ), whereCOPT + DOPT

denotes the smallest congestion plus dilation that is possible if all
paths have linkse = (u, v) such thatpmax(1− ǫ) ≥ βNd(u, v)α

for some constantǫ.

PROOF. Consider an optimal set of pathsPOPT that has con-
gestion and dilation equal toCOPT andDOPT , respectively. Let
Gi = {ek = (uk, vk) ∈ E : 2i ≤ J(uk) < 2i+1}, for i =
1, . . . , log Γ. We now fix anye = (u, v) and any time stept. Let
At = {ej = (uj , vj) : j = 1, . . . , r} be the set of links inC(e)
that are scheduled inSOPT (pmin, (1− ǫ)pmax) at timet. Further
let Ht,i = {ek ∈ At ∩Gi}. We first argue that the number of links
that can be simultaneously scheduled from the setHt,i for any edge
e, at any timet and anyi ∈ {1, . . . , log Γ} is O(1). Let the links in
setHt,i, be arranged in the non-decreasing order of their lengths.
Let there bes links in setHt,i. Therefored(u1, v1) ≤ d(u2, v2) ≤
... ≤ d(us, vs). Since all these links are used simultaneously, the
SINR at each nodevj should exceedβ. We shall compute the SINR
at receivervs. Consider a linkej = (uj , vj) ∈ Ht,i (refer to figure
3). Since linkej , es ∈ C(e), according to the definition ofC(e),
we know thatd(u, uj) ≤ ad(uj , vj) andd(u, us) ≤ ad(us, vs).
Further sinceej = (uj , vj), es = (us, vs) ∈ Gi, we haveJ(us)

2
≤

J(uj) ≤ 2J(us).
It can be seen that

d(uj , vs) ≤ d(uj , us) + d(us, vs)

≤ d(u, uj) + d(u, us) + d(us, vs)

≤ (2a + 1)d(us, vs).

u

v

eus

vs

es

uj

vj

ej

d(u, us) ≤ ad(us, vs) d(u, uj) ≤ ad(uj , vj)

d(uj , vs) ≤ (2a + 1)d(us, vs)

Figure 3: For a given link e = (u,v) and set
of other links Ht,i = {es, ej} ∈ C(e) ∩ Gi sched-
uled by SOPT(pmin, (1 − ǫ)pmax) at time t,
d(uj,vs) ≤ (2a + 1)d(us,vs)

The interference experienced byvs due to all suchej is

Ir(vs) =
X

ej=(uj ,vj)∈Ht,i,j 6=s

J(uj)

d(uj , vs)α

Therefore in order to satisfy the SINR constraint at nodevs, we
need

J(us)

d(us, vs)α[N + Ir(vs)]
≥ β

=⇒ J(us) ≥ βd(us, vs)
α[N + Ir(vs)]

=⇒ J(us) ≥ βd(us, vs)
α[N +

X

ej=(uj ,vj)∈Ht,i,j 6=s

J(uj)

d(uj , vs)α
]

=⇒ J(us) ≥ βd(us, vs)
α[ ( s − 1)

J(us)

2((2a + 1)d(us, vs))α
]

The above condition is satisfied fors ≤ 2 (2a+1)α

β
+ 1, which is

a constant. Therefore for anye, t and for anyi ∈ {1, . . . , log Γ},
the number of linkse′ ∈ C(e) ∩ Ht,i that can be simultaneously
scheduled inSOPT (pmin, (1 − ǫ)pmax) is O(1).

Next, we argue that|SOPT (pmin, (1−ǫ)pmax)| = Ω(C/ log Γ).
It can be seen that, for give edgee, somei ∈ {1, . . . , log Γ}, |C(e)∩
Gi| ≥ |C(e)|/ log Γ. Let nt be the number of edges fromC(e) ∩
Gi scheduled inSOPT (pmin, (1 − ǫ)pmax) at timet. Then,n1 +
n2+...+n|SOP T (pmin,(1−ǫ)pmax)| = |C(e)∩Gi| ≥ |C(e)|/ log Γ.
From our discussion above,nt = O(1), for eacht. This implies
that |SOPT (pmin, (1 − ǫ)pmax)| = Ω(COPT / log Γ).

5. ANALYSIS OF THE ALGORITHM
We show that if the power levels for every node are chosen from

the range[pmin, pmax], algorithmMinDelay gives a polylog-factor
bi-criteria approximation for the end-to-end latency:

THEOREM 2. Algorithm MinDelay yields end-to-end latency
at mostO(log2 n log ∆ log2 Γ·SOPT (pmin, (1−ǫ)pmax)), where
SOPT (pmin, (1 − ǫ)pmax) denotes the optimal latency of mini-
mum length possible if the power levels are chosen from the range
[pmin, (1 − ǫ)pmax], for any given parameterǫ > 0.

PROOF. From Lemma 6, we know that the maximum length of
the schedule produced isO((C +D) log n log ∆ log Γ),from The-
orem 1 we haveC + D = O((COPT + DOPT ) log n) and from
Lemma 7 we have|SOPT (pmin, (1 − ǫ)pmax)| = Ω((COPT +
DOPT )/ log Γ). Therefore by putting everything together we have
end-to-end latency of at mostO(log2 n log ∆ log2 ΓSOPT (pmin, (1−
ǫ)pmax)).



The bounds achieved for algorithmMinDelay are worst-case
approximation bounds. The algorithm complexity depends on(i)
number of nodes (n) in the network and (ii) constants∆, Γ. As
mentioned earlier,δ denotes the maximum inter-point separation.
andΓ denotes the ratio between maximum and minimum power
assigned to nodes belonging to setV . It should be noted that the
current implementation of algorithmMinDelay is best suited for
moderately dense and closely confined ad hoc networks. For ad
hoc networks that are widely spread and dense (containing large
number of nodes), the inter-point separation between nodescould
be high. Further since the power assigned is proportional tothe
edge lengths, the values ofδ andΓ could be fairly high. The worst-
case running time of our algorithm for such cases could increase.
The performance of our algorithm for such cases would be worth
exploring.

6. ILLUSTRATIVE EXAMPLE
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Figure 4: Invalid Schedule: Due to random delays, sources
s1,s2 start at time τ1 and s3, s4 start at time τ2. At
time τ5, links e8, e17, e23, e33 interfere with each other
as C(e8) = e17, C(e17) = e8,C(e23) = e17, C(e33) = e17.
This leads to an invalid schedule .

We briefly discuss an illustrative example showing how the al-
gorithm works. Consider the network in Figure 4. Let the routes
from si to ti be as shown in the figure using corresponding dotted
colored lines. For the sake of simplicity, let us assume thatthere
is uniform power assignment and all nodes have been assigned
powerJ . Let the random delays assignment be such that, source
s1 starts at timeτ1, s2 at τ1, s3 at τ2 ands4 at τ2. It can be seen
from Figure 4 that packets on linkse8, e17, e23, e33 are scheduled
at the same timeτ5. ThereforeE5 = {e8, e17, e23, e33}. Since
ℓ(e8) = ℓ(e17) = 3 and ℓ(e23) = ℓ(e33) = 1. According to
Definition 1, if a = 2, we havee17 ∈ C(e8), e8 ∈ C(e17), e17 ∈
C(e23), e17 ∈ C(e33). These links therefore interfere with each
other and the schedule is indeed invalid. In this example, there are
many such instances of invalid schedules. We therefore needto
convert this invalid schedule into a valid schedule. According to
step 7 of the procedurePathSelection, we now partition the links
in setE5 in two sets, such thatB0 = {e23, e33}, B1 = {e17, e8}.
Since we have assumed uniform power assignment, we can ignore
the partitioning in step 13 of the procedurePathSelection. We
now color the links in individual sets using the greedy coloring
procedure described in steps 15 through 19. It can be verifiedthat
links e23, e33 are scheduled at timeτ ′ and linkse17, e8 are sched-
uled at timeτ ′ + 1, τ ′ + 2 respectively. The final schedule can be
formed by pasting together these small sub-schedules.

7. COROLLARIES AND EXTENSIONS
We now sketch techniques for solving additional problems that

are variations/extensions of ourCLM problem.
End-to-end delay minimization with joint routing and schedul-

ing for fixed power levels: This is a variation of theCLM problem
wherein the power levels are fixed. AlgorithmMinDelay could be
used to solve this problem, with a few modifications. The con-
straints (5) which ensure that power assigned is valid, needto be
removed from theLP formulation in procedurePathSelection.
ProcedurePowerControl is not required.

End-to-end delay minimization for fixed routes and power levels:
This is again a variation ofCLM; it can be solved by directly using
procedureMinDelay. Other procedures are not required.

End-to-end delay minimization with joint routing, scheduling and
power control with bound on total energy consumed: This is an ex-
tension ofCLM, where we are given a boundB on the total energy
consumed. This can be solved by adding the constraint
P

i

P

e=(u,v)∈E
y(i, e)(1 + ǫ)βNd(u, v)α ≤ B to theLP for-

mulation in procedurePathSelection.

8. CONCLUSION AND FUTURE WORK
We described a general algorithmic technique leading to efficient

polynomial-time centralized approximation algorithms for mini-
mizing end-to-end latency by jointly considering routing,schedul-
ing and power control layers. The results extend recent workof
[14, 21, 22] by simultaneously considering multiple layersin the
stack and more realistic models of radio interference. A number
of questions remain open. First, our algorithms are centralized
and thus cannot be used to designdistributed cross-layer proto-
cols for these problems. Second, we can further improve the al-
gorithm to efficiently handle random packet arrivals. Third, two
other performance-metrics of particular interest are ratethroughput
and fairness. It would be interesting to investigate if our approach
can be adapted to obtain provable algorithms for optimizingthese
metrics as well.
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10. APPENDIX
Proof for Lemma 4: ProcedureSchedule schedules the edges in
Et by putting together schedulesSt,i, i = log ∆, . . . , 0,which in
turn is formed by putting together schedulesSt,i,j , j = log Γ, . . . , 0
which forms a schedule of the edges inEt∩Bi∩W j

i . We will argue
below that for eachj = 0, . . . , log Γ, the edges inEt ∩ Bi ∩ W j

i

can be scheduled in timeO(maxe |C(e) ∩ Et ∩ Bi|); the Lemma
then follows. Consider the coloring process in steps 15 through
19 of the algorithm. LetEt ∩ Bi ∩ W j

i = {e1, . . . , es}, with
ℓ(e1) ≥ ℓ(e2) ≥ . . . ≥ ℓ(es). The algorithm chooses a color for
eachek in this order - the color chosen forek is the smallest num-
bered color that is not used byC(ek)∩{e1, . . . , ek−1}. Therefore,
the number of colors used is at mostmaxe |C(e) ∩ Et ∩ Bi| + 1.
Since there arelog Γ such sets andlog ∆ sets for each of thelog Γ
sets, the lemma follows.

Proof for Lemma 5: Fix any timet. For each edgee ∈ E, we
defineQ(e) = {qi : e ∈ Pi} to be the set of packets passing
throughC(e) in the scheduleS ′. Consider any edgee. Let Yi be
an indicator variable, that is 1 if packetqi ∈ Q(e) crosses some
e′ ∈ C(e) at timet in S ′. Then,

P

qi∈Q(e) Yi = |C(e) ∩ Et|.
Let e be thelth edge in pathPi of packetqi. Then,Yi = 1 if
and only if Xi = t − l. Therefore,Pr[Yi = 1] ≤ 1

C
, and

E[Ct(e)] = E[
P

qi∈Q(e) Yi] =
P

qi∈Q(e) E[Yi] ≤ 1 Since the
random delays are chosen independently, the variablesYi are in-
dependent Bernoulli trials and by the Chernoff bound, we have
Pr[Ct(e) ≥ ω.E[Ct(e)]] ≤ 2−ω,∀ω ≥ 6. Therefore,
Pr[maxe Ct(e) ≥ ω] ≤ Pr[

W

e∈E
Ct(e) ≥ ω]

≤
P

e∈E
Pr[Ct(e) ≥ ω]

≤ |E|
2ω ≤ n2

2ω .

Therefore,Pr[maxe Ct(e) ≥ 4 log max{n, C + D}] ≤ 1
n(C+D)

for ω = 4 log max{n, C + D}.


