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ABSTRACT

Recently, there has been substantial interest in the de$igmoss-
layer protocols for wireless networks. These protocolsnoige
certain performance metric(s) of interest (e.g. latencgrgy, rate)
by jointly optimizing the performance of multiple layers tife
protocol stack. Algorithm designers often use geometrapl-
theoretic models for radio interference to design suchsclager
protocols. In this paper we study the problem of designimgsr
layer protocols for multi-hop wireless networks using a enaral-
istic Signal to Interference plus Noise Ratio (SINR)del for radio
interference. The following cross-layer latency minintiaa prob-

lem is studied: Given a séf of transceivers, and a set of source-

destination pairs, (i) choose power levels for all the tcangers, (ii)
choose routes for all connections, and (iii) construct aterend
schedule such that the SINR constraints are satisfied atteaeh
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1. INTRODUCTION

step so as to minimize the make-span of the schedule (the time

by which all packets have reached their respective dekimst

We present polynomial-time algorithm with provable worst-case

performance guaranteéor this cross-layer latency minimization
problem. As corollaries of the algorithmic technique wevsttbat

a number of variants of the cross-layer latency minimizafioob-
lem can also be approximated efficiently in polynomial tinGar
work extends the results of Kumat al. (Proc. SODA 2004) and
Moscibrodaet al. (Proc. MOBIHOG 2006). Although our algo-
rithm considers multiple layers of the protocol stack, ih ceatu-
rally be viewed as compositions of tasks specific to eachr laye
this allows us to improve the overall performance while premg
the modularity of the layered structure.
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Recently, there has been substantial interest in the debggnss-
layer protocols for wireless multi-hop networks: see [6,1H) and
the references therein. The work is motivated by two prinary
servations: (i) the performance of current protocols ifr@am sat-
isfactory, and classical paradigms based on wireline riédsvare
unlikely to scale; and (ii) wireless multi-hop networks dreing
used in diverse application domains that often force desgio
optimize different performance-objectives.

This paper considers the problem of minimizing the makespa

of schedules in wireless multi-hop networksjbintly considering
the routing, scheduling and power control layers. Recalt the
make-span (or length) of a schedule is the time by which tee la
packet has reached its destination; thus, we have a min-faax (
tency) metric. Our goal is to develop polynomial-time altfons

with provable worst-case performance guarantees. A maone ge

eral form of the problem we study is informally stated asdofi:
Given (i) a set of pointd” in the plane at which transceivers are lo-
cated, (ii) gains and path-loss exponent (iii) source-destination
pairsK = {(s1,t1),..., (sk, tx)}, (iv) a set of packet§) for all &

connections, and (v) a power rangg,in, pmaz), the Cross-layer
latency minimizatio{CLM) problem is to (a) assign power levels
to individual transceivers, (b) choose routes for the packaend
(c) construct an end-to-end schedule for the packets swathath



the transmissions that happen simultaneously satisfy tA€ M-
terference constraints, so that the overall latency ismmized; the
overall latencyor make-sparis the time elapsed before all packets
successfully reach their respective destinations. \aratof the
problem where the solution to one or more layers is already pr
vided (e.g., routes are already given) are discussed inoBektl.

In order to fully formalize theCLM problem, interference at the
MAC layer needs to be modeled. Since wireless interferesce i
quite complex, discrete combinatorial and geometric nodeé
commonly used: the wireless network is modeled as a gaph
(V, E), in which link (u,v) € E implies that nodes can receive
the signal from node. A disk is associated with each node to spec-
ify its range. Interference in such a graph is modeled thnange-
pendence constraints (see e.g., [26]& nodeu transmits, no node
in its vicinity can transmitA number of papers have studied MAC
protocols with these geometric models of interferenceg28,27].
Clearly, this abstraction is an oversimplification of thalngrocess
— the signal from a radio does not end abruptly at a boundad,, a
signal collision does not always lead to lost messages.dlityea
signal from a transmittes is successfully received by a receiver at
v, if theratio of u’s signal strength at and the combined interfer-
ence from other transmitters along with ambient noise elxe's
antenna gain; this is commonly known as 8ignal to Interference
Plus Noise Ratio (SINRjpodel [10, 21, 22]. The difficulty of ana-
lyzing algorithms using SINR models and obtaining potéme-
formance gains in theory as well as in practice has beensiiscu
in [21, 22], and is due to the following two reasons. FirsiNRBI
based models usually lead to non-convex constraints. &by
including SINR constraints, problems such as routing, dahe
ing, power-control etc. sometimes becoiE-hard; thereby ren-
dering traditional convex-programming-based technigoappli-
cable. Second, the geometric-graph-theoretic mddeklize the
interference of a transceiver. This makes the analysigatée
however, the independence constraints put severe and atién
cial restrictions on scheduling algorithms in their agitd schedule
links that are close to each other.

1.1 Overview of results and techniques

The CLM problem isNP-hard to solve exactly. The proof fol-
lows by restriction: the minimum-length link-schedulingpplem
for the SINR model idNP-hard [1]. Since this problem is a spe-
cial case of theCLM problem in which all the connections are
on adjacent links, it follows that th€LM problem with SINR
constraints is alstNP-hard. Therefore, we focus on approxima-
tion algorithms. Our goal is to devise polynomial-time apgima-
tion algorithms with provable worst-case performance lisJa9].
Specifically, we obtain a bi-criteria approximation alglon: given
a range[pmin, Pmaz] from which the power level of each node
must be chosen, as well as some parameter 0, we present
an efficient algorithm which results in the overall laten@iry at
most a polylogarithmic factor more than that of an optimauso
tion for the problem in which all power-levels are constegirto
lie in [pmin, (1 — €)pmaz]: S€€ Theorem 2. Logarithms such as
those of Theorem 2 are to the base two, unless specified atieerw
Also, the terms such addg A” and “log I'” should be interpreted
as “1 +log A” and “1 4+ log I'" to ensure that such quantities are
bounded away from; we do not do this explicitly, in order to avoid
notational clutter.

Here we describe a general algorithmic approach and use this
approach to design a polynomial-time randomized approkima
algorithm MinDelay) for the CLM problem, with rigorous prov-
able bounds on the overall latency compared to the optimat so
tion. Note that this is a worst-case approximation guasgnite.,

this holds for every instance, and for special instances,(ean-
dom), our algorithms might have much better performance-gua
antees. In addition, we do not need to know the optimal smiuti
in order to prove the approximation guarantees on our dlgari
To our knowledge, this is the first result to extend the linkextul-
ing work of Moscibroda et al. [21] to theLM problem, with SINR
constraints. While our algorithm solves t8&M problem, it can be
naturally decomposed into specific tasks at each layer optthe
tocol stack combined with appropriate information-exad®@ibe-
tween these layers. This allows us to improve the overafoper
mance and simultaneously preserve the modularity provigete
layered architecture. As corollaries of the algorithmicl dower
bounding techniques, we obtain polynomial-time randonhiap-
proximation algorithms for the following additional preohs: (a)
joint routing and end-to-end scheduling to minimize latenehen
the power levels are pre-specifiefor all nodes; (b) end-to-end
scheduling to minimize latency, when both the routes andepow
levels are pre-specified; and (c) t@&M problem with an addi-
tional constraint that the total energy consumed is at mostes
given B: our algorithm can be modified so that the latency is opti-
mized, with the total energy used being at m@3tog n), wheren

is the number of transceivers. Itis important to note thaigneral,
being able to solve thELM problem efficientlydoes notmmedi-
ately mean that one can solve these variants efficiently.

Our algorithmMinDelay combines two powerful techniques in
order to solve th€LM problem: linear-programming rounding for
path selection, and random delays for the end-to-end sthgdu
In addition, we have introduced a number of new technicadsde
First, we introduce a new congestion measure that incorp®the
SINR constraints, and show that the overall latency can lagect
to this congestion measure. Our formulation of the lineagpm
(LP) and the lower bounds crucially depends on the new caioges
measure. In contrast to the congestion measures propo$ed, in
16], the new congestion measure needs to account for the SINR
model and is thus not purely graph-theoretic. It is easy tstract
examples where using the congestion measure of [16] wouk gi
much higher latency. Second, while the random-delays tqakn
is well-known, it requires much more involved analysis im case
in order to derive good bounds. Finally, to prove our uppemufs,
we extend a very useful technique given in [22].

We believe that the algorithmic techniques and models destr
in this paper can increase overall network-performance mas-
tioned earlier, our algorithms use the SINR model of intenfiee.

It has been shown in [20] that SINR models can obtain sigmifica
performance gain in theory and practice. Further, [22] demo
strates that using SINR models for link-layer scheduling oa
crease overall performance and decrease link-delays. roixéem
studied in this paper can be viewed as a special case of thiepro
discussed in [22]. Further, we use congestion control fating
and scheduling. Congestion-aware routing and scheduéiadgpen
shown to improve performance gains in [4, 5].

We note that the algorithms presented in this paper aredtieakr
in nature. Nevertheless, our theoretical results suggesttarest-
ing class of congestion-aware link-metrics that can be tsgdide
the design and performance analysis of realistic proto€alsther-
more, the mathematical analysis and the congestion mepsote
posed here are likely to be of independent interest andcgipé to
a more wide class of problems. For example, we are currertly e
ploring similar algorithms for throughput maximizationcadesign
of congestion-aware routing protocols.



[ Citation | Layers | Objective [ Tnterference model | Type of algorithm |
[2] R,S,P Min-P link centralized, approximation
[8] R,S,P Min-P SINR centralized
[17] Ra, S Max-Rate link centralized
[18] Ra, S Max-Rate SINR,link distributed

(for restricted interference mode|)
[4] R, S Max resource utilization, SINR,link centralized and
distributed(for scheduling)

[12] Ra, R, S Max-Rate link centralized
[9] S,P Min-P SINR,link (only for power control),

distributed heuristic
[13] S, P, Ra, Max-Rate SINR centralized, heuristic
[21] S, P Min-D (not end-to-end) SINR centralized
[14] S,R Min-D (end-to-end) Disk centralized and

distributed

Table 1: Some papers related to this work. R denotes Routings denotes Scheduling, P denotes Power control and Ra denofeate
control. Min-P denotes minimizing power, Min-D denotes mirimizing delay, and Max-Rate denotes maximizing data rates

2. RELATED WORK

Cross-layer optimization has an extremely active areasafarch
inrecentyears [2,4-6,8,9,12,13,17-19,22,23]. In Tapleelcom-
pare our work with some of the most relevant previous resBlés
cent work by [2] presents a polynomial-tiBeapproximation algo-
rithm for joint routing, scheduling and power control prei. The
authors however use a weaker interference model of synehson
time-slotted TDMA/CDMA. Similar work by [8] presents an in-
tegrated routing, link scheduling and power-allocatiotigyowith
the SINR model of interference. The authors present an igéthgor
for minimizing total average power of a multi-hop wirelesst-n
work by considering link scheduling and power control. Thgoa
rithm presented appears to be efficient, however as ackdgete
in [8] the algorithm suffers from a worst-case exponentishplex-
ity as a function of the number of transmission nodes. Rewserk
by [4, 5] considers the problem of congestion control anduiese
allocation (via routing and scheduling). The paper aims &xim
mize resource allocation by using a duality approach to ipcase
the main problem into sub-problems of congestion contrdirant-
ing/scheduling. The works [12, 17, 18] study the joint pesblof
allocating data rates and finding a stabilizing scheduliolicp in
a multi-hop wireless network. However, our problem is dfet
than the ones considered in [4,5, 12,17, 18]; we consideprible-
lem of minimizing end-to-end delay by jointly optimizinguting,
scheduling and power control.

Our work is most closely related to [21, 22] and [14]. The pa-
per [21] studies the problem of scheduling packets with St&R-
straints to ensure strong-connectedness of the graph. iJlas
topology-control problem that aims at finding a schedule ofim
mal length in which all transmitted links form a stronglyrc@cted
network. In [22], the authors study the MAC level schedulimgb-
lem with SINR constraints. The authors present a schedalugr
rithm that successfully schedules a set of links in polytabeic
time by assigning non-uniform power to the transmitting emd
They do not compare the performance of their algorithm whih t
optimal schedule. Further, the non-linear power assignisezx-
ponential in the number of nodes. Therefore for large netajahe
power assignment for individual nodes could be very higarehy
increasing the overall power-consumption of the networkeré
are crucial differences between the work presented her¢haise
of [14,21, 22]. First, the results of [22] do not directly gitbounds
on the end-to-end latency — their result is mainly applieafiolr
scheduling a given set of edges, and does not suggest wttich se
of waiting packets to schedule first. The second importaifereli
ence is in the power control step: the specific power-levelagh

in [22] helps to minimize the link-layer delays. During thedeto-
end scheduling problem, the same nadmight have to transmit
along different linkgv, w) and(v, w") at different times. Using the
algorithm from [22] directly might result in different powassign-
ments forv at different times. In contrast, we focus on choosing a
single power-level for each node, so that the overall Iaténmin-
imized. The paper [21] studies the scheduling complexitgaf-
necting a given number of nodes located at arbitrary positioy
some communication tree. Our problem is slightly differgatn
the one of [21]: for given source-destination pairs, waatli find
paths, and then schedule packets on the selected pathBy,Fiha
though the work in [14] does deal with end-to-end latencibs,
algorithm and its analysis is based on geometric-graph eade
radio-interference.

3. PRELIMINARIES AND MODELS

Let V denote the set of transceivers located in the plane — we
will sometimes refer to these transceivers as nodes. dletv)
denote the Euclidean distance between any two nadesec V.
Sometimes we will consider a link = (u,v), and we will use
£(e) = d(u,v) to denote its length. We let

A = max d(u,v)/

u,veV

. d(u,
u,vglvl:nugév (U 'U)

be the ratio between the maximum and minimum inter-point sep
aration. Without loss of generality, we assume that the mimn
distance between any pair of nodeg idf J(u) denotes the power
assigned to node, we denote

_ maxy, J(u)
~ min, J(u/)’

3.1 The SINR Physical Model

We use the SINR model of interference as described in [21]. In
this setting, for any given link = (u,v) with v as the sender
andwv as the receiver, the received signal powefu) at nodev

J(u)
d(u,v)®
J(u) denotes the transmission power of the send@nda denotes
the path-loss exponent. As suggested in [22] we assume 2.
Table 2 gives a list of most of the notation used in this paper.a
given sett’ = (u1,v1), (u2,v2), ..., (uk, vy) of simultaneously-
communicating links, the interferende(v, E') at receiver from

due to sender, can be expressed &k (u) = where




all the senders is
J(u)

Inv, B) = @ o)

e/’=(u’,w')EE u'#u
Whenever the sek’ is clear from the context, we will simply de-

note this ad/,(v). The nodev can successfully receive transmis-
sion fromu, if

J(u)
d(u, v)*[N + I (v)
where N denotes the ambient noise (some given constant)sand
denotes the antenna gain.

SINR(v) =

]257

3.2 Congestion and Dilation

Our algorithms and their analyses are based on two important (e.g., d(u,uz) = 5).

guantities:congestion and dilationLet P; be the path chosen for
connection(s;, t;), and letP be the collection of these paths. Let
E(P;) denote the set of edges in. We define a multi-seE’ =
E(P) = U;E(P;). We define the dilatioD(P) as the length of
the longest path if?. We next define the congestigninduced by
P through a definition of “interference set§’(e):

DEFINITION 1.

Ve = (u,v) €E, Cle) = { =@, ,v)eE:
a-d(u',v') > d(u,u’)
N\ d@' ") > d(u,v)}
Cc = Iglea§|C(e)|

Note thata is a constant. In our analysis, we would require

968(1 + )

> of2e
“= el —2)

and o > 2.

anda > 2. Herec is a small positive constant. It can be seen from
Lemma 2 that these lower bounds @mand« are required for the
validity of the final schedule. Figure 1 demonstrates theestion
measure for linke = (u,v). Intuitively, any linke = (u, v) with
high congestion value could have the SINR constraints tedlat

its receiverv. Our definition of congestion is motivated by the
definition of congestion used in [14,16] but has differerinemder

to account for the SINR model of radio interference.

4. THE LATENCY-MINIMIZATION ALGO-
RITHM

We now present the paper’s main technical contribution athe
gorithm MinDelay (Algorithm 1) for joint power control, end-to-
end scheduling and routing to minimize the overall latefeysec-
tion 5 we show that for any input instance, the latency actdev
by algorithmMinDelay is within a polylogarithmic factor of the
optimal latency for that instance. We first describe the r@tigm
informally. It has three part$?athSelection selects paths for each
connection,PowerControl assigns a power level to each sender
that lies on the selected paths, @chedule schedules the packets
on their respective paths. Although the three proceduresnad-
ular, there is significant interplay between these threepoomants
and they jointly minimize the end-to-end latency. Thesepdures
are described in the following subsections.

U4 €4 V4
K 2
€2
Voe———e U2 15
us 1 'y
10 & i
u 5
€e3| 3 el 2 e1| 2
v U1
U3
Figure 1: lllustrating congestion measure for a link. The

solid lines represent edges along with edge lengths (efg) =
2). The dotted lines represent distance between two nodes
Let a=6. Then C(e) = {e,e1,es}
for link e = (u,v). By definition, e4,e2 ¢ C(e) since
a-d(ug,vs) < d(u,usq) andd(uz,vz) < d(u, v).

Algorithm 1: MinDelay

Input 'V, E K, [pminypmaz]a Qv «, B

Output: (i) P (ii) J, (iii) A valid scheduleS that moves
packets along their paths to the destinations
successfully

1 P =PathSelection(V, K, &, [pmin, Pmaz]) , E = E(P)
2 J = PowerControl (V, K, P, E)
3 § =Schedule(V, K, P,Q, J, F)

Procedure PathSelection

Input :V, K, &, and[pmin, pmaz]
Output: P

//Sol ve the LP
Solve the LP as described in equations 1..7 to get the sp&utio
({yf(7'7 8)}7 ’Ll)f)
/| Pat h Deconposition
2 Decompose the flow into path flows — l&t(; denote the set of paths
from s; to ¢;, with h(P) denoting the flow on pat® € M. Also let
| P| denote the length (number of links) of path
//Path Filtering

=

3 foreach P € M; do

4 'Y:ZP’EMT;:\P/\>21U h(P").
5 if |P| < 2w then

6 | | =(P)=hP)/(1-).

7 else

8 | 2(P)=0

9 end

10 end

/ / Randoni zed Roundi ng
11 foreachi do
12 choose exactly one path € M; with probability z(P).

13 Let P; = P be the path chosen frorv;
14 end
15 LetP = {P,..., P}
Procedure PowerControl
Input :V, K, P, multi-setE = E(P)
Output: J

1 Choose power leveld(u) for each node: as
J(u) = maxe_(y,v)ye p{(1 + €)BNd(u,v)*}




ProcedureSchedule

n number of nodes
v set of nodes

E={(u,v) eV xV} set of all edges

K ={(s1,t1),-..,(Sk,tk)} k source-destination pairs
[Prmin; Pmaz] power range

11

12
13

14

15

16
17

18

19
20

21
22

23
24
25
26

Input 1V, K,Q,P,E,J
Output: A valid scheduleS that moves packets along their paths to
their destinations

/ / Random Del ay
foreach packetq; at sources; do
| Choose adelay; € {1,..,C} uniformly at random
end
/1 Construct an invalid schedule &’
foreach packetg; do
wait at sources; for time X; before starting
move one edge at a time alory after waiting X; steps, i.e.,
move on thejth edge ofP; at stepX; + j
end
[/ Convert S’ into a valid schedule S
/1|S8’| denotes the | ength (nmake-span) of &’
for t=1,2,...,|S| do
//Construct a partial schedule S;
E: = set of links scheduled b§’ in time ¢.
Ct(e) = \C’(e) N Et\,Ve (S
/] Set partitioning
Partition F; into setsB = {Bo, Bi, ..
Bi={e€ By :2" <l(e) < 20F1}
for i« = [log A | down to0 do
Partition links in setB; into sets
Wi = {Wg, Wy, ""Wflogl"j } such thaﬁ/VJ’% =
{e = (u,v) € B; : 27 < J(u) < 27t}
for j = |logI'| down to0 do
/1 Greedy Col oring
Order the edges i N WJ’? in non-increasing order of
length{ei,ea,...,es}
for k = 1to|E; N W/| do
Let f(ex) be a positive integer denoting the color
that is to be assigned to edgg
Assigney, the smallest numbered color that is not
used by any edge in
Clex)N{et,...,ex—1}.i.e.f(eg) is the smallest
positive integer not in the set
{f(er) s k' <k, exr € Clex)}-
end
Construct a schedul§; ; ; for edges inE; N Wi] by
scheduling all edgeswith color f(e) = r in therth
step, forr = 1,2,.. ..

- Bl1og A } such that

end
Construct schedul8; ; =S; ;,105T® - - ® St,i,0 (Thee
operator implies concatenation of different schedules)

end
Construct schedul§: = S; 1oz A ® ... 0 St o

end
Construct schedul§ = Sy e ... e Sy, where? = |S’|

Q={Q1,...,Qr} set of packets fok sources
P={P1,...,P} set of paths fok connections

E = E(P) set of edges on path3

C(e) congestion set for link

C = max.c g |C(e)] = Congestion| max. cardinality of any’'(e)

D = Dilation length of longest path P
J={J(u1),...,J(un)} set of power assignments

T ratio of max. to min. power assignmenfs
A ratio of max. to min. node-distances
S a valid schedule

Nowt(u) set of outgoing edges from

Nin (u) set of incoming edges t@
« path-loss exponent

J¢] antenna gain

N ambient noise

a positive constant

€ small positive constant

Table 2: Notation used in this paper

4.1 Path Selection

ProcedurePathSelection deals with selectingjood paths, i.e.,
paths with a “low” value ofC + D; recall the definitions from
Section 3. We formulate this problem as an integer progrd (I
following the methods of [28]. Lef = {(u,v) € V x V} be the
set of all edges. Lej(i,e) be a flow-indicator variable for each
connectiory and edge: € £: y(i, e) is 1 if the path for connection
¢ passes through, andy(i,e) = 0 otherwise. LetNo.:(u) =
{(u,v) : v € V} and Nin(u) = {(v,u) : v € V} denote the
set of outgoing and incoming edges, respectively, fiorhet . =
{(u,v) € VXV : pmaz < (1 + €)BNd(u,v)*} denote the
set of links (u, v) that are infeasible if we requiré(u) > (1 +
€)BNd(u,v)*. The following is the natural integer programming
(IP) formulation.

min w Subject to:
Viel,....k: > yl,e)— > yli,e)=1 1)
e€Nout(sq) €EN;n (s;)
Vi, Yo # si,t; ¢ Z y(i,e) = Z y(i,e) )
e€Nout (v) eEN;n (v)
Veeé':z Z y(i,e') <w ?3)
i e’eC(e)

Viiy ylie)<w (4

Vi,Ve € L :y(i,e) =0 5)
Vi,e:y(i,e) € {0,1} (6)

In the IP formulation, constraints (1) ensure that exaatly out-
going edge is selected from each source. Constraints (2)ireap
flow conservation. Constraints (3) ensure thge) < w for each
edgee, and constraints (4) guarantee that each path selected has
length at mostw. Constraints (5) ensure that the chosen paths do
not include edges if.. Let ({yin: (4, e)}, wint) denote the integer
program solution. Solving the IP NP-hard, and so we use the
LP-relaxation by relaxing constraints (6) to obtain coaisiis of
the form

Vije:y(i,e) < 1. @



Let ({ys(4,e)}, wy) denote the linear program solution. The LP
solution gives flows between the connections, instead dfspa&o
the PathSelection procedure first decomposes this flow into paths
M, with flow h(P) for eachP € M. See [28] for details on flow
decomposition. However, we still haya1;| > 1, i.e., we have a
number of paths that carry the flow. The filtering step disséwdg
paths in eacb\;, and the final step uses randomized rounding [25]
to choose paths; in the next subsection, we show that th#ingsu
paths have congestion plus dilatioffw log n).

4.1.1 Analysis of procedurathSelection

We now derive an approximation on the congestion plus ditati
of the paths selected by the above procedure.

LEMMA 1. In procedurePathSelection after the path filtering
step the fractional solution obtained satisfies the following prop-
erties:

1. z(P) is positive only if P| < 2w for any P € M,;, for any
1.

2. Foreachi, > . o, 2(P) = 1.

3. For any edge’ Ze’ec(e) ZP:@’EP Z(P) S 2w.

THEOREM 1. ProcedurePathSelection constructs a set of paths
P such thatC' + D is O((Copr + Do pr) log n) with high proba-
bility (i.e., with probability atleast —1/n), whereCo pr+ Do pr
denotes the smallest “congestion plus dilation” possilgmyided
the paths contain no edges from the get {(u,v) € V x V :
Pmaz < (1+ €)BNd(u,v)"}).

PrROOF Recall that in the randomized rounding step, each path
P is selected with a probability(P). In order to prove the above
theorem, we first calculate the expected congestion on aldile
to set of paths chosen. We then apply the Chernoff bounds [7]
to obtain an upper bound on the total congestion producedhdy t
randomized-rounding procedure.

Lety(P) € {0, 1} be an indicator variable such thatP) = 1
if path P is selected in the rounding procedure. It can be seen
that Pry(P) = 1] = z(P). Sincey(P) is an indicator vari-
able E[y(P)] = z(P). LetP(y) = {P : y(P) = 1}, be the
set of paths chosen in the rounding procedure. For any edge
cong(e, P(y)) = X o) 2opiere p Y(P), therefore,

Elcong(e, P(y))] S > Priy(P)=1]

e’eC(e) P:e’€P

e’eC(e) P:e’eP

We know from Lemma 1 that
Z Z 2(P) < 2w.
e'eCe) P:ie’eP
We have
Elcong(e,P)] < 2w.

Since the variableg(P) are independent, we can now apply the
Chernoff bounds.

273 log n max{2w,1}

1

n3’

Prlcong(e, P(y)) > 3logn max{2w, 1}]

IN

IN

Since the number of edgesa@¥n?), by union bound we get
1

Pr[3es.t. cong(e, P(y)) > 3lognmax{2w,1}] <

Therefore with high probability, the congestion of the ol
produced by the randomized rounding procedure is at most
3log nmax{2w, 1}. Sincew < w;n:, the congestion produced by
the randomized rounding procedureQ$w;.+ log n), which is an
O(log n)-approximation. [J

We note that th@athSelection step can be derandomized using
standard techniques from [24].

4.2 End-to-end Scheduling

At this point, we have already chosen a pd@thfor each con-
nection(s;, t;), and the packets need to be scheduled along these
paths so that the overall latency is minimized. Proce@gieed-
ule is based on the ‘random delays’ technique of Leighton, Maggs
and Rao [16], and on the techniques used to adapt this to geome
graphs in [14]. The congestion and dilation are importactbse
we show that they are good lower bounds on the optimum, aed it i
possible to construct a schedule with length proportiomttié con-
gestion+dilation. The following is an informal descriptiof the
main steps in Procedui®chedule; see the procedure-description
for the details.

1. Random Delays and an Invalid Scheduf¢ the outset of pro-
cedureSchedule, every packet waits at its souree for a delay
X; chosen randomly fronfl.., C'}, and then moves one edge at a
time on the pathP;. This gives an invalid schedul#/, which could
be invalid because there could be simultaneous sendergdlete
the SINR constraints.

2. Partial Schedule ConstructioiVe break down the invalid sched-
ule S’ into different time stepg to obtain a partial scheduls;.

This schedule consists of all links, scheduled i’ at timet and

we define partial congestiaf(e) to be the congestion at linkat
time t. We now convert the invalid schedule at each time step to a
valid schedule by partitioning all the links into appropeiaets and
then coloring all the links in the same set.

3. Partitioning In this step we initially partition links in; into
disjoint setsB = {Bo, B1,. .., B|ioga |} such thatB; = {e €
By 22" < f(e) < 277},4 =0,..., |log A]. We further parti-
tion each sefB; into a family of subset§Wg, W1, ..., Wi, 1}
such that forj = 1,...,|logT|, W/ = {e = (u,v) € B; :
27 < J(u) < 27!}, The motivation behind partitioning links
into different sets is to bound the number of nodes that Garstit
simultaneously without violating the SINR constraints.

4. Greedy Coloring After set partitioning, we color the links in
eachWW; using a greedy coloring scheme.

5. Combining different scheduted\fter partitioning and greedy
coloring, we combine all the sub-schedules formed to gefitizad
scheduleS.

4.2.1 Analysis of proceduszhedule

The analysis of procedurgchedule consists of the following
parts: (i) Validation, where we prove that the schedule pced by
Schedule is indeed valid, i.e., that the SINR constraints are satis-
fied at each step, (ii) Length of the schedule, where we derive
upper bound on the length of the schedule produce&®diyed-
ule and (iii) Length of the optimal schedule, where we derive a
lower bound on the length of any optimal schedule in which the
maximum power assigned to any node is constrained to be at mos

(1 = €)pmaz.



Validity of Schedule

LEMMA 2. The schedul& produced by procedur&chedule
is valid in the sense that the SINR constraints are satisfiealla
receivers at every step of the schedule/if> 2* %ﬂg;) a> 2,

anda > 2.

PROOF We exploit the geometric nature of the problem to ob-
tain an upper bound on the number of links that can be simeHdtan
ously scheduled. We then show that for every recaiyethe SINR
atv, due to simultaneous transmissions is always at |@ast

Recall that the final schedul® is obtained by putting together
the partial schedulesS; in order; each partial schedu® is in turn
constructed by putting together partial schedufes, which are
in turn constructed by putting together partial scheddlgs; for
edges inE: N Wj. Therefore, it suffices to prove that each partial
scheduleS; ; ; is valid, which we argue next.

Consider any stef) of scheduleS; ; ;. LetT = {ex = (uk,vi) :
k=
scheduled at stefd of S;,; ;. In order to show tha&, ; ; is valid,
we have to argue that all the transmissiongirhappen success-
fully, i.e., the SINR at eachy, for e, = (ux,vx) € 7 is at least
B; we will show here that the SINR at any receivar such that
e1 = (u1,v1) € 7 is at leasts.

We will first show that disks of radiu§/(e1) (wheref(e:) de-
notes the length of edge:) centered at each,, wheree, =
(ur,vy) € T are disjoint. By construction, all edges # have
the same color (i.e., have been assigned same time slo@fws-tr
mission). Therefore, we must havg ¢ C(e;), for any distinct
ex, e, € T (otherwise, the coloring step would have assigned dif-
ferent colors to these two edges). This means dfaf,, ux) >
amax{l(ex),(exr)}. Further due to the partitioning (steps 11
through 14) we hav@ C (B;NW7/). Thereforef(ex) € [2°,2"7)
for eachey € T andVey = (ur,vr) € 7, J(ux) € [27,29F1).
This impliesd(uy, uy') > a2' > 2£(e1) for any distinctex, e, €
7. Therefore, disks of radiu%é(el) centered at each; where
er = (ur,vx) € 7 are disjoint.

Figure 2: For a given link e; = (u1,v1), construct rings of
radius a/(e1) around u;. We calculate the interference expe-
rienced by nodev; due to other simultaneously transmitting
links.

We will now calculate theST N R(v1) due to all the other trans-
missions in7. As in [22], we will partition the plane into rings
centered at,1, in order to compute the interferencevat Consider
rings Ry, m = 0,1, ... of width af(e1) aroundu:. R,, contains
all links e, = (ug,vr) € 7T for whichmaf(ei) < d(ur,ur) <

(m + 1)al(e1) (cf. Figure 2). We know that any given link, =
(uk,v) € T , does not interfere with link; = (w1, v1). There-
foreVey € T, e, # e, we haved(u1, ug) > amax{l(e1), 4(ex)}-
Therefore the first rind?o will not contain any other links from set
T, except for linke;. The area of the rind?,,, can be calculated
as,

A(Rm) = al((m+1)al(er))” — (mal(e1))’]
= ma®(2m+ 1)l(e1)?

3rma*l(e1)?.

A

Next, the non-overlapping disks property above also insghet
the number of nodes transmitting Ry,, for m > 1 is at most

3rma?f(e1)?
oA ) < 48m.
ra2l(en)?/16 = &M

Also, form > 1, for eacher, € T N R, we haved(ug,v1) >

1,...,7} denote the set of edges that are simultaneously (am—1)¢(e1). Since we have > 2, we havel(uy,v1) > (am—

1)é(e1) > 4*L(e1). Therefore, the interferenceat due to nodes
in R, denoted byZ,,, (v1), can be upper bounded as follows, since
J(ur) < 2J(uy) for all k we have,

U e 2]
Zim(vr) < 48m2 (aml(e1))™
_ e 967 (u)

aamaflg(el)a :

Summing up the interference over all rings,, we have,

- 0 96J(u1) o= 1
Im < 2
Z (1)1) - aa£(61)a Z ma—1
m=1 m=1
o ga 967 (w) / dz
— aa((el)a 1 :Cozfl
2a 96J(U1)

- al(e1)*(a —2)

Therefore the SINR at receiver is

J(u
SINR(vi) 2 (1) 967 (u1) ]

Ue1)*[N +2° ety
J(u1)
L(e1)*[N + 22 gf(‘isé) —965(61+6)]
J(u1)
L(e1)*[N + 2«

Y

eJ(uy) ]
(14e)Be(e1)™

where the second inequality above follows from the condittmat

a® > 2° %. The last expression above is at le@sft J (u) >
(14+€)BN£L(e1)”, which is ensured in the path selection and power
control stage. Therefore, the sched$lgroduced by procedure
Scheduleis valid. [

Length of the schedule

We shall now prove that the length of the schedule obtaingatty
cedureSchedule is a polylog-factor away from that of the optimal
schedule length. We first obtain an upper bound on the nunfber o
colors used by the greedy coloring scheme (steps 15 thro8jgh 1
then by applying the Chernoff bounds, we show that the pribbab
ity of congestion on any link being high is very low. Therefdhe
upper bound obtained on the length of the schedule holdshigth
probability.

LEMMA 3. |8'| < C+ D.



Lemma 3 is straightforward; the proofs of Lemma 4 and Lemma5

are provided in the appendix.

LEMMA 4. The length of the partial schedul& produced by
procedureSchedule in step 9is0(max. |C'(e)NE¢|log AlogT).

LEMMA 5. Foreacht =1,...,|S’|,

1
> S LT D)
Pr[meaXCt(e) > 4logmax{n,C + D}] < n(C + D)

whereCi(e) = |C(e) N Ey.

LEMMA 6. |S|is O((C + D)lognlog AlogT'), with proba-
bility at least1 — L.

PrROOF Applying the union bound along with Lemma 5 and
Lemma 3 we get

C+D
: > < —
Pr(3t meaLXCt(e) > 4log max{n,C + D}] < CT D)’
i.e., at mostl/n. Thus,|S;| < 4logmax{n,C + D}log AlogI’
for all ¢, with probability at leastt — % which implies that the
length ofS is at mosiO ((C'+ D) log n log A log I") with this prob-
ability. O

Note that the bound on the schedule length holds, irresfecti
the constraints on the constantnd on the power level. Itis for the
validity of the schedule that we need these additional caimgs.

Length of Optimal Schedule

We now derive a lower bound on the length of the optimal scleedu
assuming that the power levels are chosen from the range, (1—
€)Pmaz]-

LEMMA 7. Consider any schedulo pr(pmin, (1 — €)Pmaz)
of optimal length for the given problem, that uses power lteve
from the l’ange[Pvmm (1 - E)pmaw]- Theny|SOPT(pmin7 (1 -
€)pmaz)| = Q((Copr + Dopr)/logT'), whereCopr + Dopr
denotes the smallest congestion plus dilation that is ptessi all
paths have linke = (u,v) such thapmaz (1 — €) > BNd(u,v)”
for some constard.

PrROOF Consider an optimal set of patt#® pr that has con-
gestion and dilation equal ©o pr and Do pr, respectively. Let
Gi = {er = (up,vr) € E = 28 < J(uy) < 2771}, fori =
1,...,logI". We now fix anye = (u,v) and any time step. Let
A = {e; = (uj,v;) : j = 1,...,r} be the set of links irC'(e)
that are scheduled i§o p7(Pmin, (1 — €)Pmax) at timet. Further
let He,; = {ex € A:NG;}. We firstargue that the number of links
that can be simultaneously scheduled from thdgetfor any edge
e,atanytimeg andany: € {1,...,logI'}isO(1). Letthe links in

setH; ;, be arranged in the non-decreasing order of their lengths.

Let there bes links in setH: ;. Therefored(u.,v1) < d(uz,v2) <

... < d(us,vs). Since all these links are used simultaneously, the

SINR at each node; should exceed. We shall compute the SINR
atreceivew,. Consider alinke; = (u;,v;) € H; , (refer to figure
3). Since linke;, es € C(e), according to the definition af'(e),
we know thatd(u, u;) < ad(uj,v;) andd(u,us) < ad(us,vs).
Further since; = (u;,v;), es = (us,vs) € Gy, we havels) <
J(u;) < 2J(us).

It can be seen that

d(uj7vs) d(ujyus) + d(us7vs)
d(u,uj) + d(u, us) + d(us, vs)

(2a 4+ 1)d(us, vs).

IN NN

u

d(u,us) < ad(us, vs) /,1‘\d(u,uj) < ad(u;,v;)
//e \‘\\

v

€j

€s vj
" d(ug,vs) < (20 + Dd(us, v,)

Us

Figure 3: For a given Ilink e=(u,v) and set
of other links Hy; ={es,e;} € C(e)NG; sched-
UIed by SOPT (pmiru (1 - 6)pxnax) at t|me t,

d(uj,vs) < (2a+ 1)d(us, vs)

The interference experienced bydue to all sucle; is

Z J(uy)

d(u;,vs)™
ej=(uj,v;)EHy ;,j#s ( 7 S)

In(vs) =

Therefore in order to satisfy the SINR constraint at nedewe
need

J(us)

Taro ) N 2 °
= J(us) 2 Bd(us, ) [N+ In(vs)]
= J(us) > Bd(us,vs)* [N+ %

ej=(u;,vj)EHy ;,j#s
J(us)

= J(us) 2 fd(us,v)"[ (5= 1)2((2a + 1)d(u3,vs))°‘]

The above condition is satisfied fer< 2% + 1, which is
a constant. Therefore for amyt and for any; € {1,...,logT'},
the number of linke’ € C(e) N Hy,; that can be simultaneously
scheduled iSo P (pmin, (1 — €)Pmac) is O(1).

Next, we argue thdtSo pr (Pmin, (1—€)pmaz )| = Q(C/logT).
It can be seen that, for give edgesomei € {1, ...,log '}, |C(e)N
Gi| > |C(e)|/logT. Letn, be the number of edges fro@i(e) N
G; scheduled itSo p1 (Pmin, (1 — €)Pmaz) attimet. Then,ni +
24 HNUSH pr (Domin s (1—)pmas)| = [C(€)NGi] > |C(e)|/logT.
From our discussion above, = O(1), for eacht. This implies
that|SopT(pm7;n, (1 — E)pmaz)| = Q(COPT/ log F). [}

5. ANALYSIS OF THE ALGORITHM

We show that if the power levels for every node are chosen from
the rang€pmin, Pmaz), @lgorithmMinDelay gives a polylog-factor
bi-criteria approximation for the end-to-end latency:

THEOREM 2. Algorithm MinDelay yields end-to-end latency
at mOStO(log2 nlog Alog? I'-Sop7(Pmin, (1—€)Pmaz)), Where
SopPT (Pmin, (1 — €)pmaz) denotes the optimal latency of mini-
mum length possible if the power levels are chosen from thgera
[Pmin, (1 — €)pmaz], fOr any given parameter > 0.

PROOF From Lemma 6, we know that the maximum length of
the schedule producedd®((C + D) log nlog Alog I'),from The-
orem 1 we havel + D = O((Copr + Doprr)logn) and from
Lemma 7 we havéSo pr(pmin, (1 — €)pmaz)| = Q(Copr +
Dopr)/logT). Therefore by putting everything together we have
end-to-end latency of at moSk(log? n log A log? I'SopT (Pmin, (1—
Pma)). O



The bounds achieved for algorithMinDelay are worst-case
approximation bounds. The algorithm complexity dependgion
number of nodesr() in the network and (ii) constanta, I". As
mentioned earliery denotes the maximum inter-point separation.
andT" denotes the ratio between maximum and minimum power
assigned to nodes belonging to $&t It should be noted that the
current implementation of algorithidlinDelay is best suited for
moderately dense and closely confined ad hoc networks. For ad
hoc networks that are widely spread and dense (containngg la
number of nodes), the inter-point separation between noolglsl
be high. Further since the power assigned is proportionahéo
edge lengths, the values ®&ndI" could be fairly high. The worst-
case running time of our algorithm for such cases could asze
The performance of our algorithm for such cases would behwort
exploring.

6. ILLUSTRATIVE EXAMPLE

Figure 4: Invalid Schedule: Due to random delays, sources
s1,52 start at time 71 and s3,ss sStart at time 72. At
time 75, links es,ei17,e23,e33 interfere with each other
as C(es) = e17, C(e17) = es, C(e23) =e1r, C(e33) =e17.
This leads to an invalid schedule .

We briefly discuss an illustrative example showing how the al
gorithm works. Consider the network in Figure 4. Let the esut
from s; to t; be as shown in the figure using corresponding dotted
colored lines. For the sake of simplicity, let us assume tiate

7. COROLLARIES AND EXTENSIONS

We now sketch techniques for solving additional problena th
are variations/extensions of oGLM problem.

End-to-end delay minimization with joint routing and schled
ing for fixed power levelsThis is a variation of th€LM problem
wherein the power levels are fixed. AlgorithviinDelay could be
used to solve this problem, with a few modifications. The con-
straints (5) which ensure that power assigned is valid, nedzt
removed from thel. P formulation in procedurd®athSelection.
Procedurd®owerControl is not required.

End-to-end delay minimization for fixed routes and poweglev
This is again a variation a€LM; it can be solved by directly using
procedureMinDelay. Other procedures are not required.

End-to-end delay minimization with joint routing, schedgland
power control with bound on total energy consumedis is an ex-
tension ofCLM, where we are given a bourigl on the total energy
consumed. This can be solved by adding the constraint
i e uoyer Y0, e)(1 + €)BNd(u,v)* < B to the LP for-
mulation in procedur®athSelection.

8. CONCLUSION AND FUTURE WORK

We described a general algorithmic technique leading toieffi
polynomial-time centralized approximation algorithms faini-
mizing end-to-end latency by jointly considering routisghedul-
ing and power control layers. The results extend recent wbrk
[14, 21, 22] by simultaneously considering multiple layarshe
stack and more realistic models of radio interference. A lpem
of questions remain open. First, our algorithms are cenéwdl
and thus cannot be used to desidjstributed cross-layer proto-
cols for these problems. Second, we can further improve lthe a
gorithm to efficiently handle random packet arrivals. Thingo
other performance-metrics of particular interest arettat@ughput
and fairness. It would be interesting to investigate if oppraach
can be adapted to obtain provable algorithms for optimizivege
metrics as well.
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10. APPENDIX

Proof for Lemma 4: ProcedureéSchedule schedules the edges in
E by putting together schedul€s ;, i« = log A, ..., 0,which in
turn is formed by putting together schedulgs ;, j = logI',...,0
which forms a schedule of the edgedip B;NW;. We will argue
below that for each = 0, ...,logT, the edges irE: N B; N Wij
can be scheduled in tim@(max. |C(e) N E; N B;|); the Lemma
then follows. Consider the coloring process in steps 15uigino
19 of the algorithm. Let, N B; N W] = {ei1,...,es}, with
l(e1) > £(e2) > ... > {(es). The algorithm chooses a color for
eachey, in this order - the color chosen fey, is the smallest num-
bered color that is not used 6y(ex) N {e1, ..., ex—1}. Therefore,
the number of colors used is at mesax. |C(e) N Ex N B;| + 1.
Since there arbbg I" such sets antbg A sets for each of thing I"
sets, the lemma follows.

Proof for Lemma 5: Fix any timet. For each edge € E, we
defineQ(e) = {¢: : e € P;} to be the set of packets passing
throughC/(e) in the scheduleS’. Consider any edge. LetY; be
an indicator variable, that is 1 if packet € Q(e) crosses some
e € C(e) attimetinS". Then, 3> oY = [Cle) N Eyl.
Let e be thelth edge in pathP; of packetq;. Then,Y; = 1 if
and only if X; = ¢ — [. Therefore,Pr[Y; = 1] < % and
ElCi(e)] = B, cow Yil = 204, cow EIY] < 1 Since the
random delays are chosen independently, the varidhlese in-
dependent Bernoulli trials and by the Chernoff bound, weehav
PriCi(e) > w.E[Ci(e)]] <27%,Vw > 6. Therefore,
Primaxe Ci(e) > w] < Pr\/ 5 Ci(e) > W]

<X ep PriCi(e) > o]

<<z
Therefore,Pr[max. C;(e) > 4logmax{n,C + D}] <

for w = 41log max{n,C + D}.

S S
n(C+D)



