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We describe theoretical and a few practical aspects of an implemented self-applicable partial
evaluator for the untyped lambda calculus with constants, conditionals, and a fixed point

operator.
The purpose of this paper is first to announce the existence of (and to describe) a partial

evaluator that is both higher-order and self-applicable; second to describe a surprisingly simple
solution to the central problem of binding time analysis, and third to prove that the partial

evaluator yields correct answers.

While Lmix (the name of our system) seems to have been the first higher-order self-applicable

partial evaluator to run on a computer, it was developed mainly for research purposes. Two
recently developed systems are much more powerful for practical use, but also much more
complex: Similix [3, 5] and Schism [7].

Our partial evaluator is surprisingly simple, completely automatic, and has been implemented
in a side effect-free subset of Scheme. It has been used to compile, generate compilers and

generate a compiler generator.

Categories and Subject Descriptors: D. 3.1 [Programming Languages]: Formal Definitions and
Theories; D.3.4 [Programming Languages]: Processors; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages; F.4. 1 [Mathematical Logic and Formal
Languages]: Mathematical Logic

General Terms: Languages, Theory

Additional Key Words and Phrases: Compiler generation, lambda calculus, partial evaluation,
self-application

1. INTRODUCTION

1.1 Overview

This paper describes a self-applicable partial evaluator (the first, to our

knowledge) for the untyped lambda calculus with constants, conditionals, and

a fixed point operator. It takes a program in the form of a lambda expression
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and some but not all of its arguments and yields a specialized or residual

lambda expression, which, if applied to the values of the remaining argu-

ments, evaluates to the same result that the original program would have

when applied to all its arguments. 1

The partial evaluator is surprisingly simple, and has been implemented in

a sideeffect-free subset of Scheme. Since it is self-applicable, it can be used

both to compile and generate a compiler when given a programming lan-

guage definition written in the lambda calculus, as for example, a denota -

tional semantics. Both target programs and the generated compiler are in the

form of lambda expressions. A simple example is given of the partial evalua-

tor’s application to semantics-directed compiler generation; some engineering

work would need to be done, however, to apply it to really large language

definitions.

As an example of compilation by partial evaluation: given the denotational

semantics for a small imperative language called Tiny (more details in

Section 5) and the Tiny-version of the factorial program (Figure 1), our

system automatically produces the target program of Figure 2. Note that the

residual program is single-threaded in its store parameters [33]. This means

that they can all be replaced by a single global variable. With the store

parameters removed and the access to the store sequentialized, the residual

program looks like assembly code. Figure 2 displays a target program

obtained by partially evaluating the Tiny interpreter with respect to the

Tiny factorial program of Figure 1; the corresponding generated compiler is

given in Section 5.1.

Earlier semantics-directed compiler generators [1, 25, 29, 39] involved

numerous program components and intermediate languages. These are obvi-

ated in a self-applicable partial evaluator, since self-application allows us to

generate compilers from language definitions automatically, and even to

generate a compiler generator. In contrast with much other work, our partial

evaluator is completely automatic. Target programs, compilers, and the

compiler generator are efficient and have natural structures. Furthermore,

the correctness of the partial evaluator implies (by definition) that these

programs are faithful to the programs from which they were derived.

What is new in this paper. We make three points. First, we report that

the open problem of specializing higher-order programs is solved; second,

describe a surprisingly simple solution to the central problem of binding time

analysis using types; and third, prove that the partial evaluator produces

correct residual programs.
Achieving a higher order, self-applicable partial evaluator has been a goal

for researchers since the first successful self-application of a first-order par-

tial evaluator [21]. There were three breakthroughs in the spring of 1989,

using three significantly distinct methods. This paper describes the simplest

and easiest to understand of the three: a self-applicable partial evaluator for

the lambda calculus. The two other systems treat Scheme programs and

1 In other words, a partial evaluator is a (nontrivial) implementation of Kleene’s S: theorem.
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Fig. 1. Source Tiny factorial program.

variables: result x;

result := 1;

x .—.— 6;

&x

{ result := result * x;

x :=x-1}

((fix (X fac (~ store-1
(if ((=? O) ((access 1) store-l))

store-1

(fat ((A store-3

(((update 1)

((- ((access 1) store-~)) 1))
store–3))

((A store-2
(((update O)

((* ((access 0) ~t~re-2)) ((acce~~ 1) ~tore_2)))

store-2))

store-l)))))))

(((update 1) 6) (((update O) 1) i-store)))

Fig. 2. Factorial residual program-the Tiny interpreter has been specialized with respect to
Factorial.

extend existing self-applicable partial evaluators. One is based on collecting

closures at their site of application [3], and the other represents closures as

partially static structures [7].

The initial pragmatic success was reported in the conference paper [201,

which this paper extends with a correctness proof. More examples and

discussion may be found in [16].

Primary goalsof this work. Denotational semantics was intendedto bea

mathematical description of what programs do rather than how they do it,

but since the lambda calculus maybe implementedon amachine, adenota -

tional semantics is also an executable specification. It is, however, not avery

efficient one, and this led us to consider partial evaluation of the lambda

calculus. A denotational semantics for a programming language may be

regardedas an interpreter for that language written in the lambda calculus.

This approachto language implementation has some severe sources ofineffi -

ciency: for example, each time a construct in the interpreted program is

examined by the interpreter, syntactic dispatch and various bookkeeping

tasks (lookups in environments, symbol-tables) are performed by the inter-

preter. These costs are usually referred to as interpretational overhead, and

the standard solution is to compile programs instead of interpreting them.

Partial evaluation of a denotational description with respect to a concrete

program can yield an efficient lambda expression to compute the program’s

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.
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meaning. Partial evaluation can thus automatically compile programs to the

lambda calculus, given a denotational semantics. In this paper we investi-

gate partial evaluation of the lambda calculus and its application to compila-

tion of programming languages.

We have been able to self apply a partial evaluator for the lambda calcu-

lus. This makes it possible not only to compile from an interpretive language

specification, but also to generate standalone compilers from language defini-

tions, and even a standalone compiler generator. Since we have a correctness

proof for our partial evaluator, the generated target programs and compilers

are known to be faithful to the source programs and language specifications

from which they were derived.

We should also mention that, though this paper focuses on the application

of partial evaluation to compilation and compiler generation, there are other

interesting applications. An example is the generation of an efficient pattern

matcher from a naive hand-written algorithm [91.

What is not done in this article. Our system does not yield production-

quality compilers or target code near machine level. As in S1S [251, the target

code consists of lambda expressions (these could, however, be translated

further into machine code, as in [29, 301). Also, we have not yet tried to

implement a large programming language from a fori-nal definition. Among

many relevant optimizations to apply to the target lambda expressions is the

replacement of function parameters by global variables [33, 351.

Binding time analysis and program annotation. As in all previous self-

applicable partial evaluators, an essential component is the use of a binding

time analysis of the program to be specialized. Its effect is to annotate the

program by marking as “eliminable” those parts which may be computed

during partial evaluation and by marking the remaining parts as “residual.”

Partial evaluation then proceeds by nonstandard execution. The nonresidual

part of the program is interpreted as usual (by beta-reducing applications,

unfolding fixed point operators, etc.), whereas the residual applications and

abstractions are regarded as base functions whose effect is to generate code
(lambda expressions) that is to appear in the residual program.

A nonresidual application has the form operator@ operand, and is executed

at partial evaluation time. A residual application is of form operator @operand,

and this application is not executed at partial evaluation time. Instead, code

is generated for the operator and the operand. Calling the resulting code

pieces operator-code and operand-code, respectively, the result of partially
evaluating the residual application operator @operand will be an application

operator-code@ operand-code, to appear in t~e residual program. One could

thus regard @ as a base function with type Code x Code ~ Code.

For this s~eme to succeed, the annotations must be clearly placed in a

consistent fashion. It does not, for instance, make sense to have the partial

evaluator apply a piece of residual code as if it were a function. In Section 3

we set up a type system to ensure error freedom at partial evaluation time. A

program that is well typed according to this type system is called well

annotated. To paraphrase Milner, well-annotated programs cannot cause the
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partial evaluator to “go wrong. ” The effect of the type system is to clarify the

boundary between compile-time and run-time types in partial evaluation, and

the task of binding time analysis is to determine this boundary before partial

evaluation begins.

Only static computations must be well typed. Using the partial evaluator

to compile from an interpreter requires the interpreter’s static computations

to be well typed, but its dynamic computations need not be. This makes it

possible to partially evaluate interpreters for both strongly typed and un-

typed languages, and still guarantee absence of type errors during compila-

tion, without the need for “type tags. ” Since the target program is a lambda
expression, run-time type security for strongly typed languages can be ob-

tained by type checking as usual.

We use a two-level lambda calculus which differs in several respects from

that of [281. First, we use the second level (our “residual,” their “run-time”)

for code generation, not execution. Second, we do not require programs to be

strongly typed, and so definitions of untyped languages can be handled

easily. Third, our version has led naturally to building a self-applicable

partial evaluator.

The task of binding time analysis (BTA) is the following: given program p

and information as to which arguments will be available during partial

evaluation, annotate enough parts of p as residual so the result is well

annotated. Binding time analysis is thus a sort of type inference, in which

type conflicts are resolved not by reporting type errors but by changing the

conflicting parts, by relabeling them as residual; that is, to be evaluated at

run time. This paper only states what BTA must do; how it is actually done

is described in [151.

For efficiency, as few parts of p as possible should be marked as residual,

consistent with the well typedness of its annotated version. The annotations

also have other uses, which are important but not discussed in this paper—to

avoid generating infinitely large residual programs or duplicating code, that

is, generating multiple copies of the same target operations.

1.2 Lambda Calculus

A very simple language, the classical lambda calculus, is used here in order

to achieve simplicity and allow a more complete description than would be

possible for a larger and more practical language. One intention is to give

useful background for reports on the more advanced, complex and practically

oriented higher-order partial evaluators recently developed by Bondorf,

Danvy, and Consel [3, 5, 71.

A lambda calculus program is an expression, exp, together with an initial

environment, ,0, which is a function from identifiers to values. The program

takes its input through its free variables whose values are supplied by the
environment. The initial environment i~ also expected to map base function

names, such as cons, to the corresponding functions. The expression abstract

syntax is given below and the semantic function d is defined in Figure 3.
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Semantic Domains

Val = Const + Funval

Funval z Val ~ Val

En v = Var ~ Val

E: Expression Y Env - Val

f[var]p = p(var)

f[Avar. exp]p = AvaJue.~&[exp]p[var H value] )fFunval

.5[expl @ expz]p = (S[expl]p~Funval) (t[expz]p)

t[fix exp]p = fix (t[expjp~Funval)

$[if expl expz exps]p = (t[exp~]p~ Ckmst) j ~[exp2]p, $[exps]p

~[const c]p – c~Const—

Fig. 3. Lambda calculus semantics.

Below we describe the notational conventions used in Figure 3 and in the

remainder this paper.

exp: = var Iexp@exp [ )war.exp I if exp exp exp Iflx exp Iconst constant

Notation. Val = Const + Funval constructs the separated sum of domains

Const and Funval. Given an element b ~ Const, u = b? Const ~ Val is tagged

as originating from Const. Conversely, if v is tagged as originating from

Const, u J Const strips off the tag yielding an element in Const; if u has any

other tag, u J.Const produces an error. (We assume that all operations are

strict in the error value but omit details. ) Funval = Val + Val constructs the

Scott domain of partial functions from Val to Val. The notation p[var - value]

is a shorthand for Ax. if (x = var) ualue (p x) and is used to update environ-

ments. VI ~ Uz, UShas the value Uz if VI equals true and value us if UI equals

false.
Since we use lambda calculus both as a programming language and as a

metalanguage, we need to notationally distinguish lambdas that appear in

source programs from lambdas that denote functions. Syntactic lambda

expressions are written in saris serif style: exp@exp, Avar. exp, fix exp. . . . and

the metalanguage is in slanted style: exp@ exp, h var. exp, fix exp . . . . When

a lambda expression is presented as generated by machine, it is written in
type – writer style: (exp exp) , (h var exp).

Informal semantics. The value of a variable var is found by applying the

environment p. The value of an abstraction Nar. exp is a function which

when given the argument value, value, evaluates the body of the function in

an extended environment. The value of an application exp, @exp * is found by
applying the value of expl, which must be a function, to the value of exp ~.

The value of if exp, exp ~ exp~ is the value of either exp ~ or exp~ depending on

whether exp, is true or false. The value of fix exp is the least fixpoint of the
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function to which exp evaluates. The value of const c is just c with a

Const tag. We have identifiers denoting base functions such as cons mapped

to the corresponding functions in the initial environment, and we could have

assigned meaning to first-order constants in the same way. We have, how-

ever, found it useful in practice to have an explicit const operator.

For example, consider the exponential function computing x to the nth

where x and n are free (input) variables. (In the concrete syntax, we omit

some of the explicit application nodes, e.g., for testing whether n’ equals

zero).

(fix Ap.An’.hx’.if (= n’ O) 1 (*x’(p@(-n’1 )@x’ )))@n@x

.Note that the semantic function & in Figure 3 may be regarded as a

self-interpreter for the lambda calculus, since it is easily written as a lambda

expression of form fix M“. Aexp. hp. if. . . .

1.3 Partial Evaluation and the Futamura Projections

Following earlier papers on partial evaluation (e.g., [221), we take L power

[2, 31 to denote the result of running the L-program power on its two input

data, 2 and 3. The idea is to consider a language as mapping a program text

into the function it computes, which has proven valuable in this framework

where programs are data objects. Here L is the lambda calculus. Thus it

holds that L power [2,31 = 9. Given an L-program p, a residual program for

p with respect to partial data dl is a program p~l such that

Lp[cU, cZ2] = Lp~Id2

Suppose p is the power program shown above and dl is n = 2, then a

residual program pz is

(*x(*x 1))

with free variable x. The knowledge that n = 2 is incorporated in the

residual program.

A partial evaluator is a program, which we call mix, that has the property

that when given p and the partial data dl, produces the residual program

Pdl. ThiS is =wtured b the mix equation:

Lp[dl, d2] = L(L mix[p, dl])d2.

Let S and T be programming languages, perhaps (but not necessarily)

different from L. An S-interpreter int written in L is a program that fulfills

S pgm data = L int[ pgm, data] and an S-to-T-compiler comp written in L is

a program that fulfills S pgm data = T(L comp pgm) data.

The Futamura projections [13, 10] state that given a partial evaluator mix

and an interpreter int it is possible to compile programs, and even to

generate standalone compilers and compiler generators by self-applying mix.

The three Futamura projections are

L mid int, pgm] = target

L mix[ mix, int] = compiler
L mix[ mix, mix] = compiler generator or for short: cogen
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Program target is a specialized version of L-program int, and so is itself an

L-program-so translation has occurred from the interpreted language to the

language in which the interpreter itself is written. That the target program

is faithful to its source is easily verified using the definitions of interpreters,

compilers, and the mix equation:

output = S pgm input

= L int[ pgm, input]

= L(L mix[ int, pgm]) input
= L target input

Verification that program compiler correctly translates source programs into

equivalent target programs is also straightforward:

target = L mix[ int, pgm]
= L(L rnix[ mix, int])pgm

= L compilerpgm

Finally, we can see that cogen transforms interpreters into compilers:

compiler = L mix[ mix, int]
= L(L mix[ mix, mix])int

= L cogen int

The equations are easily verified using the definitions of interpreters,

compilers, and the mix equation. These proofs and a more detailed discussion

are presented by Jones et al. [221. Jones et al. reported their first nontrivial

computer realization in [21], where L was a first-order language of recursive

equations. The system we describe here realizes all three Futamura projec-

tions with unlimited use of higher-order functions.

2. PARTIAL EVALUATION USING A 2-LEVEL LAMBDA CALCULUS

The result of applying the BTA (binding time analysis) to an expression is an

annotated expression where the parts that are not to be evaluated at partial

evaluation time are marked. We achieve this with a two-level lambda

calculus, similar in syntax but different in semantics from that presented by

Nielson [26]. In the second phase we blindly obey the annotations: we reduce

all redexes not marked as residual and generate residual target code (also a

lambda expression) for the marked operations. The focus of this section is the

syntax and semantics of our two-level lambda calculus.

The two-level lambda calculus contains two versions of each operator in the

ordinary lambda calculus: for each of the “normal” operators: h, @, . . . there

is also a residual version: ~, @, in the two-level calculus. The abstract
syntax of two-level expression~is the follov, ing.

texp ::= texp@texp I Ivar.texp I if texp texp texp Ifix texp I const constant I

texp@texp I ~var.texp I if texp texp texp I fix texp I const constant I

var I Ifitexp
— —

Intuitively, for all operators X, @, the denotations given by the semantic

function Y in Figure 4 are the same as they would be for first-level semantic

function, and the operators: & @, . . . are suspended, yielding as result a.
ACM Transactions on Programming Languages and Systems, Vol. 14, No 2, April 1992
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Semantic Domains

2Val = Const + 2Funval + Code

2Fun val = 2Val ~ 2Va1

Code = Expression

2En v = Var * 2Va1

T: 2Expression ~ 2Env ~ 2Val

T[var]p = p(var)

7[Xvar. texp]p = Avalrre.(’T[texp] p[var w value] )t2Funval

T[texp~ @ texp~]p = T[texpl]pJ2Funval (T[texp2]p)

T[fix texp]p = fix (T[texp]p.j 21hnval)

T[if texpl texp2 texp3]p = T[texpl]p~Const -+ T[texp2]p, T[texp3]p

T[const c]p = cTConst

T[lift texp]p = build-const(T[texp]pl Const)T Code

T[~var. texp]p = let nvar = newnarne(var)

in build-~ (nvar, T[texp] p[var w nvar]JCode)~Code

T[texp~ Q texpz]p = build- @( T[texpl]pJ Code, ~[texp2]p~ Code)t Code

T& texp]p = build-fix(7[texp]pJ Code)~ Code

‘TV texpl texpz texp~]p = build-if(T[texpl ]pJ Code,

T[texp2]pJCode,

T[texp3]pJ Code)~ Code

‘711const c]p = build-const(c)T Code

Fig. 4. 2-level lambda calculus semantics.

piece of code for execution at run time. The lift operator builds a constant

expression with the same value as lift’s argument. lift is used when a residual

expression has a subexpression with a constant value. 2

A two-level program is a second-level expression texp together with an

initial mix-time environment p., which maps the free variables of texp to

constants, functions, or code pieces. We assume that free variables whose

values are not available at partial evaluation time are mapped to distinct,

new variable names. The %rules then ensure that these new variables

become the free variables of the residual program. Note that variables bound
by ~, will also (eventually) be bound to fresh variable names, whereas

variables bound by h can be bound to all kinds of values: constants, functions,

or (all kinds of) code pieces.

The Xrule for a residual application is

Y–[texpl r@texp2] p = bUild-@(Y– [texpl ] PJ Code, Y_ [texp J PJ Code)? Code—

2 The introduction of lift renders const superfluous since Iift(const c) = const c, but we keep const
in the language for symmetry and as a shorthand.
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The recursive calls Y- [texp, j p and .Y–[texp ~] p produce reduced operator and

operand, and the function build-@ “glues” them together with an application

operator @ to appear in the residual program (concretely, an expression of

the form texp, -code @texp2-code). All the b~~ld-functions are strict.

The projections check that both operator and operand reduce to code pieces,

since it does not make sense to, for example, glue functions together to

appear in the residual program. Finally, the newly composed expression is

tagged as being code.

The %rule for variables is

.Y–[var] p = p(var)

The environment p is expected to hold the values of all variables regardless

of’ whether they are predefine constants, functions, or code pieces. The

environment is updated in the usual way in the rule for nonresidual h, and in

the rule for & the formal parameter is bound to a fresh variable name (which

we assume is available whenever needed):

Y [>var texp] p = let nuar = newname
in build-X( rwczr, .Y–[texp] p[var + nzxzr]J Code)? Code

Each occurrence of var in texp will then be looked up in p, causing var to be

replaced by some var. ,U. Since Jvar.texp might be duplicated, and thus

become the “father” of many h-abstractions in the residual program, this

renaming is necessary to avoid name confusion in residual programs. The

free dynamic variables must be bound to their new names in the initial static

environment p,q. The generation of new variable names relies on a sideeffect

on a global state (a name counter). In principle this could have been avoided

by adding an extra parameter to the semantic function, but for the sake of

notational simplicity we have used a less formal solution.

The valuation functions for two-level lambda calculus programs are given

in Figure 4. The rules contain explicit type checks; Section 3 discusses

sufficient criteria for omitting these.
The function build-@ has type Code x Code + Code and is purely syntac-

tic: it builds a residual first-level expression, which is the application of its

two arguments. The other build-functions have analogous meanings.

3. PROGRAM ANNOTATION

An annotated lambda expression exp ““’ is a two-level expression obtained by

replacing some occurrences of @, k, . . . in exp by the corresponding marked

operator: @, ~, . . . . Clearly, the annotations have to be placed consistently

so that a summand error is not produced in the rules in Figure 4. Below, we

introduce a type system to define well-an notatedness, which ensures error

freedom. Hence, if exp ““ is well annotated, the type checks are superfluous

and can be omitted from the partial evaluation algorithm. Our algorithm

proceeds like this:

(1) Given an expression exp apply BTA, yielding a well-annotated expa””

ACM Transactions on Programmmg Languages and Systems, Vol. 14, No. 2, April 1992,
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(2) Apply the mix program to expan” and p.. The mix program is the %rules

written as a lambda expression without the type checks. p, maps the free

variables of expan n to either constants, functions, or code pieces.

To define well-annotatedness, we introduce a type system for two-level

expressions. The abstract syntax for a two-level type is

type:: = const I type + type I code

We take the assertion form ~ + texp: type to mean that when given type

assumptions ~ on the free variables of texp, the two-level expression texp is

well annotated and of type type. Let t be a two-level type and u be a two-level

value. We say that t suits u iff one of the following holds

(1) t = const and v = ct.? Const for some ct.

(2) t = code and v = cdt Code for some cd.

(3) (a) t = tl-+t2,v = fT2Funval for some f, and
(b) ~w62Val: tl suits w implies t, suits f( w).

A type environment 7 suits an environment p if, for all variables x bound by

p, ~(x) suits p(x).

The type rules of Figure 5 express the type checking part of the second-level

semantics. It is easy to verify that if, for some type t,T I-texp: t and ~ suits

p, then t suits Y [texp] p, and no type error is produced. Note that there do

exist two-level expressions texp that are not well annotated, where ~ [texp] p

does not yield an error. The obvious analogy is that in an untyped language

such as Scheme there exist perfectly legal programs that would not pass a

type system. We are only interested in well-annotated programs. Note also
that type unicity does not hold: the expression Ax.x is well annotated of type

t-+t for any t.

The type rules for the nonresidual operators are the standard ones. For the

residual operators, the rules say that if the subexpressions have type code, so

has the expression itself. All the rules are derived from the way function Y-

tests the tags in Figure 4.

The task of BTA. Given a type assumption r for the free variables of exp,

the task of BTA is to annotate it such that ~ + texp: code. This is done by

marking some parts as residual and inserting lift-operators where necessary.

(The lift-operator converts an expression of type const into an expression of

type code, so that the expression appears in the residual program.) This is in

fact always possible by making all operators residual and inserting lift-

operators around all free variables of type const. Such an annotation is of

course not desirable, since partial evaluation would just return the original

exp with no computation done at all.

f can “go wrong” in other ways than by committing type errors. If .7
reduces too many redexes, reduction might proceed infinitely or residual code

might be duplicated. To avoid this, some redexes should be left in the
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T[X t-+ T2]1- texp: T1

~ 1- ~.texp: T2 -t T1

~ 1- texp: (T1 + T2) ~ (Tl ~ T2)

T ~ fix texp: T1 -+ T2

T } const c: const

-r E texpl: T2 A Tl, ~ t- texp2: T2

~ F texpl @ texp2: T1

r t- texpl: const, T ~ texpz: T, r R texp3: T

r } if texpl texp2 texp3: T

TX I-+ code t- texp: code

T h Ax. texp: code

T k texp: code

T F fi texp: code

T 1- texpl: code, r t- texp2: code

~ E texpl Q texp2: code

T 1- texpl: code, r 1- texp2: code, T } texp3: code

T t- jf texpl texpz texp3:

yx= ;

code

r F texp: const

T 1- lift texp: code

Fig. 5. Typ ~les checking well-annotatedness.

residual program, and it is the job of the BTA to decide which ones. A BTA

algorithm would proceed like this:

(1) Given exp with initial type assumptions ~, annotate exp yielding expann

such that ~ + expa”: code.

(2) Apply finiteness and code duplication analysis. If this step adds any

annotations, go back to step 1.

Part 1 of this procedure has been implemented using a modified version of

Milner’s algorithm W and is described by Gomard [151.

4. CORRECTNESS PROOF FOR MIX

This section is devoted to the formulation and complete proof of a correctness

theorem for our partial evaluator. The existence of a correctness theorem

guarantees that the mix-generated target programs, compilers (etc.), are all
faithful to their specifications. We do not know of any other correctness proof

for a self-applicable partial evaluator. (The paper [11] gives a correctness

proof of an extremely limited partial evaluation scheme.)
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For readability, we consequently omit domain injections and projections in

this section. (The equations are hard enough to read without them.) The

annotation-forgetting function ~: 2Exp - Exp, when applied to a two-level

expression texp returns an expression exp, which differs from texp only in

that all annotations and lift operators are removed.

For readers who are not interested in technical details, we now sketch the

correctness result before we formally state and prove the “real” theorem.

Suppose we are given

(1) a two-level expression texp;

(2) an environment p mapping the free variables of texp to values;

(3) an environment ,o~, mapping the free variables of texp to their mix-time
values (constants, functions, or fresh variable names),

(4) an environment Pd, mapping these fresh variables to values; and

(5) ~ + texp: code if ~ suits p,.

Suppose furthermore that for variables x of type const: p.(x) = p(x), and for

variables y of type code: P~( P.(y)) = P(Y), and that base functions (and other
higher-order values) bound in the environments are handled “correctly” (the

formalization of this is in Definitions 1 and 2). It then holds that if both
# [y- [texp] p,] pd and / [c$(texp)],0 are defined, then

#[Y [texp] p.] Pd = 4’ [Ntexp)l P

Thus, what we prove is that our partial evaluator fulfills the mix-equation as

stated in Section 1.3.

Preservation of termination properties. All nontrivial partial evaluators so

far have had problems with the termination properties of the partial evalua-

tor itself or with the generated residual programs. This partial evaluator is

no exception. Consider again the equation

Z [Y– [texp] p.] pd = & [@(texp)] p

There may be two reasons why one side is defined while the other is not.

(1) If a call-by-value strategy is used, then the right side may be undefined

while the left side is defined. This is due to the inherent call-by-name

nature of partial evaluation. Suppose we have

(Ax.const 2)@bomb

where bomb is a nonterminating expression made residual, thus trivially

terminating at partial evaluation time. Clearly, partial evaluation will

discard the bomb and, clearly, evaluation of 0(( Ax.const 2)@ bomb) will

loop. What has been said elsewhere in the paper does not rely on any

specific evaluation strategy, but the correctness result does rely on our

lambda calculus being nonstrict. For a strict language, a weaker result
holds: if both sides are defined, they are equal. For techniques to avoid

these problems, see Bondorf and Danvy’s paper [5].
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(2) Since mix treats both branches of residual conditional expressions, it is

easy to construct an example where .7 loops on texp where normal

evaluation of @(texp) would terminate. When proving # [Y– [texp] P.] pd =

# [ ~(texp)] p, we assume that Y- is well defined on all subexpressions of

texp. It is always possible to annotate texp such that this condition is

fulfilled—a step towards constructing a binding time analyzer that does

this is taken in [191. If we lift this restriction our correctness result will

be weakened to: if both sides are defined, they are equal.

The rest of the section is devoted to the formalization and proof of the

correctness result outlined above. Readers not interested in this may skip to

the next section without loss of continuity.

The relation # to be defined below (Definition 1) is vital to the correctness

proof. Intuitively, the relation 3? expresses that the function Y– handles a

given two-level expression texp correctly. For an expression of type const, let

the initial environment p be split into a mix-time part p$ and a run-time part

Pd. Relation ~ implies that the result of partial evaluation must be the right
answer:

expressing that if texp has type const, then normal evaluation of the unanno-

tated expression yields the same result as partial evaluation of the annotated

expression. For an expression of type code, relation .?7 implies that the result

of partial evaluation must be an expression, the residual program, which

when evaluated yields the right answer:

# [y– [texp] P.] Pd = H [@(teXp)] P

For expressions of a function type, .4? expresses that the result of applying

the function to a proper argument yields a proper answer.

Definition 1. The relation ~ holds for (texp, p., pd, p, t) E 2Exp x 2Env x

Env x Env x Type iff

(1) ~ 1- texp: t if ~ suits p.,

(2) One of the following holds:

(a) texp has type con.st and 7 [texp] p, = K [@(texp)] p

(b) texp has type code and d [ 7 [texp] p.] pd = d [~(texp)] p

(c) texp has type t = tl+ t2,and

~texpl: 9 (texpl, ,o~, pdj p, t~) implies ‘(texp@texpl, p.> Pd) p! ‘2)

Note that the recursive definition of ~ has finite depth, since in the

definition of W (texp, p,, Pd, p, t) the recursive applications of % concern

tuples (texp’, P:, pi, p’, t’) where t’has fewer type constructors than t.

Since an expression may have free variables, the environments involved

PS, pd, P must in some sense be well behaved. It turns out that the condition
on the environments can also be formulated in terms of 9.

Definition 2. Given a set of identifiers, VarSet, and three environments,

P, P., pd and a type environment r that Suits P,, we say that P., pd? P agree
on VarSet iff vvar c Varset: 2?(var, p., Pd, p, 7-(var)).
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Suppose p., pd, p agree on VarSet. This means that for all variables of type

const: PJX) = p(x), for variables y of type code: ,o~( ,oJy)) = P(Y). For a higher-

order example, suppose ,o~ maps identifier car to a function of type const ~

const. By expanding the definitions of “agreement” and #, we find that

vtexpl: Y– [texpl] ,0. = & [texpl] p implies 7 [car@ texpl] p. = 4 ~car@texpl] P.

THEOREM 3. (Main Correctness Theorem) For all two-level expressions texp

where Y- is defined on all subexpressions of texp, it holds that vpS, p~, p, r.

The following three conditions

(1) ~ suits p.,

(2) p$, p~, p agree on FreeVars(texp), and

(3) r + texp: t for some type t

imply that LZ(texp, p., p~, p, t) also holds.

WOOF. The proof proceeds by induction on the structure of texp. The

proofs for the various cases are found in Lemmas (5 to 19. ❑

COROLLARY 4. Assume texp, p,, pd, p, r given such that T suits p., and

P., pd, P agree on Freevars(texp).

(1) If ~ + texp: const, then f [texp] p. = # ~~(texp)] p

(2) If ~ I-- texp: code, then & [Y- ~texp] p.] pd = 8 [q5(texp)] p

We now introduce a name, #, for the property expressed by Theorem 3. F is

also used as an induction hypothesis in the proof. X expresses that if

environments agree on the free variables of a well-annotated two-level ex-

pression, then the relation 9? will hold for the expression, the environments,

and the type.

Definition 5. Given a two-level expression texp, If (texp) holds if

VP., Pd, p, ~. The following three conditions

(1) T suits p,,

(2) p,, pd, p agree on FreeVars(texp),

(3) ~ E texp: t for some type t,

imply that 4! (texp, p,, pd, p, t) also holds,

The proofs of the following lemmas all proceed in the same way. Assume

texP, PS, pd, P, ~ are given such that the three conditions of Definition 5 are

fulfilled. The inductive assumption gives that W (texp’) for the subexpres-

sions of texp. Except in the case of abstraction, the free variables of texp are

exactly those of the largest proper subexpressions of texp. Thus p,, pd, P

agree on the free variables of these expressions, too (in the case of abstrac-
tion, we have to condwuct some new environment~ ,o~, p:, p’). By well anno -

tatedness of texp, the subexpressions are also well annotated, and the infer-

ence rules of Figure 5 give us types for the subexpressions. This gives us
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some facts of the form % (sub-texp, p., ,od, p, t’), which then leads (with more

or less trouble) to the goal: @ (texP, P., pd? P, t).

LEMMA 6. war: #(var)

PROOF. {var} = FreeVars(var) ❑

LEMMA 7. vc: IY’(const c).

PROOF. Y–[const c] p. = c = d [O(const c)] p. 0

LEMMA 8. VC: .?V(const c).

PROOF. CT[.Y– [const C] p,] pd = # [const c] pd = c = f ~d(const c)] P. ❑

LEMMA 9. ‘dtexp: .%(texp) implies X (Ax. texp).

PROOF. Assume p., pd, p, r are given, satisfying the conditions in llefini-

tion 5. It thus holds that T + Xx.texp: t“where t“must have the form t’+ t.

Assume furthermore that texp’ is given such that ~ Oexp’, P., Pd, P, t’). BY

alpha conversion of Ax. texp, we can assume without loss of generality that x

does not occur in any expressions but the subexpressions of hx.texp. Define

and observe that Vid e FreeVars(texp): J?(id, pj, pd, p’, ~’(id)), since vid e

FreeVars(Ax.texp): Z’(id, p,, Pd, ~, ~(id)) and ~ (~, P’s> pd, P’> “) ‘here ‘(x>

p~, pd, p’, t’) follows frOrn the assumption that @ (texp’, p., Pd, p, t’). we now

have that pi, pd, p’ agree on FreeVars(texp), that r’ suits p; (clear), and that

# E texp: t.Hence 4’ (texp, pi, pd, P’, t) by the induction hypothesis.

We are now close to the desired conclusion: @(( hX.teXP)@texP, p., pd, .0, t).

The last step is Observation 10. ❑

Observation 10. Assume, with the above definitions and assumptions,

that 4Z(texp, p;, pd, P’, t) holds. Then i?((h.texp)@texp,p.,Pd,p,t) also

holds.

PROOF. ‘l’he type t must either have form tl + “ .0 + t. + const or tl +
. . . + t~ + co~e, we assume that t= tl+ ““. + t71+ const. (The opposite

assumption leads to a very similar development. ) BJOW @ (texp, p:, Pd, P’, 0

may be written: Vtexpl, . . . , texPn: (Vi G [1 . . n]: ~ ~ texP,: t, and

@ (texP,, P:, Pd, P’, t,)) implies

# [@(texp@texp, @ “ . “ @expJ] p’
~ Y[texp@texpl @ “”. @?texp.] Pi

where the equation may be rewritten to

(~ [O(texp)] ,0’)(/ [@(texpl )] P’). (~ [O(texpn)ll P’)
= (Y- [texp] p~)(.~ [texp, ] ,OL). . . (Y- [texpnl pi)
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Since x is not free in texpi, vre may again rewrite to get

(8 [+(texp)] ,o’)(fff’ [d(texpl ) ] 0)... (~ [d(texpn)] P)
= (7 [texp] ,oL)(Y [texpl] P,)... (7 [texp.] P,)

Now use the definitions of p: and p’ and the @-rules for Y and 6, to get

(~ [+((Xx.texp)@Xexp’)] P)(8 [O(texpl )] p). . (4 [+(texpJ] ,0)
= (Y [( Ax.texp)@texp’] ,oJ(X [texpl ] p.) . . . (Y- [texpn] p.)

More uses of the @-rules yield

f [+((~x.texp)@texp’@texpl @ ..” (@wn)l @l
Y–[ Y x.texp)@texp’@texp, @ “”” @texpJ P

Now step back and see that the property that we want to establish,

@ ((hx.texp)@texp’, ,0., P&, p, t), maybe written: vtexpl, . . . . texpn: (Vi = [1 . . n]:
T + texpi: ti and 9?(texpi, p., pd, p, t,)) impli-

~ [@((Ax.texp)@texp’@texpl @ “”” @texpJ] P.
= Y–[( Ax.texp)@texp’@ texpl @ “”” @exp.] P

Since x does not appear free in texp,, W (texp,, p., p~, p, t,) is equivalent to

W (texP,, p:, pd, P’, t,), and the claim follows from the above development. ❑

LEMMA 11. vtexp: %’(texp) implies &’(~x.texp).

PROOF. Assume p., pd, p, T are given, satisfying the conditions in Defini-

tion 5. It thus holds that ~ + ~x.texp: code, and thus by the inference rules

that dx * code] i- texp: code.

We assume that we have at hand an infinite list of variable names which

have not previously been used, and when we write xn,W, we refer to an

arbitrary variable from this list.

Observation 12. For all w e Val, it holds that

vid e FreeVars(texp): Q (id, pJx = xn, Wl, pd[xnew w LO], P[X w ~1,
~[x ~ code] (id))

since vid e FreeVars(~x.texp): @ (id, p., Pd, P, ~(id)) and W (x, Ps[x = Xnewl,

Pd[xnew I+ wI, P[X H wI, code).

Since dx = code] clearly suits PJX = xn,Wl and dx * code] ➤ texp: code,

we may conclude from Observation 12 and the induction hypothesis that

v w c Val: W (texp, pJx - xn,W], pd[xn~~ = w], P[x + w], code). TO Prove

Lemma 11, we must show that

We rewrite the left-hand side of the equation:

& [~-[~x.texp],0.] ,od
= & [hXnew.(~-]teXp[P@ - %w])] pd

= Au. t [Y–]texp[PJx H xn.Wl] ~d[xnew _ ‘1

and the right-hand side:

C$~+(>x.texp)],0

= & [1x. +(texp)] p
= Au.& [+(texp)] P[X + u]

ACM Transactions on Programming Languages and Systems, Vol 14, No. 2, April 1992.



164 . C. K. Gomard

It now remains to show that

Au. 3 [Y– [texp] P,[X ++XneWl] Pd[xneW w u] = b. C$[Wexp)] P[X - u]

When the two functions are applied to the same (arbitrary) w e Val, the

equality to be shown is

which follows directly from Y w e Val: .2?(texp, P,[x + xn,Wl, pd[xn,W w w], P[X

H w], code), D

LEMMA 13. Vtexp, texp’: (.Y (texp) am! ~ (texp’)) implies Y (texp@texp’).

PROOF. Assume p., p~, p, T are given, satisfying the conditions in Defini-

tion 5. It thus holds that T t- texp@?texp’: t2 and, by the inference rules,

T ~ kxp: t~ + ~Z.

Since FreeVars(texp@texp’) = FreeVars(texp) U FreeVars(texp’], it follows

from the induction hypothesis that fl (texp, p., pd, p, tl + t2) and

?~(teXp’, p~, Pdj p, t]). Hence ~(texp@texp’, P., pd, P, k?). ~

LEMMA 14. vtexp, texp’: (.% (texp) cfnci Y< (texp’)) implies ,3? (texp@texp’).—

PROOF. Assume p., pd, p, r are given, satisfying the conditions in Defini-

tion 5. It thus holds that ~ t- texp@texp’: code, and hence that ~ ~ texp: code

and ~ + texp’: code. Since FreeV—ars(texp@ texp’) = FreeVars(texp) U Free-

Vars(texp’), it foIlows from the induction hypothesis that

~(texp, p,, Pd, P, code) and @ (texP’, P,, pd, P, code).

LEMMA 15. Wexp: W (texp) implies X (fix texp).

PROOF. We prove Lemma 15 by fixpoint induction. The basic idea is to use

the structural induction hypothesis W (texp) to show the induction step in the

fixpoint induction.

Assume p., p~, P, T a-e given, satisfying the conditions in Definition 5. It

thus holds that ~ E- fix texp: t and T K texp: t+ t.Since FreeVars(fix texp) =

FreeVars(texp), it follows from the induction hypothesis that @ (texp,

Ps, pd> P, t+ t).

By the inference rules of Figure 5, t is of form tl+ .““ + tn+ const, n >0
O1-fl+ . . . ~ t~ - code, n > 0. For now we assume that t = tl + - - - + tn +

const.

We take texpt. to be an (arbitrary) closed two-level expression of type t

such that

Thus ~(tfWL >PSI Pd> P> tl + - “ “ + t~ + const) holds. By induction on m,

repeatedly using @ (bXp, p., ~d, p, t + t), we see that ~ (teXP@(teXP@(. . .

@texp, 1 )), P,, Pd, P, t) where there are m applications of texp holds for any m.
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Since t is of form tl+ ... + tn+ const, !?7(fix texp, p~, pd, p, t) may also be

written as follows: vtexpl, . . . , texp~: @i e [1 . . n]: ~ I- texp,: t, and

a (texpi, p., p~, P, ti)) implies

Y- [(fix texp)@texpl @ .” . @texp.] p. = d [qb((fix texp)@texpl @ “.” @texpn)] p

This equation is shown by

7 [(fix texp)@texpl @ .”” @texpJ p.
= (Y_ [fix texp] ,O.)(Y- [texpl] P.). . . (~ [texpn] ,0,)

= D (Y-[texp] P,) (( Y-[texp] P,) . . . (~ Utexptl ] 0s)) (~- [texpl] P.). . (~itexpn] 0s)

m texp’s

Distribute applications over u , and use Y–’s @-rule

= U (7[(texp@(texp@(. . @texp, ~)))@ texpl @ “”. @texp. [pJ

Use that @(texp@(texp@(. . . @texp,l))@texpl @ “ .0 @texpm, p., pd, p, t) for

all m

= U (& [@(texp@(texp@(. . . @exp, J)))@ texpl @ “”. @texpn] P)
= U (4 [O(texp)] o)((F [d(texp)] p).. . (~ [O(texp, ~)] P))(8 [+(texpl)] p)

. (~ [4(texpn)] p)
= (~ [d(fix texp)] P)(8 [@(texpl )] P). . . (~ U@(texpn)] P)
= & [~((fix texp)@texpl @ . . . @texpn)] p

Iftisof form tl+. ..~tn + code, the proof proceeds in a very similar

manner, and we omit the calculation.

LEMMA 16. vtexp: X (texp) implies W (fix texp).

PROOF. Assume p., p~, p, ~ are given, satisfying the conditions in Defini-

tion 5. It thus holds that ~ F- fix texp: code and 7 + texp: code. Since Free-

Vars(fix texp) = FreeVars(texp), it follows from the induction hypothesis that

@(texti p., p~, p, code).

#[Y [fix texp] p.] Pd

= 6$[fix J=[texp] p.] Pd

= /ix # [7 [texp] ,0,] P~

= I% 6? [@(texp)] p
= & [@(fix texp)] p ❑

LEMMA 17. vtexp, texp’, texp”: (fl(texp) and fl(texp’) and fl(texp”)) im-

plies f (if texp texp’ texp”).

PROOF. Assume p., pd, p, T are given, satisfying the conditions in Defini-

tion 5. It thus holds that 7 I- if texp texp’ texp”: t for some type t. Since

FreeVars(if texp texp’ texp”) = FreeVars(texp) U FreeVars(texp’) U

FreeVars(texp”), it follows from the induction hypothesis and the inference

rules (Figure 5) that fl (texp, p., Pd, p, const), fl (teXP’, p., pd, P, t), and

J? (texp”, p., p&p, t). From @ (texp, p., p~, P, const), we know that ~– [texP[Ps

= # [ O(texp)[ p, and that thus the U: and %rules always choose the same
branch. From this fact and the fact that .~ holds for texp’ and texp” ~ (if
texp texp’ texp”, p,, p, p, t), follows easily no matter whether t is const, code,

or t1+t2. ❑
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LEMMA 18. vtexp, texp’, texp”: (.X (texp) and Y (texp’) and <%(texp”)) im-

plies Yi (if texp texp’ texp”).—

PROOF. Assume p., p~, P, T are given, satisfying the conditions in Defini-

tion 5. It thus holds that ~ t- if texp texp’ texp”: code, and ~ + texp: code,

T t- texp’: code, and r + texp”: Zode. Since FreeVars(if texp texp’ texp”) =

FreeVars(texp) U FreeVars(texp’) U FreeVars(texp”), it–follows from the in-

duction hypothesis that @ (texp, p,, p~, p, code), @ (texp’, p., p~, P, code), and

W (texp”, p., p~, P, code).

4 [Y– [If texp texp’ texp”] p,] Pd

= # [if .Y-!texp] pSY-]texp’[ p,Y- [texp”] p.] p~
= (4 [Y~~texp] p.] Pd) + (f [.7 [texp’] p,] PJ, (t [Y [teXP”] P,] p~)

since W (texp, p., Pd, P, code), 3? (texp’, p,, Pd, p, code), and Y (texp”, p,, p~,

p, code):

= (F [~(texp)] p) + (# [+(texp’)] p), (f [@(texp”)] pd)

= & [@(if texp texp’ texp”)] p ❑
—

LEMMA 19. vtexp: W (texp) implies .x (lift texp).

PROOF. Assume p<, p., p, ~ are given, satisfying the conditions in Defini -

tion 5. It thus holds tha~ ~ + lift texp: code and ~ + texp: const. Since Free-

Vars(lift texp) = FreeVars(texp), it follows from the induction hypothesis that

~(texp, p,, Pd, p, Const).

8 [~– [lift texp] p.] pd
= & ~const ~- [texp] p.] pd
= # [const & [d(texp)~ P] pd
= & [@(texp)] p ❑

5. COMPILATION AND COMPILER GENERATION

In this section we give an interpreter for an imperative language, Tiny,

which has while-loops. We give a denotational semantics in lambda calculus

form and use it to compile and generate a standalone compiler. The syntax of

Tiny-programs is

program ::= var-declaration command
var-declaration ::= variables” variable*
command ::== while expression command I

command, command j
variable: = expression

expression := expression operator expression I
. . . . –2, –l,O,l ,2,...

The semantic functions are given in Figure 6. We use the notation described

in Section 1.2. Nat is the flat domain of natural numbers; Location is the flat

domain of available memory cells, of which first-location is assumed to be the

first. The function next-lot computes the next available location; a,~,f is the

overall undefined store. The environment maps Tiny variables to their

locations in the store.
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Semantic Domains

Store = Location -+ Nat

Environment = Variable -+ Location

P: program ~ Store - Store

P[variables: w,. . . . v~; cmd] a~~,t = C[cmd] (D[vl,.. ., v~] first-location) a,~~~

D: variable* --+ Location -i Environment

D[vl,. . . . Vn] 10C = Aid.id=vl ~ Ioc, (D[vz,.. ., v~Jj next-loc(loc))(id)

D~ 10C = Jx.errorlOC

C: command ~ Environment * Store + Store

C[cl; C2] p a = C[C2] p (c[cl] p a)

C[var := exp] p o = a[p(var) w f[exp~ p u]

C[* exp c] p a = (fix MAal.t.’~exp]=O -+ 01, (C[cll p 01)) a

&: expression -+ Environment -+ Store + Nat

~[expl op expz] p a = (f[expl] p 0) op (f[expz] p a)

t[numj p 0 = num

Fig. 6. Tiny semantics

The semantic functions may easily be written in lambda calculus form

to be partially evaluated. The resulting lambda calculus program, a Tiny-

interpreter, has two free variables: the initial store istore and the program to

be interpreted. Suppose that a Tiny-program is given, but that istore is

unknown. In other words, suppose that we have the type assumptions ~ +

istore: code and ~ + program: const. When we apply the X rules to a well-

annotated version of the Tiny-interpreter and the factorial program of Figure

1, we get the lambda expression of Figure 2. (Both programs are shown in the

Introduction.)

5.1 An Example of Compiler Generation

Self-applying the partial evaluator with respect to the Tiny-interpreter yields

a Tiny to lambda calculus compiler &C. The compiling function WCis essen-

tially a syntactically curried version of the semantic function %’. The opera-

tors annotated as residual in the Tiny-interpreter have been replaced by the

corresponding code-generating actions.

To emphasize these striking structural similarities, we have renamed the

machine-generated variables into names close to those of ~. Figure 7 dis-

plays the generated compiling function %C, syntactically sugared. On the

right-hand side of the equations, we use, for brevity, the syntax-font:

“@”> “~”, . . . where the compilation algorithm builds syntactic expressions,

instead of writing build-@, build-~. . . . Comparison of Figures 6 and 7 shows
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cc[c~; CZJJp = let

CC[var := exp] p = let

U@li!!? exP c1 P = let

01 = new-name(const

cc[c~] p W“ (cc[c~] p

ul = new-name(const

u) in

“@” u~ )

a) in

“update” “@!” p(var) “@” (~c[exp] pal) “K!” al

01 = new-name(const 0)

uz = new-name(const a)

fl = new-name(const i) in
( ‘(fix?? <(A>7f~ ,<c~>>~2 “if” = “@” O “@” (SC[expJJ p 02)

02

H “@”(CC!ICIP “Q”~z))“@”al

Fig. 7. Generated compiling function– ~ is a syntactically curried version of %.

Table I

run run-time ratio

L tiny [fac,6] = 70 program size I ratio

L target 6 = 720 10

~B

7.0 fac 71

L mix [tiny,fac] = 700 target 221 3.1

L comp fac = target 20 35.0 tiny 743

L mix [mix, tiny] = 17600 comp 927 1.3

L cogen tiny = comp 380 46.3 mix 3206

L mix [mix, mix] = 64600 cogen 3811 1.2

L cogen mix = cogen 1330 48.6

that in the generated compiler the run-time (residual) actions of the inter-

preter have been replaced by code-building operations.

6. ASSESSMENT

Table I shows the run-times of our example programs. In the following, ~ac

denotes the factorial program written in Tiny (Figure 1), target denotes the

factorial residual program (Figure 2), tiny denotes the Tiny-interpreter, comp

denotes the generated Tiny-compiler. All the timings are measured in Sun

3/50 cpu milliseconds using Chez Scheme. The sizes are measured as the

number of cons cells plus the number of atoms in the S-expressions represent-

ing the programs.

The interpretative overhead in the mix program is rather large, since all

free variables (input variables and function names) are looked up in the

initial environment, which is linearly organized in our implementation.

Since mix is able to remove interpretational overhead, the speed-ups gained

when mix is partially evaluated are accordingly large (perhaps artificially so;

in earlier work consistent speedups of 5 to 15 have been reported). The size
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ratio between comp and tiny is quite small, since the two programs are very

similar in structure. Some operations in tiny have been replaced by the

corresponding code-generating operations. The same relation holds between

mix and cogen. The absolute sizes of mix and cogen are large because the

initial environments are inlined pieces of code.

7. RELATED WORK

The present work overlaps two areas: partial evaluation, which has empha-

sized automatic program optimization and transformation; and semantics-

directed compiler generation, whose main goal has been to take as input a

denotational semantics definition of a programming language and to obtain

automatically a compiler that efficiently implements the defined language.

7.1 Partial Evaluation

Early work in partial evaluation viewed partial evaluation as an optimizing

phase in a compiler (constant folding), as a device for incremental computa-

tions [24], or as a method to transform imperative Lisp programs [2]. The

latter system was able to handle FUNARGS, but it was not self-applicable

(although the Recompile program amounts to a hand-written version of

cogen). Later work aimed to partially evaluate higher-order and imperative

Scheme programs [17, 34], but still not in a self-applicable way. A paper by

Hannan and Miller derives partial reduction rules for the lambda calculus,

but they do not address the question of when to reduce a redex and when to

refrain [18].

The potential of self-application was realized independently in Japan and

the Soviet Union [10, 13, 36] in the early 1970’s, and experiments were made

without conclusive results. The first actual self-application was realized in

1984 [21, 22] for first-order recursive equations. Since then several other

self-applicable systems have been developed for programs in the form of term

rewriting systems [4], for a simple imperative language [141, for Prolog [121,

for a subset of Turchin’s Refal language [32], and for stronger systems

handling first-order Scheme programs [8, 51.

These systems are reasonably efficient for first-order languages, the gener-

ated compilers were typically between three and ten faster than compiling by

partial evaluation of an interpreter. In all cases, a binding time analysis was

seen as essential for efficient self-application (the reasons for this are detailed

by Bondorf et al. [6]). To our knowledge, no nontrivial and fully automatic

self-applicable higher-order solutions have been developed prior to the one

presented here.

Although it can give dramatic speedups and has much promise, partial

evaluation is no panacea. So far, a characteristic is that obtaining good

results requires careful attention to programming style (workers must know

the strengths and limitations of their tools, even when the tools are very

powerful); an alternative is to use a source-to-source, binding-time-oriented
program transformations (staging) to change program style in deeper ways

[231.
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7.2 Semantics-Directed Compiler Generation

The pathbreaking work in this field was S1S: the Semantics Implementation

System of Mosses [251. S1S implements a pure version of the untyped lambda

calculus using the call-by-need reduction strategy. Compiling from a denota-

tional semantics is done by translating the definition into a lambda expres-

sion, applying the result to the source program, and simplifying the result by

reducing wherever possible. This is clearly a form of partial evaluation. S1S

has a powerful notation for writing definitions, but it is unfortunately

extremely slow, and is prone to infinite loops when using, for example,

recursively defined environments. In our opinion this is due to the fact that

the reduction strategy is “on-line,” and the problem could be eliminated by

annotations such as we have used. (Choosing the annotations so as to avoid

nontermination is admittedly a challenging problem, but we feel it is one

that should be solved before doing partial evaluation rather than during it.)

Paulson [291, Weis [391, and Nielson and Nielson [271 present systems based

on the pure (typed) lambda calculus. The first uses partial evaluation at

compile time. It is considerably faster at compile time than S1S, but still very

slow at run time. Weis’s system [391 is probably the fastest in this category

that has been used on large language definitions. In Nielson’s work, the

greatest emphasis is put on correctness rather than efficiency.

Systems by Pleban [311 and Appel [11 achieve greater run-time efficiency at

the expense of less pure semantic languages—one for each language defini-

tion in the former case, and the lambda calculus with dedicated treatment of

environments and stores in the latter. Finally, Wand’s system and methodol-

ogy [37, 381 require so much cleverness from the user that it is not clear how

it may be automated.

To our knowledge, none of these systems is so powerful that one could

consider using the system to construct its own components; and all are quite

complex, with many stages of processing and intermediate languages. In

contrast, the partial evaluator presented here involves only one language

(with annotations), and all components are derived from a single program,

mix.

8. CONCLUSION

We have developed and successfully self-applied a higher-order partial evalu-

ator. The partial evaluator is based on very simple principles and has been

proven correct; but it is powerful enough to generate efficient residual

programs from a denotational language definition of Tiny and to generate a
standalone compiler with a very natural structure.
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