A Framework for Rapid System-level Exploration,
Synthesis, and Programming of Multimedia MP-SoCs

Mark Thompsont, Hristo Nikolov#, Todor Stefanov?,
Andy D. Pimentelt, Cagkan Erbas?, Simon Polstrat, Ed F. Deprettere*

TDepartment of Computer Science
University of Amsterdam, The Netherlands

{thompson,andy,cagkan,spolstra} @ science.uva.nl

ABSTRACT

In this paper, we present the Daedalus framework, which allows
for traversing the path from sequential application specification to
a working MP-SoC prototype in FPGA technology with the (paral-
lelized) application mapped onto it in only a matter of hours. Dur-
ing this traversal, which offers a high degree of automation, guid-
ance is provided by Daedalus’ integrated system-level design space
exploration environment. We show that Daedalus offers remarkable
potentials for quickly experimenting with different MP-SoC archi-
tectures and exploring system-level design options during the very
early stages of design. Using a case study with a Motion-JPEG en-
coder application, we illustrate Daedalus’ design steps and demon-
strate its efficiency.

Categories and Subject Descriptors
J.6 [Computer-aided Engineering]: Computer-aided design

General Terms

Performance, design

Keywords

Design space exploration, system-level design and synthesis, rapid
prototyping

1. INTRODUCTION

The complexity of modern embedded systems, which are in-
creasingly based on heterogeneous MultiProcessor-SoC (MP-SoC)
architectures, has led to the emergence of system-level design. To
cope with this design complexity, system-level design aims at rais-
ing the abstraction level of the design process. Key enablers to this
end are, for example, the use of architectural platforms to facilitate
re-use of IP components and the notion of high-level system model-
ing and simulation [7]. The latter allows for capturing the behavior
of platform components and their interactions at a high level of ab-
straction. As such, these high-level models minimize the modeling
effort and are optimized for execution speed, and can therefore be
applied during the very early design stages to perform, for example,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS°07, September 30-October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

*Leiden Embedded Research Center
Leiden University, The Netherlands
{nikolov,stefanov,edd} @liacs.nl

architectural Design Space Exploration (DSE). Such early DSE is
of paramount importance as early design choices heavily influence
the success or failure of the final product.

System-level design for MP-SoC based embedded systems typi-
cally involves a number of challenging tasks. For example, applica-
tions need to be decomposed into parallel specifications so that they
can be mapped onto an MP-SoC architecture [10]. Subsequently,
applications need to be partitioned into HW and SW parts since
MP-SoC architectures often are heterogeneous in nature. To this
end, MP-SoC platform architectures need to be modeled and simu-
lated to study system behavior and to evaluate a variety of different
design options. Once a good candidate architecture has been found,
it needs to be synthesized, which involves the synthesis of its archi-
tectural components as well as the mapping of applications onto the
architecture. To accomplish all of these tasks, a range of different
tools and tool-flows is often needed, potentially leaving designers
with all kinds of interoperability problems. Moreover, there typi-
cally remains a large gap between the deployed system-level mod-
els and actual implementations of the system under study, known
as the implementation gap [11]. Currently, there exist no mature
methodologies, techniques, and tools to effectively and efficiently
convert system-level system specifications to RTL specifications.

In this paper, we present the Daedalus framework which ad-
dresses these system-level design challenges. Daedalus’ main ob-
jective is to bridge the aforementioned implementation gap for the
design of multimedia MP-SoCs. It does so by providing an inte-
grated and highly-automated environment for system-level archi-
tectural exploration, system-level synthesis, programming and pro-
totyping. Whereas our prior publications reported on several of
Daedalus’ components in isolation (e.g., [21, 15, 13]), this paper
focuses on how the different components fit together as the pieces
of a puzzle, resulting in a system-level design environment that ad-
dresses the entire design trajectory with an unparalleled degree of
automation. We will illustrate the framework and its design flow
using a case study with a Motion-JPEG encoder application.

The next section provides a birds-eye overview of Daedalus, af-
ter which the three subsequent sections present the three core tools
that constitute Daedalus in more detail. More specifically, Section
3 explains how multimedia applications are automatically decom-
posed in parallel specifications. Section 4 describes how — given the
parallel application(s) — promising candidate architectures can be
found using our system-level modeling, simulation and exploration
methodology and toolset. In Section 5, we explain how selected
candidate architectures can be automatically and rapidly synthe-
sized, programmed and prototyped. Section 6 presents a Motion-
JPEG case study to illustrate Daedalus’ design flow. In Section 7,
we present related work, after which Section 8 concludes the paper.

2. THE DAEDALUS FRAMEWORK

In Figure 1, the design flow of the Daedalus framework is de-
picted. As mentioned before, Daedalus provides a single environ-
ment for rapid system-level architectural exploration, high-level
synthesis, programming and prototyping of multimedia MP-SoC
architectures. Here, a key assumption is that the MP-SoCs are
constructed from a library of pre-determined and pre-verified IP
components. These components include a variety of programmable
and dedicated processors, memories and interconnects, thereby al-
lowing the implementation of a wide range of MP-SoC platforms.
The remainder of this section provides a high-level overview of
Daedalus, after which the subsequent sections zoom in on its core
components and how they interact with the rest of the design flow.

Starting from a sequential application specification in C or C++,
the KPNgen tool [21] allows for automatically converting the se-
quential application into a parallel Kahn Process Network (KPN)
[8] specification. Here, the sequential input specifications are re-
stricted to so-called static affine nested loop programs, which is an
important class of programs in, e.g., the scientific and multimedia
application domains. By means of automated source-level transfor-
mations [17], KPNgen is also capable of producing different input-
output equivalent KPNs, in which for example the degree of paral-
lelism can be varied. Such transformations enable application-level
design space exploration.

The generated or handcrafted KPNs (the latter in the case that,
e.g., the input specification did not entirely meet the requirements
of the KPNgen tool) can subsequently be used by our Sesame mod-
eling and simulation environment [15] to perform system-level ar-
chitectural DSE. To this end, Sesame uses (high-level) architec-
ture model components from the IP component library. Sesame
allows for quickly evaluating the performance of different appli-
cation to architecture mappings, HW/SW partitionings, and target
platform architectures. Such DSE should result in a number of
promising candidate system designs, of which their specifications
(system-level platform description, application-architecture map-
ping description, and application description) act as input to the
ESPAM tool [13]. This tool uses these system-level input specifi-
cations, together with RTL versions of the components from the IP
library, to automatically generate synthesizable VHDL that imple-
ments the candidate MP-SoC platform architecture. In addition, it
also generates the C/C++ code for those application processes that
are mapped onto programmable cores. Using commercial synthe-
sis tools and compilers, this implementation can be readily mapped
onto an FPGA for prototyping. Such prototyping also allows for
calibrating and validating Sesame’s system-level models, and as a
consequence, improving the trustworthiness of these models.

Ultimately, we aim at traversing Daedalus’ design flow — going
from a sequential application to a working MP-SoC prototype in
FPGA technology with the application mapped onto it — in a matter
of hours. Evidently, this would offer great potentials for quickly
experimenting with different MP-SoC architectures and exploring
design options during the early stages of design. As our case study
in Section 6 shows, we are well underway of achieving this goal.

3. PARALLELIZING APPLICATIONS

Today, traditional imperative languages like C or C++ are still
dominant with respect to implementing applications for SoC-based
architectures. It is, however, difficult to map these imperative im-
plementations, with typically a sequential model of computation,
onto MP-SoC architectures that allow for exploiting task-level par-
allelism in applications. In contrast, models of computation that
inherently express task-level parallelism in applications and make

10

Application
(C/C++)

System-level architectural exploration
- (Sesame)
— l
—

High-level L \
models T
3 Platform spec. Mapping spec. Kahn Process
Library of IP in XML in XML Network in XML System-level
components T T T specification
RTL v v 1
models | Automated system-level synthesis
(ESPAM)
RTL
Platform IP cores cgég?;r Auxiliary specification
c > ;
8 netlist in VHDL processors files
©
S
©
© -
~ RTL synthesis
‘5 (commercial tool, e.g. Xilinx Platform Studio)
= n
s {} Gate-level
specification
—————————————— Xbar i

=>
]
MP-SoC

Figure 1: The Daedalus design flow.

communications explicit, such as CSP [5] and Process Networks
[8], allow for easier mapping onto MP-SoC architectures. How-
ever, specifying applications using these models of computation
usually requires more implementation effort in comparison to se-
quential imperative solutions.

In Daedalus, we start from a sequential imperative application
specification (C/C++) which is then automatically converted into a
Kahn Process Network (KPN) [8] using the KPNgen tool [21]. This
conversion is fast and correct by construction. In the KPN model
of computation, parallel processes communicate with each other
via unbounded FIFO channels. Reading from channels is done in
a blocking manner, while writing to channels is non-blocking. We
use KPNs for application specifications because this model of com-
putation nicely fits the targeted media-processing application do-
main and is deterministic. The latter implies that the same applica-
tion input always results in the same application output, irrespective
of the scheduling of the KPN processes. This provides complete
scheduling freedom when, as will be discussed later on, mapping
KPN processes onto MP-SoC architecture models for quantitative
performance analysis and design space exploration.

As mentioned before, KPNgen’s input applications need to be
specified as so-called static affine nested loop programs to allow for
automatic parallelization of applications. As a first step, KPNgen
can apply a variety of source-level transformations to these specifi-
cations in order to, for example, increase or decrease the amount of
parallelism in the final KPN [17]. Subsequently, the C/C++ code is
transformed into single assignment code (SAC), which resembles
the dependence graph (DG) of the original nested loop program.
Hereafter, the SAC is converted to a Polyhedral Reduced Depen-
dency Graph (PRDG) data structure, being a compact mathemati-
cal representation of a DG in terms of polyhedra. Finally, a PRDG
is converted into a KPN by associating a KPN process with each
node in the PRDG. The parallel KPN processes communicate with
each other according to the data dependencies given in the DG.

In Figure 2, a Kahn Process Network example is given in which
three processes (A, B and C) are connected using three channels
(CH1-3). Figure 2(a) shows the XML description of Kahn process
B as generated by KPNgen. The XML describes both the topology
of the KPN (i.e., how the processes are connected together, see e.g.
lines 20-25) as well as the communications and computations per-
formed by processes. In our example, process B executes a function
called compute (line 8). The function has one input argument (line
9) and one output argument (line 10). The relation between the

1 <process nam
<port name = | direction = "out" />
<var name = "out_0" type = "myType"/>

1 void main() {
for (int k=2; ke=2"N—-1; k++){
read(p2, in_0, sizeof(myType));

</port compute(in_0, out_0);
5 <port name = "p2" direction = "in" /> 5 write(p1, out_0, sizeof(myType));
<var name ="in_0" type = "myType" />
</port }

<process_code name = "compute” >
<arg name = "in_0" type = "input" />
10 <arg name = "out_0"type = "output" /> 10
<loop index ="k" parameter ="N" >
<loop_bounds matrix = "[1, 1,0,-2;"
1,-1,

void read(byte *port, void *data, int length) {
int *isEmpty = port + 1;
for (int i=0; i<length; i++){
// reading is blocked if a FIFO is empty
> while (*isEmpty){

<par_bounds matrix = "[1,0,-1,384;" (byte* data)l[i] = *port; // read data from a FIFO
15 w115)
1,0, 1, -3]'>
</loop }
</process_code . . .
</process > void write(byte *port, void *data, int length) {
e int *isFull = port + 1;
20 <channel name = CH2 > 20 for (inti=0; i<length; i++){

/I writing is blocked if a FIFO is full
while(*isFull) { }
port = (byte data)l[i]; // write data to a FIFO

<fromPort name = "p1"/>

<fromProcess name ="A" />

<toPort name = "p:

<toProcess name =
25 </channel

B" I> }
25}
b) Program code, generated by ESPAM

a) XML specification of a KPN

Figure 2: A Kahn Process Network example.

function arguments and the communication ports of the process is
given in lines 3 and 6. The function has to be executed 2+ N —2
times as specified by the polytope in lines 12-13. The value of N is
between 3 and 384 (lines 14-15).

From the XML specification, Daedalus allows for automatically
generating the C/C++ code implementing the behavior of each KPN
process. This is done by the ESPAM tool, which will be dis-
cussed later on. Figure 2(b) shows, for example, the generated C
code for process B (some variable declarations have been omitted).
The code contains the main behavior of a process, together with
the read/write communication primitives. In accordance with the
XML specification in Figure 2(a), the function compute — which is
derived from the original sequential application specification — is
part of a loop that iterates 2« N — 2 times. For synthesis purposes,
Daedalus also allows for generating the code for the read and write
communication primitives, as shown in Figure 2(b). Currently,
these primitives are implemented using polling and memory-mapped
I/0. Note that the implementation of the write primitive is blocking
since at implementation level FIFO channels are bounded in size.

4. DESIGN SPACE EXPLORATION

Given a (set of) KPN application specification(s) — as for exam-
ple generated by KPNgen or devised by hand — and the components
in Daedalus’ IP library, the Sesame system-level simulation frame-
work [15] addresses the problem of finding a suitable and efficient
target MP-SoC platform architecture. Figure 3 illustrates Sesame’s
layered infrastructure for the case in which a Motion-JPEG applica-
tion is studied with a crossbar-based distributed-memory MP-SoC
as target architecture. Sesame deploys separate application and ar-
chitecture models, where an application model describes the func-
tional behavior of an application and an architecture model defines
architecture resources and captures their performance constraints.
After explicitly mapping an application model onto an architecture
model, they are co-simulated via trace-driven simulation. This al-
lows for evaluation of the system performance of a particular ap-
plication, mapping, and underlying architecture. Essential in this
methodology is that an application model is independent from ar-
chitectural specifics and assumptions on hardware/software parti-
tioning. As a result, a single application model can be used to exer-
cise different hardware/software partitionings and can be mapped
onto a range of architecture models, possibly representing differ-
ent architecture designs or modeling the same architecture design
at various levels of abstraction.

11

XML descriptions

Structural Video-
description + 0 > out
run-time - 7
parameters H | ! ! T
| Event \ : ' !
1trace ' ! ' Kahn Azpllicalion
| | ; ! : ' model
Bmfmg A A !‘ y Y‘ Y T
i . / S !
scheduling DD|::>) AN ot Mapping layer
policies ; N S) 1
—_ : ' : :
Architecture
model
Structural l
description +
performance
parameters

Crossbar switch

Figure 3: Sesame’s layered infrastructure.

For application modeling, the computational and communica-
tion behavior of the KPN application specifications are captured
using application event traces. The computation and communi-
cation events in these traces typically are coarse grained, such as
Execute(DCT) or Read(channel_id, pixel-block). To generate the
application events, the C/C++ code of each Kahn process is in-
strumented with annotations that describe the application’s com-
putational actions. In addition, Sesame provides read and write
communication primitives that generate communication events as
a side-effect. So, by executing the KPN model, each process gen-
erates its own trace of application events, representing the workload
that is imposed on the underlying MP-SoC architecture model.

An architecture model simulates the performance consequences
of the computation and communication events generated by an ap-
plication model. To this end, each component in the architecture
model is parameterized with performance parameters specifying
the latencies of computation events like Execute(DCT), communi-
cation transactions, and memory accesses. This approach allows to
quickly assess, e.g., different HW/SW partitionings by simply ex-
perimenting with the latency parameters of processing components
in the architecture model: a low computational latency refers to a
HW implementation while a high latency mimics a SW solution.

To bind application tasks to resources in the architecture model,
Sesame provides an intermediate mapping layer. It controls the
mapping of Kahn processes (i.e. their event traces) onto archi-
tecture model components by dispatching application events to the
correct architecture model component. The mapping also includes
the mapping of Kahn channels onto communication resources in
the architecture model. The mapping layer has two additional pur-
poses. First, the event dispatch mechanism in the mapping layer
provides a variety of static and dynamic policies to schedule appli-
cation tasks (i.e., their event traces) that are mapped onto shared
architecture model components. Second, the mapping layer is also
capable of dynamically transforming application events into (lower-
level) architecture events in order to facilitate flexible refinement of
architecture models [15].

The output of system simulations in Sesame provides the de-
signer with performance estimates of the system(s) under study
together with statistical information such as utilization of architec-
tural components (idle/busy times), the contention in a system (e.g.,
network contention), profiling information (time spent in different
executions), critical path analysis, and average bandwidth between
architecture components. Such results allow for early evaluation of
different design choices, identifying trends in the systems’ behav-
ior, and can help in revealing performance bottlenecks early in the
design cycle. Here, the exploration process is also facilitated by
the fact that system configurations (bindings, scheduling and arbi-
tration policies, performance parameters, and so on) are specified

using XML descriptions. Hence, different system configurations
can be rapidly simulated without remodeling and/or recompilation.

As a result of the design space exploration with Sesame, a small
set of promising MP-SoC platform instances can be selected for
automatic synthesis (see next section). Each selected platform in-
stance is specified using two XML files. One describing the ar-
chitectural platform at the system level, i.e. which IP components
are used in the platform and how they are interconnected. And the
other describing how application tasks are mapped onto the plat-
form components.

S. SYSTEM-LEVEL SYNTHESIS

The system-level specifications that result from DSE — describ-
ing (the structure of) the application and platform architecture as
well as the mapping of the former onto the latter — are given as
input to the ESPAM tool for system-level synthesis [13]. To guar-
antee correctness-by-construction, ESPAM first runs a consistency
check on the provided platform instance. This includes finding
impossible and/or meaningless connections between system-level
platform components as well as parameter values that are out of
range. Subsequently, ESPAM refines the abstract platform model
to a parameterized RTL model which is ready for an implemen-
tation on a target physical platform. The refined system compo-
nents are instantiated by setting their parameters based on the tar-
get physical platform features. Finally, ESPAM generates program
(C/C++) code for each programmable processor in the multipro-
cessor platform in accordance with the application and mapping
specifications. To this end, it uses the XML specifications gener-
ated by KPNgen. In addition, ESPAM also provides the support
for scheduling the code in the case multiple application processes
are mapped onto a single processor in the platform. Currently, this
code scheduling is performed statically.

The output of ESPAM, namely an RTL specification of the MP-
SoC platform, is a model that can adequately abstract and exploit
the key features of a target physical platform at the register trans-
fer level. It consists of four parts (as shown in Figure 1): 1) a
platform topology description defining in greater detail the struc-
ture of the multiprocessor platform; 2) hardware descriptions of
IP cores containing predefined and custom IP cores used in 1).
These IP cores, which are selected from Daedalus’ IP component
library, include programmable as well as dedicated processors, var-
ious memory components (FIFO buffers, random access memory,
etc.), and different interconnects (point-to-point links, shared bus
with various arbitration mechanisms, and a crossbar switch). For
programmable processors, ESPAM currently uses PowerPCs and
Microblazes since it targets Xilinx Virtex-II-Pro FPGA technology
for prototyping the synthesized MP-SoCs. ESPAM also automat-
ically generates custom IP cores needed as a glue/interface logic
between components in the platform; 3) the program code for pro-
cessors — as mentioned before, to execute the software parts of
the application on the synthesized multiprocessor platform, and 4)
Auxiliary information containing files which give tight control on
the overall specifications, such as defining precise timing require-
ments and prioritizing signal constraints.

With the above descriptions, a commercial synthesizer can con-
vert an RTL specification to a gate-level specification, thereby gen-
erating the target platform gate-level netlist (see the bottom part of
Figure 1). At this moment, ESPAM facilitates automated MP-SoC
synthesis and programming using Xilinx VirtexII-Pro FPGAs and
therefore uses the Xilinx Platform Studio (XPS) tool as a back-end
to generate the final bit-stream file that configures the FPGA. How-
ever, our framework is general and flexible enough to be targeted
to other physical platform technologies as well.

12

6. A CASE STUDY

This section presents a case study in which we applied Daedalus
to explore different implementation options for a Motion-JPEG (M-
JPEG) encoder application mapped onto a heterogeneous MP-SoC
architecture. The case study illustrates Daedalus’ design steps and
demonstrates its potentials to quickly experiment with different MP-
SoC architecture designs during the very early stages of design.

The KPN specification of the M-JPEG application was derived
from sequential C code using the KPNgen tool as described in Sec-
tion 3. A small manual modification (taking no longer than 30
minutes) to the original M-JPEG code was necessary to meet the
KPNgen input requirements. The resulting Kahn application spec-
ification consists of 6 processes, as shown in the top part of Figure
3. Generating the KPN specification is a one-time effort since the
same specification is used for all subsequent implementation and
exploration steps.

To study target MP-SoC architecture instances for the M-JPEG
application, we selected a crossbar-based MP-SoC platform with
up to 4 processors (MicroBlaze or PowerPC) and distributed mem-
ory. At the bottom part of Figure 3, a 4-processor instance of
this platform is depicted. We modeled this platform architecture
with the Sesame framework. The processor, memory and inter-
connect components in our architecture model were taken directly
from Daedalus’ high-level model component library. Only the per-
formance parameters specific to the selected platform architecture
needed to be specified, such as the latencies for computational ac-
tions, the latencies for setting up and communicating over the cross-
bar, and so on. We determined the values of these performance
parameters by a combination of measurements on an ISS simula-
tor (for the computational latencies on the MicroBlaze and Pow-
erPC processors) and on the actual hardware itself. Note that this
needs to be done only once for each application, since the values
can be reused throughout the exploration process. More informa-
tion about the calibration of our architectural performance models
can be found in [16]. Moreover, the mapping layer in our system-
level model is configured such that it models the static scheduling
scheme as facilitated by the ESPAM framework (see Section 5).
To this end, for shared architecture components, the mapping layer
dynamically groups trace events that originate from the same Kahn
process and interleaves these event groups in the same manner as
would be the result of ESPAM’s static scheduling.

In our design space exploration experiments, we selected three
degrees of freedom, namely the number of processors in the plat-
form (1 to 4), the type of processors (MicroBlaze or PowerPC)
and the mapping of application processes onto the processors. For
the sake of simplicity, the network configuration (crossbar switch)
as well as the buffer/memory sizes remained unaltered (although
these could also have been included in the exploration). For this
particular case study, we were able to exhaustively explore the re-
sulting design space — consisting of 10,148 design points — using
system-level simulation, where the M-JPEG application was exe-
cuted on 8 consecutive 128x128 resolution frames for each design
point. As can be seen in Table 2, this design space sweep took
2.5 hours, demonstrating Sesame’s efficiency. Figure 4 shows for
three platform instances the relation between mappings and system
performance, where we sorted the different mapping instances on
performance. It clearly illustrates the importance of finding a good
mapping since non-optimal mappings on larger MP-SoC platforms
may perform worse than a good mapping on smaller MP-SoCs.

To validate our DSE experiments, we selected a number of de-
sign points with random application-to-architecture mappings and
synthesized and prototyped them using ESPAM. The results of
these validation experiments are shown in Figure 5. Note that a

Millions of Cycles

5.5e+08

5e+08 |-

4.5e+08 -

4e+08 -

3.5e+08 |-

Cycle time

3e+08 3‘

2.5e+08 -

4 Processor Platform with 2 MicroBlazes

3 Processor Platform with 2 MicroBlazes

20+08 7_,-' 2 Processor Platform with 1 MicroBlaze

1.5e+08 . L . L
0 50 100 150

Mapping instances

Figure 4: Performance of mappings on different platforms.

synthesized platform can only contain up to two PowerPCs due to
the Xilinx Virtex-II-Pro FPGA chip (xc2vp20) that is used for pro-
totyping. For the chosen design points, our abstract system-level
simulations adequately show the correct performance trends, with
an average error of 12% and worst-case error of 19%. The inaccu-
racies in terms of absolute cycle numbers are mainly caused by the
modeling of the PowerPC processors. This because these proces-
sors are connected to the crossbar using a bus that is also used for
access to the processor’s local data and instruction memory. Since
we do not explicitly model (contention on) this bus, our abstract
PowerPC performance model is too optimistic.

Naturally, we also used our exploration results to find the best
mapping for each platform instance. The graph on the left-hand
side in Figure 6 shows the best design points found by our DSE for
purely MicroBlaze based platforms, together with the real measure-
ments from the prototypes of these design points. Clearly, our ab-
stract performance models quite accurately reflect the performance
behavior of the actual systems. When introducing one PowerPC
in the platform, as depicted on the right-hand side in Figure 6, the
absolute errors become larger (due to the inaccuracy of our current
high-level PowerPC model, as explained above) but the correct per-
formance trend is still shown. For MP-SoCs with more than two
processors, this inaccuracy seems to be amortized again.

Simulation results Prototyping results

_—

=

3
2 Number of
Number of
MicroBlazes

Millions of Cycles
8
8

4

L
processors

Number of
MicroBlazes

Figure 5: Validation experiment: simulation results (left) and

actual measurements (right).

To give an impression of overall resource utilization of the mul-
tiprocessor systems that are generated by Daedalus’ ESPAM tool,
Table 1 shows the utilization of FPGA resources for an MP-SoC
containing 4 MicroBlazes. Here, we recognize FPGA resource uti-
lization for the entire MP-SoC, as well as specific utilization re-
sults for the Communication Controllers (CCs) that glue together
the processors with the interconnect and the crossbar interconnect
itself. As can be seen, the MP-SoC only takes about 40% of the
FPGA slices, of which about 5% is used for the communication
components. We note that the high BRAM usage reported in the
last column is due to the complexity of the M-JPEG application,

2 Number of
processors

13

Platforms with 1 PowerPC

simulation m real

MicroBlaze based platforms

simulation M real
400

®
3
3

~
S
3

600

@
2
3

s
38
3

Millions of Cycles
@
8

Millions of Cycles

N
3
3

3
3

o

4 1:0

32 43

1 2 3 21
Number of processors Processors:MicroBlazes

Figure 6: Best mapping results for MicroBlaze based platforms
(left) and platforms with one PowerPC (right).

which causes each processor’s local program and data memory to
be quite large. We emphasize that the high BRAM usage is not
caused by the implementation of the communication memories (the
FIFO memories to which the Kahn channels are mapped), since
they only use a maximum of 9 BRAMs.

Table 1: Resource Utilization for MicroBlaze based system.

#Slices #4-Input LUT | #Flip-Flops #BRAMs

4 proc. system [3653 (39%) 4748 (25%) 2357 (12%) 85 (60%)
4 CCs 288 (2%) 468 (2%) 116 (1%) —
4-Port crossbar 397 3%) 587 (3%) 56 (1%) —

Table 2 shows a breakdown of the execution time for each step in
Daedalus’ design flow in the case that one selected MP-SoC plat-
form instance (a 4-processor MicroBlaze based architecture) is syn-
thesized and implemented. The processing times were measured
on a 1.8 GHz Pentium 4. Note that some of the steps only need
to be performed once (such as the KPN derivation), after which,
for example, the synthesis and physical implementation stages can
be iterated several times to prototype different platform instances.
The results from Table 2 demonstrate that the entire design trajec-
tory, from sequential application specification to MP-SoC proto-
type executing the parallelized application on top of it, takes only
a matter of hours. Evidently, this allows designers to quickly pro-
totype and assess different platform instances and implementation
choices during the very early design stages. Also noticeable is the
fact that the system-level DSE component (Sesame) still requires a
relatively high amount of manual effort. The manual effort listed in
Table 2 is mainly due to the construction of the platform architec-
ture model and the adaptation/construction of scripts that perform
the automatic design space exploration. Not taken into account is
the calibration of model components, which is a one-time effort for
every application that is studied.

Table 2: Processing Times (hh:mm:ss).
Tool KPN Syst.level | Systlevelto | Physical Manual
Derivation DSE RTL conv. Impl. effort
KPNgen 00:00:22 - - - 00:30:00
Sesame - 02:30:00 - - 01:30:00
ESPAM - - 00:00:24 - 00:10:00
XPS tool - - - 02:09:00 —

7. RELATED WORK

Systematic and automated application-to-architecture mapping
has been widely studied in the research community. The closest
to our work is the Koski MP-SoC design flow [18]. Koski also
provides a single infrastructure for modeling of applications, auto-
matic architectural design space exploration, and automatic system-
level synthesis, programming, and prototyping of selected MP-SoCs.

But unlike Daedalus, Koski does not allow for parallelization of ap-
plications, nor design space exploration at application level. Koski
requires applications to be specified by hand in UML. Other exam-
ples of related work can be found in [20, 9, 2, 4]. However, these
efforts are limited to processor-coprocesor architectures [20], only
provide a limited degree of automation [9, 2], or do not provide an
automated step towards the register transfer level [4].

Companies such as Xilinx and Altera provide design tool chains
attempting to generate efficient implementations starting from de-
scriptions higher than (but still related to) the register transfer level
of abstraction. The required input specifications are still so detailed
that designing a single processor system is still error-prone and time
consuming, let alone designing alternative multiprocessor systems.
In contrast, Daedalus raises the design to an even higher level of
abstraction allowing the exploration, design and programming of
multiprocessor systems in a short amount of time.

Work focusing on the mapping of applications onto MP-SoCs, in
the form of programming models, can be found in, e.g., [14, 6].

With respect to Daedalus’ DSE component (i.e., Sesame), there
are a number of related architectural exploration environments (e.g.,
[3, 1, 12, 19]) that facilitate flexible system-level performance eval-
uation by providing support for mapping a behavioral application
specification to an architecture specification. In comparison to most
related efforts, Sesame tries to push the separation of modeling ap-
plication behavior and modeling architectural constraints at the sys-
tem level to even greater extents. Doing so, it aims at optimizing
the potentials for model re-use during the exploration cycle.

8. CONCLUSIONS

In this paper, we presented the Daedalus framework that tries
to bridge the so-called implementation gap between system-level
platform specifications and the actual physical implementations of
these platforms. To this end, Daedalus focuses on the design of
multimedia MP-SoC platforms. As such, it provides an integrated
and highly-automated environment for system-level architectural
exploration, system-level synthesis, programming and prototyping.
Such a framework offers remarkable potentials for quickly experi-
menting with different MP-SoC architectures and exploring system-
level design options during the very early stages of design. We
illustrated Daedalus’ design steps and demonstrated its efficiency
using a case study with a Motion-JPEG encoder application. Main
research directions for the future are increasing the level of automa-
tion even further, relaxing the constraints put on the input appli-
cation specifications (e.g., handling more dynamic applications),
developing more advanced design space steering and pruning tech-
niques by means of e.g. genetic algorithms, and the inclusion of
high-level power modeling during DSE.

9. REFERENCES
[1] A. Cassidy, J. Paul, and D. Thomas. Layered, multi-threaded,

high-level performance design. In Proc. of the Design,
Automation and Test in Europe, March 2003.

D. Lyonnard et al. Automatic Generation of
Application-Specific Architectures for Heterogeneous
Multiprocessor System-on-Chip. In Proc. of the Design
Automation Conference (DAC’2001), June 18-22 2001.

F. Balarin et al. Metropolis: An integrated electronic system
design environment. I[EEE Computer, 36(4), April 2003.

A. Gerstlauer and D. Gajski. System-level abstraction
semantics. In Proc. 15th Int. Symposium on System Synthesis
(1S8S°02), pages 231-236, Oct. 2-4 2002.

C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8), August 1978.

(2]

(3]
(4]

(5]

14

[6] A. A. Jerraya, A. Bouchhima, and F. Pétrot. Programming
models and hw-sw interfaces abstraction for multi-processor
SoC. In Proc. of the Design Automation Conference (DAC),
pages 280-285, 2006.

K. Keutzer et al. System level design: Orthogonalization of
concerns and platform-based design. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
19(12), Dec. 2000.

G. Kahn. The semantics of a simple language for parallel
programming. In Proc. of the IFIP Congress 74, 1974.

M. J. Rutten et al. A Heterogeneous Multiprocessor
Architecture for Flexible Media Processing. IEEE Design &
Test of Computers, 19(4), 2002.

G. Martin. Overview of the MPSoC Design Challenge. In
Proc. Design Automation Conference (DAC), San Francisco,
USA, July 24-28 2006.

A. Mihal and K. Keutzer. Mapping concurrent applications
onto architectural platforms. In A. Jantsch and H. Tenhunen,
editors, Networks on Chips, pages 39-59. Kluwer Academic
Publishers, 2003.

S. Mohanty and V. K. Prasanna. Rapid system-level
performance evaluation and optimization for application
mapping onto SoC architectures. In Proc. of the IEEE
International ASIC/SOC Conference, 2002.

H. Nikolov, T. Stefanov, and E. Deprettere. Multi-processor
system design with ESPAM. In Proc. of the Int. Conf. on
HW/SW Codesign and System Synthesis (CODES-ISSS’06),
pages 211-216, Oct. 2006.

P. G. Paulin et al. Parallel Programming Models for a
Multiprocessor SoC Platform Applied to Networking and
Multimedia. IEEE Trans. on VLSI Systems, 14(7), 2006.

A. D. Pimentel, C. Erbas, and S. Polstra. A systematic
approach to exploring embedded system architectures at
multiple abstraction levels. IEEE Transactions on
Computers, 55(2):99-112, 2006.

A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas. On
the calibration of abstract performance models for
system-level design space exploration. In Proc. of the Int.
Conf. on Embedded Computer Systems: Architectures,
MOdeling, and Simulation (IC-SAMOS), pages 71-77, 2006.
T. Stefanov, B. Kienhuis, and E. F. Deprettere. Algorithmic
transformation techniques for efficient exploration of
alternative application instances. In Proc. of the Int.
Symposium on Hardware/Software Codesign (CODES),
pages 7-12, May 2002.

T. Kangas et al. UML-based multi-processor SoC design
framework. ACM Trans. on Embedded Computing Systems,
5(2):281-320, May 2006.

T. Kogel et al. Virtual architecture mapping: A SystemC
based methodology for architectural exploration of
system-on-chip designs. In Proc. of the Int. workshop on
Systems, Architectures, Modeling and Simulation (SAMOS),
pages 138-148, 2003.

T. Stefanov et al. System design using Kahn process
networks: The Compaan/Laura approach. In Proc. of the Int.
Conference on Design, Automation and Test in Europe
(DATE), pages 340-345, Feb. 2004.

S. Verdoolaege, H. Nikolov, and T. Stefanov. PN: a tool for
improved derivation of process networks. EURASIP Journal
on Embedded Systems, 2007.

(7]

[8

—_—

(9]

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

