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ABSTRACT
3D stacked wafer integration has the potential to improve multipro-
cessor system-on-chip (MPSoC) integration density, performance,
and power efficiency. However, the power density of 3D MPSoCs
increases with the number of active layers, resulting in high chip
temperatures. This can reduce system reliability, reduce perfor-
mance, and increase cooling cost. Thermal optimization for 3D
MPSoCs imposes numerous challenges. It is difficult to manage as-
signment and scheduling of heterogeneous workloads to maintain
thermal safety. In addition, the thermal characteristics of 3D MP-
SoCs differ from those of 2D MPSoCs because each stacked layer
has a different thermal resistance to the ambient and vertically-
adjacent processors have strong temperature correlation.

We propose a 3D MPSoC thermal optimization algorithm that
conducts task assignment, scheduling, and voltage scaling. A
power balancing algorithm is initially used to distribute tasks among
cores and active layers. Detailed thermal analysis is used to
guide a hotspot mitigation algorithm that incrementally reduces the
peak MPSoC temperature by appropriately adjusting task execution
times and voltage levels. The proposed algorithm considers leak-
age power consumption and adapts to inter-layer thermal hetero-
geneity. Performance evaluation on a set of multiprogrammed and
multithreaded benchmarks indicates that the proposed techniques
can optimize 3D MPSoC power consumption, power profile, and
chip peak temperature.
Categories and Subject Descriptors: C.1.4 [Processor Architec-
tures]: Parallel Architectures; C.5.4 [Computer System Implemen-
tation]: VLSI Systems
General Terms: Design, Algorithms, Performance

1. INTRODUCTION
Multiprocessor system-on-chips (MPSoCs) are now widely used

in application-specific systems and high-performance computing.
They offer performance, design and implementation complexity,
power consumption, and thermal benefits over massively super-
scalar uniprocessor architectures. Their use, and scales, will in-
crease dramatically in the coming years. According to Tony Massi-
mini, chief of technology at semiconductor research and consulting
company Semico Research, 16-core processors will be common
within the next four years [1]. Intel plans to deliver processors that
have dozens or hundreds of cores during the next decade [2].

Increasing functionality and performance requirements, com-
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bined with the increasing impact of global interconnect delay, will
push designers toward more aggressive technologies in order to in-
crease integration density and decrease communication delay. Us-
ing the mainstream two-dimensional (2D) planar CMOS fabrica-
tion process, on-chip interconnect shows poor scalability in both
performance and power consumption. Three-dimensional (3D)
fabrication technology can improve integration density and inter-
connect delay by using vertical interconnects [3, 4, 5, 6, 7]. Major
vendors plan to start shipping 3D MPSoCs incorporating through-
silicon-vias within a year [8].

Temperature control is one of the key challenges for 3D MPSoC
design. Increasing chip power consumption and temperature af-
fect circuit performance, reliability, cooling cost, packaging cost,
and power consumption. 3D integration results in power density
increasing linearly in the number of vertically-stacked active lay-
ers, complicating thermal-aware design relative to 2D MPSoCs.
Thermal issues that can sometimes be safely ignored in 2D planar
processes (e.g., self-heating, thermal runaway, and temperature-
induced performance degradation) become increasingly prominent
in 3D MPSoCs. 3D integration holds promise for MPSoCs. How-
ever, before it is practical new solutions are needed for the thermal
problems it brings.

Thermal optimization of 3D MPSoCs is complex. An MPSoC
must support numerous concurrent tasks. Different tasks exhibit
distinct power and thermal characteristics. Managing heteroge-
neous workloads to optimize performance and temperature is chal-
lenging. In addition, the thermal characteristics of 3D MPSoCs
differ from those of 2D MPSoCs. In 3D MPSoCs, each active layer
has a different thermal resistance to the ambient. Moreover, since
the thickness of active layers in 3D MPSoCs is within the range of
tens of microns, inter-layer temperature correlation is much higher
than intra-layer temperature correlation, i.e., heat flows easily be-
tween vertically-adjacent processor cores while lateral core-to-core
heat flow is limited. This heterogeneity complicates thermal opti-
mization of 3D MPSoCs.

2. PAST WORK AND CONTRIBUTIONS
Our work draws upon research in MPSoC synthesis and thermal-

aware integrated circuit (IC) design.
Given an embedded system specification, MPSoC synthesis [9]

is the process of determining the set of processor cores to use, the
assignment of computational tasks and communication events to
processor cores and interconnect, and the schedule of tasks and
communication events. Some work also considers and integrates
MPSoC physical design and voltage control. Most prior work
on MPSoC synthesis attempts to minimize or constrain system
cost and execution time [10, 11, 12, 13], or in some cases en-
ergy. Schmitz, Al-Hashimi, and Eles developed a task mapping
and scheduling algorithm for energy minimization in distributed
embedded systems [14]. Mishra et al. describe a technique dy-
namic and static power management techniques for multiprocessor
real-time systems [15]. Hu et al. present a method of using voltage
islands in SoC designs that minimizes power consumption, area
overhead, and number of voltage islands [16].
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Thermal analysis and thermal-aware IC design are becoming in-
creasingly important. Various thermal modeling and optimization
techniques have been proposed. Skadron et al. develop HotSpot, a
compact thermal modeling technique for steady-state and dynamic
IC thermal analysis [17]. Li et al. propose a steady-state IC thermal
model using multigrid iterative method [18]. Yang et al. developed
ISAC, a multi-domain chip-package thermal analysis method, us-
ing spatially and temporally adaptive techniques to speedup steady-
state, time-domain, and frequency domain thermal analysis [19].
Our uses an enhanced version of ISAC for thermal analysis.

Mukherjee, Ogrenci Memik, and Memik developed a temperature-
aware algorithm for resource allocation and binding in high-level
synthesis [20]. Gu et al. propose a thermal-aware unified physical-
level and high-level synthesis system [21]. Paci et al. indicate
that thermal optimization is unnecessary in low-power 2D MP-
SoCs [22]. However, this conclusion does not generalize to high-
performance 3D MPSoCs, for which power densities are higher
and the thermal resistances to ambient are larger. Xie and Hung
propose a thermal-aware task allocation and scheduling algorithm
to minimize IC peak temperature [23].

Thermal optimization of 3D ICs has focused on physical de-
sign. Cong et al. propose a thermal-aware 3D floorplanning al-
gorithm [24]. Hung et al. develop a thermal-aware floorplanner
which considers the interconnect power consumption [3]. Goplen
and Sapatnekar propose a thermal-aware placement solution for 3D
ICs [25].

In this work, we propose a 3D MPSoC temperature optimization
algorithm. Task assignment, scheduling, and voltage scaling are
conducted to optimize 3D MPSoC peak temperature under func-
tionality and timing constraints. Peak temperature is interesting
because it limits maximum operating frequency, influences the cost
of cooling solutions, and impacts reliability. This work has the fol-
lowing main contributions:
1. We investigate the impact of the heterogeneous characteristics
of 3D IC thermal properties and the heterogeneous workload power
characteristics on 3D MPSoC thermal optimization. Our study pro-
vides general guidance for 3D MPSoC thermal optimization.
2. We propose and evaluate an iterative system-level thermal op-
timization algorithm for 3D MPSoCs that conducts thermal-aware
task assignment, scheduling, and voltage scaling. This algorithm
first balances spatial power density and then uses feedback from
thermal analysis of a detailed 3D MPSoC thermal model to guide
an iterative hotspot mitigation algorithm that minimizes peak tem-
perature. Our results indicate that although power minimization
and power density balancing serve as useful starting points for ther-
mal optimization, feedback from a detailed thermal model permits
significantly lower peak temperatures. To the best of our knowl-
edge, this is the first system-level thermal optimization algorithm
for 3D MPSoCs.

3. 3D MPSOC THERMAL
OPTIMIZATION

This section defines the 3D MPSoC thermal optimization prob-
lem, gives an overview 3D-Wave, the proposed optimization flow,
and explains the optimization algorithms in detail.

3.1 Problem Analysis
In this article, we propose a solution to the following problem.

Given
1. A multi-layer 3D chip-level multiprocessor composed of numer-
ous processing elements;
2. A geometrical thermal model consisting of the chip and package
heat capacities and thermal conductivities; and
3. A real-time workload consisting of a set of periodic directed
acyclic graphs of data-dependent tasks, each of which has an exe-
cution time and power consumption at a predefined peak operating
voltage and frequency,
determine an assignment of tasks to processor cores, a schedule
of tasks, and independent dynamic voltage and frequency scaling

Processor core
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Silicon layer 0

Silicon layer 1

Heatsink
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Circuit board

Figure 1: 3D MPSoC chip package structure.

(DVFS) schedules for each processor core in order to optimize the
3D MPSoC peak temperature under the following operation and
timing constraints:
1. All tasks must finish execution before their deadlines;
2. For each inter-task precedence constraint, the start time of the
child must be later than the finish time of the parent;
3. The execution intervals assigned to the same processor core may
not overlap; and
4. The voltage of each processor core must always be within the
valid operating range.
The optimization variables for this problem are task execution
times, task start times, the processor cores to which all tasks are
assigned, and operating voltages for all tasks.

Next, we discuss 3D MPSoC thermal properties and run-time
workload characteristics. We then explain the challenges of the
thermal optimization problem.
3D MPSoC thermal characteristics: Figure 1 illustrates 3D MP-
SoC chip and package design. An MPSoC chip contains multiple
vertically-stacked silicon layers. Each silicon layer contains pro-
cessor cores and memory modules. One side of the MPSoC chip
is connected to a carrier layer, is attached to the circuit board. The
other side of the chip is attached to the cooling solution. The pri-
mary heat dissipation path is from the silicon layers through the
cooling solution to the ambient. Therefore, for each silicon layer
i, the thermal resistance to the ambient can be estimated using the
following equation.

Ri,ambient =
i

∑
j=1

R j, j−1 +R0,cooling +Rcooling, ambient (1)

where R j, j−1 is the thermal resistance between silicon layer j and
j−1; R0,cooling is the thermal resistance between silicon layer 0 and
the cooling solution; and Rcooling, ambient is the thermal resistance
from cooling solution to the ambient. Equation 1 implies the ther-
mal heterogeneity for 3D MPSoCs. Processor cores in the silicon
layers closer to cooling solution have higher thermal efficiencies,
i.e., lower thermal resistances to the ambient.

Within a 3D MPSoC, inter-processor thermal correlation is het-
erogeneous. Inter-layer thermal correlation is significant. Among
vertically-adjacent processors, each processor’s power consump-
tion has direct impact on its neighbors’ temperatures. On the other
hand, since the thickness of each silicon layer in 3D MPSoC is
within the range of tens of microns, lateral heat flow among neigh-
boring processors within the same silicon layer is negligible, i.e.,
intra-layer thermal correlation is weak.
Workload characteristics: A 3D MPSoC supports a large quan-
tity of tasks with distinct performance and power characteris-
tics. For each task with execution time exei, task start time
start i, and task deadline deadlinei, the slack-execution time ra-
tio, deadlinei−start i−exei

exei , characterizes the maximum allowed perfor-
mance slowdown and corresponding potential power and tempera-
ture reduction of this task. In addition, different tasks are result in
different run-time switching activities, directly affecting 3D MP-
SoC power consumption.

In summary, heterogeneous thermal characteristics and run-time
workload complicate 3D MPSoC thermal optimization. To mini-
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Figure 2: Overview of 3D MPSoC thermal optimization flow.

mize 3D MPSoC peak temperature under a performance constraint,
one must consider thermal and workload heterogeneity throughout
the 3D MPSoC synthesis flow, including task assignment, schedul-
ing, slack distribution, as well as voltage and frequency scaling.

3.2 3D-Wave Overview
This section gives an overview of the proposed 3D MPSoC ther-

mal optimization flow, which we call 3D-Wave. As shown in Fig-
ure 2, an energy-aware task assignment algorithm conducts work-
load distribution and power balancing among cores (Section 3.4.1).
Timing slack distribution and voltage and frequency scaling then
minimize 3D MPSoC average power consumption (Section 3.4.2).
An iterative optimization loop is then entered (Section 3.5). Within
this loop, dynamic thermal analysis is used to determine the 3D
MPSoC spatial and temporal thermal profile. These data are used
to locate the tasks responsible for the highest temperature and re-
duce their supply voltages and frequencies in order to permit re-
duced temporal power density, thereby reducing the peak tempera-
ture. The schedules and operating voltages of other tasks are again
adapted using the iterative hotspot mitigation algorithm. This pro-
cess repeats until convergence.

3.3 Modeling
Our 3D MPSoC power model estimates both dynamic power and

leakage power consumption. Leakage power is dependent on op-
erating voltage and temperature. We use the piecewise linear tech-
nique proposed by Liu et al. to model leakage power and tempera-
ture dependency [26].

Given an IC chip-package design with N discrete elements, the
thermal analysis problem can be described as follows:

CT (t)′+AT (t) = Pu(t) (2)
where the thermal capacitance matrix, C, is an [N ×N] diagonal
matrix; the thermal conductance matrix, A, is an [N×N] sparse ma-
trix; T (t) and P(t) are [N×1] temperature and power vectors; and
u(t) is the time step function. In this work, we consider temporal
changes in thermal profile, i.e., we use dynamic thermal analysis in
which the effects of heat capacity are explicitly modeled. For either
the dynamic or steady-state versions of the problem, although di-
rect solutions are theoretically possible, the computational expense
is too high for use on high-resolution thermal models. In this work,
we use ISAC for fine-grained dynamic modeling [19]. This algo-
rithm is designed for accurate thermal analysis that is sufficiently
fast for use in the inner loop of synthesis algorithms.

3.4 Constructive Power Balancing and
Minimization Algorithm

This section describes a constructive algorithm for peak temper-
ature minimization in 3D MPSoCs. The solution produced by this
algorithm can be further optimized using the iterative hotspot miti-
gation algorithm described in Section 3.5.

3.4.1 Power Balancing Task Assignment
3D-Wave optimizes peak temperature by balancing temporal and

spatial power density in 3D MPSoCs. First, it uses constructive

Algorithm 1 Power balancing task assignment
1: Compute EFT for each task
2: Prioritize the sequence S of the tasks in order of EFT
3: for all task s ∈ S do
4: Calculate pT = pp× rp, the thermal impact of processor p
5: pT min = argminp∈T pT
6: Tentatively assign task s to pT min, the processor with min.

thermal impact
7: Add a precedence constraint from the latest task on p to s
8: end for

task assignment to balance the average power and temperature dis-
tribution among processors. As shown in Algorithm 1, tasks are
prioritized in the order of earliest finish time (EFT). In steps 4–
7, the total energy consumed by tasks assigned to each processor
is calculated. Processors in different layers have different power
to thermal impact ratios. For example, processors closer to the
heatsink can safely execute tasks with higher power consumptions
than those farther from the heatsink. Step 5 evaluates the thermal
impact of assigning to each processor core, pT . It calculates the
average power consumption of each processor pp weighted by the
average thermal resistance of the processor to the ambient rp. Task
s is then tentatively assigned to the processor with the minimal ther-
mal impact. During task assignment, a new precedence constraint
is added from the latest task on the target processor to the new task
in order to prevent temporal overlap. The result of Algorithm 1 is a
power distribution among processors that is appropriately weighted
for temperature minimization. This initial distribution will be fur-
ther improved by later optimization stages.

3.4.2 Slack Distribution and Voltage Scaling
Task slack distribution is used to permit voltage scaling, which

permits temporal power density and peak temperature minimiza-
tion. To address 3D MPSoC workload and heat flow heterogene-
ity, 3D-Wave uses the same weighted average power consumption
as an objective function during slack distribution. Note that the
results produced by this constructive algorithm will later be im-
proved using the iterative hotspot mitigation algorithm described
in Section 3.5.

Given a set of sequential tasks, the thermal resistance weighted
slack distribution problem is equivalent to deciding the execution
time of each task such that the thermal resistance weighted energy
consumption is minimized under a hard constraint on path execu-
tion time. We shall use the following variables and constants: D is
the bound on path execution time; p is the set of all tasks on the
path; di is the task’s execution time; vi is the task’s voltage; Vt is
the threshold voltage constant; K is an execution time constant; E
is the total path energy consumption; ei is the thermal resistance
weighted energy required for a task; Ci is the switched capacitance
constant of a task’s processor core; Ri is the thermal resistance from
the task’s processor core to the ambient; and α is the alpha power
law constant [27].

di =
Kvi

(vi−Vt)α subject to the constraint D≥ ∑
i∈p

di (3)

However, Vt is small and a very low value of v will generally imply
an unacceptable path delay that will be prevented by the constraint
in Equation 3. Therefore, we may assume Vt is small, thus

di '
Kvi

vα
i

and vi =
(

di

K

) 1
1−α

(4)

ei = RiCiv2
i = RiCi

(
di

K

) 2
1−α

and (5)

E = ∑
i∈p

RiCi

(
di

Ki

) 2
1−α

then min
∀i∈p

vi

∑
i∈p

RiCi

(
di

Ki

) 2
1−α

(6)
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Algorithm 2 Slack distribution
1: Compute all task slacks
2: Group task slacks into same-slack paths, P
3: Sort paths in order of increasing slack
4: while p in P do
5: Assign slack to tasks in p according to Equations 3 and 7
6: Recompute all task slacks
7: end while

Note that a decrease in vi implies a decrease in ei, which implies
an increase in di. Therefore, for minimal E, D = ∑i∈p di. Consider
the delay and energy trade-off for an arbitrary pair of tasks:

e12 =
R1C1

K1
2

1−α

(d1)
2

1−α +
R2C2

K2
2

1−α

(d12−d1)
2

1−α (7)

We assign task durations that honor Equation 7 and the constraint
in Equation 3. By granting slack to each task in the path such that
its time is proportional to its time share, we produce an a favor-
able initial dynamic voltage and frequency scaling schedule. How-
ever, this schedule is not perfect because assigning non-minimal
task time shares eventually reduces scheduling flexibility. Limita-
tions on task start times may influence the earliest start times and
latest finish times of tasks on other paths as a result of precedence
constraints and resource contention. In order to avoid deadline vi-
olations, slack distribution is conducted on task paths in order of
increasing path slack. A modified depth-first search for generating
paths is conducted on a graph in which each vertex is a task labeled
with its slack and each edge is a data dependency. Vertex children
are visited in increasing order of slack, thereby guaranteeing that
vertices on multiple paths will be included in minimal-slack paths.

As shown in Algorithm 2, starting from the minimal-slack path,
slack is distributed to tasks according to Equations 3 and 7. After
slack sharing is completed for a given path, the slacks of all nodes
are recomputed and slack distribution proceeds for the next path.
The voltage of each task is then scaled to the lowest value permit-
ting completion within its assigned time interval. Although this
algorithm is not guaranteed to produce minimal-energy solution,
it provides a starting point for the iterative optimization algorithm
described in Section 3.5.

3.5 Iterative Hotspot Mitigation Algorithm
This section describes an iterative hotspot mitigation algorithm

to further improve the peak temperature resulting from the task as-
signment, scheduling, and DVFS solution produced by the con-
structive power balancing and minimization algorithm. This algo-
rithm iteratively detects and eliminates temporal hotspots to opti-
mize 3D MPSoC peak temperature.

As shown in Algorithm 3, within each iteration 3D MPSoC peak
temperature is first computed using dynamic thermal analysis (step
2). Tasks within the peak temperature region are identified and
recorded in a critical task set (step 3). For each selected task, this
algorithm determines the potential reduction in peak temperature
resulting from adjusting the slack distribution between this task and
its neighboring tasks. The slack time of the task is increased by δt
and the slack time of its parent and child tasks are each decreased
by δt/2. Dynamic thermal analysis is used to estimate the peak
temperature reduction (step 10), which is then recorded with the
corresponding slack time adjustment setup (step 11 and 12). Next,
the initial slack distribution is restored and the algorithm evaluates
the impact of increasing the slack of other candidate tasks (step 13).
After evaluating all the tasks primarily responsible for the temporal
hotspot, this algorithm selects the task whose expansion decreased
the peak temperature the most (step 15). It then updates the slack
time adjustment coefficient δt (explained below) and conducts dy-
namic thermal analysis to identify next thermal hotspot. This pro-
cess continues till no peak temperature improvement.

Several algorithm design decisions merit further discussion. First,
we describe the method of identifying tasks responsible for tem-
poral hotspots. In a 3D MPSoC, tasks executed concurrently on
vertically-adjacent processor cores are thermally correlated. When
a temporal hotspot occurs, tasks executed on both the hotspot pro-

Algorithm 3 Iterative hotspot mitigation
1: while 3D MPSoC peak temperature can be reduced do
2: Compute peak temperature
3: Find critical task set S within the peak temperature region
4: for each task s ∈ S do
5: Prolong s’ execution time by δt
6: for each task s′, where s′ is s’s parent or child task do
7: Reduce s′’s execution time by δt/2
8: Slack time validation
9: end for

10: Recompute peak temperature
11: Record local slack adjustment
12: Record new peak temperature
13: Restore initial slack distribution
14: end for
15: Apply the slack adjustment with lowest peak temperature
16: Adjust δt
17: end while

cessor and vertically-adjacent processors should be considered.
Second, the slack time adjustment coefficient, δt, should be care-
fully selected. A large value should be used initially to speed peak
temperature reduction. However, the value should decrease as tem-
poral thermal variation decreases to permit convergence. Our anal-
ysis shows that a simple multiplicative adaption policy, i.e., reduc-
ing δt by 10% every 100 iterations, provides both good runtime
efficiency and stability. Third, dynamic thermal analysis is used to
guide the proposed iterative optimization flow. Even though ther-
mal analysis increases computational complexity, it can accurately
locate temporal hotspots and determine the complex thermal impli-
cations of changes to task execution times and voltages. As shown
in Section 4.2, this algorithm consistently produces higher-quality
solutions than a solution based on task power consumption, alone.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results for 3D-Wave, the

proposed 3D MPSoC thermal optimization algorithm. Section 4.1
describes the experimental setup and the benchmarks used to eval-
uate 3D-Wave. The algorithm consists of a constructive power bal-
ancing and minimization algorithm and a thermal analysis driven
iterative hotspot mitigation algorithm. Section 4.2 gives a detailed
characterization of each optimization stage. These data indicate
that 3D-Wave produces solutions with low average power con-
sumption and then balances spatial and temporal power variation
in order to minimize 3D MPSoC peak temperature.

The experiments were conducted on AMD 64 X2 Linux work-
stations with 2 GB of RAM. All the optimization runs require less
than 400 s of CPU time.
4.1 Experimental Setup

This section describes the 3D MPSoC chip package setup and
the benchmarks used to evaluate 3D-Wave.

We consider a two-layer front-to-back eight-core 3D MPSoC ar-
chitecture. Each silicon layer contains four Alpha 21264 micropro-
cessor cores. Each processor core has a size of 4.56 mm×4.56 mm.
The thickness of the top silicon layer is 50 µm. The thickness of the
bottom silicon layer is 0.5 mm; this layer is thicker in order to pro-
vide mechanical support. There is a 10 µm polyimide glue layer be-
tween silicon layers. We model a forced-air cooling solution. The
3D MPSoC chip is attached to a copper heat sink through a 50 µm
thermal grease interface layer. We use a detailed thermal analysis
algorithm to evaluate heat flow through this stacked wafer thermal
model [19]. These analysis results provide guidance to 3D-Wave
during optimization.

The proposed 3D MPSoC thermal optimization algorithm is
evaluated using testing traces generated from 22 multiprogrammed
and multithreaded benchmarks. Table 1 shows the benchmarks
we used from MediaBench, ALPBench, and SPEC2000 bench-
mark suits. The M5 multi-processor full-system simulation envi-
ronment [28] with integrated dynamic and leakage power models is
used to gather the execution and power consumption traces of these
benchmarks and convert them into 22 task graphs. The traces are
produced by dividing the execution of processes into short discrete
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Table 1: Members Benchmark Suites

SPEC2000 applu, bzip2, gap, gcc, gzip, lucas, mcf, mgrid,
parser, perlbmk, twolf

MediaBench adpcmdec, g721enc, g721dec, gsmenc, gsmdec,
jpegenc, jpegdec

Alpbench mpgenc, mpgdec, sphinx3, tachyon

time intervals corresponding to tasks and assigning each such task
a power consumption based on processor power simulation. Using
these 22 task graphs, ten benchmarks were constructed. Each of
these is composed of 11 of the 22 task graphs.

4.2 Performance Evaluation
3D MPSoC peak temperature is loosely related to average power

consumption; minimizing average power consumption is a useful
first step in thermal optimization. However, it is also necessary
to consider detailed spatial and temporal power density in order
to optimize peak temperature. 3D-Wave uses a two-stage opti-
mization flow. A constructive power balancing and minimization
algorithm (PBMCA) combined with a thermal analysis driven it-
erative hotspot mitigation algorithm (IHM) is used to minimize
chip power consumption and optimize thermal profile. To eval-
uate 3D-Wave, we characterize the power and thermal impact of
PBMCA and PBMCA+IHM (3D-Wave) separately. The thermal
optimization of 3D-Wave is guided by dynamic thermal analy-
sis. To determine whether power consumption can be used as
a computationally-efficient estimate of temperature, we also con-
sider IHM-P, which uses the iterative hotspot mitigation algorithm
guided by peak power consumption instead of peak temperature.
More specifically, during each iteration, the task with the highest
power consumption instead of the highest temperature is chosen
for voltage reduction.

Table 2 shows the 3D MPSoC peak temperature and power char-
acteristics produced by PBMCA, IHM-P, and 3D-Wave. We will
explain the implications of the data in this table in the following
sections.

4.2.1 Power Optimization
3D MPSoC peak temperature is roughly related to chip aver-

age power consumption. If power density variation is neglected,
MPSoC temperature is linearly proportional to average power con-
sumption. PBMCA uses path-based slack distribution as well as
voltage and frequency scaling to minimize chip power consump-
tion. As shown in Table 2, compared to initial workload average
power consumption (column 2), PBMCA can effectively reduce
chip average power consumption (column 3). Among these ten
benchmarks, PBMCA can reduce chip average power consumption
by 23.4% on average and 29.3% at most.

4.2.2 Spatial Thermal Profile Balancing
The temperature at any time and position in a 3D MPSoC is

strongly influenced by spatial and temporal variations in power
density. PBMCA uses energy-aware task assignment to balance
3D MPSoC spatial power profile. In Table 2, the column labeled
“Var.” shows the maximum difference among the average power
consumption of the eight processor cores. PBMCA can balance 3D
MPSoC spatial power profile and constrain the maximum inter-core
average power variation to 11.2%.

4.2.3 Temporal Thermal Profile Balancing
In Table 2, the three columns labeled “Temp.” show the peak

3D MPSoC temperatures produced by PBMCA, IHM-P, and 3D-
Wave. Note the corresponding average power consumptions in the
columns labeled “Power”. Although these three algorithms pro-
duce similar power consumptions, considering temporal variations
in power density permits further temperature reduction. IHM-P
balances temporal power profile. 3D-Wave uses dynamic thermal
analysis to guide the iterative hotspot mitigation algorithm. It is

Table 2: Results for PBMCA, IHM-P, and 3D-Wave

Benchmark PBMCA IHM-P 3D-Wave

Num. Power Power Var. Temp. Power Temp. Power Temp.
(W) (W) (%) (K) (W) (K) (W) (K)

1 72.9 57.3 9.9 448.9 55.3 367.6 55.7 364.7
2 83.3 62.4 9.6 391.0 61.0 374.4 60.0 363.6
3 86.4 61.1 8.9 393.4 60.9 372.6 60.3 363.6
4 70.4 58.9 9.8 388.5 56.9 382.3 58.4 365.8
5 72.4 54.0 8.8 377.9 53.5 368.0 53.8 364.4
6 82.4 62.3 8.7 389.1 60.5 372.4 61.0 366.2
7 74.2 59.3 7.6 384.0 58.4 375.5 59.0 368.7
8 96.6 72.6 7.6 395.9 64.0 378.8 70.0 376.7
9 72.3 56.1 11.2 391.6 54.3 369.0 55.4 364.7
10 80.6 60.3 11.0 382.2 59.3 368.9 59.9 365.4

more effective because its optimization moves are guided by ac-
curate dynamic temperature estimates instead of task power con-
sumptions, which permit only rough estimates of temperature.

Figure 3 shows the 3D MPSoC run-time power consumption and
peak thermal profile produced by PBMCA, IHM-P, and 3D-Wave.
Due to space limitations, Figure 3 only includes the results of three
benchmarks (Benchmark 1, 6, and 10). The other benchmarks show
a similar trend. These figures demonstrate the impact of temporal
power variation on 3D MPSoC peak temperature and the effective-
ness of the temporal power balancing and peak temperature mitiga-
tion algorithm used by 3D-Wave. Compared to PBMCA, 3D-Wave
can reduce 3D MPSoC peak temperature by 27.9 °C on average.

Figure 4 demonstrates the iterative thermal optimization process
of the dynamic thermal analysis driven iterative hotspot mitiga-
tion (IHM) algorithm used in 3D-Wave. For comparison, this fig-
ure also shows the power-driven iterative optimization alternative
called IHM-P. We make the following observations. First, IHM
is effective in detecting and eliminating temporal thermal hotspots
and optimizing 3D MPSoC peak temperature. Second, Figure 4
demonstrates that the temperature reduction process of IHM is not
monotonic. To eliminate local hotspots, IHM adjusts the slack dis-
tribution, voltage, and frequency assignments of the tasks responsi-
ble for the hotspot as well as its immediate neighbors. Slack reduc-
tion in neighboring tasks may introduce new hotspots. However,
the iterative slack mitigation process then mitigates these newly-
introduced hotspots until convergence, i.e., a condition in which
any average power consumption reduction of the tasks responsible
for the highest MPSoC temperature results in the introduction of an
equally-high temperature elsewhere.

A comparison of IHM-P and 3D-Wave demonstrates the need
for thermal analysis during hotspot mitigation instead of merely
considering task power consumption. 3D-Wave permits a lower
MPSoC peak temperature than IHM-P.

5. CONCLUSIONS
High chip power density and temperature complicate 3D MP-

SoC design. In this paper, we have described 3D-Wave, a thermal
optimization algorithm for 3D MPSoC design. 3D-Wave uses a
two-stage optimization flow consisting of (1) a constructive power
balancing and minimization algorithm and (2) a thermal analysis
driven iterative hotspot mitigation algorithm. Experimental results
indicate that 3D-Wave can reduces 3D MPSoC peak temperature
below that of similar techniques that optimize power, alone. To the
best of our knowledge, this is the first system-level thermal opti-
mization algorithm for 3D MPSoCs.
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Figure 3: Comparison of different optimization heuristics.
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