
Performance and Resource Optimization of NoC Router

Architecture for Master and Slave IP Cores
1

Glenn Leary, Krishna Mehta, Karam S. Chatha

Arizona State University

Department of CSE, PO BOX 875406, Tempe, AZ 85287-5406

{gleary, kbmehta, kchatha}@asu.edu

ABSTRACT

System-on-Chip architectures incorporate several IP cores with

well defined master and slave characteristics in terms of on-chip

communication. The paper presents a parameterized NoC router

architecture that can be optimized for performance and resource

requirement by exploiting the master or slave behavior of the

cores that are attached to it. We implemented the proposed router

architecture for the IBM Coreconnect protocol and mapped it on

the Xilinx Virtex series FPGA. We compared the FPGA based

implementation against industry strength bus design that supports

the IBM Coreconnect protocol, namely processor local bus (PLB).

For similar resource requirements, our design demonstrated a

97.6% increase in throughput and 76.53% decrease in latency in

comparison to the PLB. We also compared the proposed

architecture with an existing NoC router design that is oblivious

to master/slave IP cores. In the case of a router with all shared

slaves our design resulted in 65.9% reduction in resources, 548%

increase in throughput and 84.7% reduction in latency.

Categories and Subject Descriptors
B.4 [Input/Output Data Communications]: Interconnections

General Terms
Performance, Design

Keywords
Network-on-Chip, FPGA

1. INTRODUCTION
Network-on-Chip (NoC) has emerged as the pre-dominant

technology to replace bus based architectures for on-chip

communication in System-on-Chip (SoC) devices. There are

several factors that have led to the advent of NoC. Increase in

interconnect propagation delay relative to gate delay due to

technology scaling implies that end to end on-chip

1
The research presented in this paper was supported in part by grants from

the National Science Foundation (Career CCF-0546462 and CNS-

0509540).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.

Copyright 2007 ACM 978-1-59593-824-4/07/0009...$5.00.

communication requires several clock cycles.

Thus, synchronous on-chip communication as assumed by several

bus based architectures is no longer feasible. The emergence of

Globally Asynchronous Locally Synchronous (GALS) design

methodology based multi-processor SoC devices has also raised

the need for global asynchronous communication. Further, the

requirement for concurrent high performance communication

cannot be easily addressed by traditional bus based architectures.

NoC addresses several of the on-chip communication challenges

of nanoscale technologies by supporting asynchronous packet

switching based communication. Long signal propagation delays

are effectively pipelined by introducing multiple routers along the

path. NoC supports high performance concurrent communication

as the various routers operate in a decentralized manner.

NoC can be classified into two broad categories based on their

topologies. Regular topologies such as mesh, torus or hypercube

are suitable for processor architectures aimed at general purpose

computing. Irregular or custom topologies are suitable for

application specific SoC such as media-processors where the

various cores demonstrate fairly well defined on-chip

communication patterns. Irregular NoC have been demonstrated

to be superior in router (resource) requirements and power

consumption for application specific SoC in comparison to

regular architectures [1].

The paper addresses the router design for an irregular topology

NoC aimed at application specific SoC architectures. In the

application specific SoC certain cores act as masters that initiate

requests, and several other cores are slaves that respond to

requests. Such well defined master/slave relationships offer the

potential for optimizing the architecture of a router based on the

cores attached to it. The optimizations include customization of

the router ports for master or slave cores, and reduction in the

number of arbiters and other controllers based on the exclusive or

shared nature of the slave with which a master core interacts. We

discuss router architectures for several configurations from single

master/multiple slaves to multiple masters with both shared and

exclusive slaves to a network of such routers.

We present experimental results that evaluate the performance and

resource usage of the proposed router architecture by

implementing the design for the IBM Coreconnect on-chip

communication protocol and mapping it on the Xilinx Virtex II

series FPGAs. We compared the proposed design with existing

processor local bus (PLB) that implements the Coreconnect

protocol and also against a NoC router architecture that is

oblivious to master/slave cores.

155

The remainder of this paper is organized as follows. In Section 2,

we review previous work related to NoC. In Section 3, we present

our novel NoC custom router architecture. We present the

experimentation and results in Section 4. Finally, we summarize

our contribution and discuss future work in Section 5.

2. PREVIOUS WORK
In recent past, several router architectures have been proposed for

NoC. In the following paragraph, in the interest of space, we

discuss only a few of the existing architectures. SPIN [2] was one

of the seminal NoC designs that supported fat-tree topologies.

Proteo [3] is a VSIA compliant NoC architecture that can be

configured for ring, star and bus topologies. Xpipes [4] is a

parameterized router design that can be utilized in irregular

topologies. Nostrum [5] is a router design for mesh topologies

that supports both best effort and guaranteed throughput traffic

classes by reserving time slots. AEthereal [6] is also a mesh based

NoC architecture that supports guaranteed throughput traffic by

utilizing a centralized scheduler. QNoC [7] is another router

architecture for planar mesh based topologies that also supports

multiple levels of service classes for on-chip traffic. Wang et al.

[8] and Banerjee et al. [9] presented power and power

consumption models for NoC routers aimed at mesh topologies.

Hu et al. [10] presented an analytical model for buffer

optimization in application specific NoC. All the existing router

architectures do not consider if a master or slave core is attached

to the router. In contrast we present optimizations for a router

aimed at irregular topologies that optimizes the resources in the

router on the basis of the communication behavior of the core. An

important side effect is that the operating frequency of the

resulting design is also improved because of the reduction in

critical paths within the router. The optimizations discussed as

part of the paper are generic and can be applied to other existing

router architectures.

Figure 2. Format of NoC flit

3. ROUTER ARCHITECTURE
In the following sections we begin the discussion with a basic

router supporting the communication between a single master and

multiple slaves. We then extend the router architecture to support

multiple masters with several slaves some of which are exclusive

to certain masters while others are shared by a subset of masters.

Finally, we consider the design of a router that includes

connections to other routers with the masters and slaves being

distributed across the network. In each of these architectures we

support communication with split transactions. That is, each

master can issue multiple read and write transactions to the slaves

without waiting for the responses. We also discuss simplification

of the routers to consider blocking read and write where a master

waits for the response before issuing another request.

3.1 Single Master and Multiple Slaves
The basic router architecture for a single master (M)/multiple

slave (S) configuration is shown in Figure 1. The interface blocks

that connect the masters and slaves to the routers perform the

function of protocol conversion from the core to the network. For

example, we implemented the interface for the IBM Coreconnect

protocol to evaluate the performance of our design.

Each flit in the network has a control word and payload as shown

in Figure 2. The control word includes the destination id and

source id. The payload contains the word associated with the core

native protocol. In our case we interfaced the NoC with the IBM

Coreconnect protocol, and therefore the payload consists of

Coreconnect control word and data. Therefore the width of the

payload is dependent upon the native protocol of the cores. The

NoC can easily support communication between cores supporting

different protocols by inclusion of appropriate interface logic. The

width of the destination and source identifiers is given by “log2

N” where N is the total number of cores in the network.

The master requests are fed to virtual channels or FIFOs. The

master utilizes multiple virtual channels (VC) to avoid congestion

due to a slow slave. The VCs are denoted as two FIFOs in Figure

1. The requests are selected from the VC through a round robin

priority mechanism and fed to the decoders (D) associated with all

the slaves. The decoders determine if the request is associated

with the particular slave based on the destination id within the flit.

The slave responses are buffered into a single VC. All the

responses from the slave virtual channel are fed back to the master

through a crossbar (denoted by the box with “X”) which is

controlled by the arbiter (A). The arbiter supports a round robin

priority mechanism. The master and slave VCs, and the master

arbiter are required as we support split transactions. Since

multiple slaves can respond at the same clock cycle, the responses

need to be buffered in the slave virtual channel and also

arbitrated.

We can now compare the proposed design with a router shown in

Figure 3 that is oblivious to master and slaves cores connected to

Figure 1. Single master, multiple slaves router design

IP
 C
o
re

IP
 C
o
re

Figure 3. Router design oblivious to master/slave cores

156

it. In comparison to such a router our design eliminates the

arbiters and crossbars associated with the slaves. As the slaves

only receive requests from a single master, the arbiters and

crossbar can be removed. Further, the multiple VCs at each slave

interface are also replaced by a single virtual channel.

Finally, if the protocol only supports blocking transactions we

further optimize the resources in the routers. We can remove the

VCs in the master and slaves as only one request is outstanding at

a given time instance. The master arbiter can also be replaced by a

simple controller that sets the crossbar based on the outstanding

request. In other words as the master is aware of the expected

response from a particular slave core it can itself set the crossbar

and eliminate the need for arbitration.

3.2 Multiple Masters and Multiple Slaves
The design for the router with multiple masters and multiple

slaves is shown in Figure 4. In the figure we distinguish between

slaves that are shared (SS) between the masters, and exclusive

slaves (SE) that are not shared between the masters. The router

design for the exclusive slave is the same as the previous section.

The master requests are buffered in virtual channels. Each request

is selected from the virtual channel in a round robin manner and

fed to only those slaves with whom the master can communicate.

Similar to the master logic in the previous design, the input to the

shared slaves must now be arbitrated. Further, the slave arbiters

are preceded by a decoder to deduce if the incoming request is

meant for the particular slave. In the figure the decoder/arbiter

pairs are represented by circles with D/A within them. Also, the

slave responses are now stored in multiple virtual channels (2 in

the figure) to overcome congestion due to a busy or slow master.

Finally, the master arbiters are also replaced by decoder/arbiter

pairs similar to the slaves.

In comparison to the router design that is oblivious to master and

slave cores (shown in Figure 3) the proposed design does not

include the arbiters and crossbars for exclusive slaves. Similar to

the previous design this is due to the fact that only a single master

communicates with the exclusive slaves. The VCs at the exclusive

slaves are also reduced to a single FIFO. Further, the arbiters at

the shared slaves and masters only include inputs from the

communicating masters and slaves, respectively. In other words a

shared slave arbiter and crossbar only receive inputs from

communicating masters and not all the cores on the router.

Similarly, the master arbiter and crossbar only receive inputs from

the slaves which whom the master communicates.

In the case of a protocol that only supports blocking transactions,

we can eliminate the VCs from the masters and slaves, and the

arbiters at the masters can be simplified as before.

3.3 Networked Masters and Slaves
The design for networked routers that are connected to multiple

masters and slaves is shown in Figure 5. In comparison to the

previous design, this router includes output and input ports for

inter-router communication. The ports are symmetric with respect

to each other. The design on the output port side consists of a

decoder/arbiter pair and crossbar. Only those masters (or slave)

are connected to the output port that performs communication

with slave (or master) cores which are located along a path from

the particular port. The output of the crossbar is fed into VCs

located at the neighboring router. The VCs are dual clocked to

support asynchronous communication. The write operation is

synchronous with the clock of the neighboring router while the

read operate is synchronous to the clock of the local router. The

VCs of the input port are only connected to those cores that

communicate with other cores located at the neighboring router. If

a particular router is connected to multiple neighboring routers,

then the decoder/arbiter pair of the output port can also receive

inputs from the VCs associated with the input ports.

Figure 5. Networked router design

The output port for the router design that is oblivious to masters

and slaves receives inputs from all cores and input ports of the

router. Similarly, the input port is connected to all the cores and

output ports of the router. In our design, in addition to all the

optimizations specified in the previous two sections (3.1 and 3.2)

we also optimize the number of connections between cores and

the input/output ports associated with neighboring router

communication.

The input and output port design remains unchanged in the case

of blocking transactions. This is due to the fact that multiple

masters can issue requests to neighboring slaves at the time

instance. In other words, even though each master blocks on a

outstanding request, there could be multiple requests being

processed within the network. Consequently we require the

decoder/arbiter and VC associated with the output and input

ports, respectively.

3.4 NoC Design with Parameterized Blocks
We designed parameterized component blocks for decoders,

arbiters, VCs and crossbars in VHDL. For example the decoder

associated with a master/slave is parameterized on the number of

inputs and the id of the respective core. The decoder associated

with a output port is parameterized on a number of ids in addition

to the number of inputs. Each id specifies the destination core that

can be reached through the particular output port. The designer

Figure 4. Multiple masters, multiple slaves router design

157

specifies the topology of the network, the master and slave cores

connected to the NoC, and path of communication routes. We

utilize this information and the library of parameterized building

blocks to generate the NoC. Therefore, the overall design flow

can generate routers with variable number of input/output ports.

4. EXPERIMENTAL RESULTS

4.1 Comparison with PLB
In the first set of experiments, we compared our router

architecture with the IBM Coreconnect PLB architecture [11].

We compared the resource usage by synthesizing the designs on

the Xilinx Virtex II series FPGAs. The performance in terms of

latency and acceptance rate was compared by utilizing synthetic

traffic. The comparisons with the PLB were performed with

blocking transfers for both the router as well as the PLB.

4.1.1 Resource Comparison
For the resource comparison we generated a design configuration

consisting of two masters with four slaves. For our router we

generated three different designs of this configuration: i) with all

of the slaves shared, ii) with two shared slaves and two exclusive

slaves, and iii) with all of the slaves exclusive. We then

synthesized the designs using the Xilinx ISE synthesis tool to

determine the resource requirements as well as the maximum

operating frequency. The results are summarized in Table 1.

Table 1. Resource Comparison with PLB

Architecture

Two Masters - Four Slaves

Frequency

(MHz)

Slices

(13696)

NoC -- --

All Shared Slaves 220 811

Two Shared Slaves 240 487

No Shared Slaves 349 172

PLB -- --

PLB with DCR 169 430

As shown in Table 1, the required resources of our router are

equivalent to PLB when two of the slaves connected to the router

are exclusive to masters. (Table row “Two Shared Slaves.”) Our

router has a resource requirement of 487 slices and the PLB

requires 430 slices. However, the maximum frequency of our

router is 42% higher than the PLB with a value of 240 MHz

compared to 169 MHz for PLB. If we eliminate the need for

shared slaves (Table row “No Shared Slaves”) our router shows a

decrease in resources and increase in frequency. Here our router

requires 172 slices, which represents a 60% decrease in resources

over the PLB. Also, our router shows a 106.5% increase in

frequency over the PLB with a value of 349 MHz compared to the

PLB’s 169 MHz. On the other hand, if we restrict our router to

having all shared slaves (Table row “All Shared Slaves”) our

router requires 811 slices, which represents an increase of 87% in

resources over the PLB. However, the frequency of our router

remains higher with a value of 220 MHz compared with 169 MHz

for the PLB. The increased resource requirement shown by our

router was due to our router supporting split transactions.

Therefore, the router had additional resources in terms of arbiters,

decoders and VCs.

4.1.2 Performance Comparison
We compared the performance of our routers with PLB by

injecting a synthetic stream of data traffic. The synthetic traffic

was injected into the system at set injection rates in terms of the

number of requests/responses per clock cycle per node. The

traffic was generated with a uniform distribution using a random

number generation. We then measured the acceptance rate in

terms of requests/responses per clock cycle per node (Figure 6).

We also measured the average latency in terms of clock cycles for

the packets being injected into the system (Figure 7).

As shown in Figure 6, the acceptance rate of our router

dramatically improves as the number of shared slaves is reduced.

In the following discussion the throughput numbers in Gbps are

presented by considering a data payload of 64 bits/flit and the

frequency numbers shown in the figures. The PLB shows an

acceptance rate of .151 (requests/responses per clock cycle per

node, 1.635 Gbps) prior to congestion

(“PLB_2M_4S_all_shared” curve in Figure 6). Our router with

all shared slaves shows an acceptance rate of .205

(requests/responses per clock cycle per node, 2.79 Gbps) prior to

congestion (“2M_4S_all_shared” curve in Figure 6), representing

an 70.6% increase in performance over the PLB. If we reduce the

number of shared slaves in our router to two and set the remaining

two slaves as exclusive slaves (“2M_4S_2excl_2shared” curve in

Figure 6), the acceptance rate increases to .21 (requests/responses

per clock cycle per node, 3.23 Gbps), which represents a 97.6%

increase over the PLB. Furthermore, if all of the slaves are

exclusive (“2M_4S_4excl_0shared” curve in Figure 6), the

acceptance rate again increases to a value of .219

(requests/responses per clock cycle per node, 4.89 Gbps),

representing a performance increase of 199.1% over the PLB.

Figure 7 shows the effect that the reduction in the number of

shared slaves has on the latency of the router. The PLB

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1 1.2
Injection (req/resp per clk cycle per node)

A
c
c
e
p
ta
n
c
e
 (
re
q
/r
e
s
p
 p
e
r
c
lk
 c
y
c
le
 p
e
r
n
o
d
e
)

2m_4s_4excl_0shared (349 MHz)

2m_4s_2excl_2shared (240 MHz)

2m_4s_all_shared (213 MHz)

PLB_2m_4s_all_shared (169 MHz)

Figure 6. Acceptance Rate Comparison with PLB

0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3

Injection (req/resp per clk cycle per node)

A
v
e
ra
g
e
 L
a
te
n
c
y
 (
c
lk
 c
y
c
le
s
)

PLB_2m_4s_all_shared (169 MHz)

2m_4s_all_shared (213 MHz)

2m_4s_2excl_2shared (240 MHz)

2M_4S_4excl_0shared (349 MHz)

Figure 7. Latency Comparison with PLB

158

configuration (“PLB_2M_4S_all_shared” curve in Figure 7)

shows a latency of 15 clock cycles prior to congestion. The router

with a configuration of all shared slaves (“2M_4S_all_shared”

curve in Figure 7) shows a latency of 12 clock cycles,

representing a 20% decrease in the latency. If the number of

shared slaves is reduced to two with the remaining two slaves

being exclusive (“2M_4S_2excl_2shared” curve in Figure 7) the

latency drops to a value of 11 clock cycles, showing a 26.66%

decrease in latency over the PLB. If all of the slaves are

configured as exclusive (“2M_4S_4excl_0shared” curve in Figure

7) the latency drops to a value of 10 clock cycles, representing a

decrease in latency of 33.33% over the PLB. However, the PLB

is congesting at a much lower injection rate, .16

(requests/responses per clock cycle per node), compared with the

routers, which are congesting at .25 (requests/responses per clock

cycle per node). Also, if the differing frequencies are taken into

account the decrease in latency in terms of nanoseconds (ns) is

much more dramatic. With the PLB showing a latency of 88.65

ns while the router configurations demonstrate latencies of 23.45

ns for all shared slaves, 20.8 ns for 2 shared slaves, and 14.325 ns

for all exclusive slaves. This represents decreases in latency of

73.54%, 76.53%, and 83.84% respectively.

4.2 Comparison with Existing Router
In our second set of experiments we compared our router

architecture with a NoC router architecture which is oblivious to

master/slave cores [9]. The resource usage comparison was

performed by synthesizing the design. The performance

comparison was performed with synthetic streams and also a

JPEG benchmark.

4.2.1 Resource Comparison
We compared the resource usage for router designs with 2 masters

and 3 slaves. For our router we also generated three

configurations: i) two shared slaves with one exclusive slave, ii)

with one shared slave and two exclusive slaves, and iii) with all

exclusive slaves. We synthesized all of the configurations using

the Xilinx ISE synthesis tool to determine the total number of

slices required by each configuration along with the maximum

operating frequency for each. The results are summarized in

Table 2.

Table 2. Resource Comparison with Existing Router

Architecture

Two Masters - Three Slaves

Frequency

(MHz)

Slices

(13696)

NoC -- --

All Shared Slaves 238 477

Two Shared Slaves 241 401

One Shared Slave 328 246

No Shared Slaves 337 234

Oblivious NoC -- --

Five Ports 76 1176

As shown in Table 2 our router performs better in resource

requirements as well as maximum frequency in every

configuration over the pre-existing NoC router. The pre-existing

router displayed a resource requirement of 1176 slices (Table row

“Five Ports”). While our router with all shared slaves (Table row

“All Shared Slaves”), showed a resource requirement of 477

slices, representing a 59% decrease in resource requirements over

the pre-existing router. Our router also demonstrated a maximum

frequency of 238 MHz, representing a 213% increase over the

pre-existing router’s maximum frequency of 76 MHz. As the

number of shared slaves was reduced, our router demonstrated a

further decrease in the required resources and an increase in the

maximum frequency. With one shared slave (Table row “One

Shared Slave”), the required resources reduces to 246 slices,

representing an 89% reduction in resources compared with the

pre-existing router. The frequency shown was 328 MHz,

representing a 331.57% increase over the pre-existing router.

This trend continues as the number of shared slaves is reduced to

zero (Table row “No Shared Slaves”). With all of the slaves as

exclusive our router shows a resource requirement of 234 slices

and a frequency of 337 MHz. This represents a 90% decrease in

resources and a 343% increase in frequency compared with the

pre-existing router architecture.

4.2.2 Performance Comparison
We utilized a similar experimental set-up with synthetic data

traffic as that utilized for the PLB comparison. However, we used

split transactions instead of blocking transactions. We also

performed the comparison using similar traffic patterns on

equivalent configurations on both routers. The first configuration

was 2 masters and 3 slaves with all of the slaves shared. The

second configuration was 2 masters and 3 slaves with all of the

slaves exclusive. The results for acceptance rate and latency are

shown in Figures 8 and 9, respectively.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2

Injection (req/resp per clk cycle per node)

A
c
c
e
p
ta
n
c
e
 (
re
q
/r
e
s
p
 p
e
r
c
lk
 c
y
c
le
 p
e
r
n
o
d
e
)

2m_3s_3excl_0shared (337 MHz)

2m_3s_2excl_1_shared (327 MHz)

2m_3s_1excl_2shared (241 MHz)

2m_3s_all_shared (238 MHz)

Oblivious NoC(2m_3s_3excl) (76 MHz)

Oblivious NoC (2m_3s_all_shared) (76 Mhz)

Figure 8. Performance Comparison with Existing NoC

As shown in Figure 8, our router performs better than the

oblivious router in both configurations. The throughput numbers

in Gbps are presented by considering a data payload of 64 bits/flit

and the frequencies shown in the figures. For the 2 masters and 3

slaves with all of the slaves shared, the oblivious router shows an

acceptance rate of .1084 (requests/responses per clock cycle per

node, .504 Gbps) prior to congestion (“Oblivious NoC

(2m_3s_all_shared)” curve in Figure 8). For the same

configuration our router shows an acceptance rate of .215

(requests/responses per clock cycle per node, 3.28 Gbps) prior to

congestion (“2m_3s_all_shared” curve in Figure 8). This

represents an increase in performance of 548% over the oblivious

router architecture. For the router configuration in which all of

the slaves are exclusive the oblivious router shows an acceptance

rate of .153 (requests/responses per clock cycle per node, .712

Gbps) prior to congestion (“Oblivious NoC (2m_3s_3excl)” curve

in Figure 8). Our router architecture shows an acceptance rate of

.221 (requests/responses per clock cycle per node, 4.78 Gbps)

prior to congestion (“2m_3s_3excl_0shared” curve in Figure 8).

This represents an increase in performance of 571%.

159

0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3
Injection (req/resp per clk cycle per node)

A
v
e
ra
g
e
 L
a
te
n
c
y
 (
c
lk
 c
y
c
le
s
)

Oblivious NoC (2m_3s_all_shared) (76 MHz)

Oblivious NoC (2m_3s_3excl) (76 MHz)

2m_3s_all_shared (238 MHz)

2m_3s_1excl_2shared (241 MHz)

2m_3s_2excl_1shared (327 MHz)

2m_3s_3excl_0shared (337 MHz)

Figure 9. Latency Comparison with Existing NoC

Figure 9 shows the comparison between the routers in terms of

latency. As shown in Figure 9, the latency of our router is lower

than the pre-existing oblivious one. The pre-existing oblivious

router with all slaves shared (“Oblivious NoC

(2m_3s_all_shared)” curve in Figure 9) demonstrates a latency of

12 clock cycles prior to congestion. Our router demonstrates a

latency of 6 clock cycles (“2m_3s_all_shared” curve in Figure 9).

This represents a decrease in latency of 50%. However, if the

differing frequencies are taken into account this decrease is much

more dramatic. The oblivious router shows a latency of 165 ns

while our router shows a latency of 25.2 ns. This represents a

decrease in latency of 84.7%. For the configuration in which all

of the slaves are exclusive the pre-existing oblivious router shows

a latency of 8 clock cycles prior to congestion (“Oblivious NoC

(2m_3s_3ecl)” curve in Figure 9). Our router shows a latency of

6 clock cycles (“2m_3s_3excl_0shared” curve in Figure 9). This

represents a 25% decrease in latency. However, if the frequencies

of the routers are taken into account our router performs much

better. In this case the oblivious router has a latency of 110 ns

and our router has a latency of 17.76 ns. This represents an

83.85% decrease in latency.

Table 3. JPEG Performance Comparison

One Hop Latency

(clk cycles)

Two Hop Latency

(clk cycles)

Master/Slave Aware NoC 3 (16.17ns) 6 (32.39 ns)

Master Slave Oblivious NoC 8 (105.46 ns) 16 (210.04 ns)

4.2.3 Comparison for JPEG
We also compared the performance of the two designs by

considering a JPEG benchmark from Opencores.org [12] that had

2 masters and 7 slaves (primarily memory banks). We considered

a NoC design with 3 routers that were configured as follows: R1

(M1, S1, S2, S6, R2), R2 (M1, S2, S4, R1, R3) and R3 (S3, S5)

where “R”, “M” and “S” denote router, master and slave,

respectively. The parenthesized list for each router denotes its

connectivity. Table 3 summarizes the latency comparisons for

traffic traces that go through one hop and two hops (maximum

number of hops for our design). The comparisons are in

nanoseconds due to the different operating frequencies of the two

designs. The percentage reductions in one and two hop latencies

of our router design over the existing design were 84.66% and

85.4%, respectively. The large reductions are primarily due to the

higher operating frequency of our design. The resource

requirements for our router design were 1187 slices as opposed to

3052 slices for the existing design (61.1% reduction).

5. CONCLUSION
The paper presented a parameterized NoC router architecture that

exploits the master/slave communication behavior of the SoC

cores to optimize the resources. Besides the reduction in the area

requirements, the optimizations also lead to substantial increase in

operating frequencies and consequently performance. We

evaluated the router design by extensive experimentation with

both an industrial strength bus design based on IBM Coreconnect

protocol (PLB), and an existing router design that does not

consider the optimizations. Our design demonstrated a 97.6%

increase in throughput and 76.53% decrease in latency in

comparison to the PLB while utilizing comparable resources (for

2 masters, 2 exclusive slaves and 2 shared slaves). In comparison

to an existing NoC router architecture that is oblivious to

master/slave cores connected, our design resulted in 65.9%

reduction in resources. As well as a 548% increase in throughput

and 84.7% decrease in latency for all shared slaves and 571%

increase in throughput and 83.85% decrease in latency for all

exclusive slaves. Finally for the JPEG design our design obtained

a reduction of 85.03% and 61.1% in average latency and resource

requirements, respectively. Future work will address automated

generation of irregular NoC topologies that are sensitive to

master/slave behavior of the cores, and support for differentiated

traffic classes offering multiple Quality-of-Service levels.

6. REFERENCES
[1] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “XpipesCompiler:

A tool for instantiating application specific networks on chip,” in Proc.

DATE, 2004.

[2] A. Andriahantenaina, A. Greiner, Micro-network for SoC:

implementation of a 32-port SPIN network, in: DATE, Munich,

Germany, March 2003.

[3] D. Siguenza-Tortosa, J. Nurmi, Proteo: a new approach to network-on-

chip, in: Proceedings of IASTED International Conference on

Communication Systems and Network, Malaga, Spain, 2002.

[4] M. Dall’Osso, G. Biccari, L. Giovanninni, D. Bertozzi, L. Benini,

Xpipes: a latency insensitive parameterized network-on-chip

architecture for multi-processor SoCs, in: Proceedings of ICCD, San

Jose, CA, October 2003.

[5] M. Millberg, E. Nilsson, R. Thid, S. Kumar, A. Jantsch, The Nostrum

backbone—a communication protocol stack for networks on chip, in:

VLSI Design Conference, Mumbai, India, January 2004.

[6] J. Dielissen, A. Radulescu, K. Goossens, E. Rijpkema, Concepts and

implementation of the Philips network-onchip, in: IP-Based SOC

Design, November 2003.

[7] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, ”QNoC: QoS

architecture and design process for Network on Chip", Special issue on

Networks on Chip, The Journal of Systems Architecture, December

2003.

[8] H.-S. Wang, L.-S. Peh, S. Malik, Orion: a power-performance simulator

for interconnection network, in: International Symposium on

Microarchitecture, Istanbul, Turkey, November 2002.

[9] N. Banerjee, P. Vellanki, K.S. Chatha, A power and performance model

for network-on-chip architectures, in: DATE, 2004.

[10] J. Hu, U. Ogras and R. Marculescu, System-Level Buffer Allocation for

Application-Specific Networks-on-Chip Router Design, IEEE

Transactions on CADICS, Vol. 25, No. 12, December 2006.

[11] Xilinx Embedded Development Kit, http://www.xilinx.com.

[12] http://www.opencores.org

160

