
Improved Response Time Analysis of Tasks Scheduled
under Preemptive Round-Robin

Razvan Racu, Li Li, Rafik Henia, Arne Hamann, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig, Germany

{racu|lili|henia|hamann|ernst}@ida.ing.tu-bs.de

ABSTRACT
Round-Robin scheduling is the most popular time triggered schedul-
ing policy, and has been widely used in communication networks
for the last decades. It is an efficient scheduling technique for in-
tegration of unrelated system parts, but the worst-case timing de-
pends on the system properties in a very complex way. The existing
works on response time analysis of task scheduled under Round-
Robin determine very pessimistic response time bounds, without
considering in detail the interactions between tasks. This may lead
to a degradation of the efficiency of Round-Robin scheduling algo-
rithm, and becomes a practical obstacle to its application in real-
time systems. In this paper we present an approach to compute
much tighter best-case and worst-case response time bounds of
tasks scheduled under preemptive Round-Robin, including also the
effects of the scheduling algorithm.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Performance Analysis and
Design Aids; C.3 [Special-Purpose and Application-Based Sys-
tems]: Real-Time and Embedded Systems

General Terms
Design, Performance, Reliability, Verification

1. INTRODUCTION
Round-Robin scheduling is known as a very effective time trig-

gered scheduling policy. It allows an easy balance of resource uti-
lization between tasks that are ready to be executed. An example is
the POSIX standard. In real-time systems Round-Robin scheduling
can be used as a best effort strategy. Moreover, in high load situ-
ations, it still guarantees a minimum service rate for each task, as
a minimum performance guarantee. This makes it a good strategy
for systems integration. For instance, weighted Round-Robin is the
preferred scheduling strategy used in packet-based communication
systems [1]. Recently, such systems has been used together with
different real-time applications [4], which requires to guarantee the
satisfiability of the imposed constraints.

If the deadlines in real-time systems are firm or hard, worst-case
load situations must be assumed. This usually means that only the
time slot assigned to a task is counted, resulting in the same per-
formance as static time-driven scheduling, i.e. TDMA. In practice,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

we often find that TDMA is preferred in such cases due to its sim-
pler control and predictable behavior. Examples are the automotive
FlexRay [2] or the TTP protocols [8].

However, the pessimistic assumption is unnecessary if task prop-
erties can be taken into account, leading to a much better proven
worst-case timing compared to TDMA. The corresponding schedu-
lability analysis is, however, far more complicated. This is due to
the dynamic assignment of the time slots, that depends on both the
time slot order, and the activation and execution times of all other
tasks sharing the resource.

There is a host of work on efficient and fair implementations
of Round-Robin schedulers, most of them for communication net-
works [13, 16, 5, 7]. However, these works do not consider the
real-time aspects of the scheduling, and if they do so, they only
determine very conservative latency bounds.

Later on, several network analysis methods provide more insight
into the real-time performance of networks. Some of them use
probabilistic models to describe the workload arrival or the com-
munication times of the connections [18, 20, 21], which is not ade-
quate for the analysis of hard real-time systems.

Raha et al. [14] use a deterministic model for traffic description,
but the computed response time bounds are still very conservative,
since the analysis does not capture in detail the interaction between
the communications sharing the same resource.

Migge et al. [12] use a mathematical model based on trajecto-
ries [11] to compute response time bounds for deterministic task
models scheduled under Round-Robin within fixed-priorities.

In this paper, we present an approach to preemptive Round-Robin
scheduling analysis for a set of tasks characterized by arrival func-
tions, including burst behavior. The approach uses an event model
interface to allow the analysis of tasks with deterministic workload
bounds.

The rest of the paper is structured as follows: Section 2 presents
the computational model with details about the workload arrival
model and about the Round-Robin scheduler. Section 3 describes
the worst-case execution scenario of a task and presents the algo-
rithm to compute the worst-case response time. The algorithm flow
is explained using a simple task set example. Thereafter, Section 4
presents a best-case response time algorithm based on a conser-
vative approximation of the scenario leading to the shortest task
response time. Section 5 considers the effects of the scheduling
algorithm on the worst-case response time.

2. COMPUTATIONAL MODEL

2.1 Task set
In this paper we address the problem of schedulability analysis

for a set of n tasks T = {τ1, τ2, ..., τn}, executed on a process-
ing resource using Round-Robin arbitration strategy. The tasks are
fully preemptive, i.e. their execution can be interrupted at any point
in time. The tasks are assumed to be independent, i.e. no blocking
occurs between tasks, and no correlation exists between the release
patterns of the tasks.

179

The tasks are activated by activating events, generated in a mul-
titude of ways, including expiration of a timer, external or internal
interrupt, availability of data for processing, etc. The timing behav-
ior of the activating events is described in detail in Section 2.2.

At each activation a task requires the resource for a bounded
period of time, called task execution time. The minimum bound
of the execution time of a task τi is called best-case execution time,
denoted Cmin

i . Analogously, the maximum bound is called worst-
case execution time and is referred to as Cmax

i .
Successive task activations are allowed to overlap each other. In

order to prove the schedulability of the task set, one must compute
the response times of the tasks and compare them against a set of
predefined deadlines. There is no restriction with respect to task
deadlines. This assumption shows the generality of the response
time analysis presented in this paper.

2.2 Event models
The activating events of a task are captured by an event stream.

The behavior of an event streams is described using event models.
The classical event models used in the scheduling theory use a set

of parameters to describe the timing of the events within an event
stream. Hence, a periodic event model is characterized by the pe-
riod (P) [9], a periodic with jitter event model [19] is described
by two parameters, the period (P) and the jitter (J) and a spo-
radic event model [17] is described by the minimum inter-arrival
distance (d−).

For the purpose of the response time analysis, the event models

are mathematically represented using a set of functions:η+(Δt),

η−(Δt), δ−(n) and δ+(n) [15]. The η functions are called ar-
rival functions and describe the maximum and minimum number
of events arriving in the interval Δt. The δ(n) functions are called
distancefunctions and describe the minimum and maximum dis-
tance between any event i and the (n − 1)-th event after i in the
corresponding event stream [15].

In this paper, we use the four functions to capture the workload
of the tasks in the response time equations.

2.3 Round-Robin scheduler
The Round-Robin (RR) scheduler assigns the resource to each

task in a cyclic fashion. Each task τi has assigned a predefined
amount of time, called time slot, where it is granted the resource.
For brevity, we denote the time slot of τi by θi. The sum of all
time slots is called RR-turn. The order in which the time slots are
executed within a RR-turn is predefined. We assume the time slots
are ordered according to the corresponding task indices. After θn

a new RR-turn starts. During each turn every task accesses the
resource only within its time slot.

If no instance of τi is pending at the beginning of θi, then no
processor time is assigned to task τi and the scheduler examines
τi+1. If at least one activation of τi is waiting for execution at the
beginning of θi, then τi is allowed to execute without interruption
for at most θi units of time. If the task did not complete its execu-
tion at the end of its time slot, it is interrupted (preempted) by the
scheduler. In case that τi completes its execution before its time
slot expires, the next pending activations of τi, are executed for the
time left in the current time slot. If the time slot did not expire and
there are no more waiting task instances, the scheduler switches to
the task corresponding to the next slot in the RR-turn.

3. WORST-CASE RESPONSE TIME
3.1 Critical instant

In order to find the worst-case response time, one must determine
the scheduling scenario when the longest response time occurs. Liu
and Layland [10] defined the critical instant of a task to be the in-
stant at which a request for that task will have the largest response
time. Lehoczky [9] proved that the critical instant of a task τi on a
fixed-priority scheduler, occurs at the beginning of the level-i busy
period. A level-i busy period is defined as the maximum time for

which a processor executes tasks with priority higher than or equal
to the priority of τi. However, under Round-Robin, the task priori-
ties dynamically change in time, and therefore, the definition of the
level-i busy period must be first adapted and then applied for the
computation of the worst-case response time.

In general, the maximum busy period is the maximum time for
which a processor is busy executing tasks. Intuitively, the critical
instant of a task under Round-Robin is the instant when the task
has the lowest priority among all other tasks. This scenario guaran-
tees the longest waiting time until the task may access the resource
again.

LEMMA 1 (MAXIMUM BUSY PERIOD). The maximum busy pe-
riod occurs when all tasks mapped on the resource are simultane-
ously released and request the worst-case execution time. Addi-
tionally, all subsequent task activations arrive as soon as possible
(worst-case load condition).

PROOF. As in [10, 6, 9].

THEOREM 1 (CRITICAL INSTANT UNDER ROUND-ROBIN).
The critical instant of a task under Round-Robin occurs at the be-
ginning of the maximum busy period instantiated right after the
time slot of the analyzed task expired.

PROOF. Let τn be the analyzed task and t0 the time instant when
the time slot θn expires. The beginning of the next θn occurs at:

t = t0 +

n−1X
j=1

min(θj , wj) (1)

where wj represents the maximum execution time requested by
task τj up to the start time of its slot, denoted as t(j). Using the
standard event model interface described in Section 2.2, wj can be
calculated as

wj = Cmax
j · η+

j (t(j)) where t(j) =

j−1X
k=1

wk (2)

Assume that τn is released with an offset φn after t0. Since τn

can not start the execution earlier than t, the response time of τn

will be φn units of time shorter. Obviously, the longest response
time occurs for φn = 0.

If τn is released before t0, then τn gets the chance to start its
execution in the slot finishing at t0, and thus, its waiting time may
be shorter than the case when τn starts at t0. Hence, t0 represents
the critical instant.

3.2 Worst-case response time algorithm
Consider a task set consisting of four preemptive tasks, T1, T2,

T3 and T4 executed on a Round-Robin resource. T1, T2, T3 are
periodically activated. Task T4 experiences a burst activation due
to a large jitter. The distance between the burst events is controlled

by the minimum distance parameter (d−) of the input event model.
After the burst events expired, the task is released periodically, as
it can be seen in Figure 1.

Table 1 shows the parameters of the input event models, the
worst-case execution times, and the time slot values correspond-
ing to the task set. The time slots are scheduled in the following
order: θ1 → θ2 → θ3 → θ4.

Table 1: The task parameters
Task Activation model Execution time Time slot
(τi) Pi Ji d− (Cmax

i) θi

T1 15 - - 3 2
T2 50 - - 10 3
T3 30 - - 7 5
T4 20 50 5 5 7

The algorithm to determine the worst-case response time of a
task under Round-Robin uses the windowing technique proposed

180

by Lehoczky [9], and refined latter by Tindell [19]. The approach
finds the worst-case response time of a task by checking different
time windows within the busy period. The q-window of task τi, de-
noted also wi(q), represents the time interval between the instant
when the maximum busy period was initiated (t0) and the time in-
stant when the q-th activation of ti completes its execution. In other
words, the q-window of τi represents the response time of the first
q activations of τi in the maximum busy period.

Algorithm 1 Worst-case response time under Round-Robin

INPUT:
Cmax

k , ∀k ≤ n, the worst-case execution time of τk;
θk, ∀k ≤ n, the predefined time slot of τk;
EMk, ∀k ≤ n, the activation model of τk

OUTPUT: Rmax
i , the worst-case response time of τi

1: q = 0;
2: Rmax

i = 0;
3: repeat
4: q + +;
5: wi(q) = q · Cmax

i + I(q);

6: Ri(q) = wi(q) − δ−i (q);
7: Rmax

i = max(Rmax
i , Ri(q));

8: until η+
i (wi(q)) = q

Algorithm 1 computes the worst-case response time of τi. Dur-
ing each loop iteration the q-th window of τi is analyzed. The value
of wi(q) (line 5) is equal to the execution demand of the first q ac-
tivations of τi, q · Ci, plus the interference, I(q), with other tasks
mapped on the same resource. I(q) is explained in detail later in
this section.

δ−i (q) returns the arrival time of the q-th activation of τi. Line
7 returns the response time of the q-th activation of τi within the
busy window. The maximum over all Ri(q) represents the worst-
case response time Rmax

i of τi.
The loop terminates when the number of activations released in

the q-th window does not exceed q, i.e. the first q activations of
τi have been completely processed before the (q + 1)-th activation
arrived. The maximum number of activations that arrive in the time
window wi(q) is computed using the upper-bound arrival function,

η+
i .

Notice that both functions, δ−i and η+
i are obtained from the ac-

tivation model EMi of τi.
Figure 1 shows the worst-case scheduling scenario of task T4

in the example introduced above. The worst-case response time
algorithm starts with q = 1 and calculates the value of the 1st
window of T4. As we can observe in the figure, w4(1) = 15, and,
since first activation of T4 was released at t0 = 0, the response
time of this activation is also 15. Moreover, we observe that the
2nd activation of T4 was released within the 1st window, and thus,
the algorithm investigates also the 2nd window. The value of w4(2)
is equal to 27 and, because the 2nd activation of T4 was released at
time instant 5, its response time is 22. The algorithm continues until
q = 7. We observe that the 8th activation of T4 is released after
the 7th activation has completed the execution, and therefore the
algorithm terminates. The worst-case response time of T4 occurs
for the 3rd and 4th activations of the task.

The interference I(q) of the analyzed task with other tasks, dur-
ing the q-th window is computed as:

I(q) =

K(q)X
k=1

Ik, where K(q) =

‰
q · Cmax

i

θi

ı
(3)

where Ik represents the interference with other tasks during the k-
th RR-turn, and K(q) is the total number of RR-turns required by
q activations of τi to complete. In other words, Ik represents the
total time that all other tasks used the processor during turn k.

For example, in Figure 1, the time interval [31, 41] corresponds
to I3, and represents the time tasks T1, T2 and T3 used the pro-

cessor in the third turn. Every Ik is defined as Ik =
Pn−1

j=1 Ik,j ,

where Ik,j is the interference in the k-th RR-turn with the task
whose predefined time slot order in the RR-turn is equal to j, as-
suming that the time slot of the analyzed task has the predefined
time slot order n.

If we refer again to Figure 1, the time interval [22, 24] corre-
sponds to I2,3 and represents the time spent by T3 in the second
turn.

The interference Ik,j is determined by the remaining execution
demand of τj at the beginning of θj in the k-th turn.

Since the remaining demand might not necessarily use up the
entire time slot θj , one must iteratively check if new activations of
τj that arrived during the consumed time of θj , can be processed in
the available time in θj . Therefore, Ik,j is described as follows:

Ik,j =

RX
r=1

padk,j(r), R such that padk,j(r) �= 0 (4)

A pad represents the time spent in a time slot by all unserved
task activations already arrived before the start time of the pad.

For example, if a slot contains multiple pads, the first pad in
the slot corresponds to the execution of the task activation arrived
before the slot started and not served in the previous slots. The
value of the second pad corresponds to the execution of the task
activations arrived during the execution of the first pad, and so on.
It is very important to notice that the value of a pad can not be larger
than the unused time in the corresponding slot.

The value of R in Equation 4 defines the maximum number of
pads in a slot. The pads in a slot are indexed over r. padk,j(r)
represents the r-th pad in time slot θj of the k-th turn.

In Figure 1, the only slot with multiple pads is the slot of T2 in
the fourth RR-turn: one is used to finish the first activation of T2
and the other one is used to execute a part of the second activation
of T2, which arrived during de execution of pad4,2(1).

The value of a pad in time slot θj is given by the remaining
execution demand of τj at the beginning of the pad and the free
amount of time in θj .

padk,j(r) = min(lk,j(r), C
max
j · η+

j (tk,j +

r−1X
s=1

padk,j(s))

−
k−1X
p=1

Ip,j −
r−1X
s=1

padk,j(s)) (5)

The first term in the min function in Equation 5 represents the
unused time in time slot θj at the beginning of padk,j(r). This
time is calculated as follows:

lk,j(r) = θj −
r−1X
s=1

padk,j(s) (6)

The second term in the min function represents the remaining

execution demand of τj at the beginning of padk,j(r). η+
j returns

the total number of activations of τj since t0. tk,j represents the
starting time of θj relative to t0, in the k-th RR-turn.

tk,j =

k−1X
p=1

Ip + (k − 1)θi +

j−1X
u=1

Ik,u (7)

The sum of the first and second terms in Equation 7 represents
the value of the first (k − 1) RR-turns. The last term represents the
time consumed in the k-th RR-turn by tasks with time slot order
higher than τj .

In Figure 1, the value of t5,3 is calculated as the interference in
the first four RR-turns, plus the time T4 has been executed in the
first four turns, plus the execution of T1 and T2 in the fifth turn.

The value of padk,j(r) in Equation 5 depends on the values of

181

q=1

q=2

q=3

q=4

q=5

q=6

q=7

R4(1)=15

R4(2)=22

R4(3)=32

R4(4)=32

R4(5)=29

R4(6)=24

R4(7)=9

t

RR-turn 1 RR-turn 2 RR-turn 3 RR-turn 4 RR-turn 5

I3
I2,3

T1

T2

T3

T4

pad4,2(1) pad4,2(2)

t5,3

15 17 22 24 31 41 48 62 675

Figure 1: Worst-case response time scenario for T4

all padk,j(s), where s < r. padk,j(1) is calculated as follows:

padk,j(1) =

j
θj Ek,j ≥ θj

Ek,j Ek,j < θj
(8)

Ek,j in Equation 8 represents the remaining execution demand
of task τj at the beginning of θj , in the k-th RR-turn.

Ek,j = Cmax
j · η+

j (tk,j) −
k−1X
p=1

Ip,j (9)

The values of padk,j belonging to θj are iteratively calculated
until first padj,k value equal to zero is found. In Equation 5 this
means that either the time slot θj has been entirely used up, or the
execution demand of τj has been completely processed. The value
of R in Equation 4 represents the total number of pads iteratively
calculated using Equation 5.

Table 2 shows the worst-case response times of the task set,
computed using the Algorithm 1 and the algorithms proposed by
Raha [14] and Migge [12]. Tasks T1 and T2 are unschedulable
according to Raha’s algorithm. This is because the load of each
task is larger than the service rate assigned to these tasks. Notice
that, the response times computed by Algorithm 1 and the approach
proposed in [12] are identic. However, in our opinion, the analysis
in [12] suffers from the complex computational model.

Table 2: Computed worst-case response times
Algorithm 1 Raha [14] Migge [12]

T1 46 unschedulable 46
T2 60 unschedulable 60
T3 31 31 31
T4 32 35 32

4. BEST-CASE RESPONSE TIME

4.1 The least critical instant
The best-case response time analysis computes the shortest re-

sponse time of a task. Intuitively, in order to experience the shortest
response time, the task must be released at the instant when it has

the highest priority among all other tasks. This occurs whenever
the task is released at the beginning of its time slot.

Opposite to the concept of maximum busy period, one can define
the maximum idle period with respect to a given set of tasks, as the
maximum time for which the resource does not process any task in
the given set.

THEOREM 2 (BEST-CASE RESPONSE TIME). The best-case re-
sponse time of a task τi under Round-Robin scheduling occurs
when the task is released at the beginning of the maximum idle
period of all other tasks mapped on the same resource as τi.

PROOF. Let G = T − {τi} be the set of tasks executed on the
same resource as τi, and let t0 be the time instant indicating the
beginning of the maximum idle period of all tasks in G. If τi is
released before t0, then at least one task in G is active and interferes
with τi.

If τi is released after t0, then the interference of τi with the next
activations of the tasks in G occurs earlier, and may extend the re-
sponse time of τi.

Contrary to maximum busy period, the maximum idle period
makes assumptions about the completion of the tasks and not about
task activation. Moreover, the dynamic behavior of the priority
function in Round-Robin scheduling makes difficult to find out a
relation between the task activation scenario leading to the maxi-
mum idle period.

Instead, we use a hypothetical scenario similar to [3] that leads to
a conservative maximum idle time. We use this scenario to construct
the least critical instant of a task τi scheduled under Round-Robin:

1. Task τi is released at an instant t0.

2. Each task τj , j �= i is released Cmin
j time units before t0,

executes without interruption and completes its execution at
t0. The next activations of the tasks arrive as late as possible.

The second statement represents the best-case load condition
and ensures that the interference of τi with other tasks occurs as
late as possible. Obviously, such a scenario is not possible in prac-
tice, as all tasks must use the resource simultaneously before t0, in
order to finish at the same time.

182

The first statement guarantees that τi gets executed immediately
after its activation, since at t0 no other task except τi is waiting for
execution.

Figure 2 shows the hypothetical scenario, where t0 indicates the
least critical instant.

t0

4

5 1

3 1

2 1

RR-turn 1 RR-turn 2 RR-turn 3

2 1T3

T1

T2

min

2C

3

min

3C

Figure 2: The least critical instant under RR

4.2 Best-case response time algorithm
In order to find the shortest response time of τi only the execu-

tion of the first activation of τi must be analyzed. The best-case
response time is

Rmin
i = Cmin

i + Imin
(10)

where Cmin
i represents the minimum execution time of τi. The

interference Imin of τi with other tasks is defined as

Imin =

K′X
k=1

Ik, where K′ =

‰
Cmin

i

θi

ı
− 1 (11)

Since τi is activated at the beginning of its time slot, there is no
interference in the last RR-turn. Therefore, only the interference in

the first �Cmin
i
θi

� − 1 turns must be calculated.

The interference Ik in the k-th RR-turn is defined as Ik =Pn
j=2 Ik,j where Ik,j is the interference in the k-th RR-turn with

the task whose predefined time slot order is equal to j, assuming
that the time slot order of the analyzed task is 1.

Ik,j is computed using Equation 4. The values of padk,j in
Equation 4 are calculated as follows:

padk,j(r) = min(lk,j(r), C
min
j · η−

j (tk,j + Cmin
j +

r−1X
s=1

padk,j(s)) −
k−1X
p=1

Ip,j −
r−1X
s=1

padk,j(s))

The η−
j function in above equation returns the total number of

activations of task τj arrived until the beginning of padk,j(r).
The unused time in the time slot θj at the end of padk,j(r − 1)

is computed using Equation 6. The time at the beginning of θj in
the k-th turn is

tk,j =

k−1X
p=1

Ip + k · θi +

j−1X
u=2

Ik,u (12)

Notice that, contrary to worst-case scenario, tk,j contains also
the execution of τi in the k-th turn, as θi is the first time slot sched-
uled in the RR-turn.

The first value of padk,j , is calculated using Equation 8 in Sec-
tion 3.2, where Ek,j is determined by:

Ek,j = Cmin
j · η−

j (tk,j + Cmin
j) −

k−1X
p=1

Ip,j (13)

5. SCHEDULING OVERHEAD
The necessary schedulability condition valid for any task set and

scheduling strategy is

Uoverall ≤ 1 (14)

where Uoverall represents the overall resource utilization, and is
defined as

Uoverall =
nX

i=1

Cmax
i

Pi
+ URTOS (15)

In other words, the overall resource utilization is the sum of the
average load generated by the tasks executed on that resource and
the load generated by the scheduling algorithm.

In Round-Robin scheduling, the RTOS subroutine is executed
whenever the scheduler reevaluates the task priorities, i.e when a
time slot expires, or when the execution demand of the currently
executed task has been completely processed. We call scheduler
task, denoted τOS , the RTOS subroutine executed in order to reas-
sign the task priorities.

The upper bound for the RTOS load, URTOS , is computed as

URTOS =
nX

i=1

l
Cmax

i
θi−COS

m
· COS

Pi
(16)

where COS represents the maximum execution demand of the sched-
uler task.

Obviously, each task τi requires maximum
l

Cmax
i

θi−COS

m
time slots

θi, in order to complete its execution. Notice that, in every time slot
θi, COS units of time are used by the scheduler task. Assuming one
execution of τOS at the beginning of every time slot, one can com-
pute the RTOS overhead corresponding to the execution of each
task, and therefore to determine the total RTOS overhead for the
scheduling of the entire task set.

In the following we assume that no scheduling overhead occurs
due to switching between different task instances executed in the
same time slot. This is not a limitation of the approach, and the
response time equations can be easily extended to account also for
this aspect.

To capture the time spent during context switches, line 5 in Al-
gorithm 1 is modified as follows:

wi(q) = q · Cmax
i + I(q) +

‰
q · Cmax

i

θi − COS

ı
· COS (17)

The value of K(q) in Equation 3 changes to:

K(q) =

‰
q · Cmax

i

θi − COS

ı
(18)

In every RR-turn there is one execution of the scheduler task at
the beginning of every time slot θj only if the execution demand of
τj at the beginning of θj is larger than zero.

The weighting function ωk,j captures the execution demand of
τj at the beginning of its time slot in the k-th RR-turn.

ωk,j =

j
0 Ek,j = 0
1 Ek,j �= 0 (19)

where Ek,j is defined as

Ek,j = Cmax
j · η+

j (tk,j) −
k−1X
p=1

(Ip,j − ωp,j · COS) (20)

Equation 4 changes to

Ik,j = ωk,j · COS +
RX

r=1

padk,j(r) (21)

183

The upper-bound arrival function η+
j in Equation 5 must also

consider the task activations that eventually arrived during the ex-
ecution of the scheduler task at the beginning of time slot θj . The
value of padk,j is computed as follows:

padk,j(r) = min(lk,j(r), C
max
j · η+

j (tk,j + COS +

r−1X
s=1

padk,j(s)) −
k−1X
p=1

(Ip,j − ωp,j · COS) −

r−1X
s=1

padk,j(s)) (22)

The calculation of the unused time in time slot θj at the begin-
ning of padk,j changes to

lk,j(r) = θj − ωk,j · COS −
r−1X
s=1

padk,j(s) (23)

The time instant at the beginning of θj in the k-th turn is com-
puted using Equation 7.

The initial value of padk,j must also account for the effects of
the scheduler task, as follows:

padk,j(1) =

j
θj − COS Ek,j ≥ θj − COS

Ek,j Ek,j < θj − COS
(24)

where Ek,j is calculated using Equation 20.
Consider again the example presented in Section 3. We carried

out the worst-case response time analysis for the defined task set,
this time considering the influences of the scheduler tasks. The
scheduler task is assumed to have a constant execution demand
COS = 0.2.

Table 3 shows the influence of τOS on the response times of the
tasks.

Table 3: The worst-case response times incl. the OS overhead
Task T1 T2 T3 T4

w/o τOS 46 60 31 32
w/ τOS 60 61.6 31.4 33

6. CONCLUSION
In this paper we addressed the problem of schedulability anal-

ysis of tasks under Round-Robin. First, we presented an exact
algorithm to compute the worst-case response time of a task, as-
suming the task can be preempted at any instant. Then, we derived
a best-case response time algorithm using a conservative approx-
imation of the best-case scheduling scenario. In the last section
we extended the worst-case response time equations to consider
the timing overhead due to the scheduler task. The model used for
computation uses a 4-function interface to describe the workload
arrival. This interface easily allows the analysis of tasks with arbi-
trary arrival models. Table 4 shows the characteristics of different
Round-Robin scheduling analyses. Notice that, the approach pre-
sented in this paper supports complex analysis scenarios, and the
simple underlying model makes it very intuitive for the analysis of
real-time applications.

Table 4: Characteristics of different Round-Robin scheduling
analyses

Algorithm 1 Raha [14] Migge [12]

WCRT
√ √ √

BCRT
√

- -
OS Overhead

√
- -

Jitter, Burst
√

-
√

Arbitrary deadlines
√

- -
Arbitrary arrival models

√ √ √

7. REFERENCES
[1] R. Budruk, D. Anerson, and T. Stanley. PCI-Express System

Architecture. MindShare, Inc., 2003.
[2] FlexRay. http://www.flexray.com/
[3] J. P. Gutierrez, J. J. G. Garcia, and M. G. Harbour. Best-Case

Analysis for Improving the Worst-Case Schedulability Test
for Distributed Hard RealTime Systems. In Proceedings of
the Euromicro Conference on Real-Time Systems (ECRTS),
1998.

[4] S. Heithecker, A. do Carmo Lucas, and R. Ernst. A High-End
Real-Time Digital Film Processing Reconfigurable Platform.
EURASIP Journal on Embedded Systems, Special Issue on
Dynamically Reconfigurable Architectures, 2007:Article ID
85318, 15 Pages, 2007.

[5] K. Jeffay, F. D. Smith, A. Moorthy, and J. Anderson. Pro-
portional Share Scheduling of Operating System Services for
Real-Time Applications. In IEEE Real-Time Systems Sympo-
sium, Madrid, Spain, 1998.

[6] M. Joseph and P. Pandya. Finding Response Times in a Real-
Time System. The Computer Journal, 29(5):390–395, 1986.

[7] S. Kanhere and H. Sethu. On the Latency Bound of Pre-Order
Deficit Round Robin. In Proceedings of the IEEE Conference
on Local Computer Networks, pages 508–517, Tampa, FL,
2002.

[8] H. Kopetz and G. Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, Special Issue on Modeling and De-
sign of Embedded Software, 2001.

[9] J. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines. In Proceedings of the Real-Time
Systems Symposium, pages 201–209, 1990.

[10] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[11] J. Migge. Real-time scheduling: a trajectory based model.
PhD thesis, Nice University, Nancy, France, 1999.

[12] J. Migge, A. Jean-Marie, and N. Navet. Timing analysis of
compound scheduling policies: application to Posix1003.1b.
Journal of Scheduling, 6(5):457–482, 2003.

[13] S. Mukherjee, D. Saha, M. Saksena, and S. K. Tripathi. A
Bandwidth Allocation Scheme for Time Constrained Mes-
sage Transmission on a Slotted Ring LAN. In IEEE Real-Time
Systems Symposium, Raleigh-Durham, NC, 1993.

[14] A. Raha, S. Kamat, and W. Zhao. Guaranteeing End-to-End
Deadlines in ATM Networks. In International Conference on
Distributed Computing Systems, Vancouver, Canada, 1995.

[15] K. Richter. Compositional Performance Analysis. PhD thesis,
Technical University of Braunschweig, 2004.

[16] M. Shreedhar and G. Varghese. Efficient Fair Queueing Using
Deficit Round Robin. In SIGCOMM, pages 231–242, Boston,
1995.

[17] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic Task Schedul-
ing for Hard Real-Time Systems. Journal of Real-Time Sys-
tems, 1(1):27–60, 1989.

[18] H. Takagi. Exact analysis of round-robin scheduling of ser-
vices. IBM J. Res. Dev., 31(4):484–488, 1987.

[19] K. Tindell, A. Burns, and A. Wellings. An Extendible Ap-
proach for Analysing Fixed Priority Hard Real-Time Sys-
tems. Journal of Real-Time Systems, 6(2):133–152, Mar 1994.

[20] R. Wu and Y.-B. Chen. Analysis of a loop Transmission Sys-
tem with Round-Robin Scheduling of Services. IBM J. Res.
Dev., 19(5):486–493, 1975.

[21] R. Yates. High Speed Round Robin Queueing Networks. PhD
thesis, MIT, Dept. of Electrical Engineering and Computer
Science, 1990.

184

