
NTU TRECVID-2007 Fast Rushes Summarization System

Chen-Ming Pan Yung-Yu Chuang Winston H. Hsu

National Taiwan University

{pansack, cyy, winston}@cmlab.csie.ntu.edu.tw

ABSTRACT
Rushes are the raw materials used to produce a video. They
often contain redundant and repetitive contents. Rushes
summarization aims to provide a quick overview for a rushes
video. As part of TRECVID 2007, NIST initiates a rushes
summarization task. This paper reports on the design of
NTU rushes summarization system for this task. Our sys-
tem consists of three components, shot segmentation, redun-
dant shot detection and summary creation. To tackle the
bulky rushes, we focus on efficient but effective feature rep-
resentations (local color histograms and compressed-domain
motion vectors) and summarization methods. In addition,
we proposed a novel approach to detect clapper shots which
are not only relevant to concise summarizes but also essen-
tial for indexing numerous camera takes in the rushes. Even
practically efficient and requiring only 40% of the video time
for computation, the proposed system achieved satisfying re-
sults in TRECVID 2007 rushes summarization task.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Information Storage and
Retrieval – Content Analysis and Indexing.

General Terms
Algorithm, Design.

Keywords
Rushes summarization, Shot detection, Clapper board.

1. INTRODUCTION
Rushes are the raw materials used to produce a video. Be-

cause of errors in shooting (e.g. an actor gets his lines wrong
or a plane flies over), search for better quality and other rea-
sons, many takes for the same scene are often made. In ad-
dition, there are long segments of the same scene with fixed
or barely-moving cameras [1]. Hence, rushes often contain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TVS’07, September 28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-780-3/07/0009 ...$5.00.

video

shot boundary detection

shots

sub-shot boundary detection

sub-shots

junk shot detection

duplicate shot detection

representative

shots

segment selection

segments

summary creation

summary

Section 2.1

Section 2.2

Section 3.1

Section 3.2

Section 4

Section 4

Figure 1: Overview of our rushes summarization sys-

tem. Our system consists of three components, shot

segmentation (shot and sub-shot boundary detection),

redundant shot detection (junk and duplicate shot de-

tection) and summary creation (segment selection and

summary creation).

redundant and repetitive content. As part of TRECVID
2007 effort, NIST initiates a task of making summarization
for rushes so that users can understand and utilize rushes
videos more easily. Details for this task can be found in the
overview paper of the workshop [4].

Our goal is to be able to create summary for rushes videos
efficiently. To reach this goal, instead of exploring time-
consuming high-level features, we investigate and leverage
efficiently computable feature representations and effective
methods for rushes summarization. Specifically, the pro-
posed system benefits from local color histograms computed
from frames and motion vectors extracted directly from com-
pressed domain. These two features are used at various
stages of our system. Local color histograms are used for
shot segmentation, shot clustering and junk shot detection.
Motion vectors are used for shot segmentation, representa-

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
H

V
RL

H

0

30

60120

150

180

(a) (b)

Figure 2: Block layout and line categories. On the left

is the layout of the local color histogram for a frame (a).

On the right, we show four line categories for clapper

shot detection (b).

tive segment selection and clapper shot detection. We found
that local color histograms are useful for comparing the sim-
ilarity between frames and motions are often good indica-
tors for important shots. As a result, the proposed system
achieved satisfying results in the rushes summarization task
while only requiring 40% of the video time for computation.

Figure 1 gives an overview for our rushes summarization
system. The input video is first segmented into shots. Shot
boundaries are detected by comparing the local histograms
of neighboring frames (Section 2.1). A shot is further divided
into sub-shots to ensure visual similarity between frames
within a sub-shot (Section 2.2). Our system then attempts
to remove redundant shots. There are two types of redun-
dant shots, junk shots (Section 3.1) and duplicated shots
(Section 3.2). Junk shots includes short shots, clapper shots
and shots with color bars or single colors. Because many
takes of the same scene can be taken in a rushes video, we
treat those retaken shots as duplicate shots. A clustering
algorithm is used to group repetitive shots together and a
representative shot is selected for each group. For each rep-
resentative shot, we selected multiple segments on basis of
motion content. The selected segments are then squeezed
into a video summary whose duration is 4% of the original
video’s duration according to their importance (Section 4).

In the following three sections, we will describe the com-
ponents of shot segmentation, redundant shot detection and
summary creation. These components often involve selec-
tion of parameters. These parameters are selected empir-
ically from training rushes videos provided by NIST and
fixed during summary creation for test videos. To eval-
uate the effectiveness of these components, in the follow-
ing sections, we use five test sequences, MRS044500.mpg,
MRS145918.mpg, MRS157444.mpg, MRS157464.mpg and
MRS157475.mpg, to report performance. We used only five
sequences because of limited time. These five sequences are
randomly selected from 42 test videos.

2. SHOT SEGMENTATION
As the first step, our system segments the input video into

shots. For example, in Figure 1, the video is divided into
six shots. Each shot is further divided into several visually
similar units that we called sub-shots. Sub-shots are used
mainly for shot clustering. We will discuss the reasons for
adding the sub-shot level in Section 2.2.

2.1 Shot boundary detection
A shot is a sequence of frames continuously taken from

a camera. Therefore, adjacent frames of the same shot

should exhibit strong temporal continuity. Discontinuity
happens at shot transitions where content changes. There
are basically two types of shot transitions, abrupt and grad-
ual [2]. Abrupt change is often easier to detect. Hence,
most shot boundary detection algorithms have been pro-
posed to handle gradual transitions [3, 2]. However, since
rushes videos are unedited, they often do not have gradual
transitions. Thus, simple approaches can obtain pretty good
results for our application. Here, we adapt a histogram-
based approach. Our system calculates a local color his-
togram which divides a frame into 4 × 4 blocks using 6-bit
RGB color code (2 bits for each component). The block
layout is shown in Figure 2(a). We use Hk

t to denote the
local color histogram for the k-th block of frame t, where
k = 0..15. Thus, Hk

t [i] represent the value of the i-th bin of
the histogram, where i = 0..63. We have tried other color
spaces such as HSV but their performances are not better
than RGB.

To compute the distance between two histograms, we use
the χ2 test because, as suggested by Sethi and Patel [5], it
generally has better performance than other measures. The
χ2 difference Dχ2(H, G) between two histograms H and G
is defined as

Dχ2(H, G) =

63∑
i=0

{
(H[i]−G[i])2

max(H[i],G[i])
if max(H[i], G[i]) > 0,

0 otherwise.

Thus, the difference χ2
k between the k-th blocks of frames t

and t + 1 can be naturally defined as [3]

χ2
k = Dχ2(Hk

t , Hk
t+1).

Next, we sort these 16 χ2
k values into an ascending order. Let

k′ denote the block index after sorting so that χ2
k′ ≤ χ2

k′+1.
For each pair of consecutive frames t and t + 1, we obtain
their sorted block differences, χ2

k′ . Whenever the sum of
the middle eight of these 16 values exceeds a pre-defined
threshold εcut, i.e.

∑11
k′=4 χ2

k′ > εcut, we claim that there is
a cut between frames t and t + 1.

One thing to note is that Lupatini et al. suggested to use
the lowest eight χ2 values to avoid false alarms due to large
object motion between frames. Large object motions could
result in very different color distributions for the blocks af-
fected by the object motion. However, as long as the object
occupy less than half of the frame and the camera does not
change dramatically, the lower part of those χ2 values es-
sentially captures the color distributions of the background,
which should be still similar within a shot. It is why lower
portion was recommended. However, in rushes, we have ob-
served that using lower portion results in a lower recall for
cut detection. It is because rushes have many retaken shots
with similar scene content. These shots can not be detected
if the lower portion is used. We tried three options of using
lower, middle and higher portion of these 16 values. Table 1
summarizes the performance of using these options. Hence,
instead of using the lower part, we used the middle eight
values for better compromise between precision and recall.

Because we use the middle part instead of the lower part,
it increases the chance of false alarms when object motion is
large. Thus, it has lower precision than using lower-portion
option. To overcome this problem, we add an additional
stage to test whether the detected cut is due to large object
motion. To measure object motion for a frame t, we extract
motion vectors directly from the compressed MPEG stream

precision recall F2-measure
lower 8 0.702 0.751 0.734
middle 8 0.560 0.893 0.745
higher 8 0.267 0.957 0.514
middle 8+motion 0.802 0.813 0.809

Table 1: Comparisons for the performance of shot

boundary detection by summing the lower, middle and

higher portions of the 16 χ2 differences.

and add up the magnitude of all motion vectors to form
a single motion measure, Mt. Although motion vectors are
optimized for compression, not directly for depicting motion,
we have found that they give a reliable indication for the
degree of motion∗. Thus, if the detected cut frame t whose
motion measure Mt is larger than a threshold εmotion, we
treat the cut as a false alarm and throw it away because
it was detected as a cut likely for large object motion. By
doing so, we have obtained a better compromise between
precision and recall as shown in the last row in Table 1.

The above scheme can only detect abrupt transitions. How-
ever, there are some shots with gradual transitions to gradu-
ally become dark or bright. To handle these shots, we simply
add a cut right before single-color frames that are detected
by the method in Section 3.1.

2.2 Sub-shot segmentation
In rushes, a shot represents one take to a scene. Later

in Section 3.2, we have to compare whether two shots are
taken for the same scene. This can be tricky because shots
of the same scene do not necessarily have similar durations.
Some shots could be cut very short because of early shooting
errors. Thus, we divide shots further into smaller units, sub-
shots, for more reliable shot comparison.

For this purpose, we want that all frames of a sub-shot
have similar visual content. To reach this goal, we start by
choosing the first frame of the shot as the base frame, say
frame b. We compare frames sequentially until some frame,
say frame c, is different enough from the base frame. The
frames from b to c− 1 then form a sub-shot and frame c are
used as the next base frame. We repeat this process until all
frames of the shot have been processed. Specifically, assume
that frame b is the base frame and the current frame is frame
c. We conclude the current sub-shot and use frame c as the
new base frame if

7∑
k′=0

Dχ2(Hk′
b , Hk′

c) > εsubshot.

Notice that we use the lower portion for sub-shot segmenta-
tion because we want to concentrate on the scene itself and
minimize the impact of object motion.

Since all frames of a sub-shot s have similar visual content,
we use the average local histogram Hk

s as a representative
feature for the sub-shot s,

Hk
s [i] =

1

|s|
∑
t∈s

Hk
t [i].

Sub-shots are used as the units of comparison for clustering
to avoid the issue of various durations of retaken shots.

∗
An I-frame’s motion measure is averaged from neighboring P-frames.

(a) single color frame (b) color bar frame

Figure 3: Single-color and color-bar frames.

Figure 4: Examples of clapper shots and clapper board

detection. Red lines are detected by Hough transform.

Yellow and green lines are the hypothesis that validates

existence of clapper boards.

3. REDUNDANT SHOT REMOVAL
There are essentially two types of redundant shots, junk

shots and duplicate shots. Junk shots include short shots,
single color shots, color bar shots and clapper shots. Dupli-
cate shots are the repetitive shots in rushes. We will discuss
junk shot detection in Section 3.1 and duplicate shot de-
tection in Section 3.2. In Figure 1, gray blocks represent
detected junk shots. For that example, one shot is com-
pletely removed from the six shots detected from Section 2.
The remaining five shots are then clustered into two groups
shown in red and green individually in Figure 1. A repre-
sentative shot (shaded in Figure 1) is then selected for each
group to remove duplicate shots.

3.1 Junk shot detection
Detecting short shots is simple. We simply remove shots

whose durations are less than 25 frames. In the following,
we will discuss methods for detecting single color shots (e.g.
Figure 3(a)), color bar shots (e.g. Figure 3(b)) and clapper
shots (e.g. Figure 4). For the first two categories, we use
the average local color histogram Hk

s for each sub-shot s,
extracted in Section 2.2, to judge whether a sub-shot is a
single color shot or a color bar shot.

Single color shots. A sub-shot s is a single color shot if
there is a dominant color in its global color histogram Hs,
where Hs[i] = 1

16

∑15
k=0 Hk

s [i]. A sub-shot s is a single-color
shot if following is true,

max
i

Hs[i] > εsingle.

Color bar shots. Since all color bars are vertical, the
color histograms for the blocks of the same column should all
be similar†. Thus, we calculate twelve χ2 histogram differ-
ences between any two neighboring blocks on each column,
Dχ2(Hk

s , Hk+4
s), where k = 0..11. If at least ten of these

†
Horizontal color bars can be detected in a similar way.

0

5000

10000

15000

20000

25000

30000

3620 3720 3820 3920 4020 4120 4220 4320

3709 3994 4260

421537313718

clapper zoom out zoom instill

Figure 5: Motion graph corresponding to a portion of

MRS044500.mpg. This example shows the motion of a

clapper board in action. It also demonstrates that mo-

tion measures directly derived from motion vectors are

good indicators for motion within frames.

twelve values are smaller than εcolorbar, then we claim that
sub-shot s is a color bar shot.

Clapper shots. The detection of clapper shots is more
complex because of the great variety of visual appearances of
clapper boards. The clapper boards differ mainly in colors
and sometimes in shapes as well. At times, even gestures
or clothes are used as clapper boards. However, rectangular
clapper boards still represent the majority of clapper shots.
Hence, we only focus on the detection of regular rectangular
clapper boards here.

We have observed two common scenarios of using clapper
boards. In the first scenario, the clapper board is moved
into the scene at the very beginning of a shot, held for a
while, and then moved out of the scene. In the second one,
the clapper board is already in the scene at the beginning of
a shot. It is kept still for a while and then moved out of the
scene. In either scenario, the clapper board has to be pulled
out. This often causes very high motion measure especially
because the board is very close to the camera. Hence, we
first find top three motion peaks of the first 10 seconds of
each shot. It is not a good idea to detect clapper board from
frames with high motion measure because the board is often
blurred due to its high motion. Instead, we look at the low-
motion bottoms in front of the high-motion peaks in the
motion graph. These low-motion bottoms often represent
the moments when the board is held still. It is easier to
detect clapper boards at these frames.

Figure 5 demonstrates a typical scenario of using a clapper
board. The board is there at the beginning of the shot. It
was adjusted slightly around frame 3680, causing a couple
of motion peaks. Finally, at frame 3718, the board was
pulled out of the scene, causing a very high motion peak
in the motion graph. Instead of checking frames with high
motions, we find a frame at low-motion bottom in front of
the peak, frame 3709, and detect the clapper board at this
frame. Figure 5 also shows that the motion measure is a
good indicator for the degree of motion for a frame.

The basic idea for clapper board detection is to detect lines
for a frame and test all hypothesis of quadrangles formed by
detected lines to see whether the quadrangle is large enough

and there is a dominant color within the hypothesized area.
If there is at least one hypothesis satisfying these constraints,
we claim that this frame contains a clapper board. As men-
tioned earlier, we only perform this expensive operation for
at most three frames per shot.

For each candidate frame to check, we apply the Hough
Transform to detect lines. We classify detected lines into 4
groups according to their slopes, H (horizontal, 0◦ ∼ 30◦ and
150◦ ∼ 180◦), V (vertical, 60◦ ∼ 120◦), R (right, 30◦ ∼ 60◦)
and L (left, 120◦ ∼ 150◦), as shown in Figure 2(b). To form
a quadrangle hypothesis, we pick two pairs of lines using
one of two possibilities: (1) one pair from group H and an-
other from V or (2) one pair from group L and another from
R. We test all possible hypothesis. If any of them satisfies
the following two constraints, we claim that there is a clap-
per board in the frame. First, the area of the hypothesized
quadrangle should be larger than εarea (5,000 for current
implementation) pixels. Second, there is a dominant color
(usually black or white) within the quadrangle. To detect
the (clapper) dominant color in an unsupervised manner,
we adopted RANSAC algorithm. We randomly sample sev-
eral colors within the quadrangle and calculate their average
color. We then check how many pixels within the quadran-
gle agree with the average color. If there are over 70% of
pixels which agree, there is a dominant color.

If we find that the frame t contains a clapper board, we
remove the segment from the first frame of the shot to the
frame t + 50‡. Here, we use 50 because we have observed
the time that the board disappears after being held still
usually doesn’t exceed two seconds. Figure 4 shows exam-
ples of clapper board detection. The red lines are detected
lines. The lines which form the hypothesis indicating the
existence of a clapper board are shown in yellow and green.
Notice that the hypothesis does not necessarily find the true
boundary of the clapper board since the procedure returns
immediately once we have found a valid hypothesis. The
precision and recall for clapper shot detection are 0.68 and
0.61 respectively. The main culprit for failures is the line
detection procedure we adapted from OpenCV.

3.2 Duplicate shot detection
At this point, each shot consists of several sub-shots and

each sub-shot s is represented by its average local histogram
Hk

s . We then group shots using a hierarchical agglomerative
clustering algorithm. Initially, each shot forms a cluster it-
self and includes all its sub-shots into its cluster. Clusters
with a minimal distance are then merged until all clusters
are already well separated. We use the single-linkage algo-
rithm, meaning the distance between two clusters is defined
as the minimal distance from any member of one cluster to
any member of the other cluster. Here, members involved in
clustering are sub-shots. Thus, we only have to define the
distance between two sub-shots for clustering.

The distance, Dvis(s, s
′), between two sub-shots s and s′

based on visual content can be computed by averaging χ2

distances between local histograms,

Dvis(s, s
′) =

1

16

15∑
k=0

Dχ2(Hk
s , Hk

s′).

In addition to the visual distance, because duplicate shots
are often taken sequentially, the temporal distance Dtmp(s, s′)

‡
The frame rate of the test videos is 25fps.

truth same different precisiondetection
same 142 0 1.000
different 34 1568 0.979
recall 0.807 1.000

Table 2: Confusion matrix on clustering performance.

between s and s′ should also play a role on the distance
between sub-shots. Thus, we define the overall distance
D(s, s′) between two sub-shots s and s′ for clustering as

D(s, s′) = 1 − (1 − Dvis(s, s
′)) × exp

(
−Dtmp(s, s′)2

2σ2

)
,

where σ is determined empirically from training videos. The
clustering process stops when the distance of any two clus-
ters is larger than εcluster. Table 2 summarizes the per-
formance of the shot clustering algorithm. Note that we
intentionally set a more rigorous εcluster to avoid clustering
shots of different scenes into the same group. This is good
for increasing the inclusion rate but it could lead duplication
in the video summary.

After clustering, for each cluster, we pick one shot as its
representative shot based on motion measures and dura-
tions, and treat others as duplicate shots. The importance
ΦS of a shot S is calculated by summing motion measures of
all frames in S, i.e. ΦS =

∑
t∈S Mt. By doing so, a shot with

larger motion or a longer duration will have a larger impor-
tance value and more likely be selected as the representative
shot for the group which it belongs to.

4. SUMMARY CREATION
Segment selection. As the first step for summary cre-

ation, we select important segments for each representative
shot. Again, we rely on motion measures to make the se-
lection. We classify a frame t as a high-motion frame if its
motion measure Mt is higher than εmotion. A sliding win-
dow of size w moves from the first frame to the last frame
of the shot. If the number of high-motion frames within
the current window exceeds εcount, all frames of the current
window are tagged as important frames. Finally, consequent
important frames are grouped together to form segments.

Next, we cluster segments of a shot using the same hi-
erarchical agglomerative clustering algorithm described in
Section 3.2 and only keep one segment for the segments in
the same cluster. This is a remedy for the imperfect shot
segmentation results in which around 20% of shot bound-
aries are not correctly detected. These are mostly caused by
repetitive shots which were taken without moving and turn-
ing off the camera. By grouping visually similar segments
within the same shot, we could avoid duplication even with
imperfect shot detection.

Summary creation. Since there is an upper bound Tlimit
for video summary (4% of the original video duration), we
have to squeeze the N selected high-motion segments into
the summary. For not missing any segment, we assign a min-
imal base time Tbase to each segment. The remaining time
is allocated to segments based on their importance values.
We define the importance Ψj for segment j as

Ψj = α
Lj

Lall
+ (1 − α)

Mj

Mall
,

where Lj is the duration of the segment j, Lall =
∑

j Tj ,

Mj = 1
|j|

∑
frame t∈j Mt, Mall =

∑
j Mj . In the current

implementation, we set α as 0.5. Finally, we allocate time
Tj to the segment j, where

Tj = Tbase + (Tlimit − N × Tbase) × Ψj .

If Tj > Lj , we just put the whole segment into the summary.
Otherwise, we use a sliding window of width Tj to select a
portion of segment j, which has the maximal sum of motion
measures, and put this portion of segments into the video
summary.

5. RESULTS AND DISCUSSIONS
Among all 24 submissions (including two CMU baselines),

our system ranks 9th in terms of inclusion rate, 13th in eas-
iness to understand, 9th in content duplication and 7th in
summary creation time. Our system always selects high-
motion segments into the summary. As a result, our sum-
mary is full of short and high-motion segments, which might
be harder to understand to the viewers. It is probably why
we had a lower rank for easiness to understand. The evalua-
tion of content duplication is mainly about the performance
of clustering. Our algorithm seems to work reasonably well.
However, it could be further improved by parameter tuning
and employing more sophisticated similarity measures.

Overall, our system achieves a reasonable balance between
creation time and effectiveness. Our system is fast because
it only uses two low-level features and uses them for differ-
ent purposes throughout the system. Though simple, these
features seem quite useful for making effective summaries.

One thing to note is that, in our submission to NIST, we
have not included clapper shot detection into our system be-
cause it was finished after the submission deadline. Because
of clapper board’s large motion, clapper shots are likely to
be selected into the summary. Thus, our submission sum-
maries contain quite a few clapper shots. It degraded our
system’s performance. The summary looks better after we
have added clapper shot detection into our system.

To advance the robustness and exploit system capabilities,
we are devising a more systematic approach to determine pa-
rameters used in the proposed system. Because rushes only
include ambient sounds, sound might not help for analy-
sis. However, audio might still be helpful for detection. For
example, clapper shots can probably be detected more accu-
rately by incorporating sound analysis. Another promising
direction to boost (near) duplicate shot detection is to ana-
lyze the take number on the clapper board.

6. REFERENCES
[1] http://www-nlpir.nist.gov/projects/tv2007/.

[2] I. Koprinska and S. Carrato. Temporal video segmentation:
A survey. 16:477–500, 2001.

[3] G. Lupatini, C. Saraceno, and R. Leonardi. Scene break
detection: a comparison. In Proceedings of International
Workshop on Research Issues In Data Engineering,
Continuous-Media Databases and Applications, 1998.

[4] P. Over, A. F. Smeaton, and P. Kelly. The TRECVID 2007
BBC rushes summarization evaluation pilot. In Proceedings
of the TRECVID Workshop on Video Summarization
(TVS’07), pages 1–15, September 2007.

[5] I. K. Sethi and N. V. Patel. Statistical approach to scene
change detection. In Storage and Retrieval for Image and
Video Databases (SPIE), pages 329–338, 1995.

