
Using LTL Rewriting to Improve the Performance of
Model-Checker Based Test-Case Generation

Gordon Fraser and Franz Wotawa
∗

Institute for Software Technology
Graz University of Technology

Inffeldgasse 16b/2
A-8010 Graz, Austria

{fraser,wotawa}@ist.tugraz.at

ABSTRACT
Model-checkers have recently been suggested for automated
software test-case generation. Several works have presented
methods that create efficient test-suites using model-checkers.
Ease of use and complete automation are major advantages
of such approaches. However, the use of a model-checker
comes at the price of potential performance problems. If
the model used for test-case generation is complex, then
model-checker based approaches can be very slow, or even
not applicable at all. In this paper, we identify that unnec-
essary, redundant calls to the model-checker are one of the
causes of bad performance. To overcome this problem, we
suggest the use of temporal logic rewriting techniques, which
originate from runtime verification research. This achieves
a significant increase in the performance, and improves the
applicability of model-checker based test-case generation ap-
proaches in general. At the same time, the suggested tech-
niques achieve a reduction of the resulting test-suite sizes
without degradation of the fault sensitivity. This helps to
reduce the costs of the test-case execution.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Performance, Algorithms, Experimentation

∗The research herein is partially conducted within the
competence network Softnet Austria (www.soft-net.at) and
funded by the Austrian Federal Ministry of Economics
(bm:wa), the province of Styria, the Steirische Wirtschafts-
frderungsgesellschaft mbH. (SFG), the city of Vienna in
terms of the center for innovation and technology (ZIT),
the Austrian Federal Ministry of Transport, Innovation and
Technology (BMVIT) and FFG under grant FIT-IT-809446.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
A-MOST’07 July 9, 2007, London, UK
Copyright 2007 ACM 1-58113-000-0/00/0004 ...$5.00.

Keywords
Automated software testing, LTL rewriting, test-case gen-
eration with model-checkers

1. INTRODUCTION
Recently, the use of model-checkers for the automated

generation of test-cases has seen increased attention. Counter
examples produced by model-checkers are interpreted as test-
cases. The approach is straight forward, fully automated
and achieves good results.

The main drawback lies within the performance limita-
tions of model-checkers. The state space explosion problem
severely limits the applicability of model-checker based test-
ing approaches. It is therefore necessary to find ways to
improve the performance and applicability. Another disad-
vantage of model-checker based approaches is the structure
of resulting test-suites. Often, test-suites consisting of large
numbers of very short test-cases are created. In contrast, if
longer test-cases are created, they often share long identical
prefixes. This adversely affects the time and costs of the
execution of a resulting test-suite.

While ultimately the size of the model used for test-case
generation determines the applicability of any model-checker
based technique, there are other factors that contribute to
possible bad performance. For example, sometimes large
numbers of duplicate test-cases are created. In this paper
we identify sources of redundancy that contribute to possible
bad performance during test-case creation and execution,
and describe an approach based on temporal logic formula
rewriting that can be used to reduce the number of model-
checker queries significantly. Consequently, the overall time
it takes to create a complete test-suite is reduced. In detail,
the contributions of this paper are as follows:

• We show how temporal logic formula rewriting can be
used to efficiently avoid the creation of redundant test-
cases.

• In addition to improving the performance of test-case
generation by avoiding unnecessary calls to the model-
checker, we show that the rewriting can also be used
to extend test-cases such that the resulting number of
test-cases and their overall length is reduced. This can
be seen as an improvement of the performance of the
test-case execution.

• We suggest different algorithms to efficiently generate
test-suites using model-checkers and rewriting.

• Finally, we use an example model for a detailed eval-
uation of the presented ideas in order to show their
feasibility.

This paper is organized as follows: First, Section 2 gives
an overview of model-checker based testing and introduces
all necessary concepts. Then, Section 3 describes how for-
mula rewriting can be incorporated into the test-case gen-
eration in order to improve the overall performance. The
effects of this combined approach are empirically analyzed
in detail in Section 4. Finally, Section 5 discusses the results
and concludes the paper.

2. PRELIMINARIES
In this section, the idea of testing with model-checkers is

recalled. The available approaches are reviewed, and those
suitable for an optimization based on formula rewriting are
identified. Then, the necessary theoretical background of
testing with model-checkers and properties written in Linear
Temporal Logic [27] (LTL) is introduced.

2.1 Testing with Model-Checkers
A model-checker is a tool intended for formal verification.

It takes as input an automaton based model of an applica-
tion and a temporal logic formula. Then, the entire state
space of the model is effectively explored in order to de-
termine whether the model and the formula are consistent.
If the model-checker determines that the property does not
hold on the model, then it returns a trace (counter example),
which is a sequence of states leading from the initial state
to some state such that the property violation is illustrated.
Although this is not strictly correct, we will call a property
that does not hold on a model inconsistent in this paper.

Each state of a counter example fully describes the values
of all variables of the model. The values of input variables
(i.e., such variables that are provided by the environment to
the system under test) can be used as test data. Similarly,
the values of output variables that reflect the behavior of a
model upon a certain input can be used as test oracle. Test-
case generation is automated by systematically introducing
inconsistency to a model that is assumed to be correct.

Two main categories of approaches can be distinguished:
The first category uses intentionally inconsistent properties
to force the model-checker to create counter examples: Trap
property based approaches to test-case generation [7, 12, 14,
19, 28] express the items that make up a coverage criterion
as properties that claim these items cannot be reached. For
example, a trap property might claim that a certain state or
transition is never reached. When checking a model against
a trap property the model-checker returns a counter example
illustrating how the trap property is violated. For example,
it shows how the state or transition described by the trap
property is reached. This counter example can be used as
a test-case. Further related approaches that make use of
the model-checker similarly are those based on mutation of
properties that ”reflect” the transition relation [5] or traps
based on requirement properties [23].

The second category of test-case generation approaches
uses fault injection to change the model [2, 3, 10, 26]. Here,
the model-checker is used to examine the effects of injected
faults on specification properties, or to illustrate the differ-
ences between changed models and the original model.

In this paper we focus on the first category of approaches.

The many different types of trap properties suggested in re-
cent years show how flexible this kind of approach is. The
size and thoroughness of a resulting test-suite can be greatly
varied by using different trap properties. As reported by De-
varaj et al. [13] and Heimdahl et al. [21], simple coverage cri-
teria and trap properties might result in test-cases of poor
quality, so more complex coverage criteria are preferable.
Such criteria, however, usually lead to more complex trap
properties. The performance of the model-checker decreases
as property complexity increases. A high number of trap
properties also has a negative impact on the overall perfor-
mance. Another drawback results from the fact that model-
checkers are not originally designed to be used for test-case
generation. Each trap property can result in a counter ex-
ample. Often, the same counter example is created several
times for different properties. Similarly, a counter exam-
ple might be subsumed by another, longer counter example.
If the number of trap properties is large and/or the model
complexity is high, then the creation of each such counter
example wastes valuable time. Ideally, creating redundant
traces should therefore be avoided in the first place.

The above consideration is related to the idea of test-suite
reduction [15], also referred to as test-suite minimization.
Test-suite minimization describes the problem of finding a
minimal subset of a test-suite that is necessary to fulfill a
given set of requirements (e.g., a coverage criterion). Several
experiments [20, 22, 30] have shown that minimization has
a negative impact on the fault sensitivity. This raises the
question of whether avoiding the creation of test-cases for
trap properties that are already covered has a similar effect.

Hamon et al. [14] take a slightly different approach to
simply model-checking all trap properties directly. They in-
tegrate the test-case generation into the model-checker SAL,
such that each counter example iteratively extends the pre-
vious one. While this approach avoids the creation of dupli-
cate test-cases it can still create test-cases for trap properties
that are already covered. Although this can be positive with
regard to the overall fault sensitivity, the model-checker is
called more often than would be necessary with regard to the
used coverage criterion or trap properties, thus potentially
impairing the performance.

2.2 Theoretical Background
Model-checkers and temporal logics use Kripke structures

as model formalism:

Definition 1 (Kripke Structure). A Kripke struc-
ture K is a tuple K = (S, S0, T, L), where S is the set of
states, S0 ⊆ S is the initial state set, T ⊆ S × S is the total
transition relation, and L : S → 2AP is the labeling function
that maps each state to a set of atomic propositions that hold
in this state. AP is the countable set of atomic propositions.

If the model-checker determines that a model K violates a
property φ then it returns a trace that illustrates the prop-
erty violation as a counter example. The trace is a finite
prefix of an execution sequence of the model (path):

Definition 2 (Path). A path π := 〈s0, s1, . . . , sn〉 of
Kripke structure K is a finite or infinite sequence such that
∀ 0 ≤ i < n : (si, si+1) ∈ T for K.

Properties are specified using temporal logics. In this pa-
per, we use future time Linear Temporal Logic (LTL) [27].

An LTL formula consists of atomic propositions, Boolean op-
erators and temporal operators. The operator ”© ” refers
to the next state. E.g., ”© a” expresses that a has to be
true in the next state. ”U ” is the until operator, where
”a U b” means that a has to hold from the current state
up to a state where b is true. ” 2 ” is the always operator,
stating that a condition has to hold at all states of a trace,
and ” 3 ” is the eventually operator that requires a certain
condition to eventually hold at some time in the future. The
syntax of LTL is given as follows, with a ∈ AP:

φ ::= true | false | a | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 |
φ1 → φ2 | φ1 ≡ φ2 | φ1 U φ2 | ©φ | 2 φ | 3 φ

The semantics of LTL is expressed for infinite traces of
a Kripke structure, where K, π |= φ means that path π of
Kripke structure K satisfies the LTL formula φ. πi denotes
the suffix of the path π starting from the i-th state, and π(i)
denotes the i-th state of the trace π, with i ∈ N0. The initial
state of a trace is π(0).

K, π |= true for all π (1)

K, π 2 false for all π (2)

K, π |= a iff a ∈ L(π(0)) (3)

K, π |= ¬φ iff K, π 2 φ (4)

K, π |= φ1 ∧ φ2 iff K, π |= φ1 ∧K, π |= φ2 (5)

K, π |= φ1 ∨ φ2 iff K, π |= φ1 ∨K, π |= φ2 (6)

K, π |= φ1 → φ2 iff K, π 2 φ1 ∨K, π |= φ2 (7)

K, π |= φ1 ≡ φ2 iff K, π |= φ1 iff K, π |= φ2 (8)

K, π |= φ1 U φ2 iff ∃i ∈ N0 : K, πi |= φ2 ∧ (9)

∀ 0 ≤ j < i : K, πj |= φ1

K, π |= ©φ iff K, π1 |= φ (10)

K, π |= 2 φ iff ∀j ∈ N0 : K, πj |= φ (11)

K, π |= 3 φ iff ∃j ∈ N0 : K, πj |= φ (12)

A trap property φ is a property that is supposed to be
violated by a correct model, resulting in a trace t such that
K, t 2 φ. For example, in order to create a state coverage
test-suite, a trap property for each possible state a of every
variable x is needed, claiming that the value is not taken:
2¬(x = a). A counter example to such an example trap
property is any trace that contains a state where x = a.
This example is a safety property, but trap properties can
use the full power of LTL; for example, they can be defined
over transitions or sequences of transitions.

Although a trap property is supposed to force creation
of a counter example, it is not per definition inconsistent
with the model. For example, not all mutants of properties
”reflecting” the transition relation as used by Black [5] are
necessarily inconsistent with a given model.

Counter examples resulting from trap properties are used
as test-cases. A test-case t is a finite prefix of a path π. We
consider such test-cases where the expected correct output is
included. This kind of test-cases is referred to as passing or
positive test-cases. The result of the test-case generation is
a test-suite, a set of test-cases. Test-cases created by model-
checkers are deterministic, which means that in their basic
form they do not handle non-deterministic behavior of the
system under test.

Definition 3 (Test-Case). A test-case t is a finite
prefix of a path π of Kripke structure K.

The number of transitions a test-case consists of is referred
to as its length. For example, test-case t := 〈s0, s1, ..., sn〉
has a length of length(t) = n.

Definition 4 (Test-Suite). A test-suite TS is a fi-
nite set of n test-cases. The size of TS is n. The overall
length of a test-suite TS is the sum of the lengths of its
test-cases ti: length(TS) =

Pn
i=1 length(ti).

A test-suite created from a set of trap properties auto-
matically achieves maximum coverage of the criterion used
to create the traps. Infeasible trap properties are handled
implicitly, because they do not result in counter examples.
A trap property φ is covered, if there exists a test-case t
such that K, t 2 φ. Coverage is also used as an estimate for
the test-suite quality:

Definition 5 (Test Coverage). The coverage C of
a test-suite TS with regard to a coverage criterion repre-
sented by a set of trap properties P is defined as the ratio of
covered properties to the number of properties in total:

C =
1

|P| · |{x|x ∈ P ∧ covered(x, TS)}|

The predicate covered(a, TS) is true if there exists a test-
case t ∈ TS such that t covers a, i.e., K, t 2 a.

3. ADVANCED TEST-CASE GENERATION
WITH LTL REWRITING

The straight forward approach to generating test-cases
with a model-checker and trap properties is to simply model-
check all trap properties sequentially. This possibly results
in duplicate test-cases, or test-cases that are subsumed by
other test-cases. We refer to such test-cases as redundant.
The creation of redundant test-cases unnecessarily consumes
time. If model-checking a single property is costly due to
the complexity of the model or the property, then the time
wasted can be significant. This can be avoided by deter-
mining whether a property is already covered by a previous
test-case, and only if not so calling the model-checker.

Theoretically, a model-checker could be used to deter-
mine whether a test-case is already covered. Ammann and
Black [1] present a straight forward approach to represent
test-cases as SMV models and then simply model-check the
test-case model against a trap property in order to deter-
mine whether it is covered. Intuitively, the state space of
a test-case model is significantly smaller than that of the
full model. The use of regular model-checker techniques and
tools, however, is not the optimal solution with regard to the
performance. For example, consider a complex model with
a large number of trap properties and also a large number
of test-cases created up to a certain point in the test-case
generation process. During the test-case generation, each
test-case would have to be converted to a model. Then,
the model-checker would have to be called for this model,
in order to check all remaining trap properties. Repeating
this each time a test-case is created would result in a large
number of model-checker calls, which would be inefficient.
Clearly, a more efficient solution is necessary under such
circumstances. Markey and Schnoebelen [25] analyze the
problem of model-checking paths and show that there are
more efficient solutions than checking Kripke structures.

Runtime verification is commonly based upon determi-
nation of whether a finite path satisfies a temporal logic

property. In contrast to model-checking it does not use
an explicit model, but only execution traces. For example,
the NASA runtime verification system Java PathExplorer
(JPaX) [16] uses monitoring algorithms for LTL. Properties
are rewritten using the states of a trace. That way, violation
of a property can be efficiently detected during runtime or
during analysis after the execution. This idea is also useful
for test-case generation. If the rewriting is applied to the
trap properties after creating a test-case, then all trap prop-
erties that are already covered can be efficiently detected
before calling the model-checker on them.

This section therefore presents an approach that uses LTL
rewriting in order to detect already covered trap properties
efficiently, and thus increase the overall performance of the
test-case generation process.

3.1 LTL Rewriting
An efficient method to monitor LTL formulae is to rewrite

them using the states of an execution trace. The rewriting
approach we present here is based on work by Havelund and
Rosu [17]. Their implementation uses a rewriting engine
that is capable of 3 million rewritings per second, which
shows that rewriting is an efficient and fast approach. There
are approaches that try to further optimize this approach,
e.g., [4, 18, 29].

In the domain of runtime verification, one important as-
pect is the optimization with regard to space demands. Long
execution runs can create very long execution traces and
lead to space problems. This problem does not exist in the
domain of model-checker based test-case generation, as the
creation of the traces is the overall objective. In order for
counter examples to serve as usable test-cases, their size al-
ways has to be within bounds. Therefore, space constraints
do not have to be considered when choosing an algorithm
for LTL monitoring.

In runtime verification, LTL rewriting is used to decide
when a fault has occurred. In the context of test-case gen-
eration, the rewriting can be used to determine whether it
is necessary to create a trace from a trap property before ac-
tually calling the model-checker. If there exists a test-case
that already covers the trap property, then there is no need
to create another test-case for this trap. This is achieved by
evaluating a formula using the value assignments of a state,
and by rewriting temporal operators. If a trace violates a
property, then at a violating state the formula is rewritten
to a contradiction, i.e., it is false.

Monitoring LTL properties for runtime verification is gen-
erally based on finite trace semantics that are different from
the infinite trace semantics presented in Section 2.2. Finite
trace semantics consider only finite traces, therefore special
treatment of the last state of a finite trace is necessary. For
example, one possibility is to assume that the last state is
repeated after the end of the trace. Another possibility is
to define that no proposition holds after the last state. For
example, this changes the meaning of the 2 operator. In
the context of model-checker based test-case generation we
do not need to consider this. It is only of interest, whether
a trap property is violated somewhere along a test-case. If
it is not violated at the end of a finite trace, satisfaction is
not of interest. The only conclusion that needs to be drawn
is that it is not yet covered.

The rewriting of property φ with state s is recursively
defined below, where a ∈ AP denotes an atomic proposition,

φ denotes a temporal logic formula, and s ∈ S for Kripke
structure K = (S, s0, T, L). φ{s} denotes that state s is
applied to the formula φ. Application of a state to a formula
determines, whether the propositions valid in that state have
an effect on the formula. The parts of the formula that refer
to the present state are instantiated according to L(s), while
affected temporal operators are rewritten according to the
rules. The rewriting in Definition 6 differs from that given
by Havelund and Rosu [17] in order to reflect the different
semantics applied; the final state of a trace is not treated
specially.

Definition 6 (State Rewriting).

(2 φ){s} = φ{s} ∧ 2 φ (13)

(©φ){s} = φ (14)

(3 φ){s} = φ{s} ∨ 3 (φ) (15)

(φ1 U φ2){s} = φ2{s} ∨ (φ1{s} ∧ (φ1 U φ2)) (16)

(φ1 ∧ φ2){s} = φ1{s} ∧ φ2{s} (17)

(φ1 ∨ φ2){s} = φ1{s} ∨ φ2{s} (18)

(φ1 → φ2){s} = φ1{s} → φ2{s} (19)

(φ1 ≡ φ2){s} = φ1{s} ≡ φ2{s} (20)

(¬φ){s} = ¬(φ{s}) (21)

a{s} = a if a /∈ L(s) else true (22)

As a simple example, consider a trap property that forces
the creation of a test-case which contains a transition from
a state where x is true and y is false to any state where
x is true. To achieve this, the property claims that such a
transition does not exist:

φ := 2 ((x ∧ ¬y) → ©¬x)

A previously checked trap property might have resulted in
the following test-case: t := 〈(x, y), (x,¬y), (x,¬y), (¬x,¬y)〉.
Obviously, φ is covered by this test-case as the transition
from the second to the third state is the one described by φ.
In order to detect this, φ is rewritten using the states of the
test-case sequentially. Application of the first state (x, y) of
t is performed as follows:

φ{x, y} = 2 ((x ∧ ¬y) → ©¬x){x, y}
= ((x ∧ ¬y) → ©¬x){x, y} ∧ φ)

= ((x ∧ ¬y){x, y} → (©¬x){x, y}) ∧ φ

= ((x{x, y} ∧ (¬y){x, y}) → (¬x)) ∧ φ

= ((true ∧ false) → (¬x)) ∧ φ

Which can be simplified to:

= ((false → (¬x)) ∧ φ

= true ∧ φ

φ1 = φ

Rewriting with the first state does not change φ. The second

state, however, does affect φ:

φ1{x,¬y} = 2 ((x ∧ ¬y) → ©¬x){x,¬y}
= ((x ∧ ¬y) → ©¬x){x,¬y} ∧ φ)

= ((x ∧ ¬y){x,¬y} → (©¬x){x,¬y}) ∧ φ

= ((x{x,¬y} ∧ (¬y){x,¬y}) → (¬x)) ∧ φ

= ((true ∧ true) → (¬x)) ∧ φ

φ2 = ¬x ∧ φ

The third state (x,¬y) is now applied to φ2:

φ2{x,¬y} = (¬x ∧ φ){x,¬y}
= ((¬x){x,¬y} ∧ φ{x,¬y})
= (false ∧ φ{x,¬y})

φ3 = false

After rewriting with the third state a contradiction re-
sults, therefore it can be concluded that φ is covered by t.
Hence, there is no need to call the model-checker with the
trap property φ.

3.2 Test-Case Generation
The basic approach to automated test-case generation

with model-checkers is to sequentially call the model-checker
with one trap property after the other. Integrating the for-
mula rewriting is therefore easy. Either all remaining prop-
erties are checked after creating a test-case, or each property
is checked against all previous test-cases before calling the
model-checker. The simple algorithm MON in Listing 1
shows the latter possibility. The worst case scenario is that
of n trap properties, where each property results in a unique
test-case that only covers the property used for its creation.
For an average test-case length of l, this means that the
rewriting procedure would be called

Pn
k=1(k − 1) ∗ l times.

The maximum number of calls to the model-checker is n,
with and without the use of rewriting. Obviously, in order
to improve the overall performance, rewriting a property has
to be significantly faster than model-checking a property.

Due to the use of the rewriting method the order in which
trap properties are selected has an influence on the results
with regard to both the performance and the test-suite size.
Consider two trap properties φ1 and φ2, resulting in test-
cases t1 and t2. Now assume that t1 only covers φ1, while
t2 covers both φ1 and φ2. If φ1 is chosen first, then the
model-checker is called for both properties, resulting in t1
and t2. Here, t1 can even be a prefix of t2, in which case
it would be completely redundant. In contrast, if φ2 were
chosen first, then the resulting t2 would cover φ2 and φ1,
thus avoiding that the model-checker is called with φ1 in
the first place. In Listing 1, the choice of the next trap
property is non-deterministic.

Even if the formula rewriting does not show that a trap
property is covered, the result of the rewriting can be useful.
If the transformation of a property with a test-case results
in a formula that is different from the original, this is an
indication that the trace affects the property, although it
does not yet cover it.

For example, assume a trap property that requires a test-
case such that there is a state where x is true, and upon
which a state where y is true follows. To achieve this, the

function covered(trap , traces)
begin

for trace in traces do
begin

trap′ = trap
for s in trace do
begin

trap′ = trap′ {s}
i f trap′ == False then

return True
f i

end
end

return False
end

function CreateTestCases MON(Model M, Traps T)
begin

traces = []
for each trap in T do
begin

if ! covered(trap , traces) then
traces .append(createTrace(M, trap))

f i
end
return traces

end

Listing 1: Algorithm MON : Test-case generation
with monitoring by rewriting

trap property expresses that whenever x is true, ¬y follows:
φ := 2 x → ©¬y. Assume further a test-case of the shape
t := 〈(¬x,¬y), (¬x, y), (x,¬y)〉, i.e., the test-case ends with
a state where x is true. This test-case could simply be ex-
tended with one state where y is true in order to also cover φ.
Even though t does not cover φ, the transformation changes
the property to ¬y∧(2 x → ©¬y). The fact that the prop-
erty changed can be seen as an indication that the test-case
can be extended. In the example, only one additional tran-
sition is needed to cover φ, while a new test-case to cover φ
starting in the initial state is likely to be longer. In general,
the extension sequence of the existing test-case is likely to
be shorter than a distinct test-case for the property, as there
is no prefix necessary to reach a relevant state, and part of
the temporal logic formula already is achieved.

In order to use rewritten properties as trap properties it
is necessary to place them within a next-operator, such that
the model-checker creates at least one new transition:

φ′ = © (φ{s})

The final state of the trace that is extended serves as the
initial state of the new model, therefore the next operator
is necessary in order to avoid duplicate evaluation of that
state.

The algorithm EXT1 in Listing 2 shows how this can be
incorporated into the test-case generation. Again, a trap
property is checked against the previous test-cases using
rewriting. If the trap property is not covered, then the re-
sults of the rewriting process are compared to the original

trap property. Any rewritten trap property that differs from
the original property suggests that the according test-case is
related and can be extended. If there are several test-cases
suitable for extension, then one of the test-cases has to be
chosen. In Listing 2 this is the second non-deterministic
choice besides the choice of the next trap property. The
function extendTrace calls the model-checker to create a
new counter example beginning with the final state of the
trace that is to be extended. The actual implementation of
this function depends on the model-checker that is used. If
the model-checker does not support to explicitly set the ini-
tial state, a possible alternative is to rewrite the initial state
in the model source file. After changing the initial state, the
model-checker is called with the trap property, resulting in
a counter example. This new counter example is appended
to the previous trace.

function CreateTestCases EXT1(Model M, Traps T)
begin

traces = []
for each trap in T do
begin

if ! covered(trap , traces) then
if exists trace t : trap{t} 6= trap then

extendTrace(t , M, trap)
else

traces .append(createTrace(M, t))
f i

f i
end
return traces

end

Listing 2: Algorithm EXT1: Extending test-cases
with affected trap properties

Finally, the monitoring idea can also be integrated into a
test-case generation approach similar to the idea presented
by Hamon et al. [14]. In the algorithm EXT2 shown in
Listing 3 trap properties are used to extend a test-case un-
til it reaches a certain maximum length MAX. If MAX is
reached, then a new test-case is started in the initial state
of the model.

As with the other algorithms, the choice of the next trap
property has an influence on the results. It is possible to
use the rewriting to guide this choice. In contrast to the
previous two algorithms, EXT2 applies the transformation
to all remaining trap properties after a test-case extension.
All trap properties that are already covered are removed.
If a trap property is changed by the transformation, the
changed version is stored. It is only necessary to use the
extension for the rewriting instead of the whole test-case,
after the test-case is extended.

The advantage of this approach is that all trap properties
affected by the current test-case are identified. By prefer-
ring changed trap properties over unchanged ones, the over-
all test-suite length can be reduced. If no trap property is
affected, Listing 3 prefers those traps properties that were
affected earlier during creation of the current test-case, or
else chooses one of the remaining trap properties. If a new
test-case is started, then the rewritten traps properties have
to be reset to their original versions.

function CreateTestCases EXT2(Model M, Traps T)
begin

traces = [] , current trace = []
while not empty(T) do
begin

trap = trap affected by previous rewriting ,
or random trap

i f length(current trace) < MAX then
extendTrace(current trace , M, trap)

else
traces .append(current trace)
reset rewritten traps
current trace = createTrace(M, trap)

f i

for each trap in T do
begin

if covered(trap , current trace) then
remove trap

else if trap changed by rewriting then
save rewritten trap

f i
end

end
return traces

end

Listing 3: Algorithm EXT2: Extending up to
maximal depth

4. EMPIRICAL EVALUATION
This section describes our prototype implementation of

the presented techniques as well as the setup, environment
and results of a set of experiments conducted with the pro-
totype.

4.1 Experiment Setup
Our prototype implementation was written with the pro-

gramming language Python1. The LTL rewriting was im-
plemented on top of abstract syntax trees generated by the
parser generator Antlr2. Clearly, this is not a high perfor-
mance solution, and the achieved results should therefore be
improvable by using more efficient tools and methods. All
non-deterministic choices are implemented such that trap
properties are chosen sequentially in the order they are cre-
ated by or provided to the prototype. Version 2.4.1 of the
open source model-checker NuSMV [8] is used in our ex-
periments. NuSMV provides symbolic BDD-based model-
checking and SAT-based bounded model-checking. In our
experiments, the symbolic model-checker was used. All ex-
periments were conducted on a PC with Intel Core Duo
T2400 processor and 1GB RAM. For the experiments, the
two different maximum depth values 20 and 50 were cho-
sen for EXT2. This is supposed to illustrate the effects the
choice of the maximum depth has on the performance and
quality of the results.

As an example model, a windscreen wiper controller pro-
vided by Magna Steyr is used. The model was created
manually from a Matlab Stateflow model. The system has

1http://www.python.org
2http://www.antlr.org

four Boolean and one 16 bit integer input variables, three
Boolean and one 8 bit integer output variables, and one
Boolean, two enumerated and one 8 bit integer internal vari-
ables. The system controls the windscreen heating, speed of
the windscreen wiper and provides water for cleaning upon
user request. NuSMV reports a total of 244.8727 states, 93
BDD variables and 174762 BDD nodes after model encod-
ing. The time it takes to check a single property not only
depends on the model, but also on the property itself. For
the example model and trap properties, checking one prop-
erty takes between 2 and 3 seconds in average. The size of
the model is not yet problematic for a model-checker based
approach, but it is big enough to make performance changes
visible while conveniently allowing an extensive set of exper-
iments to be conducted within realistic time.

Table 1: Coverage criteria and resulting trap prop-
erties.

Coverage Criterion Shorthand Traps
Transition T 89
Condition C 320
Transition Pair TP 6298
Reflection R 5116
Property P 345

Trap properties were created automatically for different
criteria. Transition and condition coverage are simple cri-
teria based on the NuSMV model. Transition coverage re-
quires each transition relation of the NuSMV model to be
covered, while condition coverage tests the effects of each
atomic condition in a transition guard expression. Consider
the follow excerpt of a NuSMV transition relation:

next(var) := case

condition1 & condition2: next value;
...

esac;

A transition coverage trap property for this transition
would be 2 (condition1 ∧ condition2 → ©¬next value).
There are two condition coverage traps for this transition re-
lation: 2 (¬condition1 ∧ condition2 → ©next value) and
2 (condition1 ∧ ¬condition2 → ©next value). Transition
pair coverage requires all possible pairs of transitions to be
covered. For example, the transition condition1 → value1
and condition2 → value2 are combined to the following trap
property: 2 ((condition1 → © value1)∧ (© (condition2 →
© value2))).

In addition to these coverage criteria, we implemented
the approach described by Black [5]. Here, trap properties
are generated by representing the transition relation of the
model as properties (reflection) and then applying mutation
to the resulting properties. The following mutation opera-
tors were used (see [6] for details): STA (replace atomic
propositions with true/false), SNO (negate atomic propo-
sitions), MCO (remove atomic propositions), LRO, RRO,
ARO (logical, relational and arithmetical operator replace-
ment, respectively). This approach subsumes the presented
Transition and Condition coverage criteria. In the tables of
this paper, we refer to this kind of trap properties as ’Re-
flection’.

Finally, a set of trap properties was written for the prop-

erty coverage criterion introduced by Tan et al. [23]. This
coverage criterion creates traps from requirement properties,
and results in interesting (i.e., showing non-vacuous satisfac-
tion) test-cases for the requirement properties. For this, 30
requirement properties from an informal requirements spec-
ification were manually formalized using LTL.

Table 1 lists the numbers of trap properties created for
the presented criteria. In our experiments only trap proper-
ties that result in counter examples were used. The different
algorithms were executed using these sets of trap properties.
The time the creation takes is measured as well as aspects
of the resulting test-suites. As the order in which trap prop-
erties are chosen during the test-case creation can influence
the results, we repeated the test-case creation with ten dif-
ferent random orderings for each set of trap properties, and
the results stated in the tables below are averaged.

Besides the performance of the different algorithms, it is
of major interest to examine the effects on the quality of the
resulting test-suites. Therefore, the coverage of each test-
suite is measured for all the presented coverage criteria. In
addition, the mutation score is measured with regard to the
model and to an implementation. A mutant results from a
single syntactic modification of a model or program. The
mutation score of a test-suite is the ratio of mutants that
can be distinguished from the original to the number of mu-
tants in total. A mutant is detected if the execution leads
to different results than expected. For this, a test-case can
be symbolically executed against a model or a model mu-
tant by converting it to a verifiable model. The transition
relations of all variables are given such that they depend on
a special state counting variable, as suggested by Ammann
and Black [1]. This test-case model can be combined with a
mutant model, where the values of the test-case serve as in-
puts to the mutant model. Symbolic execution is performed
by querying the model-checker whether the output values of
mutant model and test-case model differ at some point. It is
also conceivable to implement this symbolic execution using
rewriting techniques.

For the model-based mutation score, the original model
was mutated using the same mutation operators as described
above for the trap property creation. The resulting mu-
tants were analyzed in order to eliminate equivalent mu-
tants. This is done with a variant of the test-case generation
approach proposed by Okun et al. [26]. The original model
and a mutant model are combined so that they share the
same input variables, and the model-checker is then queried
whether there exists a trace such that the output values of
model and mutant differ. Therefore, an equivalent mutant
is detected if no counter example is returned. This method
produced a total of 3303 syntactically valid, non-equivalent
mutants. In addition, a Java implementation of the system
was written in order to calculate a mutation score using ac-
tual execution. Java was chosen for this in order to make use
of MuJava [24] for the creation of mutants. MuJava created
218 syntactically valid mutants.

4.2 Results
In the tables below we refer to straight forward test-case

creation by sequentially calling the model-checker with all
trap properties as Normal. Table 2 lists the numbers of test-
cases created for each set of trap properties and method.
The number of unique test-cases is determined by remov-
ing redundant test-cases (i.e., duplicate tests and such tests

that are prefixes of other, longer test-cases and therefore
subsumed). While on average 75% of the test-cases created
without monitoring (Normal) are redundant, this ratio is
significantly improved with all presented methods. MON
creates almost no redundant test-cases. In average there are
0.3% redundant test-cases for all criteria except the prop-
erty coverage criterion, which results in 14.76% redundant
test-cases. Redundancy can occur with MON if an existing
test-case is a prefix of a counter example for another trap
property, but does not fully cover it. Therefore, the order
in which trap properties are selected has an influence on the
amount of redundant test-cases. Theoretically, EXT1 can
also create such redundant test-cases, as the rewriting can-
not detect that an existing test-case is a prefix of another
test-case in all situations. This only occurred a few times,
and only for the property coverage set of trap properties,
where the maximum number of redundant test-cases was 4
out of 89. Except for that, EXT1 and EXT2 created no
duplicate or subsumed traces at all.

All the considered algorithms create smaller test-suites
than the straight forward (Normal) approach. For EXT1
and EXT2 this was to be expected, because these approaches
are intended to create fewer but longer test-cases. The fact
that also MON creates significantly less test-cases indicates
that the straight forward approach creates test-suites that
contain considerable redundancy, which is discussed below.

Table 2: Average number of unique test-cases.
Crit. Normal MON EXT1 EXT220 EXT250

T 31 20.3 16.3 6.3 3.3
C 78 46.5 39.7 15.7 8.0
TP 261 171.5 67.6 53.1 25.2
R 277 187.7 144.3 51.0 22.3
P 197 142.0 81.0 50.0 21.6

Table 3: Average test-case length.
Crit. Normal MON EXT1 EXT220 EXT250

T 8 8.8 12.2 26.6 50.9
C 9 10.9 12.7 27.3 53.9
TP 11 11.0 25.2 28.8 57.8
R 8 8.8 11.3 25.0 54.2
P 9 11.0 15.9 25.4 55.5

Table 4: Total test-suite length after removing du-
plicate/redundant test-cases.

Crit. Normal MON EXT1 EXT220 EXT250

T 259 186.9 207.1 170.0 168.5
C 748 522.6 518.6 436.1 433.5
TP 2972 2009.4 1731.2 1556.2 1523.2
R 2469 1717.1 1699.8 1290.2 1226.8
P 1934 1566.4 1332.5 1289.5 1209.9

Table 3 lists the average test-case lengths, and Table 4
lists the overall test-suite lengths. The length of a test-suite
is calculated as the sum of the lengths of its unique test-
cases. The length of a test-case equals the number of its

Table 5: Standard deviation of test-suite lengths.
Crit. Normal MON EXT1 EXT220 EXT250

T 0 16.7 22.3 19.0 16.7
C 0 17.6 26.9 38.9 30.4
TP 0 48.4 34.5 54.6 60.4
R 0 40.7 61.7 53.5 73.7
P 0 29.2 79.7 65.4 65.0

Table 6: Redundancy.
Crit. Normal MON EXT1 EXT220 EXT250

T 31.25% 26.91% 11.7% 2.99% 0.94%
C 30.84% 26.89% 16.02% 3.96% 1.48%
TP 33.38% 31.19% 5.68% 4.25% 1.62%
R 49.25% 46.29% 20.94% 4.75% 1.64%
P 21.52% 16.43% 9.42% 4.20% 1.47%

transitions. As expected, the tables show that the test-cases
created using extension of other test-cases are significantly
longer than those where test-cases are not extended. At
the same time, all methods produce test-suites with a to-
tal length smaller than that of test-suites created with the
Normal method. Interestingly, the overall lengths of EXT1
test-suites are sometimes bigger than those of MON . The
reason for this is that symbolic model-checking does not nec-
essarily return the shortest counter examples. If there are
only few trap properties, then this can result in greater over-
all lengths. This does not seem to be a problem in general,
as the effect is only observable for the quite simplistic transi-
tion coverage test-suites. A possible alternative to overcome
this problem would be the use of a bounded model-checker,
which is guaranteed to find the shortest counter example. If
all trap properties are of a similar structure, it is also con-
ceivable to simplify the rewriting. For example, if all trap
properties are of the type 2 (x → ©¬y), then it would be
sufficient to use ¬y as rewritten trap for trace generation in-
stead of ¬y∧ 2 (x → ©¬y), after a state where x is true. In
order to keep our approach independent of the type of trap
properties used, we do not consider such a modification to
the rewriting technique used in this paper. This, however,
could potentially be interesting further research.

The influence of the order in which trap properties are se-
lected has been pointed out several times in this paper. As
an example of the effects of these choices, Table 5 lists the
standard deviation of the total test-suite lengths. The total
test-suite length was chosen because it is representative of
the performance and the quality. The number of transitions
a test-suite consists of reflects the actual savings compared
to the original, and is also proportional to the performance
improvements. The table shows that the deviation is not
significant. In general, the deviation in the total test-suite
length is significantly smaller than the achieved reduction
compared to the normal test-suite. Although only the small
subset of 10 different orderings out of the set of possible
permutations was used, we can safely conclude that sim-
ply using trap properties in the order they are generated or
passed to the test-case generation process is feasible. Still,
some kind of heuristic to guide the selection of trap proper-
ties could be useful to further improve the performance.

In [11] we introduced a redundancy measurement for test-

suites created with model-checkers. The redundancy value
represents the amount of common prefixes. Test-suites with
high redundancy values are less efficient at detecting faults
as the test-cases traverse the same passages repeatedly and
unnecessarily. Table 6 shows the redundancy values for all
test-suites. The amount of redundancy saved by MON is
proportional to the savings in the test-suite size. EXT1
results in significantly less redundancy. In general, the re-
dundancy seems to be correlated to the ratio of the number
of test-cases to the average test-case length. Therefore, the
redundancy of test-cases created with EXT2 and a maxi-
mum length of 20 contain more redundancy than those with
a maximum length of 50.

Table 7: Creation time.
Crit. Normal MON EXT1 EXT220 EXT250

T 3m35s 59s 55s 49s 49s
C 12m32s 2m01s 2m02s 2m15s 2m12s
TP 247m54s 25m17s 20m00s 41m24s 39m17s
R 218m35s 13m01s 10m46s 12m51s 12m34s
P 13m20s 7m08s 7m11s 10m06s 9m45s

Table 8: Average number of model-checker calls.
Crit. Normal MON EXT1 EXT220 EXT250

T 89 20.3 19.4 18.6 18.4
C 314 46.5 44.4 44.3 44.0
TP 6298 171.8 165.2 143.8 152.1
R 5410 189.9 179.1 170.9 168.8
P 342 154.3 126.7 117.6 113.4

Table 7 shows the total time consumed for test-case gen-
eration for each approach and test-suite. For all algorithms,
the savings are significant. This performance improvement
is caused by the reduced number of actual calls to the model-
checker, as listed in Table 8. The overhead added by the
large amount of rewritings is negligible, as long as the model
complexity makes the model-checking process costly enough,
and the number of trap properties and test-cases is within
bounds. Our prototype is comparatively slow with regard
to rewriting and could be optimized. The average test-case
length seems to be related to the number of model-checker
calls; the longer a test-case, the more trap properties it cov-
ers. Therefore, the EXT2 algorithm with a maximum depth
of 50 performs the least model-checker calls in most cases.

Table 9: Coverage: Transition coverage test-suites.
Crit. Normal MON EXT1 EXT220 EXT250

T 100% 100% 100% 100% 100%
C 71.66% 71.66% 72.93% 73.25% 73.25%
TP 18.75% 18.75% 27.42% 34.77% 37.66%
R 88.87% 88.87% 89.45% 89.72% 89.74%
P 30.72% 30.72% 30.14% 31.30% 31.01%

In order for the presented algorithms to be feasible, it is
important that the coverage with regard to the criterion used
for test-case generation is not negatively affected. There-
fore, the coverage of all test-suites is measured with regard

Table 10: Coverage: Condition coverage test-suites.
Crit. Normal MON EXT1 EXT220 EXT250

T 100% 100% 100% 100% 100%
C 100% 100% 100% 100% 100%
TP 25.93% 25.64% 34.90% 44.86% 42.66%
R 93.59% 92.07% 92.27% 93.12% 92.66%
P 38.26% 37.39% 37.39% 38.26% 37.68%

Table 11: Coverage: Transition-Pair coverage test-
suites.

Crit. Normal MON EXT1 EXT220 EXT250

T 100% 100% 100% 100% 100%
C 85.99% 85.99% 85.67% 85.03% 84.39%
TP 100% 100% 100% 100% 100%
R 93.18% 93.18% 93.18% 93.60% 93.31%
P 36.81% 36.81% 36.81% 37.10% 37.10%

to the criterion used for creation as well as all other criteria.
Tables 9, 10, 11, 12 and 13 list the results of the cover-
age analysis. For each set of trap properties used for test-
case creation there is one table. Only such trap properties
that result in counter examples are used, therefore a normal
test-suite achieves 100% coverage of the criterion used for
creation. As expected, the tables show that this coverage
value is not affected by any of the alternative algorithms. In
contrast, there is a slight variation with regard to the cov-
erage of criteria not used for creation. MON has a minimal
negative impact on the coverage in some cases. Monitoring
avoids the creation of test-cases where the according trap
property is already covered. However, when called on an
already covered trap property, the model-checker might re-
turn a different trace than the one that already covers the
trap property. Such traces are not created when monitoring
the trap properties. This has no effect on the coverage crite-
rion used to create test-cases but explains the small possible
degradation of coverage of other criteria in some cases.

While there are still some cases where both EXT1 and
EXT2 achieve lower coverage (e.g., coverage of the transi-
tion pair traps by the reflection test-suites), in the majority
of cases the coverage is about the same or higher than that
of normal test-case generation. The effects on the coverage
are generally difficult to predict as they depend very much
on the type of trap properties, redundancy of the test-cases,
how well the test-cases can be extended and many other
factors. From our experiments we conclude that the pre-
sented approaches can safely be applied without significant
negative effects on the coverage with regard to the model.

Finally, the mutation score is measured as an indicator for

Table 12: Coverage: Reflection coverage test-suites.
Crit. Normal MON EXT1 EXT220 EXT250

T 100% 100% 100% 100% 100%
C 96.82% 94.59% 94.90% 96.18% 96.82%
TP 60.78% 31.55% 30.41% 50.71% 57.05%
R 100% 100% 100% 100% 100%
P 41.74% 41.16% 42.90% 44.64% 44.06%

Table 13: Coverage: Property coverage test-suites.
Crit. Normal MON EXT1 EXT220 EXT250

T 93.26% 93.26% 93.26% 100% 93.26%
C 92.36% 92.36% 91.72% 95.54% 92.68%
TP 40.95% 40.66% 46.52% 51.78% 52.21%
R 94.07% 93.96% 93.64% 96.47% 93.86%
P 100% 100% 100% 100% 100%

Table 14: Mutation scores using model mutants.
Crit. Normal MON EXT1 EXT220 EXT250

T 59.52% 59.52% 64.64% 69.48% 72.69%
C 72.42% 70.30% 74.63% 84.80% 84.50%
TP 90.40% 90.37% 90.31% 88.19% 89.92%
R 78.84% 76.96% 86.92% 92.40% 93.73%
P 79.35% 79.35% 81.83% 86.71% 85.17%

the fault sensitivity of the test-suites. Table 14 shows the
results using the model mutants. The results are similar to
those with regard to coverage: MON performs marginally
worse than Normal test-suites, while in most cases EXT1
and EXT2 achieve higher scores. Only the extended transi-
tion pair test-suites perform slightly worse than the original
test-suite. These results are also reflected in Table 15, which
lists the mutation scores calculated with the Java mutants.

5. CONCLUSION
In this paper, we have presented an approach that inte-

grates LTL rewriting known from runtime verification into
model-checker based test-case generation. If a sufficiently
simple model is used for test-case generation, then a straight
forward approach of model checking all trap properties is
applicable without problems. If, however, the model size in-
creases to a point where the verification of a single property
takes significant time, then the applicability of a straight for-
ward approach declines. Although a model is usually more
abstract than the actual program it represents, the model
size can still be significant. For instance, automatic conver-
sion (e.g., Matlab Stateflow to SMV) can result in complex
models.

The integration of LTL monitoring techniques results in a
significant performance increase in such a scenario. This is
achieved by avoiding unnecessary calls to the model-checker.
Already covered trap properties are detected using the faster
method of LTL rewriting instead of model-checking. The
results of this rewriting also help to extend test-cases instead
of creating only distinctive test-cases. As a consequence, the
overall number and length of test-cases in a test-suite are

Table 15: Mutation scores using implementation
mutants.

Crit. Normal MON EXT1 EXT220 EXT250

T 76.15% 76.15% 78.90% 82.11% 81.19%
C 80.28% 79.36% 83.49% 84.40% 84.86%
TP 86,70% 86,70% 86,70% 86.24% 86.24%
R 82.57% 80.73% 86.24% 87.61% 88,07%
P 77,06% 77,06% 77,06% 85,78% 83,49%

reduced. At the same time, the quality of the test-suites
is not adversely affected in general, and even enhanced in
many cases. An increased fault sensitivity with a smaller
size is achieved as the test-suite redundancy is reduced.

The presented algorithms apply to all approaches where
a single model is checked against multiple trap properties in
order to create test-cases. There are also approaches that
use mutation of the model instead of trap properties. The
rewriting cannot directly be applied to those methods. This
is considered for further research. The presented rewriting
is restricted to LTL, which is sufficient for trap properties
in most cases. Even if CTL [9] is sometimes used in the lit-
erature, this is only using the ’all paths’ quantifier (ACTL),
and such a subset that allows linear counter examples. The
resulting trap properties could therefore also be represented
using LTL.

There are several non-deterministic choices in the pre-
sented algorithms. The experiments have shown that a
random choice achieves very good results, but further op-
timizations are conceivable. Possible future research there-
fore includes the search for suitable heuristics to guide these
choices.

Model-checkers are not originally intended for test-case
generation. Therefore, they are clearly not optimized for
this task. It is necessary to identify areas where drawbacks
result from this fact. The introduction of rewriting tech-
niques to model-checker based test-case generation improves
the applicability. Even though the performance increase us-
ing LTL rewriting can be significant, this does enable the use
of model-checker based test-case generation for models of
deliberate complexity. Often, a model can cause the model-
checker to take too long to check even a single property. In
such a case, abstraction seems to be the only possibility to
allow test-case generation.

6. REFERENCES
[1] P. Ammann and P. E. Black. A Specification-Based

Coverage Metric to Evaluate Test Sets. In HASE ’99:
The 4th IEEE International Symposium on
High-Assurance Systems Engineering, pages 239–248,
Washington, DC, USA, 1999. IEEE Computer Society.

[2] P. Ammann, W. Ding, and D. Xu. Using a Model
Checker to Test Safety Properties. In Proceedings of
the 7th International Conference on Engineering of
Complex Computer Systems (ICECCS 2001), pages
212–221, Skovde, Sweden, 2001. IEEE.

[3] P. E. Ammann, P. E. Black, and W. Majurski. Using
Model Checking to Generate Tests from
Specifications. In Proceedings of the Second IEEE
International Conference on Formal Engineering
Methods (ICFEM’98), pages 46–54. IEEE Computer
Society, 1998.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Program monitoring with ltl in eagle. In PADTAD’04,
Parallel and Distributed Systems: Testing and
Debugging, 2004.

[5] P. E. Black. Modeling and Marshaling: Making Tests
From Model Checker Counterexamples. In Proc. of
the 19th Digital Avionics Systems Conference, pages
1.B.3–1–1.B.3–6 vol.1, 2000.

[6] P. E. Black, V. Okun, and Y. Yesha. Mutation
Operators for Specifications. In Proceedings of the

Fifteenth IEEE International Conference on
Automated Software Engineering (ASE’00), 2000.

[7] J. R. Callahan, S. M. Easterbrook, and T. L.
Montgomery. Generating Test Oracles Via Model
Checking. Technical report, NASA/WVU Software
Research Lab, 1998.

[8] A. Cimatti, E. M. Clarke, F. Giunchiglia, and
M. Roveri. NUSMV: A New Symbolic Model Verifier.
In CAV ’99: Proceedings of the 11th International
Conference on Computer Aided Verification, pages
495–499, London, UK, 1999. Springer-Verlag.

[9] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching-time
temporal logic. In Logic of Programs, Workshop, pages
52–71, London, UK, 1982. Springer-Verlag.

[10] G. Fraser and F. Wotawa. Property relevant software
testing with model-checkers. SIGSOFT Softw. Eng.
Notes, 31(6):1–10, 2006.

[11] G. Fraser and F. Wotawa. Redundancy based
test-suite reduction. In Proceedings of the 10th
International Conference on Fundamental Approaches
to Software Engineering (FASE 2007), volume 4422 of
Lecture Notes in Computer Science, pages 291–305.
Springer, 2007. To Appear.

[12] A. Gargantini and C. Heitmeyer. Using Model
Checking to Generate Tests From Requirements
Specifications. In ESEC/FSE’99: 7th European
Software Engineering Conference, Held Jointly with
the 7th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, volume 1687,
pages 146–162, Toulouse, France, September 1999.
Springer.

[13] D. L. George Devaraj, Mats P. E. Heimdahl.
Condition Based Coverage Criteria: To use or not to
use that is the question. To be published, 2005.

[14] G. Hamon, L. de Moura, and J. Rushby. Generating
Efficient Test Sets with a Model Checker. In
Proceedings of the Second International Conference on
Software Engineering and Formal Methods
(SEFM’04), pages 261–270, 2004.

[15] M. J. Harrold, R. Gupta, and M. L. Soffa. A
methodology for controlling the size of a test suite.
ACM Trans. Softw. Eng. Methodol., 2(3):270–285,
1993.

[16] K. Havelund and G. Rosu. Monitoring java programs
with java pathexplorer. Electr. Notes Theor. Comput.
Sci., 55(2), 2001.

[17] K. Havelund and G. Rosu. Monitoring programs using
rewriting. In ASE ’01: Proceedings of the 16th IEEE
international conference on Automated software
engineering, page 135, Washington, DC, USA, 2001.
IEEE Computer Society.

[18] K. Havelund and G. Rosu. Efficient monitoring of
safety properties. Int. J. Softw. Tools Technol.
Transf., 6(2):158–173, 2004.

[19] M. P. Heimdahl, S. Rayadurgam, W. Visser,
G. Devaraj, and J. Gao. Auto-Generating Test
Sequences using Model Checkers: A Case Study. In
Third International International Workshop on
Formal Approaches to Software Testing, volume 2931
of Lecture Notes in Computer Science, pages 42–59.
Springer Verlag, October 2003.

[20] M. P. E. Heimdahl and G. Devaraj. Test-Suite
Reduction for Model Based Tests: Effects on Test
Quality and Implications for Testing. In ASE, pages
176–185. IEEE Computer Society, 2004.

[21] M. P. E. Heimdahl, G. Devaraj, and R. Weber.
Specification Test Coverage Adequacy Criteria =
Specification Test Generation Inadequacy Criteria? In
HASE, pages 178–186. IEEE Computer Society, 2004.

[22] J. A. Jones and M. J. Harrold. Test-suite reduction
and prioritization for modified condition/decision
coverage. IEEE Trans. Softw. Eng., 29(3):195–209,
2003.

[23] I. L. Li Tan, Oleg Sokolsky. Specification-based testing
with linear temporal logic. In Proceedings of IEEE
International Conference on Information Reuse and
Integration (IRI’04), pages 493–498, 2004.

[24] Y.-S. Ma, J. Offutt, and Y. R. Kwon. Mujava: an
automated class mutation system. Softw. Test. Verif.
Reliab., 15(2):97–133, 2005.

[25] N. Markey and P. Schnoebelen. Model checking a path
(preliminary report). In Proc. Concurrency Theory
(CONCUR’2003), Marseille, France, volume 2761 of
Lect.Notes Comp. Sci, pages 251–265. Springer, Aug.
2003.

[26] V. Okun, P. E. Black, and Y. Yesha. Testing with
Model Checker: Insuring Fault Visibility. In N. E.
Mastorakis and P. Ekel, editors, Proceedings of 2002
WSEAS International Conference on System Science,
Applied Mathematics & Computer Science, and Power
Engineering Systems, pages 1351–1356, 2003.

[27] A. Pnueli. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer
Science, 31 October-2 November, Providence, Rhode
Island, USA, pages 46–57. IEEE, 1977.

[28] S. Rayadurgam and M. P. E. Heimdahl. Coverage
Based Test-Case Generation Using Model Checkers.
In Proceedings of the 8th Annual IEEE International
Conference and Workshop on the Engineering of
Computer Based Systems (ECBS 2001), pages 83–91,
Washington, DC, April 2001. IEEE Computer Society.

[29] G. Rosu and K. Havelund. Rewriting-based techniques
for runtime verification. Automated Software Engg.,
12(2):151–197, 2005.

[30] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong.
An empirical study of the effects of minimization on
the fault detection capabilities of test suites. In ICSM
’98: Proceedings of the International Conference on
Software Maintenance, page 34, Washington, DC,
USA, 1998. IEEE Computer Society.

