
Secure web applications via automatic partitioning

Stephen Chong Jed Liu Andrew C. Myers
Xin Qi K. Vikram Lantian Zheng Xin Zheng

{schong,liujed,andru,qixin,kvikram,zlt,xinz}@cs.cornell.edu

Department of Computer Science
Cornell University

Abstract
Web applications are now critical infrastructure. To improve the
user interface, some application functionality is typically imple-
mented as client-side JavaScript code. Currently there are no good
methods for deciding when it is secure to move code and data to
the client side. Swift is a new, principled approach to building web
applications that are secure by construction. Application code is
written as Java-like code annotated with information flow policies.
This code is automatically partitioned between JavaScript code run-
ning in the browser, and Java code running on the server. Code and
data are placed on the client side where possible. Security-critical
code is placed on the server and user interface code is placed on
the client. Code placement is constrained by high-level, declarative
information flow policies that strongly enforce the confidentiality
and integrity of server-side information.

Web applications are hard to build because code and data needs
to be partitioned to make them responsive. They are also hard to
build because code and data need to be partitioned for security. Be-
cause of the connection (and tension) between the two problems,
Swift addresses both at once, automatically partitioning application
code while also providing assurance that the resulting placement is
secure and efficient.

1 Introduction
Web applications are client-server applications in which a
web browser provides the user interface. They are a crit-
ical part of our infrastructure, used for banking and finan-
cial management, email, online shopping and auctions, so-
cial networking, and much more. The security of informa-
tion manipulated by these systems is crucial, and yet these
systems are not being implemented with adequate security
assurance. In fact, web applications are recently reported to
comprise 69% of all Internet vulnerabilities [23]. The prob-
lem is that with current implementation methods, it is diffi-

This work was supported in part by NSF under grants 0430161 and
0627649, and in part by AF-TRUST (Air Force Team for Research in
Ubiquitous Secure Technology for GIG/NCES), which receives support
from the DAF Air Force Office of Scientific Research (#FA9550-06-1-
0244) and the following organizations: the National Science Foundation
(0424422), Cisco, British Telecom, ESCHER, HP, IBM, iCAST, Intel, Mi-
crosoft, ORNL, Pirelli, Qualcomm, Sun, Symantec, Telecom Italia and
United Technologies.

cult to know whether an application adequately enforces the
confidentiality or integrity of the information it manipulates.

Recent trends in web application design have exacerbated
the security problem. To provide a rich, responsive user in-
terface, application functionality is pushed into client-side
JavaScript [7] code that executes within the web browser.
JavaScript code is able to manipulate user interface com-
ponents and can store information persistently on the client
side by encoding it as cookies. These web applications
are distributed applications, in which client- and server-side
code exchange protocol messages represented as HTTP re-
quests and responses. In addition, most browsers allow
JavaScript code to issue its own HTTP requests to fetch
information, a functionality exploited by the Ajax (Asyn-
chronous JavaScript and XML) development approach.

With application code and data split across differently
trusted tiers, the developer is faced with a difficult question:
when is it secure to place code and data on the client? All
things being equal, the developer would usually prefer to run
code and store data on the client, avoiding server load and
client–server communication latency. But moving informa-
tion or computation to the client could easily create security
vulnerabilities.

For example, suppose we want to implement a simple
web application in which the user has three chances to guess
a number between one and ten, and wins if a guess is correct.
Even this simple application has subtleties. There is a con-
fidentiality requirement: the user should not learn the true
number until after the guesses are complete. There are in-
tegrity requirements, too: the match between the guess and
the true number should be computed in a trustworthy way,
and the guesses taken must also be counted correctly.

The guessing application could be implemented almost
entirely as client-side JavaScript. This approach would have
the most responsive user interface and would offload the
most work from the server. But it would be insecure: a
client with a modified browser can peek at the true num-
ber, take extra guesses, or simply lie about whether a guess
was correct. On the other hand, suppose guesses that are not
valid numbers between one and ten do not count against the
user. Then it is secure (and preferable) to perform the bounds



check on the client side. Currently, web application develop-
ers lack principled ways to make these kinds of decisions
about where code and data can be securely placed.

We introduce the Swift system, a way to write web ap-
plications that are secure by construction. Applications are
written in a higher-level programming language in which
information security requirements are explicitly exposed as
declarative annotations. The compiler uses these security an-
notations to decide where code and data in the system can
be placed securely. Code and data are partitioned at fine
granularity, at the level of individual expressions and object
fields. Developing programs in this style ensures that the
resulting distributed application protects the confidentiality
and integrity of information. The general enforcement of
information integrity also guards against common vulnera-
bilities such as SQL injection and cross-site scripting.

Swift applications are not only more secure, they are also
easier to write: control and data do not need to be explic-
itly transferred between the client server through specialized
extralinguistic mechanisms, such as HTTP requests. Auto-
matic placement has another benefit. In current practice, the
programmer has no help designing the protocol or interfaces
by which client and server code communicate. With Swift,
the compiler automatically synthesizes secure, efficient in-
terfaces for communication.

Of course, others have noticed that web applications
are awkward to write and hard to make secure. Prior re-
search has separately addressed the issues of expressiveness
and security. One thread of work has studied the problem
of making web applications more secure, through analy-
sis [11, 26, 12] or monitoring [10, 17, 27] of server-side ap-
plication code. However, this work does not help the appli-
cation programmer decide when application code and data
can be placed on the client. Conversely, the awkwardness of
programming web applications has already motivated vari-
ous attempts to provide a single, uniform language for writ-
ing distributed web applications [9, 4, 20, 29, 28]. However,
this thread of work largely ignores security issues: the pro-
grammer has some control over code placement, but nothing
checks that the placement is secure.

Swift thus differs from recent work on web applications,
as it addresses both problems at once: it automatically par-
titions application code while also providing assurance that
the resulting placement enforces security requirements. Ad-
dressing both problems simultaneously makes it possible to
do a better job at each of them.

Prior work on program partitioning [31, 32] has explored
using security policies to drive code and data partitioning
onto a general distributed system. However, applying this
general idea to the specific and crucially important domain
of web applications offers both new challenges and new op-
portunities. In the Swift trust model, the client is less trusted
than the server. Code is placed onto the client in order to
optimize interactive performance, which has not been previ-
ously explored. And Swift can control information flow even

Figure 1: The Swift architecture

when a rich, dynamic user interface interacts with security-
critical information.

The remainder of the paper is structured as follows. Sec-
tion 2 gives an overview of the Swift architecture. Section 3
describes the programming model, based on an extension of
the Jif programming language [16] with support for browser-
based user interfaces. Sections 4 and 5 explain how high-
level Swift code is compiled into an intermediate language
WebIL and then partitioned into Java and JavaScript for se-
curity and performance. Section 6 presents results and expe-
rience using Swift to construct web applications, Section 7
discusses related work, and Section 8 concludes.

2 Architecture
Figure 1 depicts the architecture of the Swift approach. The
system starts with annotated Java source code at the top of
the diagram. Proceeding from top to bottom, a series of
program transformations converts the code into a partitioned
form shown at the bottom, with Java code running on the
web server and JavaScript code running on the client web
browser.

Jif source code. The source language of the program
is an extended version of the Jif 3.0 programming lan-
guage [14, 16]. Jif extends the Java programming language
with language-based mechanisms for information flow con-
trol and access control. Jif is a security-typed language [25],
in which the types of declared variables are annotated with
decentralized security labels [15]. For example, the con-
fidentiality label {alice�bob} says that principal alice
owns the labeled information but permits principal bob to
read it. Similarly, the integrity label {alice�bob} means
that alice permits bob to affect the labeled information. Be-
cause labels express security requirements explicitly in terms

2



of principals, they are useful for systems where principals
need to cooperate yet are mutually distrusting. Web applica-
tions are examples of such systems.

The model of security in Jif is that if a program passes
compile-time static checking, the program will enforce the
information security policies expressed as labels in an end-
to-end fashion, assuming that the code is running on a trust-
worthy underlying platform. For Swift, we assume that the
web server is trusted, but the client machine and browser
are not. The client may be buggy or malicious. Therefore,
the program transformations performed by Swift must en-
sure that application executes securely even though the client
uses some application data and performs some application
computations.

WebIL intermediate code. The first phase of program
transformation converts Jif programs into code in an inter-
mediate language we call WebIL. As in Jif, WebIL types can
include annotations; however, the space of allowed annota-
tions is much simpler, describing constraints on the possible
locations of application code and data. For example, the an-
notation S means that the annotated code or data must be
placed on the web server. The annotation C?S means that the
annotated code or data must be placed on the server, and may
optionally be placed on the client.

WebIL optimization. The initial WebIL annotations are
merely constraints on code and data placement. The sec-
ond phase of compilation decides the exact placement and
replication of code and data between the client and server, in
accordance with these constraints. The system attempts to
minimize the cost of the placement, in particular by avoid-
ing unnecessary network messages. The minimization of
the partitioning cost is expressed as an integer programming
(IP) problem, and linear programming (LP) methods are then
used to find a good partitioning.

Splitting code. Given the location of code and data, the
compiler then transforms the original Java code into two Java
programs, one representing server-side computation and the
other, client-side computation. This is a fine-grained trans-
formation. Different statements within the same method may
run variously on the server and the client, and similarly with
different fields of the same object. What appeared as se-
quential statements in the program source code may become
separate code fragments on the client and server that invoke
each other via network messages. Because control transfers
become explicit messages, the transformation to two sepa-
rate Java programs is similar to a conversion to continuation-
passing style [19, 21],

JavaScript output. Although our compiler generates Java
code to run on the client, this Java code actually represents
JavaScript code. The Google Web Toolkit (GWT) [9] is used
to compile the Java code down to JavaScript. On the client,
this code then uses the GWT runtime library and our own

runtime support. On the server, the Java application code
links against a Swift server-side runtime library, which in
turn sits on top of the standard Java servlet framework.

The final application code generated by the compiler uses
an Ajax approach to securely carry out the application de-
scribed in the original source code. The application runs as
JavaScript on the client browser; this JavaScript issues its
own HTTP requests to the web server, which responds with
XML data.

From the browser’s perspective, the application runs as
a single web page, with most user actions (e.g., clicking on
buttons) handled by JavaScript code. This approach seems to
be the current trend in web application design, replacing the
older model in which a web application is associated with
many different URLs. One result of the change is that the
browser “back” and “forward” buttons no longer have the
originally intended effect on the web application, but this
can be hidden largely transparently, as is done in the GWT.

Partitioning and replication. Compiling a Swift applica-
tion puts some code and data onto the client. The code and
data that implement the user interface clearly must reside on
the client. Other code and data are placed on the client in
order to make the application more responsive, avoiding the
latency of communicating with the server. This approach has
the advantage that the web application is highly responsive,
providing a rich user interface that waits for server replies
only when security demands that the server be involved.

In order to enforce the security requirements in the Jif
source code, information flows between the client and the
server must be strictly controlled. In particular, confidential
information must not be sent to the client, and information
received from the client cannot be trusted. The Swift compi-
lation process generates code that satisfies these constraints.

One novel feature of the Swift compiler is its ability to
replicate some computation onto both the client and server,
obtaining both responsiveness and security. For example,
validation of form inputs should happen on the client so the
user does not have to wait for the server to respond when in-
valid inputs are provided. However, client-side validation
should not be trusted, so validation also needs to be per-
formed on the server. Where appropriate, the Swift compiler
automatically replicates validation code onto both the server
and the client. This is not a special-purpose mechanism; it
happens because of the integrity policies on the data and the
optimization algorithms used. This approach is a significant
improvement over current practice, in which web application
programmers aiming for security and responsiveness write
separate validation code for the client and server, typically in
different languages. Replicating validation by hand makes it
less likely that validation is done correctly and consistently.

In the next few sections, we more closely examine the
various compilation phases illustrated in Figure 1.

3



3 Writing Swift applications
3.1 A sample application
The key features of the Swift programming model can be
seen by studying a simple web application written using
Swift. Figure 2 shows key fragments of the Jif source code
of the number-guessing web application described in Sec-
tion 1. Java programmers will recognize this code as similar
to that of an ordinary single-machine Java application using
a UI library such as Swing [22]. For example, it dynamically
constructs the user interface out of widgets such as buttons,
text inputs, and text labels. Swift widgets are similar to those
in the Google Web Toolkit [9], with the difference that Swift
controls how information flows through them.

The core application logic occurs in the makeGuess
method (lines 17–44). Aside from various security label an-
notations, this method is essentially straight-line Java code.
To implement the same functionality with technologies such
as JSP [1] or GWT requires more code, in a less natural pro-
gramming style with explicit control transfers between the
client and server.

The code contains various labels expressing security re-
quirements. Two principals are mentioned in these labels:
a distinguished principal client representing the client
browser, and a Jif-defined principal * representing the maxi-
mally trusted principal, which in this case is the web server.
For example, on line 2, the variable secret is declared to
be completely secret (*�*) and completely trusted (*�*),
whereas the variable tries declared on the next line is not
secret (*�client) but is just as trusted. Because Jif checks
how information flows within the application, just writing
these two label annotations constrains many of the other la-
bel annotations in the program. Labels must be consistent
with the flows of information within the program. In gen-
eral, Swift code may also contain labels that mention other
principals, which is useful for multiuser applications.

The user submits a guess by clicking the button. A lis-
tener attached to the button passes the guess (line 53) to
makeGuess. The listener reads the guess from a NumberBox
widget that only allows numbers to be entered.

The makeGuess method receives a guess num from the
client. The variable num is untrusted and not secret, as indi-
cated by its label {*�client} on line 17. The application
checks whether the guess is correct, and either informs the
user that he has won if so, or else decrements the number of
remaining allowed guesses and repeats.

Because the guess is untrusted, Jif will prevent it from be-
ing used in a way that affects trusted variables such as tries,
unless it is explicitly endorsed. Therefore, lines 25–42 has a
checked endorsement that succeeds only if num contains an
integer between one and ten. If the check succeeds, the num-
ber i is treated as a high-integrity value within the “then”
clause. If the check fails, the value of i is not endorsed,
and the “else” clause is executed. This checked endorse-
ment construct is an extension to Jif that makes the common

1 public class GuessTheNumber {

2 int{*�*; *�*} secret;

3 int{*�client; *�*} tries;

4 ...

5 private void setupUI{*�client}() {

6 final label cl = new label{*�client};

7 guessbox = new NumberBox[cl, cl]("");

8 message = new Text[cl, cl]("");

9 button = new Button[cl, cl]("Guess");

10 input = new HorizontalPanel[cl, cl]();

11 input.addChild(cl, cl, textbox);

12 input.addChild(cl, cl, button);

13 input.addChild(cl, cl, message);

14 ...

15 rootpanel.addChild(input);

16 }

17 void makeGuess{*�client}(Integer{*�client}

18 num)

19 : {*�client}

20 where authority(*), endorse({*�*})

21 throws NullPointerException

22 {

23 int i = 0;

24 if (num != null) i = num.intValue();

25 endorse (i, {*�client} to {*�*})

26 if (i >= 1 && i <= 10) {

27 if (tries > 0 && i == secret) {

28 declassify ({*�*} to {*�client}) {

29 tries = 0;

30 finishApp("You win!");

31 }

32 } else {

33 declassify ({*�*} to {*�client}) {

34 tries--;

35 if (tries > 0)

36 message.setText("Try again");

37 else finishApp("Game over");

38 }

39 }

40 } else {

41 message.setText("Out of range:" + i);

42 }

43 }

44 }

45 class GuessListener

46 implements ButtonListener[{*�client},

47 {*�client}] {

48 ...

49 public void onClick{*�client} (

50 Button[{*�client},

51 {*�client}]{*�client} b)

52 :{*�client} {

53 guessApp.makeGuess(guessbox.getNumber());

54 }

55 }

Figure 2: Guess-a-Number web application

4



pattern of validating untrusted inputs both explicit and more
convenient.

Because Jif forces the programmer to use endorse, they
are forced to recognize the potential security vulnerability.
This requirement to protect information integrity is also use-
ful against common vulnerabilities such as SQL injection
and cross-site scripting. In this case, the endorsement of i
is reasonable because it is intrinsically part of the game that
the client is allowed to pick any value it wants (as long as it
is between one and ten).

Similarly, some information about the secret value
secret is released when the client is notified whether the
guess i is equal to secret. Therefore, the bodies of both
the consequent and the alternative of the if test on line 27
must use an explicit declassify to indicate that informa-
tion transmitted by the control flow of the program may
be released to the client. Without the declassify, client-
visible events—showing messages, or updating the vari-
able tries—would be rejected by the compiler. Jif con-
strains the use of declassify and endorse by requir-
ing that they occur in a code marked as trusted by the af-
fected principals; hence the clauses “authority (*)” and
“endorse({*�*})” on line 20. In general Jif enforces a se-
curity property of robust declassification [2] in which declas-
sification cannot be performed without sufficient integrity.

3.2 Swift user interface framework
Swift programs interact with the user via a user interface
framework. The UI framework provides abstraction from the
details of the HTML and JavaScript implementation, allow-
ing Swift programmers to use a straightforward event-driven
model when implementing web applications. The ability to
use a rich, interactive UI framework while controlling infor-
mation flows is a novel feature of Swift.

Figure 3 presents part of the signatures of several Swift
UI framework classes. All classes in the framework are an-
notated with security policies that track information flow that
may occur within the framework. For example, the frame-
work should ensure that all information displayed by the UI
is information the user is permitted to view, preventing con-
fidential information from being sent to the user. Also, any
information received from the user interface should be anno-
tated as having been tainted by the user.

The class Widget is the ancestor of all UI widgets, such
as TextInput (which allows a user to enter text), Button
(which represents a clickable button), and Panel (which
composes widgets). All widget classes are parameterized
on two security labels, L and E. The parameter L is an up-
per bound on the security labels of information that is con-
tained in the widget, or its children. Thus, for labels ` and
`′, the text displayed on a Button[`,`′] object must have a
security label no more restrictive than `. This restriction is
evidenced by the annotations on the getText and setText
methods, on lines 11–12. Similarly, given a Panel[`,`′]
object to which we are adding a child Widget[`w,`′w] w,

1 class Widget[label L, label E] { ... }

2 class Panel[label L, label E]

3 extends Widget[L,E] {

4 void addChild{L}(label wL,

5 label wE,

6 Widget[wL,wE]{L} w)

7 where {*wL} <= L, {E;w} <= {*wE};

8 }

9 class Button[label L, label E]

10 extends Widget[L,E] {

11 String{L} getText() { ... }

12 void setText{L}(String{L} text) {

13 ...

14 }

15 void addListener{E}

16 (ButtonListener[L,E]{E} li) {

17 ...

18 }

19 }

20 interface ButtonListener[label L,

21 label E] {

22 void onClick{E}

23 (Button[L, E]{E} b):{E};

24 }

Figure 3: UI framework signatures

we require that the security label of the child’s contents, `w,
is no more restrictive than the upper bound of the panel’s
content, `. This requirement is expressed in the annotation
“where {*wL} <= L” on the addChild method (line 7).

The parameter E of a widget is an upper bound on infor-
mation that may be gained by knowing an event occurred on
the widget. Thus, if a ButtonListener[`,`′] is added as a
listener to a Button[`,`′] object, `′ is an upper bound on in-
formation that the listener may learn by having the onClick
method invoked. This is shown by the occurrences of the
label {E} on the addListener and onClick method signa-
tures on lines 15 and 22.

What information do we learn by knowing an event oc-
curs on a widget? We can at least infer that the widget is
displayed to the user, and thus that the widget is reachable
from the root panel. For example, suppose an application
adds button bt to the UI if the value of a secret boolean v is
true, and button bf if the value is false; a listener to bt
can infer the value of v upon the invocation of the onClick
method. Thus, the E parameter for bt must be at least as
restrictive as the security label for the boolean v. More gen-
erally, if a Widget[`w,`′w] w is added to a Panel[`,`′] p,
the security label `′w must be at least as restrictive as the se-
curity label of widget w. In addition, since an event on w can
only occur if the panel p is itself added to the UI, we also
require that `′w is at least as restrictive as `′. Both of these re-
strictions are expressed in the annotation “where {E;w} <=
{*wE}” on line 7.

5



1 void makeGuess(Integer num) {

2 C?Sh: ;

3 C?S?: int i = 0;

4 C?S?: if (num != null)

5 C?S?: i = num.intValue();

6 C?Sh: boolean b1 = (i >= 1);

7 C?Sh: boolean b2 = (i <= 10);

8 C?Sh: if (b1 && b2) {

9 Sh: boolean c1 = (tries > 0);

10 Sh: boolean c2 = (i == secret);

11 Sh: if (c1 && c2) {

12 C?Sh: tries = 0;

13 C?S?: finishApp("You win!");

14 } else {

15 C?Sh: tries--;

16 C?S?: if (tries > 0) {

17 C : message.setText("Try again");

18 } else {

19 C?S?: finishApp("Game over");

20 }

21 }

22 } else {

23 C : message.setText("Out of range:"+i);

24 }

25 }

Figure 4: Guess-a-Number web application in WebIL

4 WebIL
After the Swift compiler has confirmed that information flow
in a Jif program is in accordance with the specified security
policies, the program is translated to the intermediate lan-
guage WebIL.

The language WebIL extends Java with placement anno-
tations for both code and data. Placement annotations pro-
vide constraints on where code and data may be replicated.
These constraints may be due to security restrictions derived
from the Jif code, or to architectural restrictions (for exam-
ple, calls to a database must occur on the server, and calls to
the UI must occur on the client).

Whereas Jif allows expression and enforcement of
rich security policies from the decentralized label model
(DLM) [15] , the WebIL language is concerned only with the
placement of code and data onto two machines, the server
and the client. Thus, when translating to WebIL, the com-
piler projects from the rich space of DLM security policies
down to the much smaller space of placement constraints.

Using the placement annotations, a partitioning of the
WebIL code is chosen. A partitioning is an assignment of ev-
ery statement and field to a machine or machines on which
the statement will execute, or the field be replicated. The
compiler chooses a partitioning to optimize performance,
using a polynomial-time approximation algorithm based on
linear programming. A novel feature of WebIL is that code
or data may be replicated in order to improve the perfor-
mance of the application. The partitioned code is then trans-
lated into two Java programs, one to run on the server, and

Placement Possible High
annotation placements integrity
C {client} N
S {server} N
Sh {server} Y
CS {both} N
CSh {both} Y
CS? {client, both} N
C?S {server, both} N
C?Sh {server, both} Y
C?S? {client, server, both} N

Table 1: WebIL placement annotations

the other to run on the client.
In this section we explain the placement annotations, how

the translation from Jif to WebIL uses these annotations, and
describe how the compiler chooses a partitioning. Details of
the translation of WebIL code to Java are given in Section 5.
As a running example, we use the result of translating the
GuessTheNumber.makeGuess method to WebIL, shown in
Figure 4.

With a few modifications (such as providing suitable de-
faults for missing annotations), WebIL can be used as a
source language in its own right, allowing programmers to
develop web applications in a Java-like programming lan-
guage with GUI support, while mostly ignoring issues of
code and data placement, and client-server coordination.
This approach has many benefits over traditional web ap-
plication programming, but it lacks the security benefits of
Swift.

4.1 Placement annotations
Each statement and field declaration in WebIL has a place-
ment annotation that appears immediately before it. There
are 9 possible placement annotations: C, S, CS, CS?, C?S,
C?S?, Sh, C?Sh, and CSh. Each placement annotation defines
the possible placements for the field or statement. There are
three possible placements: client, server, and both. Table 1
shows the possible placements corresponding to each place-
ment annotation.

The placement of a field declaration indicates on which
machine or machines data stored in the field will be repli-
cated. For example, if the field f of a class C is given the
placement server, then that field will be stored only on the
server; if the field is given the placement both, then the field
will be replicated on both client and server.

The placement of a statement indicates on which machine
or machines the computation of the statement will be repli-
cated. For if and loop statements, which are compound
statements, the placement indicates the machines for eval-
uating the test expression. Thus, for example, on line 10 of
Figure 4, the comparison of the guess to the secret number
is given the annotation Sh, meaning that it must occur only

6



on the server. Intuitively, this is the placement one should
expect: the secret number cannot be sent to the client, so the
comparison must occur on the server. On line 4, the annota-
tion C?S? indicates that the test that the input is non-null is
unconstrained, and may occur on either the client, the server,
or both.

For a statement that must execute on the server, the anno-
tation may indicate that it is high integrity. The annotations
Sh, C?Sh and CSh denote high integrity code. When trans-
lating to WebIL code, the Swift compiler will mark a state-
ment as high integrity if its execution may affect data that the
client should not be able to influence. Thus, the client’s abil-
ity to initiate execution of high-integrity statements must be
restricted. As discussed in Section 5, run-time mechanisms
prevent this.

Examining lines 6–12 of Figure 4, we see they are marked
as high integrity, since the execution of these statements may
alter or influence the values of the high-integrity variables
tries, b1, b2, c1, and c2. Note that the start of the high
integrity statements, line 6, corresponds to the start of the
endorse statement of the original Jif program of Figure 2; it
is due to this endorsement that the temporary local variables
b1, b2, c1, and c2 are regarded as high integrity, and need to
be protected from a malicious client.

The Guess-a-Number Jif program also has an endorse-
ment for the entire makeGuess method, indicated by the
“endorse({*�*})” annotation on line 20 of Figure 2. This
indicates that the start of the method body has integrity *�*.
The endorsement is reflected in the WebIL code by a high-
integrity empty statement at the start of the method body
(Figure 4, line 2). This statement is needed by the runtime
system to control the execution of later high-integrity state-
ments.

4.2 Translation from Jif to WebIL
When the compiler translates from Jif to WebIL code, it re-
places DLM security policies with corresponding placement
annotations, and translates Jif-specific language constructs
into Java code. Based on the security policies of the Jif code,
the compiler chooses annotations that ensure code and data
will be placed on the client only if the security of the pro-
gram will not be violated by a malicious client.

In particular, the translation ensures that data may be
placed on a client only if the security policies indicate that
the data may be read by the principal client; data may orig-
inate from the client only if the security policies indicate that
the data is permitted to be written by the principal client.
Similar restrictions apply to code: code may execute on the
client only if the execution of the code reveals only infor-
mation that the principal client may learn; the result of a
computation on the client can be used on the server only if
the security policies indicate that the computation result is
permitted to be written by the principal client.

The translation to WebIL also translates Jif-specific lan-
guage features. Declassifications and endorsements are re-

moved, as they have no effect on the runtime behavior of
the program. Endorsements and declassifications do how-
ever affect the security policies of code and expressions, and
thus affect the placement annotations generated. Uses of
the primitive Jif type label are translated to uses of a class
jif.lang.Label.

WebIL code is annotated at statement granularity. To al-
low fine-grained control over the placement of code, com-
pound expressions are translated into a series of simple ex-
pressions, using temporary local variables. Thus, subexpres-
sions of the same source code expression may be computed
on different machines.

4.3 Goals and constraints
The compiler determines the partitioning of WebIL code by
choosing a placement for every field and statement of the
WebIL program. The placements are chosen to satisfy both
the placement annotation constraints, and also certain con-
sistency requirements. Once the placements are chosen, the
WebIL program is split into two communicating programs,
one running on the client, and the other running on the server.
The goal is to place fields and statements securely in a way
that optimizes overall performance. Since network latency is
typically the most significant contributor to web application
run time, fields and statements are placed in order to mini-
mize the number of messages sent between client and server.
For example, it is desirable to give consecutive statements
the same placement.

Replicating computation can reduce the number of mes-
sages. Consider lines 6–8 of the Guess-a-Number applica-
tion in Figure 4, which check that the user’s input i is be-
tween 1 and 10 inclusive. These statements must execute on
the server to check that the client provides valid input. If
these lines execute only on the server, and the value entered
by the user is not in the valid range, then a message must be
sent from the server to the client to execute line 23, to inform
the user of the error. However, if lines 6–8 execute on both
the client and server, then no message from server to client
is needed, producing a more responsive user interface.

The placement of a field and a statement that accesses the
field must be consistent. In particular, if a statement writes to
a field, then the statement and the field must have the same
placement; if a statement reads a field, then the statement
must be replicated on a subset of the machines that the field is
replicated on. These consistency requirements simplify the
treatment of field accesses in the runtime system, ensuring
that every replicated copy of a field is updated correctly, and
that every read to a field occurs on a machine on which the
field is present. The requirements do not restrict the expres-
siveness of WebIL, since a simple program transformation
can rewrite every field access as an assignment to or from a
temporary local variable.

Figure 5 shows the GuessTheNumber.makeGuess
method after partitioning. A placement has been chosen for
each statement. The field tries has been replicated on both

7



1 void makeGuess(Integer num) {

2 CSh: ;

3 CS : int i = 0;

4 CS : if (num != null)

5 CS : i = num.intValue();

6 CSh: boolean b1 = (i >= 1);

7 CSh: boolean b2 = (i <= 10);

8 CSh: if (b1 && b2) {

9 Sh: boolean c1 = (tries > 0);

10 Sh: boolean c2 = (i == secret);

11 Sh: if (c1 && c2) {

12 CSh: tries = 0;

13 S : finishApp("You win!");

14 } else {

15 CSh: tries--;

16 CS : if (tries > 0) {

17 C : message.setText("Try again");

18 } else {

19 S : finishApp("Game over");

20 }

21 }

22 } else {

23 C : message.setText("Out of range: "+i);

24 }

25 }

Figure 5: Guess-a-Number after partitioning

client and server, requiring all assignments to it to occur on
both machines (lines 12 and 15). Also, the compiler has
replicated on both client and server the validation code to
check that the user’s guess is between 1 and 10 (lines 2–8).
The validation code must be on the server for the correctness
of the code, but placing it on the client allows the user to be
informed of an error if needed (line 23) without waiting for
a response from the server.

4.4 Partitioning algorithm
The compiler chooses placements for statements and fields
in two stages. First, it constructs a weighted directed graph
that approximately represents the control flow of the whole
program. Each node in the graph is a statement, and weights
on the graph edges are static approximations of the relative
frequency of program execution transitioning on that edge.
Second, the weighted directed graph and the annotations of
the statements and field declarations are used to construct an
instance of an integer programming problem, which is then
solved using an approximation algorithm. The solution for
the integer programming problem directly yields the place-
ments for fields and statements.

Control flow graph. A weighted directed graph is con-
structed to approximate program control flow between state-
ments. Weights are assigned to graph edges in a simple
tractable manner. First, for each method in the program,
we construct a control flow graph (CFG), and, assuming that
the method is executed n times, assign (non-negative real)
weights to edges in the method’s CFG; the edge weights are

multipliers of n, representing how often that edge is transi-
tioned. We assume that each branch of an if statement is
taken the same number of times, and that each loop executes
10 times before the loop exits. We ignore exceptions, break
and continue statements, and method calls.

We then perform an interprocedural analysis, construct-
ing a call graph of the whole program. For dynamically dis-
patched methods, we conservatively find all possible method
bodies that may be invoked. We ignore recursive methods, so
the resulting call graph is acyclic. We assume that the appli-
cation’s main method and each UI event handler is called ex-
actly once, and use each method’s CFG with edge weights to
propagate the weights forward through the graph. At method
calls, we assume that every possible target is invoked an
equal number of times. We thus construct a control flow
graph of the entire program with weights on the edges that
approximate how often the edge is transitioned.

Integer programming problem. Using the weighted di-
rected graph and the placement constraint annotations of
field declarations and statements, the placement problem is
expressed as an instance of an integer programming (IP)
problem. A solution to the problem assigns all variables in
the problem a value in {0, 1}. Each statement u is associated
with two variables, su and cu. The variable su is 1 if and only
if the statement u will be replicated on the server, and cu is 1
if and only if u will be replicated on the client. Similarly, for
each field f there are variables sf and cf . For each pair of
variables we constrain their values based on their placement
annotations. Also, linear constraints are used to ensure con-
sistency in the annotations between fields and the statements
that access them.

For each edge e = (u, v) in the weighted directed graph,
two variables xe and ye are used. The variable xe is 1 if and
only if a message is sent from the client to the server when
program execution transitions from statement u to statement
v. This occurs if v executes on the server, but u does not,
and so we require that xe ≥ sv − su. Similarly, ye is 1 if
and only if a message is sent from the server to the client
when program execution transitions on edge e; we require
ye ≥ cv − cu.

Let we be the weight of edge e. The goal is to find
an assignment to all variables that satisfies all constraints,
and minimizes the cost of the messages sent. This cost is∑

e we(xe + ye).
We have shown that this problem is NP-complete by

a reduction from MAXCUT. Therefore, it is infeasible to
solve it optimally in general. However, we have developed a
polynomial-time 2-approximation algorithm, based on linear
programming (LP) relaxation and the randomized rounding
technique [24]. If a solution exists for the IP problem, the
approximation algorithm will find a solution whose cost is at
most twice that of the optimal solution.

The derandomized version of the algorithm works as fol-
lows. First, the IP problem is relaxed to obtain an LP prob-
lem by replacing the constraint sv, cv, xe, ye ∈ {0, 1} with

8



sv, cv, xe, ye ≥ 0. Using an LP solver [8], an optimal solu-
tion s∗v, c∗v, x∗

e, y
∗
e is generated. Define the set of thresholds

T = {s∗v | 0 < s∗v < 1
2} ∪ {c

∗
v | 0 < c∗v < 1

2}. For each
t ∈ T , generate a candidate solution:

s̄v =
{

1 s∗v ≥ t
0 otherwise c̄v =

{
1 c∗v ≥ t
0 otherwise

x̄(u,v) = max{0, s̄v − s̄u}

ȳ(u,v) = max{0, c̄v − c̄u}

The threshold t that minimizes the cost
∑

we(x̄e + ȳe) is
picked; the corresponding s̄v and c̄v are the final solution.

Of course, the accuracy of this approach is limited by how
closely the weighted directed graph approximates actual run-
time behavior. More sophisticated static analysis techniques
or profiling data may yield more precise weighted directed
graphs. However, the placements produced by this approach
appear to work well in practice.

5 The Swift runtime
From a partitioning of a WebIL program, the Swift compiler
produces two Java programs. One executes on the client,
and the other on the server. Each statement and field decla-
ration of the WebIL program is represented in one or both
of these programs, according to its placement. Concurrent
execution of these two Java programs simulates execution of
the original Jif program. The two programs rely on Swift’s
runtime support, which manages communication and syn-
chronization. The client and the server each have a separate
runtime system, which are similar but not identical, since the
trust model is asymmetric; the client’s runtime system trusts
all messages from the server, but the server does not trust any
messages from the client.

This section describes the Swift run-time support and
shows how WebIL code is translated into Java programs that
simulate the execution of the original program while enforc-
ing its security requirements. It also explains how GWT is
used to compile client-side application and library code into
JavaScript code that executes on the web browser.

5.1 Execution blocks and closures
WebIL code is divided into units called execution blocks,
which are placed on one or both machines. If simulating
the program requires execution of a given execution block s,
then all machines on which s is placed will run s. That is, if
s is placed on both client and server, then (assuming a well-
behaved client) it will never be the case that one machine
executes s and the other does not.

Each method of WebIL code is divided into one or more
execution blocks. For example, Figure 6 depicts some of
the execution blocks of the Guess-a-Number makeGuess
method. Each execution block has a single entry point, and
every statement in an execution block has the same place-
ment. The placement of an execution block is the same as

1 // void makeGuess(Integer num)

2 block0: (CSh) goto block1;

3 block1: (CS)

4 int i = 0;

5 if (num != null) i = num.intValue();

6 goto block2;

7 block2: (CSh)

8 boolean b1 = (i >= 1);

9 boolean b2 = (i <= 10);

10 if (b1&&b2) goto block3; else goto block10;

11 block3: (Sh)

12 boolean c1 = (tries > 0);

13 boolean c2 = (i == secret);

14 if (c1&&c2) goto block4; else goto block6;

15 ...

16 block10: (C)

17 call message.setText("Out of range: "+i);

Figure 6: Guess-a-Number execution blocks

the placement of the statements it contains. In general, an
execution block is a small structured program, not just a ba-
sic block; a simple dataflow analysis finds execution blocks
of maximal size.

The two WebIL runtime systems explicitly represent the
stack frames for method invocations. Stack frames contain
the values of local variables and arguments. Each stack
frame is given a unique identifier, which is shared by the
two machines. A closure is a pair of an execution block and
a stack frame identifier; the Swift runtime systems execute
closures. As a closure runs, it may read and update local vari-
ables stored in its stack frame. The runtime systems synchro-
nize the values stored in stack frames by forwarding updated
local variable values to each other as needed, piggybacked
on other messages sent between machines. Forwarding local
values does not violate the security policies of the original
program. If a local variable stores information that the client
should not see, then that local variable will never be needed
on the client, and thus the server will never forward its value;
if a local variable stores information that the client should not
be able to affect, then the server will not accept an update to
it from the client.

There is one additional kind of closure: a return closure,
which represents the point to which control should return af-
ter a method call or after exiting a try block. Return clo-
sures handle dispatching to the appropriate execution block
depending on whether the method or try block returned nor-
mally or with an exception. The runtime systems keep an
explicit stack of return closures, called the closure stack, so
that when an exception is thrown, or a return statement
executed, the correct next closure can be found. Return clo-
sures are pushed onto the stack when a method is called or
a try-catch block is entered, and popped when execution
leaves the method body or the try block.

The client and server synchronize the closure stack by
sending stack update messages to each other, piggybacked
on other messages. Care is taken in the server runtime sys-

9



tem to ensure that stack update messages from the client can-
not violate the security of the original program. This is dis-
cussed further in Section 5.4.

5.2 Closure results
When a closure s runs, it produces a result controlling what
closure t to run next. If s and t are placed on different ma-
chines, the runtime system will send a message to the other
machine. For example, if s is placed on the server, and t is
placed on the client, the server’s runtime system sends a mes-
sage to the client instructing it to begin execution of t. On
the other hand, if s is placed on both the client and server,
then the server does not need to send a message to the client,
since the client’s execution of s will ensure that t is invoked.

A closure may have one of four kinds of results: a stan-
dard result, an exception result, a method call result, and a
method return result. A standard result identifies a closure t
within the same method as the closure s that returned it (and
thus s and t have the same stack frame id). When given a
standard result, the runtime system simply invokes the clo-
sure, sending a message to the other machine if needed.
Standard results are returned when the invocation of a clo-
sure does not throw an exception, and does not return from a
method call, but simply identifies the next closure to invoke
according to the control flow graph of the original method.

A closure returns a method call result when it wishes to
invoke a method. The method call result contains a reference
to the receiver object, the method identifier, and a return clo-
sure. The runtime system pushes the return closure onto the
closure stack, creates a new stack frame, and dispatches to
the execution block that implements the method for the ac-
tual class of the receiver object.

When a method return result or an exception result is pro-
duced by a closure, the topmost return closure on the stack is
invoked. In both cases, the result contains a value (the value
returned or thrown), and elements are popped off the closure
stack.

5.3 Classes and objects
A Jif class C is translated into two classes: Cs for use by
the server Java program, and Cc for the client Java program.
For each field f of class C, the placement of f determines
whether the field declaration should be placed in Cs or Cc (or
both). Each object has a unique object identifier. An object
o of class C is represented by a pair of objects os and oc,
where os of class Cs is on the server, oc of class Cc is on the
client, and os and oc share the same object identifier.

When an object reference is sent from one machine to
the other (for example, when forwarding the value of a local
variable), it suffices to send the object identifier. If the re-
ceiving machine is not aware of the object identifier, a heap
update is also sent, informing the receiving machine of the
runtime class of the object; the receiving machine’s runtime
system will create an object of the appropriate class with the
specified object identifier.

Label checking on the original Jif source program ensures
that heap updates do not violate confidentiality of informa-
tion: if the server needs to send a heap update to the client
for a particular object, then the client is permitted to know
about the existence of that object. Conversely, before apply-
ing a heap update received from the client, the server checks
it for consistency; for example, it checks uniqueness of the
object identifier. The fields of an object will never be read
before they are initialized.

5.4 Integrity of control flow
Server-only execution blocks are marked as high-integrity
(Sh) if statements within the block are marked as high-
integrity. The execution of high integrity execution blocks
may influence data that the client should not be able to af-
fect, so in general, the WebIL server will not invoke a high
integrity closure if requested to by the client.

However, in some situations, the client should be allowed
to invoke a high integrity closure on the server. Consider the
following WebIL code, after partitioning:

1 Sh: this.f = 7;

2 C : this.g = 8;

3 Sh: m(this.f);

Lines 1 and 3 are both high-integrity execution blocks,
but line 2 must execute on the client. Thus, correct control
flow of the program requires the client to invoke the high-
integrity closure for line 3.

To allow the client to correctly invoke high-integrity clo-
sures, high-integrity closures are pushed onto the closure
stack. A client may invoke a high-integrity closure only if
it is at the top of the closure stack. For example, the exe-
cution of line 1 pushes a closure for line 3 onto the closure
stack, which allows the client execution block at line 2 to
correctly invoke line 3. A client cannot pop a high-integrity
closure without executing it. The server checks that closure
invocations and closure stack updates from the client obey
these rules. As a result, the client has no way to control the
execution of high-integrity closures.

Clearly, only the server should be allowed to push high
integrity closures onto the closure stack. A dataflow anal-
ysis is used to statically determine when high integrity clo-
sures should be pushed onto the closure stack. When con-
trol flow may pass from a low integrity execution block u
to a high integrity execution block t, the analysis finds the
high integrity execution blocks s that immediately precede
the low-integrity execution leading to u. The execution of s
then pushes the closure for t onto the closure stack. Because
the WebIL code was generated from a Jif program with se-
cure information flows, a suitable execution block s exists
for each such u and t.

5.5 Other security considerations
The fact that WebIL programs are generated from Jif pro-
grams with secure information flows is important to ensur-
ing translated code is secure. For example, the client does

10



not learn any secret information by knowing which closures
the server requests the client to execute. Static checking of
the Jif program prevents these implicit flows [6] (covert stor-
age channels arising from program control structure). Simi-
larly, heap updates and local variable forwarding do not leak
information covertly.

Care must also be taken in the runtime system to ensure
that no new information channels are introduced in trans-
lated code. In particular, the unique identifiers used for stack
frames and objects form a potential information channel.
If the identifiers of objects and stack frames follow a pre-
dictable sequence, and confidential information may affect
the number of objects or stack frames created on the server,
then the client may be able to infer confidential information
based on the object and stack frame identifiers it sees.

To ensure that object and stack frame identifiers do not
reveal confidential information, a cryptographic hash func-
tion is used to generate unpredictable identifiers for compu-
tation in server-only closures. Thus, sending the identifier
of an object or stack frame to the client does not reveal any
confidential details of the server’s execution history.

5.6 GWT and Ajax
We use the Google Web Toolkit [9] (GWT) compiler and
framework to translate the client Java programs (and the
Swift client runtime system) to JavaScript. GWT pro-
vides browser-independent support for Ajax (Asynchronous
JavaScript and XML) and JavaScript user interfaces. This
implementation choice facilitates the development of the
Swift runtime system and compiler, but is not fundamental
to the design of Swift.

Ajax permits an elegant implementation of our runtime
protocol. Communication between client and server occurs
mostly invisibly to the user. The Swift server runtime sys-
tem implements a service interface that accepts requests for
closure invocations. GWT automatically generates asyn-
chronous proxies that the client can access, and provides
marshaling of data sent over the network.

The Ajax model has an inherent asymmetry: only the
client is able to initiate a dialogue with the server. Any mes-
sage sent from the server to the client (such as a request to
invoke a closure) must be a response to a previous client re-
quest. With minor modifications to our runtime system, we
can ensure that whenever the server needs to send a message
to the client, the client has an outstanding request.

6 Evaluation
To evaluate our system, we implemented four web applica-
tions with varying characteristics. None of these applications
is large, but because they test the functionality of Swift in dif-
ferent ways, it suggests that Swift will work for a wide vari-
ety of web applications. Because the applications are written
in a higher-level language than is usual for web applications,
they provide much functionality (and contain many security

issues) per line of code. Overall, the performance of these
web applications is comparable to what can be obtained by
writing applications by hand. Therefore, we do not see any
barrier to using this system on much larger web applications.

6.1 Example web applications
Guess-a-Number. This is the running example used in the
paper, and is a good demonstration of how Swift uses repli-
cation to avoid round-trip communication between client and
server. Figure 5, lines 6–8, show that the compiler automat-
ically replicates the range check onto the client and server,
thus saving a network message from the server to the client
at line 23. Potential insecurities are also avoided by automat-
ically placing the tries field on the server so a malicious
client cannot corrupt it, and by placing the secret field on
the server where it is not leaked or corrupted.

Online Poll. This application is a poll that allows users to
vote for one of three options and view the current winner.
Server-side static fields are used to provide persistence and
sharing across multi-user Swift applications. The current
count for each choice is kept as a secret on the server, and
an explicit declassification makes the result available to the
user who requests to see it.

Secret Keeper. This simple application allows users to
store a secret on the server and retrieve the secret later by
logging in. In the source program, the secret of a user has
a strong confidentiality policy that only allows the server to
read it. An explicit declassification is used to make the se-
cret readable to the client only after the client provides the
correct user name and password. This example shows that
Swift can automatically generate password-based authenti-
cation and authorization protocols from the high-level infor-
mation flow policies in source programs.

Treasure Hunt. The fourth application is a treasure hunt
game with a relatively rich user interface. The game has a
random secret grid in which some cells contain bombs and
some cells contain treasure. The user explores the grid by
digging up cells, exposing their contents. The user interface
is dynamically and incrementally updated as the user discov-
ers what lies beneath each cell in the grid. Because the grid is
secret, it is placed on the server and accessed via Ajax calls.

6.2 Code size results
Table 2 shows the code size of the example applications and
the generated target code, including both the client-side Java
code and the JavaScript code generated by GWT. The length
of generated code is reported in non-comment tokens rather
than in lines because line counts are not meaningful. How-
ever, as a point of comparison, the Jif source programs use
9–11 tokens per line. Note that the generated code length
does not include the runtime systems.

11



Example Jif Java target code (server) Java target code (client) JavaScript
Null program 4 lines 1.7k tokens 2.1k tokens 67 kB

Guess-a-Number 129 lines 13k tokens 15k tokens 114 kB
Poll 103 lines 11k tokens 11k tokens 105 kB

Secret Keeper 162 lines 17k tokens 17k tokens 116 kB
Treasure Hunt 81 lines 7.9k tokens 7.5k tokens 108 kB

Table 2: Code size of example applications

Actual Optimal
Example Round-trip Client→Server Round-trip Client→Server

Guess-a-Number 1 2 1 1
Poll 0 2 0 1

Secret Keeper 1 2 1 1
Treasure Hunt 1 1 1 1

Table 3: Network messages required to perform a core UI task

These results show that the code expansion is reasonable,
with about 315 bytes (130 tokens) of JavaScript generated
per line of Jif code, Much of the expansion occurs when Java
code is compiled to JavaScript by GWT, so translating We-
bIL directly to JavaScript might reduce code size consider-
ably.

6.3 Performance results
We studied the performance of the example applications
from the user’s perspective. We expect network delays to be
the primary factor affecting application responsiveness, so
we measured the number of network round trips required to
carry out the core user interface task in each application. For
example, the core user interface task in Guess-a-Number is
submitting a guess. We also compared the number of actual
round trips to the optimum that could be achieved by writing
a secure web application by hand.

Table 3 gives the number of round trips required for each
of the applications. To count the number of round trips, we
measure the number of messages sent from the server to the
client. These messages are the important measure of respon-
siveness because it is these messages that the client waits for.
In every case, the total number of round trips in the Swift ap-
plication is optimal.

The table also reports the number of messages sent from
the client to the server. Because the client does not block
when these messages are sent, the number of messages sent
from client to server is not important for responsiveness.

6.4 Automatic repartitioning
One advantage of Swift is that the compiler can repartition
the application when security policies change. We experi-
mented this feature with the Guess-a-Number example: if
the number to guess is no longer required to be secret, the
field that stores the number and the code that manipulates
it can be replicated to the client for better responsiveness.
Lines 9–11 of Figure 5 all become replicated on both server

and client, and the message for the transition from line 11 to
12 is no longer needed. The only change in the source code is
to replace the label {*�*; *�*} with {*�client; *�*}
(Fig. 2, line 2). Everything else follows automatically.

7 Related work
In recent years there have been a number of attempts to im-
prove the security of web applications. At the same time,
there has been increasing interest in unified frameworks for
web application development. The goals of these two lines
of work are in tension, since moving code to the client affects
security. Because it provides a unified programming frame-
work that enforces end-to-end information security policies,
Swift is at the confluence of these two lines of work.

7.1 Information flow control and taint track-
ing for web applications

Several previous systems have used information flow con-
trol to enforce web application security. This prior work is
mostly concerned with tracking information integrity, rather
than confidentiality, with the goal of preventing the client
from subverting the application by providing bad informa-
tion (e.g., that might be used in an SQL query). Some of
these systems use static program analysis (of information
flow and other program properties) [11, 26, 12], and some
use dynamic taint tracking [10, 17, 27], which usually has
the weakness that the untrusted client can influence control
flow. Concurrent work uses a combination of static and dy-
namic information flow tracking and enforces both confiden-
tiality and integrity policies [3]. Unlike Swift, none of this
prior work addresses client-side computation or helps decide
which information and computation can be securely placed
on the client. Most of the prior work (except [3]) only con-
trols information flows arising from a single client request,
and not information flow arising across multiple client ac-
tions or across sessions.

12



Yu et al. [30] propose instrumenting JavaScript with dy-
namic security checks, to protect sensitive client information
from cross-site scripting attacks and similar vulnerabilities.
In these attacks, a malicious website attempts to retrieve in-
formation from another browser window or session to which
it should not have access. The usual avenue of attack is via
JavaScript’s ability to interpret and execute user-provided in-
put as unchecked code, using the eval operation. Because
Swift does not expose these “higher-order scripting” capa-
bilities of JavaScript, it is not vulnerable to these attacks.

7.2 Uniform web application development
Several recently proposed languages provide a unified pro-
gramming model for implementing applications that span the
multiple tiers found in web applications. However, none of
these languages helps the user automatically satisfy security
requirements, nor do they support replication for improved
interactive performance.

Links [4] and Hop [20] are functional languages for writ-
ing web applications. Both allow code to be marked as
client-side code, causing it to be translated to JavaScript.
Links does this at the coarse granularity of individual func-
tions, whereas Hop allows individual expressions to be par-
titioned. Links supports partitioning code to run as SQL
queries on a database, whereas Hop and Swift do not. Swift
does not have language support for database manipulation,
though a back-end database can be made accessible by wrap-
ping it with a Jif signature. To keep server resource con-
sumption low, Links stores all state on the client, which may
create security vulnerabilities. Neither Links nor Hop helps
the programmer decide how to partition code securely.

Hilda [29, 28] is a high-level declarative language for
developing data-driven web applications. The most recent
version [28] also supports automatic partitioning with per-
formance optimization based on linear programming. Hilda
does not support or enforce security policies, or replicate
code or data. Hilda’s programming model is based on SQL
and is only suitable for data-driven applications, as opposed
to Swift’s more general Java-based programming model.
Swift partitions programs on a much finer granularity than
on Hilda’s “Application Units”, which are roughly compa-
rable to classes; fine-grained partitioning is critical to re-
solve the tension between security and performance. Al-
though both Swift and Hilda use LP-based approximation al-
gorithms, Hilda’s bicriteria approximation algorithm solves
soft constraints that may be violated by a constant factor; it
is therefore not suitable for satisfying the hard constraints
needed for security.

A number of popular web application development en-
vironments make web application development easier by al-
lowing a higher-level language to be embedded into HTML
code. For example, JSP [1] embeds Java code, and PHP [18]
and Ruby on Rails [5] embed their respective languages.
None of these systems help to manage code placement, or
help to decide when client-server communication is secure,

or provide fully interactive user interfaces (unless JavaScript
code is explicitly used). Programming is still awkward, and
reasoning about security is challenging.

The Google Web Toolkit [9] makes construction of rich
client-side code easier by compiling Java to JavaScript.
GWT also provides a clean interface for Ajax requests. How-
ever, GWT does not unify programming across the client–
server boundary, nor does it address security.

7.3 Security by construction
An important aspect of Swift is that it provides security by
construction: the programmer explicitly specifies security
requirements, and the system transforms the program to en-
sure that these requirements are met. Prior work has explored
this idea in other contexts.

The Jif/split system [31, 32] also uses Jif as a source lan-
guage and transforms programs by placing code and data
onto sets of hosts in accordance with the labels in the source
code. Jif/split addresses the general problem of distributed
computation in a system incorporating mutual distrust and
arbitrary host trust relationships. Swift differs in exploring
the challenges and opportunities of web applications. Web
applications have a specialized trust model, and therefore
specialized construction techniques are used to exploit this
trust relationship. In particular, replication is used by Jif/split
to boost integrity, whereas Swift uses replication to improve
performance and responsiveness. In addition, Swift uses a
more sophisticated algorithm to determine the placement and
replication of code and data to the available hosts. Swift
applications support dynamic user interfaces (represented as
complex, compositional data structures) and control the in-
formation flows that result. Existing Jif/split applications do
not appear to handle data structures or control flow of com-
parable complexity. Jif’s label parameterization is needed to
reason about information flow in complex data structures, as
in Figure 3, but Jif/split lacks the necessary support for label
parameters.

Program transformation has also been applied to imple-
menting secure function evaluation in a distributed system,
by the Fairplay [13] system. Its compiler translates a two-
party secure function specified in a high-level language into
a Boolean circuit. While Fairplay provides strong and pre-
cise security guarantees, the computations it can handle are
very limited, and it does not scale to general programs.

8 Conclusions
We have shown that it is possible to build web applica-
tions that enforce security by construction. Not only is there
greater assurance that the resulting application is secure, but
web applications are easier to build. The awkward task of
partitioning application functionality across the client–server
boundary is taken care of automatically and securely.

Writing Swift code does require writing security label an-
notations. These annotations are mostly found on method

13



declarations, where they augment the information specified
in existing type annotations. Overall, the annotation burden
is clearly less than the current burden of managing client–
server communication explicitly, even ignoring the effort
that should currently be expended on manually reasoning
about security.

Swift satisfies three important goals: enforcement of in-
formation security; a dynamic, responsive user interface; and
a uniform, general-purpose programming model. No prior
system delivers these capabilities. Because web applications
are being used for so many important purposes by so many
users, better methods are needed for building them securely.
Swift appears to be a promising solution to this important
problem.

References
[1] Hans Bergsten. JavaServer Pages. O’Reilly & Associates,

Inc., 3rd edition, 2003.
[2] Stephen Chong and Andrew C. Myers. Decentralized robust-

ness. In Proc. 19th IEEE Computer Security Foundations
Workshop, pages 242–253, July 2006.

[3] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: En-
forcing confidentiality and integrity in web applications. Sub-
mitted for publication, 2007.

[4] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy
Yallop. Links: Web programming without tiers.
http://groups.inf.ed.ac.uk/links/, 2006.

[5] Chad Fowler Dave Thomas and Andy Hunt. Programming
Ruby: The Pragmatic Programmers’ Guide. The Pragmatic
Programmers, 2nd edition, 2004. ISBN 0-974-51405-5.

[6] Dorothy E. Denning and Peter J. Denning. Certification of
programs for secure information flow. Comm. of the ACM,
20(7):504–513, July 1977.

[7] David Flanagan. JavaScript: The Definitive Guide. O’Reilly,
4th edition, 2002.

[8] GNU Linear Programming Kit. Available at
http://www.gnu.org/software/glpk/.

[9] Google Web Toolkit. .
http://code.google.com/webtoolkit/.

[10] W. Halfond and A. Orso. AMNESIA: Analysis and moni-
toring for neutralizing SQL-injection attacks. In Proc. In-
ternational Conference on Automated Software Engineering
(ASE’05), pages 174–183, November 2005.

[11] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung
Tsai, Der-Tsai Lee, and Sy-Yen Kuo. Securing web appli-
cation code by static analysis and runtime protection. In
WWW ’04: Proceedings of the 13th international conference
on World Wide Web, pages 40–52, New York, NY, USA, 2004.
ACM Press.

[12] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analy-
sis tool for detecting web application vulnerabilities. In Proc.
IEEE Symposium on Security and Privacy, May 2006.

[13] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella.
Fairplay—a secure two-party computation system. In Pro-
ceedings of the 13th Usenix Security Symposium, pages 287–
302, San Diego, CA, August 2004.

[14] Andrew C. Myers. JFlow: Practical mostly-static information
flow control. In Proc. 26th ACM Symp. on Principles of Pro-

gramming Languages (POPL), pages 228–241, San Antonio,
TX, January 1999.

[15] Andrew C. Myers and Barbara Liskov. Protecting privacy us-
ing the decentralized label model. ACM Transactions on Soft-
ware Engineering and Methodology, 9(4):410–442, October
2000.

[16] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen
Chong, and Nathaniel Nystrom. Jif: Java information flow.
Software release, at http://www.cs.cornell.edu/jif, July 2001–
.

[17] A. Nguyen-Tuong, S. Guarneri, D. Greene, and D. Evans. Au-
tomatically hardening web applications using precise tainting.
In Proc. 20th International Information Security Conference,
pages 372–382, May 2005.

[18] PHP: hypertext processor. http://www.php.net.
[19] John C. Reynolds. Definitional interpreters for higher-order

programming languages. In ACM ’72: Proceedings of the
ACM annual conference, pages 717–740, 1972.

[20] M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for
programming the Web 2.0. In Proc. 1st Dynamic Languages
Symposium, October 2006.

[21] Guy L. Steele, Jr. RABBIT: A compiler for Scheme. Techni-
cal Report AITR-474, MIT AI Laboratory, Cambridge, MA,
May 1978.

[22] Java Swing (Java Foundation Classes) .
http://java.sun.com/javase/technologies/desktop.

[23] Symantec Internet security threat report, volume X. Symantec
Corporation, September 2006.

[24] Vijay V. Vazirani. Approximation algorithms. Springer-Verlag
New York, Inc., New York, NY, USA, 2001.

[25] Dennis Volpano and Geoffrey Smith. A type-based approach
to program security. In Proceedings of the 7th International
Joint Conference on the Theory and Practice of Software De-
velopment, pages 607–621, 1997.

[26] Yichen Xie and Alex Aiken. Static detection of security vul-
nerabilities in scripting languages. In Proceedings of the 15th
USENIX Security Conference, July 2006. To appear.

[27] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced pol-
icy enforcement: A practical approach to defeat a wide range
of attacks. In 15th USENIX Security Symposium, August
2006.

[28] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan De-
mers, Johannes Gehrke, and Jayavel Shanmugasundaram. A
unified platform for data driven web applictions with auto-
matic client-server partitioning. In WWW ’07: Proceedings of
the 16th international conference on World Wide Web, 2007.

[29] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald,
and Johannes Gehrke. Hilda: A high-level language for
data-drivenweb applications. In ICDE ’06: Proceedings
of the 22nd International Conference on Data Engineering
(ICDE’06), page 32, Washington, DC, USA, 2006. IEEE
Computer Society.

[30] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov.
JavaScript instrumentation for browser security. In Proc.
34th ACM Symp. on Principles of Programming Languages
(POPL), pages 237–249, January 2007.

[31] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and
Andrew C. Myers. Secure program partitioning. ACM Trans-
actions on Computer Systems, 20(3):283–328, August 2002.

[32] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve

14



Zdancewic. Using replication and partitioning to build secure
distributed systems. In Proc. IEEE Symposium on Security
and Privacy, pages 236–250, Oakland, California, May 2003.

15


