
13

Placement of Defect-Tolerant Digital
Microfluidic Biochips Using the
T-tree Formulation

PING-HUNG YUH, CHIA-LIN YANG, and YAO-WEN CHANG

National Taiwan University

Droplet-based microfluidic biochips have recently gained much attention and are expected to revo-
lutionize the biological laboratory procedures. As biochips are adopted for the complex procedures
in molecular biology, its complexity is expected to increase due to the need of multiple and concur-
rent assays on a chip. In this article, we formulate the placement problem of digital microfluidic
biochips with a tree-based topological representation, called T-tree. To the best knowledge of the au-
thors, this is the first work that adopts a topological representation to solve the placement problem
of digital microfluidic biochips. We also consider the defect tolerant issue to avoid to use defective
cells due to fabrication. Experimental results demonstrate that our approach is more efficient and
effective than the previous unified synthesis and placement framework.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids

General Terms: Algorithms, Performance, Design

Additional Key Words and Phrases: Microfluidics, biochip, placement

ACM Reference Format:
Yuh, P.-H., Yang, C.-L., and Chang, Y.-W. 2007. Placement of defect-tolerant digital microflu-
idic biochips using the T-tree formulation. ACM J. Emerg. Technol. Comput. Syst. 3, 3, Arti-
cle 13 (November 2007), 32 pages. DOI = 10.1145/1295231.1295234 http://doi.acm.org/10.1145/
1295231.1295234

This article is an extended and revised version of the paper presented at the 2006 IEEE/ACM
Design Automation Conference (DAC) C© ACM 2006.
This work was partially supported by the National Science Council of Taiwan under Grant Nos. NSC
95-2752-E-002-008-PAE and NSC 95-2221-E-002-374 and by the Excellent Research Projects of
National Taiwan University, 95R0062-AE00-07.
Authors’ address: P.-H. Yuh, C.-L. Yang (contact author), Department of CSIE, National Taiwan
University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan; email: {r91089, yangc}@csie.ntu.edu.tw;
Y.-W. Chang, Graduate Institute of Electronics Engineering and Department of EE, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan; email: ywchang@cc.ee.ntu.edu.tw.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1550-4832/2007/11-ART13 $5.00. DOI 10.1145/1295231.1295234 http://doi.acm.org/
10.1145/1295231.1295234

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Pub. date: November 2007.

13:2 • P.-H. Yuh et al.

1. INTRODUCTION

Due to the advances in the microfabrication and microelectromechanical
systems, microfluidic technology has gained much attention recently. The
composite microsystems could perform conventional biological laboratory pro-
cedures on a small and integrated system. As a result, microfluidic biochips
are used in several common procedures in molecular biology, such as the clinic
diagnosis and the DNA sequence analysis.

Most recently, second-generation (digital) microfluidic biochips, which are
based on the manipulation of the discrete liquid particles (the droplets), have
been proposed [tutorgig]. Each droplet can be independently controlled by the
electrohydrodynamic forces generated by an electric field. The field can be
generated by an individually accessible electrode. Compared with the first-
generation microfluidic biochips that are based on the continuous fluid flow
and contain external pressure sources (e.g., micropumps), the droplets can be
moved anywhere in a 2D array to perform the desired chemical reaction and the
electrodes can be reprogrammed for different bioassays. With these two proper-
ties, digital microfluidic biochips can handle large-scale and complex procedure,
since the complex procedure can be built based on a set of fundamental oper-
ations, such as droplet generation, mixing of multiple droplets, droplet trans-
portation, droplet dilution, and droplet fission. Moreover, digital microfluidic
biochips can be reconfigured for different levels of hierarchy.

As biochips are adopted for complex procedures in molecular biology, the
design complexity of digital microfluidic biochips is expected to increase due
to the need of multiple and concurrent assays on a biochip. The International
Technology Roadmap for Semiconductors (ITRS) clearly points out that the in-
tegration of electro-biological devices is one of the major challenges of system
integration beyond 2009 [ITRS]. Besides, the increase in the density of as-
says and area of digital microfluidic biochips may reduce yield. Since we need
time to ramp up the yield of biochips, it is desirable to perform a bioassay
on a biochip with the existence of defects. How to incorporate the defect tol-
erant issue in Computer Aided Design (CAD) support becomes an important
issue.

Figure 1 shows the schematic view of a digital microfluidic biochip based
on the principle of electrowetting on dielectric (EWOD) [Fair et al. 2003].
There are three major components in a biochip: 2D microfluidic array, reser-
voirs/dispensing ports, and optical detectors. The 2D microfluidic array consists
of a set of basic cells with the same architecture. The 2D microfluidic array is
used for the chemical reaction of droplets and droplets transportation. With this
2D array, fundamental microfluidic operations (e.g., mix, dilute, and store) can
be performed for different bioassays. The mix operation is to mix two droplets
containing analytes and reagents. The two droplets route to the same location
and turn around some pivot points for fast mixing process. This operation can
be used for preprocessing, sample dilution, or reaction between samples and
reagents. The dilution operation is to mix samples with buffers to reduce the
sample concentration. The dilution ratio is controlled by a hierarchy of binary
mixing phases by mixing samples (or diluted droplets) and buffers. The storage

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:3

Fig. 1. The schematic view of digital microfluidic biochips.

Fig. 2. An example of bioassay execution on digital microfluidic biochips.

operation is to temporarily preserve samples; that is, a droplet containing bio-
logical sample is located at a fixed location for a period of time. Note that since
droplets can move freely on the 2D array, these operations can be performed
anywhere in this 2D array. In other words, a basic cell can perform different
operations at different time steps. This property is referred to as the recon-
figurability of biochips. Moreover, there are different implementations of these
operations with different areas and durations. For example, a mix operation can
be performed in a 2×3 or 1×4 region with different mixing times. In this paper,
we refer to this type of operations (mix, dilute) as the reconfigurable operations.
The reservoirs/dispensing ports are responsible for droplets generation while
the optical detectors are used for the detection of reaction results. In contrast
to the 2D array, these devices have only one functionality. Therefore, in this
paper, we call these device as the non-reconfigurable devices. The operations
(e.g., droplet dispensing/generation and detection) performed on these devices
are referred to as non-reconfigurable operations.

The bioassay is a procedure to determine the strength or activity of a bio-
logical sample by comparing its effect with those standard preparations on the
living cells. Figure 2 shows the bioassay execution on a biochip. A bioassay is
represented as a task graph, where each node represents a fundamental oper-
ation and each edge represents the data dependency between two operations.
Each fundamental operation (mix, dilution, etc.) occupies a certain area and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:4 • P.-H. Yuh et al.

lasts for a period of time. There are two important characteristics of the execu-
tion of a bioassay. First, due to the reconfigurability of biochips, two fundamen-
tal operations may share the same area at different time steps. For example, the
mix operation b and the mix operation a share the same area. Second, a storage
unit is required to temporarily store the intermediate result between two data-
dependent fundamental operations. For example, although the mix operation a
is finished at time 4, the mix operation c cannot immediately start its execution
since another input droplet of mix c is not available at that time. Therefore, a
storage unit is required to store the result of the mix operation a. The above two
characteristics complicates the placement of fundamental operations, since we
need to determine not only the physical location but also the starting time of
each fundamental operation. Moreover, we also need to determine the number
of storages and the locations of them.

Due to the reconfigurability, the placement problem of digital microfluidic
biochips includes architectural-level synthesis (i.e., scheduling and resource
binding) and physical placement. How to simultaneously perform architectural-
level synthesis and physical placement is the most challenging issue in the
placement problem.

1.1 Related Works

Architectural-level synthesis and physical placement of digital microfluidic
biochips have been addressed in the recent literature. For the architectural-
level synthesis, Ding et al. [2001] proposed an architectural-level modeling and
an integer linear programming based optimization method for droplet-based
microfluidic biochips. Su et al. [Su and Chakrabarty 2004] used the sequencing
graph to represent the bioassay protocol and proposed an integer linear pro-
gramming based formulation and two heuristics, the modified list scheduling
algorithm and the genetic algorithm, to solve this problem. Recently, Ricketts
et al. [2006] proposed the hybrid priority scheduling algorithm based on the
genetic algorithm. For the physical placement, Su et al. [Su and Chakrabarty
2005a] proposed a simulated annealing-based algorithm for the physical place-
ment problem with given scheduled operations. They also considered the fault
tolerance issue by modeling the degree of faults and identifying the empty
spaces to recover operations with faulty cells. Recently, Su and Chakrabarty
[2005b] presented a unified synthesis and placement flow based on parallel
recombinative simulated annealing. Their algorithm consisted of three stages:
binding, scheduling, and physical placement. They used the list scheduling algo-
rithm for scheduling and a greedy placement algorithm for physical placement.
They also considered the defect tolerant issue for yield enhancement.

The synthesis and physical placement problem of digital microfluidic
biochips are closely related to the operations of dynamically reconfigurable
FPGAs (DRFPGAs), which have received much attention recently [Bazargan
et al. 2000]. The digital microfluidic biochips offers the same partial recon-
figurability as the DRFPGAs. Many approaches, such as the graph-theoretic
approach [Fekete et al. 2001] and the topological representation based ap-
proach [Yuh et al. 2004; Yuh et al. 2004], have been proposed. Among these

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:5

approaches, the T-tree [Yuh et al. 2004] representation is the state-of-the-art
method for DRFPGAs.

1.2 Our Contribution

In this article, we adopt the T-tree topological representation [Yuh et al. 2004]
to solve the placement problem of digital microfluidic biochips. Due to the
reconfigurability of DRFPGAs, the placement of digital microfluidic biochips
is similar to the simultaneous scheduling and placement of DRFPGAs. How-
ever, the placement of biochips is more complicated than that of DRFPGAs
for two reasons. First, besides reconfigurable operations, biochips also have
non-reconfigurable operations. Second, a storage unit is required for two data-
dependent operations if they are not scheduled at consecutive time steps. To
the best knowledge of the authors, our work is the first to apply a topological
representation to solve the placement problem of digital microfluidic biochips.
We choose the T-tree [Yuh et al. 2004] topological representation over other
3D representations, such as 3D-subTCG [Yuh et al. 2004], Sequence Triplet
[Yamazaki et al. 2000], and 3D slicing tree [Cheng et al. 2005], because T-tree
is effective and efficient on volume optimization and handling the storage units.
We also explore the property of a bioassay to develop a clustering algorithm;
since a generation operation and a reconfigurable operation are performed se-
quentially in a bioassay, we cluster the two operations a priori for better solution
quality and less CPU time. Due to the need to perform a bioassay on a biochip
with the existence of defects, the proposed placement algorithm handles the
defect tolerant issue by modeling each defective cell as an obstacle and not
allowing overlaps among operations and obstacles.

We evaluated the proposed placement algorithm on the colorimetric protein
assay [Srinivasan et al. 2004] and the multiplexed in-vitro diagnostics [Su and
Chakrabarty 2004]. We assumed different design specifications, for example,
fixed architecture and limited assay completion time, for each bioassay. The
experimental results show that our placement algorithm can satisfy all design
specifications for all bioassay while both Su and Chakrabarty [2005b] and the
3D-subTCG based algorithm can satisfy only some of them. Moreover, we can
achieve smaller volume than Su and Chakrabarty [2005b] and 3D-subTCG.
For example, for the in-virto diagnostics, Su and Chakrabarty [2005b] obtains,
on average, 4.07X larger volume than our algorithm. For the defect tolerance,
we performed four different sets of experiments (two sets with three and two
sets with four defective cells). With the existence of defects, our placement
algorithm could achieve a biochip with only 16% increase in the assay comple-
tion time compared with that of a nondefective biochip with reasonable CPU
time.

The remainder of this article is organized as follows. Section 2 formu-
lates the placement problem of digital microfluidic biochips. Section 3 re-
views various 3D floorplan representations and gives the advantages of
T-tree over other representations. Section 4 presents the T-tree based formula-
tion for the placement problem. Section 5 describes our temporal floorplanning
algorithm. Section 6 demonstrates our defect tolerance approach. Section 7

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:6 • P.-H. Yuh et al.

Fig. 3. Overview of the placement problem of biochips.

reports the experimental results. Finally, concluding remarks are given in
Section 8.

2. PROBLEM FORMULATION

In this section, we give a formal definition about the placement problem of
digital microfluidic biochips. Figure 3 shows the overview of the placement
problem. There are three inputs to the placement problem. The first one is the
sequencing graph G = {V , E} that represents the protocol of a bioassay [Su
and Chakrabarty 2004], where V = {v1, v2, . . . , vm} represents a set of m assay
operations and E = {(vi, vj), 1 ≤ i, j ≤ m} denotes the data dependencies
between two assay operations; i.e., the precedence constraints. We may need at
most one storage unit for each edge in G to store the intermediate data between
two data-dependent operations. Throughout this paper, we use operation and
task interchangeably. The second one is the microfluidic module library that
contains the basic modules for biochips. Each basic module is characterized by
its functionality (i.e., mix, dilution, etc.) and parameters (i.e., width, height,
and operation duration). The third one is the design specification, including:
(1) the fixed architecture (such as 10 × 10 array) and limited assay completion
time (such as 400 seconds) and (2) the maximum number of instances for each
type of non-reconfigurable devices; that is, the resource constraints.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:7

Fig. 4. (a) A 3D placement. (b) Its corresponding 3D-subTCG.

The goal of our algorithm is to simultaneously perform resource binding,
scheduling, and physical placement with volume optimization under the design
specification. Binding is to map an operation to a functional resource. Note that
there may be several functional resources for a given operation. For example,
for a reconfigurable operation, such as the mix operation, we can use a 2 × 2-
array mixer or a 2×4-array mixer with different mixing times. However, several
operations may map to the same functional resource for resource sharing. For
example, we may map two detection operations to the same optical detector.
After binding, the duration and dimension of each operation is determined.
Scheduling is to determine the starting time of each operation under the prece-
dence constraint. For a valid schedule, non-reconfigurable operations that map
to the same device cannot execute concurrently. Physical placement is to find the
physical location for each reconfigurable operation on the 2D microfluidic array.
We also need to determine the locations of optical detectors. On the other hand,
we can manually determine the reservoirs/dispensing ports after placement,
since they do not affect the area of the biochip [Su and Chakrabarty 2005b].
In this paper, we ignore the time for transporting droplets between different
tasks because the movement of droplets is very fast compared with the duration
of each task [Fair et al. 2003; Srinivasan et al. 2004]. We also follow Su and
Chakrabarty [2005b] in using the segregation cells to wrap each reconfigurable
operation, storage unit, and optical detectors for not only providing the trans-
portation path for droplets movement between different operations, but also
isolating one operation from another to avoid unexpected cross-contamination.

3. REVIEW OF 3D FLOORPLAN REPRESENTATIONS

In this section, we briefly review popular 3D floorplan representations pro-
posed in the recent literature, including 3D-subTCG [Yuh et al. 2004], Sequence
Triplet (ST) [Yamazaki et al. 2000], T-tree [Yuh et al. 2004], and 3D slicing
tree [Cheng et al. 2005]. Then we point out the advantages of T-tree over other
3D representations.

3.1 3D-subTCG

3D-subTCG is an extension of the well-known 2D floorplan representation:
Transitive Closure Graph (TCG) [Lin and Chang 2001]. 3D-subTCG uses a
horizontal transitive closure graph Ch and a vertical transitive closure graph Cv

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:8 • P.-H. Yuh et al.

t y

x

b

c

a

Fig. 5. A 3D floorplan; the corresponding Sequence Triplet is (bca, bac, abc).

to describe the geometric relations and a temporal transitive closure graph Ct

to model the temporal relations among tasks. Figure 4 shows a 3D placement
and its corresponding 3D-subTCG. Each node ni in a transitive closure graph
represents a task vi. The value associated with a node in Ch (Cv or Ct) gives the
width (height or duration) of the corresponding task, and the edge (ni, nj) in Ch

(Cv or Ct) represents the horizontal (vertical or temporal) relation of vi and vj .
For example, in Figure 4, since task vc (va) is left to (below) vb (v f), there exists
an edge (nc, nb) ((na, n f)) in Ch (Cv). Similarly, since task va is executed before
task vd , there exists an edge (na, nd) in Ct .

3.2 Sequence Triplet

Sequence Triplet (ST) is a 3D representation extended from the well-known
Sequence Pair representation [Murata et al. 1995]. An ST consists of three
sequences (�1, �2, �3), where each sequence contains the label of all tasks.
Figure 5 shows a simple 3D placement and its corresponding ST. ST defines the
relations between two tasks based on the relative positions of this two tasks in
the three sequences. The relation between two tasks is defined as follows: (1) if
the sequence of two tasks va, vb is the same (from left to right) in (�1, �2, �3), i.e.,
(�1, �2, �3) = (..a..b.., ..a..b.., ..a..b..), it means that task vb is in the Y + direction
of task va; (2) if (�1, �2, �3) = (..a..b.., ..a..b.., ..b..a..), it means that task vb is in
the X − direction of task va; (3) if (�1, �2, �3) = (..a..b.., ..b..a.., ..a..b..), it means
that task vb is in the X + direction of task va; (4) if (�1, �2, �3) = (..a..b.., ..b..a..,
..b..a..), it means that task vb is in the Z − direction of task va. For example,
since the relative positions of tasks va and vb satisfy relation (2), va is in the X −

direction of vb.

3.3 T-tree

T-trees are a 3-ary tree, where each node corresponds to a unique task and has
at most three children to represent the dimensional relationship among tasks.
The T-tree is designed to represent a compacted placement where each task
cannot move toward the origin. Figure 6 shows a compacted placement and
its corresponding T-tree. Given a set of m tasks, let Wi, Hi, and Ti denote the
width, height, and duration of each task, 1 ≤ i ≤ m. We use (xi, yi) ((i, y ′

i)) to
denote the coordinate of the bottom-left (top-right) corner of a task vi, and ti

(t ′
i) the starting (ending) time of task vi, 1 ≤ i ≤ m. The T-tree represents the

geometric relationship between two tasks as follows. If node nj is the left child
of node ni, module vj must be placed adjacent to module vi in the T+ direction,
that is, t j = ti + Ti. If node nk is the middle child of node ni, module vk must
be placed in the Y + direction of module vi, with the t-coordinate of vk equal to

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:9

Fig. 6. A compacted placement and its corresponding T-tree.

jj

ii

llkk

tj = ti + Ti tk = ti, yk >= yi+Hi tl = ti, yl = yi

Left child Right childMiddle child

Fig. 7. The structure of the T-tree.

that of vi, i.e., tk = ti and yk ≥ yi + Hi. If node nl is the right child of node
ni, module vl must be placed in the X + direction of module vi, with the t- and
y-coordinates equal to those of vi, i.e., tl = ti and yl = yi. Figure 7 shows the
structure of a T-tree.

3.4 3D Slicing Tree

The 3D Slicing tree [Cheng et al. 2005] is an extension of the 2D slicing tree
representation [Wong and Liu 1986]. A 3D slicing floorplan is a floorplan that
consists of a finite number of nonoverlapping rectangles, where these rectangles
can be obtained by repetitively subdividing rectangles with the planes that are
perpendicular to the X -, Y -, or Z -axis (assume that faces of the 3D blocks
are perpendicular to the X , Y , and Z axes). Figure 8(a) shows a 3D slicing
floorplan. The 3D slicing tree is an oriented rooted binary tree that represents
a 3D slicing floorplan. Figure 8(b) shows the corresponding 3D slicing tree of
Figure 8(a). Each leaf node corresponds to a basic 3D task and is labeled by its
name. Each internal node represents a supermodule and is labeled by X , Y , or
Z . The label X means that the corresponding supermodule is divided into two
halves by a plane that is perpendicular to the X -axis. The labels Y and Z are

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:10 • P.-H. Yuh et al.

Fig. 8. (a) The 3D slicing structure. (b) The corresponding 3D slicing tree.

similarly defined. For example, the root of the two tasks v2 and v5 represents
a supermodule. Since its label is Z , this supermodule is divided by the plane
that is perpendicular to the Z -axis. Therefore, task v5 is in the Z + direction of
task v2.

3.5 Discussion

In this section, we give the advantages of the T-tree over the other represen-
tations for the placement problem of digital microfluidic biochips, for which we
choose the T-tree representation to solve the problem addressed in this paper:

(1) T-tree models compacted floorplans whose modules are compacted toward
the origin, while the 3D-subTCG and ST model general floorplans and the
3D slicing tree models slicing floorplans. Recall that for the placement prob-
lem of digital microfluidic biochips, we need to satisfy the given fixed archi-
tecture and limited assay completion time. Therefore, a feasible 3D floor-
plan must be within the 3D cube defined by the fixed architecture and
limited assay completion time. Since the T-tree models a compacted floor-
plan, it is more suitable for volume optimization, and thereby is more likely
to generate solutions that are within the defined 3D cube. Consequently,
T-tree is more suitable for the placement problem of digital microfluidic
biochips than other 3D representations.

(2) Recall that we need a storage unit for two data-dependent operations if
they are not scheduled at consecutive time steps. Also, the number and
duration of these storage units are related to the schedule of operations.
Based on the structure of T-tree, we can easily determine the number of
storage units and their duration before packing. This process takes only
linear time. As for 3D-subTCG and ST, we need, on average, O(m2) time
to obtain this information with m operations since each transitive closure
graph has average m(m−1)

6 edges. For the 3D slicing tree, this information
cannot be obtained before packing. Further, the number of storage units
varies with different schedules. We may need to delete an unused storage
unit or insert a new one during simulated annealing (SA) for packing ef-
ficiency. For 3D-subTCG, when deleting an unused storage unit (inserting
a new storage unit), we need to delete (insert) an edge from this storage
unit to all other tasks, and detect whether the properties of 3D-subTCG are
satisfied after deletion (insertion). That is, we need to detect whether the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:11

transitive closure property is satisfied and there exists no cycles in each
transitive closure graph. We need O(|E|) time to detect cycles and to main-
tain the transitive closure property for inserting/deleting one edge, where
E is the set of edges in one transitive closure graph. For ST, we need to
determine the positions of a storage unit in (�1, �2, �3) for insertion, since
we need to satisfy the requirement of storage units—a storage operation vs

must be performed after the finish of vi if vs stores the result of vi. This pro-
cess may need O(km) time, where k is the number of storage units required
for insertion. For the 3D slicing tree, it is hard to guarantee that the dura-
tion of one storage unit equals the time gap between two data-dependent
operations. Therefore, it is harder for a 3D slicing tree to obtain a feasible
solution.

(3) As described in Section 1, the size (number of operations) of a bioassay
is expected to increase because the design of a biochip will become more
complicated to handle concurrent assays on a chip. Therefore, the efficiency
of handling large-scale bioassays is one important factor when evaluating
the suitability of a 3D representation for the placement problem of biochips.
It has been shown [Yuh et al. 2004] that T-tree is more efficient and effective
than 3D-subTCG and ST for the simultaneous scheduling and placement
problem of DRFPGAs. Since the problem addressed here is closely related
to that of the DRFPGAs, we expect the T-tree to also be more efficient and
effective than 3D-subTCG and ST.

With these reasons, we decide to choose the T-tree representation to handle
the placement problem of digital microfluidic biochips.

4. T-TREE BASED BIOCHIP PLACEMENT

In this section, we first present the challenges of solving the placement problem
of biochips. Then we demonstrate that the execution of tasks on a biochip can
be modeled as the temporal floorplanning problem. Finally, we present how to
model each type of tasks with the T-tree formulation and how to handle the
design specification in our algorithm.

Due to the reconfigurability of both DRFPGAs and biochips, the placement
of digital microfluidic biochips is similar to the simultaneous scheduling and
placement of DRFPGAs. At first glance, one may apply the techniques for DRF-
PGAs to solve the placement problem of biochips. However, the placement of
biochips is more complicated than that of DRFPGAs based on the following two
reasons.

(1) In addition to reconfigurable operations, biochips also have non-
reconfigurable operations. These non-reconfigurable operations have dif-
ferent characteristics from that of reconfigurable operations. For example,
since droplets are generated at the reservoirs/dispensing ports which are
on the boundary of the 2D microfluidic array, the generation operations do
not occupy the area of the 2D microfluidic array. Another example is the
detection operations. Since the detectors are fixed after fabrication, two de-
tection operations using the same detector must have the same physical

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:12 • P.-H. Yuh et al.

Fig. 9. The two placements with the same biochip area and number of reconfigurable operations
but with different number of storage units.

location in the 2D microfluidic array. Besides, the total number of non-
reconfigurable operations at any time is limited due to the limited number
of non-reconfigurable devices. As a result, we require different ways to han-
dle these non-reconfigurable operations.

(2) In digital microfluidic biochips, a storage unit is required for two data-
dependent operations if they are not scheduled at consecutive time steps.
The existence of the storage units complicates the placement problem for
two reasons. First, instead of only area estimation as used in Su and
Chakrabarty [2004], we need detail physical information of these storage
units for accurate biochip area calculation. We use Figure 9 as an example
to illustrate this scenario. Figure 9 shows two placements with the same
biochip area (10 × 10) and the same number of reconfigurable operations
(5 operations). Note that for the purpose of functional isolation and droplet
transportation, we use the segregation cells to wrap each operation and
storage unit. Although these two placements have the same biochip area,
they differ in the number of storage units. If no detail physical information
of the storage units is provided, we cannot obtain the exact biochip area.
We may conclude that the area of Figure 9(a) is larger than that of Fig-
ure 9(b), since the number of storage units of Figure 9(a) is larger than that
of Figure 9(b) if only area estimation of storage units is used.
Second, the number and duration of the storage units are not determined a
priori. More importantly, the number and duration of the storage units are
related to current schedule of operations. This characteristic makes storage
units different from modules in traditional temporal floorplanning problem,
where the number of modules and the volume of each module are inputs and
remain unchanged during floorplanning. We use Figure 10 as an example
to explain this characteristic. In this figure, we model each operation as a
3D box. Figure 10 shows a bioassay with two data-dependent operations.
For each operation and storage unit, we model it as a 3D box. As shown in
Figure 10(a), since operation vb starts right after operation va finishes, we do
not need a storage unit. Figure 10(b) shows its corresponding 3D placement
with two operations. Now suppose that vb starts one time unit after va

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:13

Fig. 10. Examples to show the characteristics of storage units. (a) Two tasks on a biochip. (b)
The corresponding 3D floorplan of (a). (c) Two tasks with a storage unit. (d) The corresponding 3D
floorplan of (c). Note that we have three modules in this floorplan. (e) Two tasks with a storage
unit. (f) The corresponding 3D floorplan of (e). The duration of the storage unit is increased from 1
to 2 time units.

finishes, as shown in Figure 10(c). In this situation, we need one storage
unit to store the intermediate result between vb and va. Figure 10(d) shows
its corresponding 3D placement. Note that compared with the 3D placement
shown in Figure 10(b), we now have three modules corresponding to two
operations and one storage unit vs. Therefore, the number of storage units
is related to the schedule of the data-dependent operations. Figure 10(e)
shows another scenario, where vb starts two time units after va finishes.
Figure 10(f) shows the corresponding 3D placement. Compared with the 3D
placement shown in Figure 10(d), the duration of vs is increased from one
time unit to two time units. This is because the duration of vs must cover the
time difference between va and vb. As a result, the duration of storage units
is also related to the schedule of two data-dependent operations. Another
observation from Figure 10 is that the starting time of vs is equal to the
ending time of va and the ending time of vs is the same as the starting
time of vb, as shown in Figures 10(d) and (f). We need to satisfy the above
requirements of storage units when solving the placement problem.

Now we present our T-tree based placement formulation. Due to the recon-
figurability of biochips, the execution of a set of tasks can be viewed as a 3D
floorplan as shown in Figure 11. The X and Y dimensions give the area of a

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:14 • P.-H. Yuh et al.

Fig. 11. (a) Two operations are executed at time t1. (b) At time t2, operation 3 starts to execute
at the same physical location as operation 2. (c) The 3D modeling of the execution of the three
operations.

biochip while the T dimension represents the duration of a bioassay. Suppose
that both operations v1 and v2 are executed at time t1, as shown in Figure 11(a).
Figure 11(b) shows that at time t2, we can perform operation v3 at the same
physical location as operation v3 after operation v2 is finished. The execution of
the three operations can be modeled as a set of 3D modules with their widths
and heights (X and Y dimensions) representing the physical dimensions occu-
pied by the operations in a biochip and its duration (T dimension) being the
execution time required for operations, as shown in Figure 11(c). Since the ex-
ecution of a set of operations can be mapped to a 3D floorplan, we can apply
the temporal floorplanning techniques to solve the placement problem of digital
microfluidic biochips.

For each task in a sequencing graph, we create a unique node in a T-tree. Note
that there are both reconfigurable and non-reconfigurable tasks in a biochip.
For reconfigurable tasks and detection tasks, since we need to perform this
type of tasks in the 2D microfluidic array, we model it as a 3D box. For non-
reconfigurable tasks except the detection tasks, since the reservoirs and dis-
pensing ports are outside the 2D microfluidic array as shown in Figure 1, we
need only to consider the time aspect for this type of tasks. Therefore, we model
it as a 3D line with both its width and height being zero.

In this paragraph, we describe how we model the storage units. We create a
node ns for each storage unit vs. Since vs holds the intermediate data between
two data-dependent tasks vi and vj , vs must satisfy the storage constraint. The
storage constraint states that the starting time of vs must be equal to the ending
time of vi and the ending time of vs must be equal to the starting time of vj .
Figure 12 illustrates how to find the feasible locations for ns in a T-tree to satisfy
the storage constraint. Suppose that we want to find the feasible locations for
ns. Recall that if nj is the left child of ni, the starting time of vj is the same
as the ending time of vi. Otherwise, the starting time of vj is the same as the
starting time of vi. Thus, based on the structure of T-tree, the starting time of
vc in Figure 12 is the same as the ending time of va, and the starting times of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:15

Fig. 12. An example of finding the feasible locations for a storage unit in a T-tree. Suppose that
tasks va and vb need a storage unit vs.

vb, vc, and vd are the same. Based on above observation, the feasible locations
of ns are the middle or the right child of nodes nb, nc, or nd , as the black boxes
shown in Figure 12. After placing ns in its feasible location, we set the ending
time of vs as the starting time of vb. Note that the duration of vs is not fixed; it
varies based on the starting time of vb.

The design specification describes the fixed architecture, the limited assay
completion time, and the resource constraints. We model the fixed architec-
ture and limited assay completion time as the fixed-cube constraint. The fixed-
cube constraint states that a feasible 3D floorplan must be within a 3D cube.
To handle the resource constraints, we introduce the concept of the virtual
precedence constraints. If two non-reconfigurable tasks are bound to the same
non-reconfigurable resource, such as the same dispensing port, these two non-
reconfigurable tasks cannot be executed at the same time. Therefore, we add
an additional edge between these two tasks in the sequencing graph to satisfy
the resource constraint. Note that there is no storage unit requirement in these
additional edges.

5. THE FLOORPLANNING ALGORITHM

Our algorithm is based on the simulated annealing (SA) method [Kirkpatrick
et al. 1983]. We adopt SA instead of genetic algorithm (GA) as our optimization
method because it has been shown that SA is typically more efficient and eco-
nomical than GA for the problems in electronic design automation (EDA). GA
needs to maintain a set of solutions, called the population. At each iteration, GA
needs to evaluate the fitness function for each solution in the current popula-
tion. On the other hand, SA maintains only two solutions—the current solution
and the best one. At each iteration, SA needs only to evaluate the current so-
lution. As a result, SA typically needs less CPU time than GA. Moreover, SA
uses less memory than GA due to the smaller number of solutions maintained.

Before performing SA, we first cluster one generation operation with one
reconfigurable operation to reduce the CPU time and to increase the chance
of obtaining more compact 3D floorplans. During SA, given a feasible T-tree,
we perturb it to obtain another feasible T-tree through a set of predefined SA
operations. After perturbation, we perform a feasibility detection and tree re-
construction process to obtain a feasible topology with respect to the precedence

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:16 • P.-H. Yuh et al.

a b

c d

e f

g

ih

j k

l m

T

operation
f

Operation
k

Stor-
age
unit

(a)

(b)

X

Operation
j

T

operation
f

Operation
k

(c)

X

Operation
j

Generation

Reconfigurable
Operation

Detection

Fig. 13. (a) A sample sequencing graph. (b) A partial floorplan with v f being scheduled long before
vk starts. (c) Another partial floorplan with v f being scheduled right before vk starts.

constraints and the storage constraints. Finally, a packing procedure that places
all operations and optical detectors is invoked to evaluate the solution quality.

5.1 Clustering of Generation and Reconfigurable Operations

In this section, we detail our clustering algorithm. The goal of the clustering al-
gorithm is to obtain a more compact 3D floorplan and to reduce the CPU time by
reducing unnecessary storage units. This clustering algorithm is motivated by
two observations. First, a generation operation and a reconfigurable operation
are always performed in sequence, since we need to first generate a droplet and
then to perform reactions. Second, we may improve the solution quality (e.g.,
volume) and reduce the CPU time by reducing the amount of storage units re-
quired via clustering. Recall that we need a storage unit for two data-dependent
tasks if they are not scheduled at consecutive time steps. The duration of this
storage unit also varies based on the starting and ending times of these two
tasks. Since the storage units occupy certain volumes, the number and dura-
tion of them have great effect on the total volume of a 3D floorplan. If we can
minimize the volume of these storage units, we may obtain a more compact 3D
floorplan. We use the sample sequencing graph shown in Figure 13(a) as an
example. Figure 13(b) shows a partial floorplan. For simplicity, we only show
the X and T dimensions.1 In this floorplan, since task v f finishes much earlier
than task vk starts, the storage unit vs will have a very long duration. Therefore,
we may obtain a less compact 3D floorplan due to the non-overlapping require-
ment among vs and other tasks. On the other hand, Figure 13(c) shows another

1For illustration purpose, in this figure, the width of the generation operation v f is not zero.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:17

partial floorplan. In this floorplan, since v f finishes right before vk starts, we do
not need a storage unit between v f and vk . By scheduling a generation opera-
tion as near as its data-dependent reconfigurable operation, we can effectively
minimize the unnecessary volume occupied by a storage unit. In this way, we
have a higher chance to obtain a 3D floorplan with smaller area.

The idea of the proposed clustering algorithm is that: given a sequencing
graph G, we randomly cluster one generation operation vg with one reconfig-
urable operation vr if there exist an edge between vg and vr in G. After cluster-
ing, the ending time of vg is the same as the starting time of vr . By this method,
we do not need the storage unit between vg and vr . The other advantage is that
we can reduce the number of nodes in a T-tree to speed up the packing pro-
cess. However, one disadvantage is that we may potentially increase the assay
completion time. The reason is as follows. Recall that we assign virtual prece-
dence constraints among tasks that are bound to the same non-reconfigurable
device. Suppose that there exists a virtual precedence constraint between two
generation operations vg and vq . If we cluster vg and vr , we merge vg and vr

into a new task vl . So now we have a virtual precedence constraint between vl

and vq . This means that vq starts after vl finishes rather than after vg finishes.
Therefore, the assay completion time is potentially increased due to clustering.
In order not to increase the assay completion time, we do not actually cluster
vg and vr into a new task. In our current implementation, we add additional
requirement on nodes ng and nr in a T-tree. We require that nr will always be
the left child of ng in a T-tree. This requirement has the same effect as clus-
tering two tasks, since the ending time of vg is the same as the starting time
of vr if nr is the left child of ng . In our floorplanning algorithm, if we perform
SA operation on ng , we also perform the same SA operation on nr . We also
check if the two clustered nodes are in their correct positions in a T-tree during
feasibility detection and tree reconstruction process, which will be presented in
Section 5.5.

5.2 Perturbation

The original SA operations defined in Yuh et al. [2004] contain Move, Swap,
and Rotation. For the placement of digital microfluidic biochips, we introduce
a new type of SA operations, called Rebind. Rebind is to bind a task to another
functional resource. For a reconfigurable task, such as the mix operation, we
randomly select a resource instance for this task. For example, we can change
from a 2 × 2-array mixer to a 2 × 4-array mixer with different mixing times.
For a non-reconfigurable task, we randomly change a task from one instance to
another. For example, suppose that we have two optical detectors p1 and p2 for
detection operations. For a detection operation vd that originally uses p1, we
can rebind it to p2. Note that since we add the virtual precedence constraints
among tasks corresponding to the same non-reconfigurable resource instance,
we modify these virtual precedence constraints after rebinding. For instance,
when we bind vd from p1 to p2, we delete all virtual precedence constraints of
vd and add the virtual precedence constraints between all other tasks that are
bound to p2 and vd .

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:18 • P.-H. Yuh et al.

We now show how to add the virtual precedence constraints between tasks
that are bound to the same non-reconfigurable device when performing the
Rebind SA operation. We add the virtual precedence constraints among tasks
bound to the same non-reconfigurable device based on the execution level, or
lv(i), of each operation vi. The intuition is that if lv(i) is larger than lv(j),
then operation vi is executed before operation vj . We add a virtual precedence
constraint from vi to vj if lv(i) is larger than lv(j). Given a sequencing graph G,
we can recursively calculate lv(i) for each task vi in G. We first assign lv(i) = 0
for all tasks vi with zero out-degree in G. For example, in Figure 13(a), lv(l) and
lv(m) are both zero. We then delete all assigned tasks and assign lv(i) = 1 for all
remaining tasks with zero out-degree in G. For example, in Figure 13(a), lv(j)
and lv(k) are both one. The above process repeats until all tasks are assigned
its execution level.

We also enhance the original SA operations to handle the fixed-cube con-
straint. We bias the Move operation based on the probability of violating the
fixed-cube constraint in each dimension. Let kw (kh, kt) be the number of floor-
plans whose width (height, completion time) exceeds the user-specified width
(height, completion time) in the last r iterations. In this paper, we set r equal
500. We bias the selection of the destination of the Move operation based on the
values kw/r, kh/r, and kt/r. For example, a larger kw/r implies that it is more
difficult to fit the floorplans to the 3D cube in the X direction. Therefore, we
should try to place tasks along the Y or T directions to satisfy the fixed-cube
constraint.

5.3 Placement of Optical Detectors

In this section, we describe how to place the optical detectors in our algo-
rithm. After the chemical reaction among droplets, we need optical detectors
to detect the reaction results. We need to determine the locations of these
optical detectors during floorplanning. These detectors are fixed after fabri-
cation. Therefore, if two detection operations map to the same optical detec-
tor, they should be placed at the same physical location. Note that the seg-
regation cells are also needed for the optical detectors to avoid the optical
interference.

Suppose that two detection operations vi and vj are bound to the same op-
tical detector and we first determine the location of vi. The basic idea is that
we simultaneously determine the locations of vi and vj . Once the locations of vi

and vj are determined, the location of the optical detector is also determined.
Note that when placing the detection operations, we also warp these operations
with the segregation cells. By this method, we can guarantee that the optical
detectors are warped with the segregation cells after floorplanning. After de-
termining the location of vi, we set vj at the same location as vi. The original
packing algorithm of T-tree maintains a list L to store all tasks whose locations
are already determined [Yuh et al. 2004]. Finally, we add vj into L to indicate
that the location of vj is already determined. Note that we need to check if vj

overlaps with any other tasks in L. If vj overlaps with some tasks, we shift both
vi and vj along the X direction to avoid the overlap.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:19

5.4 Cost Function

Our goal is to simultaneously optimize the biochip area and assay completion
time under the design specification. Therefore, the cost function � used in our
algorithm is given by

� = αV/Vnorm + βS/snorm + γ M , (1)

where V is the volume of the 3D floorplan, S is the sum of the volume of all
storage units, Vnorm is the normalized volume, Snorm is the normalized sum
of the volumes of all storage units, and M is the penalty term for fixed-cube
constraint. α, β, and γ are user-specified constants. M is defined as

M = max(W f − Wp, 0) × W f

N 2
w

+ max(Hf − Hp, 0) × Hf

N 2
h

+ max(Tf − Tp, 0) × Tf

N 2
t

, (2)

where Nw (Nh, Nt) is the normalized width (height, assay completion time), Wp

(Hp, Tp) and W f (Hf , Tf) denote the width (height, assay completion time) of
the design specification and a 3D floorplan, respectively. Since we must pack all
modules into a pre-defined 3D cube, we penalize the excessive width, height,
and completion time in the cost function. The rationale behind M is that when
SA minimizes the cost function, it automatically minimizes the penalty term.
Thus, we can automatically satisfy the fixed-cube constraint.

5.5 Feasibility Detection and Tree Reconstruction

After perturbation, we perform feasibility detection and tree reconstruction to
satisfy all precedence constraints and storage constraints. We enhance the fea-
sibility detection and the iterative tree reconstruction process proposed in Yuh
et al. [2004] with the consideration of the storage constraints. After obtaining
a feasible topology of a T-tree, we invoke the packing procedure to determine
the physical locations of all tasks.

Given a T-tree H, we first check if a clustered node ni is the left child of
another clustered node nj . If not, we Move ni to the position of the left child
of nj . Then we check if every storage unit is in one of its feasible positions.
If a storage unit ns is not in one of its feasible positions, we Move ns to one
of its feasible positions. Note that since we modify the topology of H during
the tree reconstruction process, the duration of each storage unit may change.
To simplify our algorithm, we thus restrict every storage unit not to have its
left child. By doing so, the starting time of a task will not be affected by any
storage unit during the tree reconstruction process. Next we explain how to
remove the left child of a storage unit. Suppose that a storage unit vs stores
the result of task va and nk is the left child of ns in H. We perform the move
subtree procedure described below to move the subtree rooted by nk to another
place in H. First we choose one node nz in the subtree rooted by na but not in

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:20 • P.-H. Yuh et al.

ss

kk

pp

zz

bb cc dd

(a) (b)

aa

ss

kk

pp

zz

bb cc

aa

dd

Fig. 14. The example of moving a subtree rooted by nk as the left subtree of nz . (a) A T-tree before
moving the subtree rooted by nk . (b) A T-tree after moving the subtree rooted by nk as the left
subtree of nz .

the subtree rooted by nk . Then we randomly move the subtree rooted by nk to
the positions of the left subtree, middle subtree, or right subtree of nz based on
the values of kw/r, kh/r, and kt/r defined in Section 5.2. For example, if kt/r
is large, then we have lower probability to move the subtree rooted by nk to
the position of the left subtree of nz . Without loss of generality, assume that we
move the subtree rooted by nk to the position of the left subtree of nz . The other
two cases can be handled similarly. First, if nz has no left child, then we can
simply move the subtree rooted by nk to the position of the left subtree of nz .
Second, if nz has its left child, we need to consider two situations:

(1) nk has its left child: In this case, we first move the subtree rooted by nz ’s
left child to the position of the left subtree of nk . Then we move the subtree
originally rooted by nk ’s left child to the position of the left subtree of n f ,
where n f is in the subtree rooted by nk with no left child.

(2) nk has no left child: In this case, we can simply move the subtree rooted by
nz ’s left child to the position of the left subtree of nk .

Figure 14 gives an example if we move the subtree rooted by nk to the position
of the left subtree of nz . Figure 15 summaries the move subtree procedure.

Once all storage units are in their feasible positions and do not have their
left child, we traverse H to obtain the starting time of each task. Next, we check
the precedence constraints and reconstruct H if necessary based on the method
proposed in Yuh et al. [2004]. The main loop terminates when the topology of
H is not changed, which means that all precedence constraints and storage
constraints are satisfied. Then we assign the duration of each storage unit and
adjust the number of storage units by deleting an unused storage unit and/or
inserting a new one.

Note that we need to satisfy all precedence constraints after deleting or
inserting a storage unit. It is easy to observe that inserting a new storage
unit into one of its feasible positions does not affect the starting time of other
operations. Thus, we do not violate the precedence constraints after insertion.
However, deleting a storage unit with the Deletion SA operation presented

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:21

Fig. 15. Summary of the Move Subtree subroutine.

in Yuh et al. [2004] may potentially violate the precedence constraints. In the
following paragraphs, we present our storage adjustment process and how to
modify the Deletion SA operation to satisfy the precedence constraints when
deleting a storage unit.

Suppose that we want to delete a storage unit ns. It is easy to delete ns

if ns is a leaf or ns has only one child. If ns has more than one child, the
original Deletion SA operation randomly chooses one of ns’s child nc and
place nc at the original position of ns. Then we choose one of nc ’s child and
place it at the original position of nc. The process continues until a leaf node
is encountered. After Deletion, the starting time of all nodes in the sub-
tree rooted by nc may be changed. Thus, the precedence constraints may be
violated.

In this article, we modify the original Deletion SA operation when deleting
ns with two children.2 Suppose that nm is the middle child and nr is the right
child of ns. When deleting ns, instead of the node nm itself, we place the sub-
tree rooted by nm at the original position of ns. Then we make nr as the right
child of nm. If nm originally has no right child, then we are finished. Other-
wise, let nb be the original right child of nm. We move the subtree rooted by
nb to the position of the right subtree of nr if nr has no right child. If nr has
its right child nl , we find a node n f in the subtree rooted by nr with the same
starting time as vr and having either no middle or no right child. Then we
move the subtree rooted by nl to the position of the middle or right subtree
of n f . Figure 16 shows two T-trees before and after deleting the storage unit
ns with two children. Finally, Figures 17 and 18 summarize the storage ad-
justment process and the feasibility detection and tree reconstruction process,
respectively.

2ns has at most two children since we do not allow ns to have its left child.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:22 • P.-H. Yuh et al.

ss

mm

zz

rr

aa bb ll

mm

aa

zz

rr

ll

bb

(a) (b)

Fig. 16. The example of deleting a storage unit ns. (a) A T-tree before deleting ns (b) A T-tree after
deleting ns.

Fig. 17. Summary of the storage adjustment process.

6. DEFECT TOLERANCE

In this section, we show how to extend the aforementioned temporal floorplan-
ning algorithm to handle the defect tolerant issue. With the standard micro-
fabrication techniques [Fair et al. 2003] and the synthesis result, a digital mi-
crofluidic biochip can be fabricated. However, due to the underlying mixing
technology, the microfluidic biochips have unique defects and failure mech-
anism [Su et al. 2006]. The reconfigurability of the biochips can bypass the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:23

Fig. 18. Summary of the feasibility detection and tree reconstruction process.

defective cells to tolerate the defects due to fabrication. Moreover, the non-
reconfigurable device, such as the detectors, may be unavailable due to the
existence of the defects. We need to rebind the operations from an unavailable
detector to other available detectors. Note that after fabrication, the locations of
the non-reconfigurable devices are fixed. We cannot move these detectors during
floorplanning.

The central idea of our algorithm is that we model each defective cell as an
obstacle. If a cell c located at (x, y) becomes faulty, we create an obstacle dc

located at (x, y) with its duration being the same as the assay completion time.
In the packing process, we do not allow the overlap among tasks and obstacles.
By this method, we can guarantee that no task will overlap with obstacle dc,
and thereby avoid to place tasks on defective cells.

We now present our obstacle avoidance algorithm to avoid overlaps among
reconfigurable operations and obstacles. As mentioned above, we create an ob-
stacle for each defective cell. During the packing process, we detect if a task vi

overlaps with any obstacle dc. If vi overlaps with an obstacle dc, we first calcu-
late the X-span sx and Y-span sy . The X-span (Y-span) represents how far we
should shift vi along the X (Y) direction to avoid the overlap with dc. In this
paper, we set sx (sy) as the difference between x ′

c and xi (y ′
c and yi), where (x ′

c,
y ′

c) is the up-right coordinate of dc. We shift vi along the direction that results
in smaller movement distance. That is, if sx < sy , we shift vi in the X direction;
otherwise, we shift vi in the Y direction. Figure 19 summaries our obstacle
avoidance process.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:24 • P.-H. Yuh et al.

Fig. 19. Summary of the obstacle avoidance algorithm.

Fig. 20. The sequencing graph of colorimetric protein assay [Su and Chakrabarty 2005b].

7. EXPERIMENTAL RESULTS

Our algorithm was implemented in the C++ programming language and run on
a 1.066 GHz SUN Blade 1500 machine with 4 GB memory. We implemented the
unified synthesis and placement algorithm proposed in Su and Chakrabarty
[2005b] and the 3D-subTCG representation on the same machine. For 3D-
subTCG, we used the same SA engine as T-tree. We modified the operations
of 3D-subTCG to satisfy the storage constraint at each perturbation. We also
applied the clustering algorithm proposed in Section 5.1 to 3D-subTCG for fair
comparison. For all experiments, we set α = 1

21.5 , β = 0.5
21.5 , and γ = 20

21.5 . We also
assumed that there exists one segregation cell between any two operations. All
experimental results are the best result obtained by simulated annealing.

We evaluated our placement algorithm with two bioassays: the colorimetric
protein assay [Srinivasan et al. 2004] and the multiplexed in-vitro diagnos-
tics [Su and Chakrabarty 2004]. Figure 20 shows the sequencing graph of the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:25

… … … … … … …S11 S1q Sp1 Spq R11 R1q Rp1 Rpq

M11 M1q MpqMp1

D11 D1q DpqDp1

Generation
operation

Mix
operation

Detection
operation

……

…

…

… …

Fig. 21. The sequencing graph of multiplexed in-virto diagnostics [Su and Chakrabarty 2004].

colorimetric protein assay while Figure 21 shows the multiplexed in-virto di-
agnostics with p samples (Plasma, Serum, Urine, and Saliva) and q reagents
(glucose, lactate, pyruvate, and glutamate). For the colorimetric protein as-
say, we applied the same design specification (resource constraint) and used
the same microfluidic module library as Su and Chakrabarty [2005b]. We as-
sumed that there is only one reservoir/dispensing port for sample fluid, two
such ports for buffer fluid, two ports for reagent fluid, and one port for waste
fluid. We also assumed that there are at most four optical detectors integrated
on the biochip [Su and Chakrabarty 2005b]. For the multiplexed in-virto diag-
nostics, we used the same design specifications (resource constraint) as Su and
Chakrabarty [2004]. We assumed that there is one reservoir/dispensing port
for each type of samples and reagents and one optical detector for each enzy-
matic assay [Su and Chakrabarty 2004]. However, since [Su and Chakrabarty
2004] did not specify the width, height, and duration of each reconfigurable
operation, we generated the areas/durations of each type of the mix operations
based on the ratio of areas/durations of each reconfigurable operation in Su and
Chakrabarty [2005b]. Table I shows the microfluidic module library used for
the multiplexed in-vitro diagnostics.

First, we assumed that no defective cells exist. Table II summarizes the re-
sult of the colorimetric protein bioassay. Column 2 lists four different design
specifications (fixed-cube constraints). We report the resulting volume (area
times assay completion time) and CPU time (in seconds). As shown in this ta-
ble, our algorithm can meet all design specifications (fixed-cube constraints)
while both [Su and Chakrabarty 2005b] and 3D-subTCG cannot. More impor-
tantly, [Su and Chakrabarty 2005b] (3D-subTCG) requires, on average, 1.68X
(1.61X) larger volume and 4.32X (39.96X) longer CPU time than our algorithm.
Table III shows the result of the multiplexed in-vitro diagnostics. In this ex-
periment, we used three examples for evaluation. Column 1 shows the num-
ber of types of samples and reagents, and column 2 lists the type of samples
and reagents used in each example. For each example, we applied three dif-
ferent design specifications, as listed in column 3. We also report the volume
and CPU time in this experiment. As shown in this table, our algorithm can
meet all design specifications (fixed-cube constraints) while both 3D-subTCG
and Su and Chakrabarty [2005b] cannot. Su and Chakrabarty [2005b] obtains
larger volumes in all three examples (3.48X, 4.90X, and 3.84X) with longer CPU
times (9.71X, 9.81X, and 19.19X, respectively); 3D-subTCG also obtains larger

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:26 • P.-H. Yuh et al.

Table I. The Microfluidic Module Library for the In-vitro
Diagnostics

Operation Resource Duration (sec.)

Dispense on-chip 2
Mix (plasma) 2 × 4-array 3

2 × 3-array 6
2 × 2-array 10
1 × 4-linear array 5

Mix (Serum) 2 × 4-array 2
2 × 3-array 4
2 × 2-array 6
1 × 4-linear array 3

Mix (Urine) 2 × 4-array 3
2 × 3-array 5
2 × 2-array 8
1 × 4-linear array 4

Mix (Saliva) 2 × 4-array 4
2 × 3-array 8
2 × 2-array 12
1 × 4-linear array 6

Opt (glucose) LED + Photodiode 10
Opt (lactate) LED + Photodiode 8
Opt (pyruvate) LED + Photodiode 12
Opt (glutamate) LED + Photodiode 10
Storage single cell N/A

Table II. The Experimental Result of the Colorimetric Protein Bioassay

[Su and Chakrabarty 2005b] T-tree
Design CPU CPU

Bioassay Spec. Volume Time (sec.) Volume Time (sec.)

Protein 10 × 10 × 400 10 × 10 × 349 275.05 9 × 9 × 241 78.03
10 × 10 × 360 9 × 10 × 339 270.02 10 × 9 × 211 57.27
11 × 11 × 320 10 × 11 × 313 266.16 10 × 10 × 221 68.32

9 × 9 × 400 (9 × 10 × 390)* 293.21 9 × 9 × 240 65.21
Average 1.68 4.32 1.00 1.00

3D-subTCG T-tree
Design CPU CPU

Bioassay Spec. Volume Time (sec.) Volume Time (sec.)

Protein 10 × 10 × 400 10 × 10 × 239 2497.94 9 × 9 × 241 78.03
10 × 10 × 360 10 × 10 × 331 2226.71 10 × 9 × 211 57.27
11 × 11 × 320 11 × 11 × 272 4036.13 10 × 10 × 221 68.32

9 × 9 × 400 (11 × 9 × 398)* 1984.04 9 × 9 × 240 65.21
Average 1.61 39.96 1.00 1.00

Volume = Area × Completion Time. ()*: the result cannot meet the design specification.

volumes in all three examples (2.50X, 2.05X, and 1.86X, respectively) with
longer CPU times (38.52X, 23.89X, and 41.39X, respectively). The two exper-
imental results clearly show the efficiency and effectiveness of our algorithm
with different bioassays and design specifications. The results of 3D-subTCG
also support our claim in Section 3.5 that the T-tree is a more suitable 3D repre-
sentation for the placement problem of biochips. Figure 23 shows the placement

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:27

Table III. The Experimental Result of the Multiplexed in-vitro Diagnostics

[Su and Chakrabarty 2005b] T-tree
CPU CPU

Design Time Time
Bioassay Description Spec. Volume (sec.) Volume (sec.)

in vitro S1, S2, S3, and S4 9 × 9 × 100 9 × 9 × 98 85.28 6 × 9 × 67 9.12
(p = 4, are assayed with A1, 8 × 8 × 120 (10 × 9 × 117)* 107.48 6 × 4 × 98 13.22
q = 4) A2, A3, and A4 7 × 7 × 140 (9 × 9 × 126)* 118.65 7 × 4 × 96 10.17
Average 3.48 9.71 1.00 1.00
in vitro S1, S2, and S3 are 8 × 8 × 100 8 × 8 × 98 74.43 5 × 4 × 74 7.00
(p = 3, assayed with A1, 7 × 7 × 120 (7 × 9 × 112)* 84.51 6 × 4 × 62 8.28
q = 4) A2, A3, and A4 6 × 6 × 140 (7 × 8 × 150)* 87.29 5 × 4 × 73 10.14
Average 4.90 9.81 1.00 1.00
in vitro S1, S2, and S3 are 7 × 7 × 80 7 × 7 × 79 46.16 4 × 4 × 60 3.63
(p = 3, assayed with A1, 6 × 6 × 100 (6 × 8 × 93)* 52.66 4 × 4 × 61 4.78
q = 3) A2, and A3 5 × 5 × 120 (5 × 8 × 120)* 58.22 4 × 4 × 64 1.72
Average 3.84 19.19 1.00 1.00

3D-subTCG T-tree
CPU CPU

Design Time Time
Bioassay Description Spec. Volume (sec.) Volume (sec.)

in vitro S1, S2, S3, and S4 9 × 9 × 100 9 × 9 × 97 474.43 6 × 9 × 67 9.12
(p = 4, are assayed with A1, 8 × 8 × 120 8 × 8 × 97 305.34 6 × 4 × 98 13.22
q = 4) A2, A3, and A4 7 × 7 × 140 (6 × 9 × 135)* 411.37 7 × 4 × 196 10.17
Average 2.50 38.52 1.00 1.00
in vitro S1, S2, and S3 are 8 × 8 × 100 6 × 7 × 72 191.59 5 × 4 × 74 7.00
(p = 3, assayed with A1, 7 × 7 × 120 6 × 7 × 86 206.16 6 × 4 × 62 8.28
q = 4) A2, A3, and A4 6 × 6 × 140 6 × 6 × 69 196.75 5 × 4 × 73 10.14
Average 2.05 23.89 1.00 1.00
in vitro S1, S2, and S3 are 7 × 7 × 80 5 × 6 × 60 102.20 4 × 4 × 60 3.63
(p = 3, assayed with A1, 6 × 6 × 100 6 × 5 × 58 166.79 4 × 4 × 61 4.78
q = 3) A2, and A3 5 × 5 × 120 5 × 5 × 80 105.17 4 × 4 × 64 1.72
Average 1.86 41.39 1.00 1.00

()*: the result cannot meet the design specification. (S1: Plasma, S2: Serum, S3: Urine, S4: Saliva, A1: Glucose,
A2: Lactate, A3: Pyruvate, A4: Glutamate).

result of the colorimetric protein assay with the 10 × 10 × 400 design specifica-
tion. For simplicity, we only show the reconfigurable and detection operations.

Now we demonstrate the effectiveness of our algorithm for handling the de-
fective cells. Assume that the biochip of Figure 23 is fabricated. Similarly to Su
and Chakrabarty [2005b], we assumed that one optical detector is rendered
defective due to fabrication. Therefore, the detection operations that were orig-
inally mapped to the defective detector must be re-mapped to other detectors.
In this experiment, we set the fixed architecture as 9 × 9 and the limit of as-
say completion time as infinity. In this way, our algorithm can minimize the
assay completion time while satisfying the design specification. Table IV lists
the result of defect tolerance. Column 2 lists the locations of the defective cells.
We considered four different cases with different number and location of de-
fective cells. We report the assay completion time (in seconds) and the CPU
time (in seconds). As shown in this table, our algorithm can obtain 16% longer

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:28 • P.-H. Yuh et al.

Fig. 22. The 3D view of the placement result of the protein bioassay with the 10×10×400 design
specification.

average assay completion time (280 vs. 241) with 42% longer average CPU time
(111.46 vs. 78.03) than defect-free placement. This experimental result demon-
strates that our defect-tolerance algorithm can operate a bioassay on a defective
biochip with reasonable CPU time. Figure 23 shows the two placement results
with three and four defective cells.

For the last experiment, we demonstrate the effect of our clustering method
proposed in Section 5.1 on the protein bioassay. Table V shows the result of the
protein bioassay with and without clustering. Columns 3 and 4 show the volume
and CPU time without clustering and columns 5 and 6 show the volume and
CPU time with clustering. As shown in this table, we can observe that the T-tree
with clustering achieves 27% smaller volume and 6% less CPU time compared
with the T-tree without clustering. The reduction on volume comes from the
elimination of unnecessary storage units between generation operations and
reconfigurable operations. Therefore, the SA engine can obtain a more compact
3D floorplan. The saving in CPU time is not as significant as the reduction on
volume, because we do not actually cluster two operations into one operation.
Moreover, we need extra CPU time to ensure that a clustered node is the left
child of another clustered node during the tree reconstruction process. This
result shows the effectiveness of the proposed clustering algorithm. The result
also shows that it is important to make use of the properties of a bioassay during
floorplanning.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:29

Fig. 23. (a) The 3D view of the placement result with three defective cells located at (4, 2), (1. 6),
(5, 8). (b) The 3D view of the placement result with four defective cells located at (0, 4), (4, 0), (2,
7), (7, 5).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:30 • P.-H. Yuh et al.

Table IV. The Defect Tolerance Result

Defective Assay Completion CPU
Bioassay cells Time (seconds) Time (seconds)

protein (0, 4), (2, 6), (7, 7) 261 85.37
(4, 2), (1, 6), (5, 8) 281 82.45

(0, 4), (4, 0), (2, 7), (7, 5) 299 151,74
(3, 0), (5, 2), (6, 3), (8, 4) 279 140.96

Average 280 111.46

Table V. The Experimental Result of the Colorimetric Protein Bioassay with and Without
Clustering. Volume = area × completion time

w/o Clustering w/ Clustering
Design CPU CPU

Bioassay Spec. Volume Time (sec.) Volume Time (sec.)

Protein 10 × 10 × 400 10 × 10 × 249 59.73 9 × 9 × 241 78.03
10 × 10 × 360 10 × 10 × 230 104.97 10 × 9 × 211 57.27
11 × 11 × 320 11 × 11 × 262 48.27 10 × 10 × 221 68.32

9 × 9 × 400 9 × 9 × 280 72.45 9 × 9 × 240 65.21
Average 1.27 1.06 1.0 1.0

8. CONCLUDING REMARKS

In this article, we have applied the temporal floorplanning technique to the
placement problem of digital microfluidic biochips. The motivation is that the
physical placement of operations can be handled by 2D floorplanning tech-
niques. Moreover, previous works show that floorplanning techniques are ap-
plicable to some scheduling problems, such as Xia et al. [2003] and Wuu et al.
[2004]. Therefore, to simultaneously perform scheduling and physical place-
ment, we model the placement problem of biochips as the temporal (3D) floor-
planning problem. The advantage of this approach is that we have a high flex-
ibility to optimize both the assay completion time and the biochip area (and
other constraints, such as the defect tolerance requirement, as well).

To our best knowledge, our work is the first to adopt a topological representa-
tion (the T-tree representation) for the placement problem of digital microfluidic
biochips. We have also proposed a clustering algorithm to cluster a generation
operation and a reconfigurable operation to obtain a smaller volume and to re-
duce the CPU time. Due to the need to perform a bioassay on a biochip with
the existence of defects, the proposed placement algorithm handles the defect
tolerant issue by modeling each defective cell as an obstacle and not allowing
overlaps among operations and obstacles. We have shown the efficiency and the
effectiveness of our algorithm over previous works.

Future work lies in finding more sophisticated methods for handling the
storage units as well as considering the fault tolerance issue and the design-
for-defect/fault tolerance requirement during floorplanning. Another potential
research direction lies in mapping the placement problem of biochips to other
problems, instead of the floorplanning one. For example, the placement problem
can be mapped to the unified high-level synthesis and physical design problem
([Dougherty and Thomas 2000; Gu et al. 2005]). A bioassay is represented as

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

Placement of Defect-Tolerant Digital Microfluidic Biochips • 13:31

a control data flow graph. The goal is to optimize the schedule length (i.e., as-
say completion time) and area with the consideration of registers allocation
(i.e., the placement of storage units). The placement problem may also be map-
ped to the 3D placement problem [Goplen and Sapatnekar 2003; Obenaus and
Szymanski 2003]. A task is represented by a 3D cell. The placement problem of
biochips is equivalent to the placement of 3D cells in the 3D space with a given
3D cube. The challenges of this approach are how to handle the precedence con-
straints and how to perform resource binding during placement, since resource
binding changes the temporal ordering requirement among non-reconfigurable
operations and the dimension of reconfigurable operations. Quantitative analy-
sis would be needed to determine the best approach (floorplanning, placement,
or unified high-level synthesis and physical design) for the placement problem
of biochips.

REFERENCES

BAZARGAN, K., KASTNER, R., AND SARRAFZADEH, M. 2000. Fast template placement for reconfigurable
computing systems. IEEE Design Test Comput. 17, 68–83.

CHENG, L., DENG, L., AND WANG, M. D. F. 2005. Floorplanning for 3-d VLSI design. In Proceedings
of Asia South Pacific Design Automation Conference. 405–411.

DING, J., CHAKRABARTY, K., AND FAIR, R. B. 2001. Scheduling of microfluidic operations for reconfig-
urable two-dimensional electrowetting arrays. IEEE Trans. Comput. Aid. Design Integrat. Circ.
Syst. 20, 1463–1468.

DOUGHERTY, W. E. AND THOMAS, D. E. 2000. Unifying behavioral synthesis and physical design. In
Proceedings of Design Automation Conference. 756–761.

FAIR, R. B., SRINIVASAN, V., REN, H., PAIK, P., PAMULA, V., AND POLLACK, M. 2003. Electrowetting-
based on-chip sample processing for integrated microfluidics. In In Proceedings of IEEE Interna-
tional Electron Device Meeting. 32.5.1–32.5.4.

FEKETE, S. P., KÓHLER, E., AND TEICH, J. 2001. Optimal fpga module placement with temporal
precedence constraints. In Proceedings of Design, Automation and Test in Europe. 658–665.

GOPLEN, B. AND SAPATNEKAR, S. 2003. Efficient thermal placement of standard cells in 3d ics using
a force directed approach. In Proceedings of International Conference on Computer Aided Design.
86–89.

GU, Z. P., WANG, J., DICK, R. P., AND ZHOU, H. 2005. Incremental exploration of the combined
physical and behavioral design space. In Proceedings of Design Automation Conference. 208–
213.

ITRS. The international technoloy roadmap for semiconductors: http://public.itrs.net/.
KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. 1983. Optimization by simulated annealing.

Science 220, 4598 (May), 671–680.
LIN, J.-M. AND CHANG, Y.-W. 2001. TCG: A transitive closure graph-based representation for non-

slicing floorplans. In Proceedings of Design Automation Conference. 764–769.
MURATA, H., FUJIYOSHI, K., NAKATAKE, S., AND KAJITANI, Y. 1995. Rectangle-packing-based module

placement. In Proceedings of International Conference on Computer-Aided Design. 472–479.
OBENAUS, S. T. AND SZYMANSKI, T. H. 2003. Gravity: Fast placement for 3-d vlsi. ACM Trans. Design

Autom. Electr. Syst. 8, 3, 298–315.
RICKETTS, A. J., IRICK, K., VIJAYKRISHNAN, N., AND IRWIN, M. J. 2006. Priority scheduling in digital

microfluidics-based biochips. In Proceedings of Design, Automation and Test in Europe. 329–334.
SRINIVASAN, V., PAMULA, V., PAIK, P., AND FAIR, R. 2004. Protein stamping for maldi mass spectrom-

etry using an electrowetting-based microfluidic platform. In Proceedings of the International
Society for Optical Engineering. 26–32.

SU, F. AND CHAKRABARTY, K. 2004. Architectural-level synthesis of digital microfluidics-based
biochips. In Proceedings of International Conference on Computer-Aided Design. 223–228.

SU, F. AND CHAKRABARTY, K. 2005a. Design of fault-tolerant and dynamically-reconfigurable mi-
crofluidic biochips. In Proceedings of Design, Automation and Test in Europe. 1202–1207.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

13:32 • P.-H. Yuh et al.

SU, F. AND CHAKRABARTY, K. 2005b. Unified high-level synthesis and module placement for defect-
tolerant microfluidic biochips. In Proceedings of Design Automation Conference. 825–830.

SU, F., CHAKRABARTY, K., AND FAIR, R. B. 2006. Micrpfluidic-based biochips: technology issues, im-
plementation platforms, and design-automation challenges. IEEE Trans. Comput.-Aid. Design
Integrat. Circ. Syst. 25, 4, 211–223.

TUTORGIG. http://www.tutorgig.com/encyclopedia.
WONG, D. F. AND LIU, C. L. 1986. A new algorithm for floorplan design. In Proceedings of Design

Automation Conference. 101–107.
WUU, J.-Y., CHEN, T.-C., AND CHANG, Y.-W. 2004. Soc test scheduling using the b-tree based floor-

planning technique. In Proceedings of Asia South Pacific Design Automation Conference. 1188–
1191.

XIA, Y., CHRZANOWSKA-JESKE, M., WANG, B., AND JESKE, M. 2003. Using a distributed rectangle
bin-packing approach for core-based soc test scheduling with power constraints. In Proceedings
of International Conference on Computer Aided Design. 100–105.

YAMAZAKI, H., SAKANUSHI, K., NAKATAKE, S., AND KAJITANI, Y. 2000. 3d-packing by meta data struc-
ture and packing heuristics. IEICE Trans. Fundam. Electr. Commun. Comput. Science E83-A, 4,
639–645.

YUH, P.-H., YANG, C.-L., AND CHANG, Y.-W. 2004. Temporal floorplanning using the T-tree formu-
lation. In Proceedings of International Conference on Computer-Aided Design. 300–305.

YUH, P.-H., YANG, C.-L., CHANG, Y.-W., AND CHANG, H.-L. 2004. Temporal floorplanning using 3d-
subTCG. In Proceedings of Asia South Pacific Design Automation Conference. 725–730.

Received November 2006; revised February 2007; accepted April 2007

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 3, Article 13, Publ. date: November 2007.

