
M ost organizations use busi-

ness forms to conduct daily operations and to communicate internally and

externally with customers, suppliers, government agencies, and other

entities. Traditionally, paper forms have been used and stored with obvious

disadvantages of high retrieval and storage cost. With advances in comput-

ing technology, electronic forms have begun to supplant their paper coun-

terparts. A number of form management systems have been developed

[7, 11, 12, 18, 191. Typically, these systems are closely integrated with a
database management system be-
cause of the need to retain the con-
tents of forms over time.

In the context of this emphasis on
forms, we have conducted research
on how to use forms in the database
analysis and design process. This
research was sparked by two
observations:
(1) Because of familiarity, end users
can effectively communicate many
requirements through the forms they
“X.
(2) Usually the most widely used data

are gathered or reported in a form.
Thus, forms provide an important
input source for database design.

Based on these observations, we
have developed two systems that
incorporate forms into the view
definition and view integration
phases of database design. The Form
Definition System assists users with
specifying view definitions. The
novel aspect is a component that
makes inferences from examples
using a small collection of rules and
heuristics and a purposeful dialogue.

Inferences can be made about the
hierarchical structure of a form as
well as functional dependencies
among form fields. To reduce the
user’s time in providing examples,
the system generates some of its own
examples and provides an example
history facility. The Expert Database
Design System uses the view detini-
tions to incrementally build an entity
relationship diagram. A colkxtion of
rules are used for grouping the fields
on a form into aggregate objects (e.g.,
entities and relationships) and for

A Form=Based Approach
for Database

Analysis and Design

http://crossmark.crossref.org/dialog/?doi=10.1145%2F129630.129636&domain=pdf&date_stamp=1992-02-01

- Michael V. Mannino

and

Veronica P. Tseng

ordering a collection of forms for
incremental view integration. The
system applies the rules during a
dialogue with a designer.

Form Model
A form is a structured collection of
variables (i.e., form fields) that are
appropriately formatted for data
entry and display. A form type de-
fines the structure, constraints, and
presentation of the form fields. A
form type may have multiple

caption, x-y coordinates, and dis-
play properties such as color and
font. Form fields are organized into
hierarchically structured nodes.
There is no limit to the number of
levels or nodes in the field although
most forms have a shallow (i.e., few
levels) and narrow (few nodes per
level) structure because of human
information processing limitations.
For example, the WORK ORDER
form has two levels, while the JOB
ASSIGNMENT form has four lev-

media-dependent representations
known as form templates. This arti-
cle Only addresses character-
oriented, screen templates al-
though templates incorporating
other presentation modes such as
voice and bit-mapped graphics are
possible. A form instance is a par-
ticular collection of values for the
form fields. When a form template
is filled with values, it becomes an
instance of that form type. Figures
1 and 2 present form templates for
the WORK ORDER and JOB AS-
SIGNMENT forms, respectively.

Static properties of form fields
include their type, presentation,
structure, origin, and constraints.
The type. which denotes a set of val-
ues, is either a primitive type such
as integer, float, or string, or a user-
defined data type such as phone
number. The presentation defines
the mapping from a form field to a
particular template. It includes a

els, as shown in Figure 3. The origin
indicates the source of values for a
form field. Table 1 indicates the
possible origin values. For example,
WORK ORDER NO on the JOB
ASSIGNMENT form is form-trig-
gered from the WORK ORDER
form. The constraints include the
designation of node keys for the
form hierarchy, null value permis-
sion, default values, and value
ranges, if numeric, and enumer-
ated values if nominal.

The dynamic properties of forms
are indicated by the routing (R) of a
form (F) by an agent (A) from a
source station (Sl) to a destination
station (S2). Thus, each routing is a
quadruple R(F, A, Sl, S2) which is
triggered by an event (E). An agent
is either a human user who initiates
the routing upon the perceived oc-
currence of the event, or a process
which is triggered by some event
which in turn triggers the routing.

Using this model, a chain of form
flow triggers can be constructed to
automate office procedures. A rule
definition language for form rout-
ing is described by [4].

Form Deflnltlon System
The Form Definition System sup-
ports both form and view defmi-
don. The form layout component
provides a full screen editor for
entering form field captions and
example values. The interface com-
ponent provides a Macintosh-like
environment with pull-down
menus, a pointing device, and bit-
mapped graphics. The command
component provides functions for
input/output, form property defi-
nition, and explanatory feedback.
Novice and expert modes are pro-
vided for defining form properties.
The inference component supports
the novice mode through a collec-
tion of rules and heuristics. The
hierarchy subcomponent makes
inferences about the grouping of
form fields into nodes and the hier-
archical relationship among nodes.
The key/dependency subcompo-
nent makes inferences about node
keys, functional dependencies,
computational dependencies, and
multivalued dependencies. The
view definitions (form hierarchy,
node keys, and dependencies) are
stored in the form abstraction base
so that they are available to the
Expert Database Design System.

In the novice mode, the user en-
ters examples rather than directly
stating form properties. One exam-
ple is a data value in a form. Since
the examples are actual or hypo-
thetical data, they are positive ex-
amples. The inference component
is a secondary source of examples.
At certain points, the inference
component can generate examples
that can be positive or negative. An
example is positive if accepted by
the user, otherwise it is negative.
For instance, a duplicate key value
is a negative example. This ap-
proach to negative examples (simi-
lar to [9]) was chosen because the
user may have difficulty directly
generating negative examples.

We will explain the inference
component, followed by a descrip-
tion of explanatory feedback that
can be obtained during its use. Be-
fore presenting the inference com-
ponent, basic assumptions and
terms are defined.

Assumptions and Terminology
Three assumptions underly most of
the rules and heuristics of the In-
ference Component. The first as-
sumption constrains the manner in
which a user enters examples.

Assumption 1: Users enter
data in a fully nonnormalized
format.

Nonnomlired data entry means
that for a given parent-child rela-
tionship, the parent occurrence is
entered only with the first child
occurrence. This definition is re-
cursively applied to all descendant
nodes. This format provides mini-
mum data entry.

The second and third assump-
tions involve the relative position of
form fields within a node and the
relative position of nodes.

Assumption 2: Except for the
root node, fields of the same
node are positioned together.

Assumption 3: Nodes on the
same path are positioned adja-
cently from left to right where
the nodes to the left are on the
same or a lower hierarchical
level.

In addition to the three assump-
tions, there are two important
terms: missing value and field car-
dinality. Because of nonnormalized
data entry, missing values can be
present. A missing value is implied
between a parent and its descen-
dant nodes and unnecessary among
nodes on different paths. For ex-
ample, “Fiber glass” has two bins,
but it is not repeated for BIN-NO 5
in Figure 2 because it is implied as a
parent value. Because the hierarch-
ical structure of Figure 2 contains
only a single path, there are no
unnecessary values. A missing value
is contrasted with a null value be-

111

cause a missing value is denoted by
a blank and a null value by a dash.
In Figure 2, the null value indicates
that the VEHICLE NO is on-
known.

The field cardinality is the number
of values of a field in a set of ex-
amples including null values, but
excluding missing values. For ex-
ample in Figure 2, TASK, MATE-
RIAL, and BIN-NO have car-
din&ties of 2, 3, and 5,
respectively. After fields are clus-
tered into nodes, we refer to the
node uwdimlify which always equals
the cardinality of any of its constitu-
ent fields.

FOrm Hierarchy lnferente
The hierarchy inference compo-
nent uses a collection of heuristics
and rules based on the previously
discussed assumptions and detini-
tions. The heuristics suggest struc-
tures and assertions based on a
given example set. They have not
been proved to be correct because
assertions cannot be proved from
an example set. Underlying the
heuristics are rules that have been
proved [15]. We sometimes use the
rules directly to prove that an asser-
tion cannot hold or to make further
inferences from basic assertions.

The system infers the form hier-
archy in four steps:

1) Cluster form fields into nodes,
2) Identify paths and determine

the hierarchical structure of each
path,
3) Identify the parent nodes of
multipath structures, and
4) Validate the conclusion through
additional examples and generalize
to the hierarchy which covers all the
instances.

For each example, the system infers
one hierarchy using the rules and
heuristics of the first three steps.
These rules and heuristics are de-
signed to infer the simplest plausi-
ble hierarchy for an example. In
the fourth step, the user provides
additional examples and the system
applies the rules and heuristics of
the first three steps. The process
terminates when the same hierar-
chy is inferred for two consecutive
examples.

To demonstrate the inference
process, we present a few examples
and discuss the rules and heuristics
applied. As a guide, Table 2 pro-
vides a summary of the rules and
heuristics. Our intent is to provide a
basic understanding of the kinds of
rules rather than a detailed expla-
nation of each. A more detailed
account is given in [16, 171.

The field-clustering heuristics
group fields into nodes based on
their cardinality, positioning, and
mapping. In Figure 2, all fields that
have a cardinality of 1 are clustered
together. Similarly, BIN-NO and #
OF BAGS are clustered because

they have identical cardinalities, are
positioned adjacently, and have a
1: 1 mapping among the values.

After identifying the nodes,
paths of nodes and the hierarchical
position of nodes within a path are
determined. Two adjacent nodes
are either a parent-child combina-
tion or on different paths. The
parent-child rules use information
about node cardinality and missing
values to handle the first case. In
Figure 2, the node containing
TASK is selected as the parent of
the node containing MATERIAL
because the cardinality of TASK is
smaller than the cardinality of MA-
TERIAL, and there is a missing
value for TASK where there is a
value for MATERIAL.

If two adjacent nodes are not re-
lated as parent-child, they must be
on different paths. The path detec-
tion rules use information about
missing values and node contain-
ment to decide that two nodes are
on different paths. Since the Work
Order and Job Assignment forms
only have a single path, the path
detection rules do not apply.

To decide the parent of node
n+ I, which lies on a different path
than node n, the multipath parent
rule is used. This rule eliminates
nodes as potential parents. Node m
is eliminated as a potential parent
of node n+ 1 if node m contains a
value in a row where node nf 1 has
a blank. The root node is never

eliminated by this rule. If multiple
parent nodes are still possible, we
select the potential parent with the
largest level (i.e., lowest in the tree).
This is equivalent to choosing the
nearest, plausible node as the par-
ent.

For each instance provided, we
apply the previously discussed rules
to identify the simplest, plausible
hierarchy which represents the
given instance. The chosen hierar-
chy, however, may not be the true
one because there are multiple
plausible hierarchies for any form
instance. Our approach is to ask for
at least two instances and then to
select the hierarchy that covers all
the instances. The process termi-
nates when identical hierarchies
have been inferred for consecutive
instances.

To help choose the covering hi-
erarchy, we use hierarchy prefer-
ence heuristics. The first heuristic
gives preference to a structure with
more levels and nodes but the same
“umber of paths as a” alternative
structure. For example, a structure
with 4 levels, 4 nodes, and I path is
given preference over a str”ct”re
with 3 levels, 3 “odes, and 1 path. A
slightly different heuristic gives
preference t” a structure with the
same number of levels but addi-
tional nodes and paths. These heu-
ristics define the less general than re-

lation meaning that if hierarchy A
is less general than B, then every
valid instance of A is also a valid
instance of B. This relation is tran-
sitive so that every form instance
can plausibly represent multiple
hierarchies. The “umber of possi-
ble hierarchies is only limited by the
number of fields on the form.

When we compare two instances,
we choose the most general hierar-
chy under consideration; that is,
the more general structure is the
taxonomy. Applied to Figure 3b,
assume that from consecutive ex-
amples we inferred (4,1,4) and
(3,1,3) hierarchies where the ““m-
bers denote levels, paths, and
“odes. Based on the hierarchy
preference heuristics, we would
choose the former structure be-

cause it has more levels and nodes
but an equal number of paths.

The hierarchy preference heu-
ristics cannot be applied t” all pairs
of structures. For example, there is
a” ambiguity between str”ct”res
(4,1,4) and (2,3,4) because the
former contains more levels but
fewer paths than the latter. There
may, however, be existing instances
that plausibly represent both str”c-
tures. If the preference heuristics
do not apply for two instances, the
system requests the user to provide
another example.

Node Keys
After a hierarchy is inferred, the
“ode and local keys are determined
by identifying, ranking, and testing
potential keys. A field in the root
node is a potential key if it has no
duplicates across form instance
examples, no examples with null
values, and is not a computed field.
For dependent nodes, keys are
formed by concatenating the key of
its parent with its local key. A field
is a potential local key if it has no
duplicates within its immediate par-
ent, “O examples with null values,

and is not a computed field.
We “se several heuristics to rank

potential keys. First, fields with
unique values across all examples
on a form are ranked the highest.
Second, we further rank the first
group and the remaining fields by
data type: 1) integer, 2) alphanu-
meric, 3) alphabetic, and 4) floar.
Third, ties after the first two rank-
ings are broke” by a left t” right
preference.

The system tests the potential
ranked order keys by generating
additional examples to eliminate
potential keys. The system gener-
ates a duplicate value in the field
under test and different values for
the other fields. If the user accepts
the duplicate value, the potential
key is eliminated from considera-
tion. For example, in node 2 of the
Work Order form, TASK, COST/
SQFT, and SQFI are potential
keys. AMOUNT is eliminated be-
cause it is computed. TASK is
ranked more plausible than COST/
SQFT because of its string data
type and position. The system tests
TASK by generating the last value
(“Ceiling Acoustics”) and different

113

values for COST/SQFT and SQFl-.
If the user accepts the example,
TASK is eliminated as a potential
key. Similarly, the system can gen-

erate new examples for COST/
SQFT and SQFT.

Testing stops when all keys have
been tested or when the user indi-
cates. The user may wish to stop
testing when one key is found or
after some percentage of the fields
are tested. The database designer
can use the feedback facility to see a
history of the fields tested and the
keys identified.

DepentienCieS
Some functional dependencies and
multivalued dependencies can Lx
inferred from the hierarchical
strocture, the node keys, and the

mathematical formulas. A func-
tional dependency (FD) A-B
means that for a given value ofA, at
most one B value is possible. A node
key determines the other &Ids in
its node. For the dependent nodes,
the node key is always composite
because of the concatenation be-
tween the local key and the node
key of its parent. If there are sev-
era1 candidate node keys, there is a
mutual dependence among them.
Functional dependencies are also

implied by mathematical formulas
given by the user. A formula speci-
ties a dependency between the
computed field and the fields in the
formula.

Multivalued dependencies al-
ways occur in pairs. The mul-
tivalued dependency (MVD) A -
BIG means that each A value is asso-
ciated with a collection of B and C
values and the B and C value collec-
tions are independent. Further, an

MVD is embedded if the relation
containing A, B, and C also contains
another collection of attributes
which are not part of A, B, or C.
Multipath structures imply MVDs
(possibly embedded). If 0, and DI
are siblings with common parent P,,
the MVD P,.NK- D,.LKID&.LK
holds where NK represents the
node key and LK the local key.
Multipath structures are not com-
mon because independence among

116

collections of fields can be confus-
ing.

The system generates examples
to test a subset of the remaining
FDs. An example eliminates the
FD, A + B if two rows agree on the
same A value but differ on the B
value. The system generates exam-
ples by holding the determinant
constant and creating a new value
for the determined field. If the user

accepts the example, the potential
FD is eliminated. Users can also
augment the initial examples with
new examples. In addition, the user
can cut and paste previous exam-
ples using the example history func-
tion.

Because the number of potential,
remaining FDs is large, the Form
Definition System only generates
examples to test FDs with a single
field determinant (see [8] for a re-
cent approach to test for a cover of
FDs). Even with this restriction, the

number of potential, remaining
FDs in a node is the number of per-
mutations of N fields taken two at a
time (P$‘). If this level of testing
proves to he too much of a burden,
the user can stop at any point. It
may be more practical not to try for
exhaustive requirements collection
directly from the user. The de-
signer can later examine the state of
the testing process using the feed-
back facility and take appropriate
action.

As an example, consider testing
functional dependencies among the
fields of node 2 of the Work Order
Form (Figure 3a). Assume that
TASK is the only local key and
AMOUNT is computed. Thus,
there are six remaining FDs (i.e.,
3!/(3-2)!) with a single field deter-
minant. The given example set in
Figure 1 does not eliminate any of
the remaining FDs so the system
generates additional examples. For
each poskible determinant (TASK,
COST/SQFT, SQFT), the system
generates examples with the last
determinant value paired with a
different determinee value. For

example, to test the dependency
SQFT + COST/SQm, a new row
is generated with a “do not care”

value for TASK, 25 for SQFT, and
a new value for COST/SQFT.

InfOr~atlve Feedback
Informative feedback is provided
in two categories: the background
knowledge for making inferences
and the inferences made on a given
form. For the background knowl-
edge, the system provides the deli-
nitions of the important terms such
as field, field cardinality, node, root
node, dependent node, numbering
scheme for nodes, and so on. Visual

displays are used for explaining
concepts related to the hierarchical
structure of a form.

The system offers explanatory
feedback for all the form properties
it infers. The feedback is organized
by major (hierarchical structure,
keys, dependencies) and minor cat-
egories (e.g., node clustering and
parent-child relationships). Within
each category, there are three levels
of detail. The highest level of ex-
planation provides a summary of

the results. The next level of detail
presents the rules and heuristics
applied during the inferencing
process. The lowest level lists a
complete trace of the inferencing
steps. The following is the lowest
level of explanation generated by
the Form Definition System for the
field clustering heuristics applied to
the Work Order instance in
Figure I.

****Explain Hierarchy****

Form Name: WORK ORDER
Instance number I:
A. Field Clustering.
Fields with the cardinality of one
are grouped into a root node.
Fields that have the same cardinal-
ity, are positioned adjacently, and
have a 1: I mapping in every row
are grouped into a dependent
node.
The following fields have a cardi-

nality of I, therefore, they are
grouped into the roat node.

DATE
WORK ORDER NO
BILLTO NAME
BILLTO ADDRESS
JOB NAME

JOB ADDRESS
DATE REOUIRED
TOTAL BEFORE TAX
TAX
TOTAL
CUSTOMER TYPE
SALESPERSON

The following fields have cardinal-
ity of 2, are adjacent to each other,
and have a 1: 1 mapping on every
row. Therefore, they are grouped
into the same dependent node.

TASK
COST/SQFT
SQFT
AMOUNT

Expert Database Deslgn
System (EDDS)
The Expert Database Design Sys-
tel” (EDDS) produces an Entity-
Relationship Diagram (ERD) based
on the analysis of the forms con-
tained in the Form Abstraction
Base [2]. EDDS incrementally
builds a schema diagram by analyz-
ing one form at a time. A collection
of rules is used to determine the
order in which the forms are an-
alyzed and to identify the entities,
attributes, and relationships that
represent the forms. The system
applies the rules during a dialogue
with a designer. The rules help a
designer derive a consistent schema
diagram that represents the forms.
It should be noted, however, that
not all of what may be included on
an ERD of an enterprise may ap-
pear on the set of its forms. The
ERD (which is derived from the set
of the forms) may have to be modi-
fied or augmented to correctly and
completely represent the enter-
prise’s data schema. In [lo] we de-
fined a restricted natural language
to support the analysis of forms in
conjunction with EDDS.

Similar to other works [l, 6, 131,
our expert system is designed to aid
in the documentation, reorganiza-
tion, and consistency and complete-
ness checking of the design. Fur-
thermore, due to its consultative
nature, it aids a designer in making
decisions and in highlighting the
possible design alternatives. The
designer may confirm or discon-
firm any of the software’s sugges-

dons as the schema is being devel-
oped in a session.

The Architecture Of EDDS
The EDDS contains a knowledge
base and three databases. The Data
Design Knowledge Base (DDKB)
contains general data design rules
as well as rules for mapping from
the forms to ERDs. The Form Ab-
straction Base (FAB) contains the
form definitions as discussed previ-
ously. The Design Database (DDB)
contains the evolving schema dia-
gram (i.e., a” ERD). The Design
Status Base (DSB) records the cur-
rent stat”s and past design deci-
sions. The three databases (FAB,
DSB, and DDB) enable continuity
of work over time and between dif-
ferent sessions of the same design.

The inference engine is a data-
driven rule interpreter. It matches
the facts in the three databases
(FAB, DSB, and DDB) to the ante-
cedents of the rules in DDKB.
When in doubt about a design deci-
sion, the inference engine asks for
confirmation from the human de-
signer. Depending on the contents
of the databases and the designer’s
response to inquiries, the inference
engine decides which rule to fire
“ext. A rule is tired whenever an
assertion is matched to the anteced-
ent of the rule. As a design session
progresses, the ERD for the collec-
tion of forms is gradually evolved.

The inference engine uses six
distinct groups of rules corre-
sponding to the six phases of data-
base design supported by the
EDDS. The form selection phase de-
termines the next form to analyze.
The entity i&nh&&n phase deter-
mines form fields that represent
entities. The attribute attachment
phase adds attributes to the previ-
ously identified entities, while the
relatimhip identifuation phase con-
nects the previously identified end- ’
ties with relationships. The cardi-
n&y identification phace makes
decisions on the minimum/maxi-
mum cardinalities of an entity in a
relationship. The conrirtency phase
ensures the consistency of the
evolving schema diagram. Each

phase corresponds to one group of
rules. Some rules cross the bounda-
ries between phases in that their
consequents are not limited to a
single phase. The collection of the
six groups of rules constitute the
Data Design Knowledge Base.

Across all six phases, we can di-
vide the rules into two groups. One
group is a collection of mappings
and decisions which are made by
the system without affirmation
from our consultation with the de-
signer. The second group of rules
prompt the consequent of the rule
as a suggestion to the designer. The
designer then either rejects or ac-
cepts the system’s suggestion.

The system operates on one
form at a time using the knowledge
about previously analyzed forms
which are contained in DDB. Ini-
tially, a form to be analyzed is cho-
sen and an entity relationship dia-
gram that represents the form is
derived according to the rules of
the next five phases. Another form
is then chosen for analysis. The
previously designed schema is now
augmented with the result of the
analysis of the current form. This
process continues until no more
form fields remain and all the re-
quirements of the last three groups
of rules are satisfied.

Figure 4 is the ERD output from
EDDS for the integrated Work
Order and Job Assignment Forms.
Entities and relationships are
shown by rectangles and diamonds,
respectively. The minimumlmaxi-
mum cardinalides are shown by
separating the two by a colon and
enclosing them in parentheses. As
a” example of the interpretation of
minlmax cardinalides, consider the
relationship between SALESPER-
SON and WORKORDER. The
(0:m) for SALESPERSON means
that a salesperson can issue zero or
more work orders. The (1:l) for
WORKORDER means that a work
order must be associated to exactly
one salesperson.
F-arm Analysis
We now describe the rules underly-
ing each of the design phases. Most
of the rules are mappings from the

115

for” model TV an instance of an
ERD. We will present some repre-
sentative rules in the following suh-
sections. To make a “ore readable
presentation, pseudocode in the
for” of the IF...THEN... rules will
be used. (The actual code was writ-
ten in Pascal. See [3] for “ore de-
tails.) Using Figure 4, examples of
application of some of the rules will
be given. For a complete list of the
rules and their discussion, see [31.

Fm Selection. The form selection
phase determines the next form to
analyze using the origin types (see
Table 1). The form selection deci-
sions are made by EDDS without
consultation with the designer. The
system considers two cases. The
first case is when no forms have
been analyzed o= when no forms
are related to the collection of pre-
viously analyzed forms. In this case,
the form with zero destination
iieldsl is chosen. If “ore than one
form satisfies this criterion, the
form with the largest number of V
(i.e., Value) fields is chosen because
the analysis of V fields is straight-
forward (see the subsection on At-
tribute Attachment).

The second case considers the
remaining forms that have fields
originating from the previously
analyzed forms. The rationale is to
maximize the number of destina-
tion fields whose source is on previ-
ously analyzed forms. The next
form to analyze is the one most
closely related to the previously
analyzed forms. The strength of
the relationship between form B
and for” A is measured by the
number of destination fields in B
that have their sources in A. The
number of V fields is used, as de-
scribed in the previous paragraph,
to resolve cases where the strength
is equal.

As an example, suppose that
WORK ORDER does not have any
destination fields. JOB ASSIGN-
MENT has the following destina-
tion fields: WORK-ORDER-NO,
JOB-LOCATION, TASK, and

‘Form fields whose wigi” types are F worm
triggered) or Fv (form-value rriggered) are
called destination fads.

116

SQFT where the origin type of all
these fields is F and their sources
are from the WORK ORDER form.
Thus, WORK ORDER is chosen as
the first form to analyze. Suppose
that there is another form called
DAILY CREW ASSIGNMENT
containing information about the
crew “embers for each job. Fur-
the= assume that the WORK-
ORDER-NO, TASK, and SQFT are
three fields on this form whose
sources are in the WORK ORDER
for”. According to the form selec-
tion rule, the JOB ASSIGNMENT
for” will be the next form to ana-
lyze since it has one “ore destina-
tion field whose source is on the
previously analyzed forms than the
DAILY CREW ASSIGNMENT
form.

The following two rules are
pseudocode for the actual rules. In
these rules, PF is the list of previ-
ously analyzed forms, RF is the list
of remaining forms, QF is the list of
qualifying forms, and F is the final
form selected. The predicate
DEST-FIELDS-IN-RF returns true
if at least one form in its second
argument contains a destination
field whose source is in its first ar-
gument. The predicate SMALL-
EST-NUMBER-F-FV-FIELDS re-
turns a list of forms in its second
argument that have the smallest
number of F and FV fields. The
predicate LARGEST-NLJMBER-V-
FIELDS returns a form name in its
second argument from among the
forms in its first argument, which
has the largest number of V fields.
If “ore than one form qualities,
one is arbitrarily chosen. The result
of both rules is to make F the a=-
rent form and to delete F from the
remaining forms list.

IF (NOT (DEST-FIELDS-IN-RF
(PF, RF))) -no related forms
AND
SMALLEST-NLJMBER-F-FV-
FIELDS (RF. OF) AND
LARGES%&itiBER_V_
FIELDS (QF, F)

THEN
ASSERT (IS-FORM-TO-
ANALYZE (F))

DELETE (F, RF)
IF DEST-FIELDS-IN-RF (PF, RF)

-some related forms
AND
LARGEST-NUMBERF-FV-
FIELDS (PF, RF, QF) AND
LARGEST-NUMBERV-
FIELDS (QF, F)

I-HEN
ASSERT (IS-FORM-TO-
ANALYZE (F))
DELETE (F, RF)

Entity Identfimtion. ‘Co identify pas-
sible entities on a form, we use heu-
ristic rules that are based on the
local keys, dependencies, origin,
name, and grouping of form fields.
These rules suggest that a form
field may represent an entity. The
designer is asked to confirm the
suggestion. Informal examples of
these rules follow:

l Any form field designated as a
determinant in a functional de-
pendency represents an entity (e.g.,
TASK-NAME representing entity
TASK).
l For” field(s) on the left o= right-
hand sides of the MVD may repre-
sent an entity.
l Any for” field designated as a
local key may represent an entity.
l Any for” field matching a com-
mon candidate key suffix such as
NAME, NO, NUMBER, o= # may
represent an entity (e.g., WORK
ORDER NO representing the en-
tity WORK-ORDER).
. A group form field may repre-
sent an entity. Examples of group
fields are BILL TO and JOB LO-
CATION, which represent CUS-
TOMER and JOB-LOCATION
entities. The subfields of the group
are attributes of the identified en-
tity.
l Any form field that is the source
of another form field, whether of
this form o= another, may repre-
sent an entity.

As an example, consider the group/
subfield rule (fifth in the preceding
list):

IF INLIST (FF, RFF) AND
SUB-FIELD (FF) AND
(ORIGIN (FF, ‘U’) OR

fields on an entity or a relationship,
the mere likely it is that this field is
another attribute of that entity or
relationship. The proximity factors
are computed from left tn right and
top tn bottom on a form. The prox-
imities of the remaining form fields
to each of the previously identified
entities and relationships are re-
computed each time a form field is
removed from the list of the re-
maining form fields.

To illustrate the proximity heu-
ristic, suppose the form field AS-
SIGNMENT NO of Figure 2 has
identified the entity JOB ASSIGN-
MENT of Figure 4a. The proximity
factors for the DATE OF JOB and
JOB LOCATION NAME to the
JOB ASSIGNMENT entity are
both I. The proximity factors for
JOB LOCATION ADDRESS and
CREW FOREMAN are, respec-
tively, 2 and 3. Now, assume that
the JOB LOCATION is identified
as an entity with the t-.vn attributes
JOB LOCATION NAME and JOB
LOCATION ADDRESS. These tvvn
attributes, therefore, will no longer
be in the list of the remaining form
fields. The proximity factors for
the tvvn entities JOB ASSIGN-
MENT and JOB LOCATION are
now recomputed for all the remain-
ing form fields. This factor is equal
to I for both pairs of (DATE OF
JOB, JOB ASSIGNMENT) and

(CREW FOREMAN, JOB LOCA-
TION). Looking at the proximity
factors, the designer decides which
form field, if any, should be an at-
tribute of JOB ASSIGNMENT or
JOB LOCATION. In this case, as is
shown in Figure 4b, the designer
decided that the DATE OF JOB
is an attribute of JOB ASSIGN-
MENT.

For each remaining form field,
which cannnt be attached by any of
the rules, the designer can define a
new entity or relationship, attach
the form field to an existing entity
or relationship, or leave the form
field on the list of remaining form
fields. The first tvvn choices will
always trigger the chain of rules
again.

Relatiomhtp and Cardilzality IdentEfE-
cation. Relationships and car-
dinalities are identified from the
origin of form fields, hierarchical
structure of the forms, and both
functional and multivalued de-
pendencies. A relationship is estab-
lished between tvvn entities where a
form field in one functionally de-
termines a form field in the other.
The maximum cardinalities will be
I and m for the former and the lat-
ter entities, respectively. The PRE-
PARES relationship between
WORK ORDER and SALES PER-
SON is an example of this rule since
WORK ORDER NO determines
NAME of SALES PERSON. The
pseudocode for this rule is as fol-
lows:

IF ATTRIBUTE-OF (FFI, El)
AND
ATTRIBUTE-OF (FFZ, E2)
AND
SOURCE (FFZ, FFI)
AND
(ORIGIN (FFZ, ‘V’)
OR
ORIGIN (FF2, ‘FV’))

THEN
ESTABLISH-RELATIONSHIP
(El, E2, R, ROLI, ROLZ)
ASSERT (MAXCARD
(El, R, ‘I’))
ASSERT (MAXCARD
(E2, R, ‘m’l)

ROLI and ROLZ are, respec-
tively, the role names of El and E2
in relationship R. The designer is
prompted tn provide the names for
these roles.

In a multivalued dependency,
separate relationships are estab-
lished between each of the deter-
minees and the determinant. The
maximum cardinality of the deter-
minant is m in both relationships.

When nn relationships, either
direct or indirect, have been identi-
lied between tvvn adjacent levels t
and i+ I, the designer is prompted
to identify one. In the identified
relationship, the tuax cardinality of
the entity at level i will he m. CON-
SISTS OF is an example of a direct
relationship between tin levels of a

form. There is an indirect relation-
ship between JOB ASSIGNMENT
and TASK through ASSIGNED
and CONSISTS OF relationships.

Entities on tvvn different forms
are related tn each other by using
the information on local keys and
the origin types of form fields. If a
form field is a rnnt key, and it is also
the origin of an F type field on a
second form, then there could be a
relationship between the entity rep-
resented by this rnnt key tn an en-
tity in the second form which con-
tains its rnnt key. The ASSIGNED
relationship between WORK
ORDER and JOB ASSIGNMENT
is identified through this rule.

While identifying the relation-
ships between entities, the designer
is asked tn specify the role name for
each entity in the relationship. The
role names are used tn identify re-
flexive relationships (i.e., a relation-
ship between the same entity) and
multiple relationships between the
same tvvn entities.

To preserve the functional de-
pendencies implied by node keys
which are on the same level of a
form, all other form fields in the
same node nnnt either be an attri-
bute of the same entity as the node
key, or be an attribute of another
entity which is functionally related
(directly or indirectly) to the entity
of the node key. Entity El is di-
rectly functionally related tn Entity
E2 in relationship RI if the maxi-
mum cardinality of El with respect
to E2 is one. Entity E3 is indirectly
functionally related tn El if there
exists a relationship R2 between E2
and E3 and the maximum cardinal-
ity of E2 with respect to E3 is one.

Finally, there are rules for as-
signing cardinality of I.

l If a field of an entity is a node
key, then the minimum cardinality
of this entity is ‘I’ in a relationship
tn an entity that has a form field on
the same node and for which no
nulls are allowed.
l An identification-dependent en-
tity (an entity that is existent-
dependent and not self-identified)

118

is assigned a 1 for both its minimum
and maximum cardinalities.

Inlegr$ Conrtmintr. Two types of
integrity rules are applied to check
the consistency and completeness
of the evolving ER diagram. The
form-mapping constraints check
the mapping from the form model
to the evolving schema diagram.
The first form-mapping constraint
ensures there must be at least one
relationship, direct or indirect, con-
necting entities in adjacent levels of
a form. We give the pseudocode for
this rule. Here, the predicate
LEVEL(FF, L) designates the level
(L) of the form field FF on its form.

IF ATTRIBUTEOF (FFl, El)
AND
ATTRIBUTE-OF (FFZ, E2)
AND
INSAME_FORM (FFl, FFZ)
AND
LEVEL (FFl, Ll)
AND
LEVEL (FF2, L2)
AND
EQUAL (+(LI, I), L2)
AND
NOT (RELATIONSHIP-
BETWEEN (El, E2, R))

THEN
ESTABLISH-RELATIONSHIP
(El, E2, R, ROLl, ROLP)

The second form-mapping con-
straint ensures that the implied
functional and multivalued map-
pings between form fields are
maintained in the evolving schema
diagram. The third form-mapping
constraint ensures that all form
fields, except those with an origin
of F, are represented on the dia-
gram.

The second collection of integ-
rity rules enforce constraints on the
ERD. Some of the integrity rules
such as the uniqueness of entity and
relationship names and the re-
quirement of unique role names for
each entity in two or more relation-
ships are enforced as the diagram is
constructed. Other rules are en-
forced after the designer indicates
that a form analysis is complete.

Examples of these rules are:

1) Each entity must have at least
one candidate key except for iden-
tification-dependent entities,

2) All entities involved in a rela-
tionship must have an associated
minimum-maximum cardinality,
and

3) One candidate key of each entity
must be designated as the primary
key.

Implementation and
usage Status
Prototype versions of the Form
Definition System and the Expert
Database Design System have been
implemented. These systems were
originally implemented in Pascal on
a Vax 111780 [3]. In the original
design, the Form Definition System
did not provide an inference corn-
ponent for the novice user. In later
research [15], the Form Definition
system was redesigned and
reimplemented in Lightspeed Pas-
cal 1141 on a Macintosh SE. The
standard features of the Macintosh
environment, such as pull-down
menus, dialogue boxes, and win-
dows, were utilized in the user in-
terface.

The Form Definition System was
tested in a preliminary study using
subjects from the Computing Ser-
vices Division of the University of
Massachusetts at Boston [15, 171.
The purpose of the study was to
collect evidence about the types of
mistakes made, the ability of novice
users to provide examples of re-
quirements, and the completeness
of collected requirements. We ob-
served that the system was useful in
educating users and collecting re-
quirements, but that some depend-
encies were missed by the novice
users. We concluded that the Form
Definition System is most useful in
providing a ccxmn~n vocabulary
and goals among end users and
data processing professionals,
rather than in providing exhaustive
requirements collection by end
“set%

Conclusion
We described an approach to sys-
tematically use electronic forms in
the database requirements and de-
sign processes. The foundation of
our study was a simple form model
that includes hierarchically struc-
tured forms with an event-driven
routing. The Form Definition Sys-
tem provides an inference compo-
nent to assist an end user with view
definitions for their forms where a
view definition consists of the hier-
archical structure and functional
dependencies among form fields.
The inference component uses a
collection of rules and heuristics
along with a purposeful dialogue.
An explanation facility provides
feedback at several levels of detail.
The Expert Database Design Sys-
tem assists a designer in the view
integration process. The system
provides rules for incrementally
integrating the form views and
heuristics for mapping the form
fields into entity types and relation-
ships.

We believe that forms provide an
important input to the database
design process that should be for-
malized into existing database de-
sign methodologies. The form-
based approach is especially rele-
vant when forms are important in
the database and end users are ac-
customed to form-based work. For
completeness, the approach de-
scribed here should be combined
into a database design methodology
that permits input from other
sources in addition to forms such as
natural language descriptions.

The work of Joohin Choobineh was
partially supported by the Center
for Management of Information
Systems, Texas A&M University. q

References
1. Boureghoub, M., Gardarin, G., and

Me&, E. The design of an expert
system for database design. In Pro-
ceedings of* InlrmotraOl Conferme
on “evy Large Data Bara (“LDB,,
Stockholm, Sweden. (Aug. 1985).

110

2. Chen, P. The entity-relationship
model: Toward a unified view of
data. ACM Trans. Dafobasc Sys’. 1. I

(Mar. 1976).
3. Choobineh,J. Form-driven concep-

tual data modeling. Ph.D. disserta-
tion, Dept. of Management Infor-
mation Systems, University of
Arizona. 1985.

4. Choobineh,J. FORMFLEX: A user
interface tool for forms definition
and management. In Humon Factor,
in Manage. I@ Srsl., J. Carey, Ed.,
Ablex, Nowood, NJ 1988, pp. 117-
133.

5. Choohineh, J., Mannino, M.,
Nunamaker, J., and Konsynski, B.
An expert database design system
based on analysis of forms. It?.%?
Trans. S$tu. Eng. 14, 2 (Feb. 1988),
242-253.

6. Eick, C. and Lockeman, P. Acquist-
don of terminological knowledge
using database design techniques.
In Pmcmdingr of ACM SKMOD

Conference (Aurtin,Tex.. May 1985).
pp.-84-94.

7. Emhley, D. NFQL: The natural

120

forms query language. ACM Tram.
Dalo~e Sysf. 14, 2 (June 1989),
168-211.

8. Flach, P. Inductive characterization
of database relations. Melhodolog.

InteU. syst. 5, Z.W. Rx, M.

Zemankova, and M. Emrich, Eds.,
North-Holland, Amsterdam, 1990,
pp. 371-378.

9. Mannila, H. and Raiha, K. Design
by example: An application of
Armstrong relations. J. Cornput. Syst.
sn. 33, 2 (1986). 126-14,.

10. Mannino, M., Choohineh, J., and
Hwang, J. Acquisition and use of
contextual knowledge in a form-
driven database design methcdol-
ogy In Proceedings of the Fifth Inter

n&ml Conference on E&Q-Redo-
tionship Appmmb (Djm, France,

Nov. 1986).

II. Shu, N. Formal: A forms-oriented,
visual-directed application develop-
ment system. IEEE Cmput. (Aug.
19851, 38-49.

12. Shu, N., Lum, V., Wang, H., and
Chang, C. Specification of forms
processing and business procedures
for office automation. IEEE Trans.
Sofw. Eng. SE-& 5 (Sept. 1982),
499-511.

13. Storey, V. and Goldstein, R. A
methodology for creating user
views in database design. ACM
Tram. Databm Syst. 13, 3 (Sept.
1988), 305-388.

14. Think Technologies. Ltghtrpeed Pm-

ml: “SW’S Guide and ReJwrencc Man-

ual, Version I, First ed., 1986, Lex-
ington, Mass.

15. Tseng, V. Inferring database re-
quirements from examples in
forms. Ph.D. dissertation, Dept. of
Management Science and Informa-
tion Systems, The Univ. of Texas at
Austin, May 1988.

16. Tseng, V. and Mannino, M. Infer-
ring database requirements from
examples in forms. In Proceedings of

the Sevalh Intmliml Confmncc cm

Enlily-Relalionrhip Appmoch (Rome,

Italy, Nov. 1988), pp. 251-265.
17. Tseng, V. and Mannino, M. A

method for database requirements
definition. J. Manage. In5 Cyst.
(Winter ,989).

18. Tsichritzis, D. Form Managemenr.
Commun. ACM 25. 7 (July L982),
453-478.

19. Yao, B., Hevner, A., Zhongzhi, S.,
and Luo, D. FORMANAGER: An
office forms management system.
ACM Tronr. Ofi 1nJ Syrt. 2, 3 (July
1984). 235-262.

CR Categories and Subject Deserip
ton: D.2.1 [Software Engineering]:
RequirementsiSpecifications-mrrho-
dologies; H.2.1 [Databa~ Mamtgemmt]:
Logical Design-&la modrlr, schema and

subschetna; H.2.3 [Databae Manage-
ment]: Languages-da& daoiplion lan-

wv?s fDDL1

General Terms: Design, Languages
Additional Key Words and Phrases:

Form processing, view definition, view
integration

About the Authors:
JOOBIN CHOOBINEH is an associate
professor of management information
systems at Texas A&M University. His
research interests include conceptual
dam modeling, integration of data and
mathematical mad&, application of
artificial intelligence techniques to data-
base design processes, and expert data-
bases systems. Author’s Present Ad-
dress: Department of Business Analysis
and Research, College of Businesr
Administration and Graduate School of
Business, Texas A&M University, Col-
lege Station, TX 77843-4217. email:
jOc1099@tamsigma,bitnet

MICHAEL V. MANNINO is an asis-
cant professor in the Department of
Management Science, Upiversity of
Washington, Seattle. His research inter-
ests include database management, soft-
ware engineering and knowledge repre-
sentation. Author’s Preeent Address:
Department of Management Science,
University of Washington, Seattle, WA
98195. Internet: zmann@u.washington.
edu

VERONICA P. TSENG is a staff pro-
grammer at IBM Rochester, Minn. Her
research interests include object-
oriented programming and data model-
ing. Author% Present Address: CIM
Systems, IBM Application Business Sys-
tems, Rochester, MN 55901. email:
tseng@rchvmp.iinusi.ibm.com

Permission f0 copy without fee all or pan of
this material is granted provided that tbc
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title ofthe publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery To copy otherwise, or
to republish, requires a fee and/or specific
permission.

	p115-Choobineh-b.PDF
	Untitled

