
M ost organizations use busi- 

ness forms to conduct daily operations and to communicate internally and 

externally with customers, suppliers, government agencies, and other 

entities. Traditionally, paper forms have been used and stored with obvious 

disadvantages of high retrieval and storage cost. With advances in comput- 

ing technology, electronic forms have begun to supplant their paper coun- 

terparts. A number of form management systems have been developed 

[7, 11, 12, 18, 191. Typically, these systems are closely integrated with a 
database management system be- 
cause of the need to retain the con- 
tents of forms over time. 

In the context of this emphasis on 
forms, we have conducted research 
on how to use forms in the database 
analysis and design process. This 
research was sparked by two 
observations: 
(1) Because of familiarity, end users 
can effectively communicate many 
requirements through the forms they 
“X. 
(2) Usually the most widely used data 

are gathered or reported in a form. 
Thus, forms provide an important 
input source for database design. 

Based on these observations, we 
have developed two systems that 
incorporate forms into the view 
definition and view integration 
phases of database design. The Form 
Definition System assists users with 
specifying view definitions. The 
novel aspect is a component that 
makes inferences from examples 
using a small collection of rules and 
heuristics and a purposeful dialogue. 

Inferences can be made about the 
hierarchical structure of a form as 
well as functional dependencies 
among form fields. To reduce the 
user’s time in providing examples, 
the system generates some of its own 
examples and provides an example 
history facility. The Expert Database 
Design System uses the view detini- 
tions to incrementally build an entity 
relationship diagram. A colkxtion of 
rules are used for grouping the fields 
on a form into aggregate objects (e.g., 
entities and relationships) and for 
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ordering a collection of forms for 
incremental view integration. The 
system applies the rules during a 
dialogue with a designer. 

Form Model 
A form is a structured collection of 
variables (i.e., form fields) that are 
appropriately formatted for data 
entry and display. A form type de- 
fines the structure, constraints, and 
presentation of the form fields. A 
form type may have multiple 

caption, x-y coordinates, and dis- 
play properties such as color and 
font. Form fields are organized into 
hierarchically structured nodes. 
There is no limit to the number of 
levels or nodes in the field although 
most forms have a shallow (i.e., few 
levels) and narrow (few nodes per 
level) structure because of human 
information processing limitations. 
For example, the WORK ORDER 
form has two levels, while the JOB 
ASSIGNMENT form has four lev- 

media-dependent representations 
known as form templates. This arti- 
cle Only addresses character- 
oriented, screen templates al- 
though templates incorporating 
other presentation modes such as 
voice and bit-mapped graphics are 
possible. A form instance is a par- 
ticular collection of values for the 
form fields. When a form template 
is filled with values, it becomes an 
instance of that form type. Figures 
1 and 2 present form templates for 
the WORK ORDER and JOB AS- 
SIGNMENT forms, respectively. 

Static properties of form fields 
include their type, presentation, 
structure, origin, and constraints. 
The type. which denotes a set of val- 
ues, is either a primitive type such 
as integer, float, or string, or a user- 
defined data type such as phone 
number. The presentation defines 
the mapping from a form field to a 
particular template. It includes a 

els, as shown in Figure 3. The origin 
indicates the source of values for a 
form field. Table 1 indicates the 
possible origin values. For example, 
WORK ORDER NO on the JOB 
ASSIGNMENT form is form-trig- 
gered from the WORK ORDER 
form. The constraints include the 
designation of node keys for the 
form hierarchy, null value permis- 
sion, default values, and value 
ranges, if numeric, and enumer- 
ated values if nominal. 

The dynamic properties of forms 
are indicated by the routing (R) of a 
form (F) by an agent (A) from a 
source station (Sl) to a destination 
station (S2). Thus, each routing is a 
quadruple R(F, A, Sl, S2) which is 
triggered by an event (E). An agent 
is either a human user who initiates 
the routing upon the perceived oc- 
currence of the event, or a process 
which is triggered by some event 
which in turn triggers the routing. 

Using this model, a chain of form 
flow triggers can be constructed to 
automate office procedures. A rule 
definition language for form rout- 
ing is described by [4]. 

Form Deflnltlon System 
The Form Definition System sup- 
ports both form and view defmi- 
don. The form layout component 
provides a full screen editor for 
entering form field captions and 
example values. The interface com- 
ponent provides a Macintosh-like 
environment with pull-down 
menus, a pointing device, and bit- 
mapped graphics. The command 
component provides functions for 
input/output, form property defi- 
nition, and explanatory feedback. 
Novice and expert modes are pro- 
vided for defining form properties. 
The inference component supports 
the novice mode through a collec- 
tion of rules and heuristics. The 
hierarchy subcomponent makes 
inferences about the grouping of 
form fields into nodes and the hier- 
archical relationship among nodes. 
The key/dependency subcompo- 
nent makes inferences about node 
keys, functional dependencies, 
computational dependencies, and 
multivalued dependencies. The 
view definitions (form hierarchy, 
node keys, and dependencies) are 
stored in the form abstraction base 
so that they are available to the 
Expert Database Design System. 

In the novice mode, the user en- 
ters examples rather than directly 
stating form properties. One exam- 
ple is a data value in a form. Since 
the examples are actual or hypo- 
thetical data, they are positive ex- 
amples. The inference component 
is a secondary source of examples. 
At certain points, the inference 
component can generate examples 
that can be positive or negative. An 
example is positive if accepted by 
the user, otherwise it is negative. 
For instance, a duplicate key value 
is a negative example. This ap- 
proach to negative examples (simi- 
lar to [9]) was chosen because the 
user may have difficulty directly 
generating negative examples. 



We will explain the inference 
component, followed by a descrip- 
tion of explanatory feedback that 
can be obtained during its use. Be- 
fore presenting the inference com- 
ponent, basic assumptions and 
terms are defined. 

Assumptions and Terminology 
Three assumptions underly most of 
the rules and heuristics of the In- 
ference Component. The first as- 
sumption constrains the manner in 
which a user enters examples. 

Assumption 1: Users enter 
data in a fully nonnormalized 
format. 

Nonnomlired data entry means 
that for a given parent-child rela- 
tionship, the parent occurrence is 
entered only with the first child 
occurrence. This definition is re- 
cursively applied to all descendant 
nodes. This format provides mini- 
mum data entry. 

The second and third assump- 
tions involve the relative position of 
form fields within a node and the 
relative position of nodes. 

Assumption 2: Except for the 
root node, fields of the same 
node are positioned together. 

Assumption 3: Nodes on the 
same path are positioned adja- 
cently from left to right where 
the nodes to the left are on the 
same or a lower hierarchical 
level. 

In addition to the three assump- 
tions, there are two important 
terms: missing value and field car- 
dinality. Because of nonnormalized 
data entry, missing values can be 
present. A missing value is implied 
between a parent and its descen- 
dant nodes and unnecessary among 
nodes on different paths. For ex- 
ample, “Fiber glass” has two bins, 
but it is not repeated for BIN-NO 5 
in Figure 2 because it is implied as a 
parent value. Because the hierarch- 
ical structure of Figure 2 contains 
only a single path, there are no 
unnecessary values. A missing value 
is contrasted with a null value be- 
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cause a missing value is denoted by 
a blank and a null value by a dash. 
In Figure 2, the null value indicates 
that the VEHICLE NO is on- 
known. 

The field cardinality is the number 
of values of a field in a set of ex- 
amples including null values, but 
excluding missing values. For ex- 
ample in Figure 2, TASK, MATE- 
RIAL, and BIN-NO have car- 
din&ties of 2, 3, and 5, 
respectively. After fields are clus- 
tered into nodes, we refer to the 
node uwdimlify which always equals 
the cardinality of any of its constitu- 
ent fields. 

FOrm Hierarchy lnferente 
The hierarchy inference compo- 
nent uses a collection of heuristics 
and rules based on the previously 
discussed assumptions and detini- 
tions. The heuristics suggest struc- 
tures and assertions based on a 
given example set. They have not 
been proved to be correct because 
assertions cannot be proved from 
an example set. Underlying the 
heuristics are rules that have been 
proved [15]. We sometimes use the 
rules directly to prove that an asser- 
tion cannot hold or to make further 
inferences from basic assertions. 

The system infers the form hier- 
archy in four steps: 

1) Cluster form fields into nodes, 
2) Identify paths and determine 

the hierarchical structure of each 
path, 
3) Identify the parent nodes of 
multipath structures, and 
4) Validate the conclusion through 
additional examples and generalize 
to the hierarchy which covers all the 
instances. 

For each example, the system infers 
one hierarchy using the rules and 
heuristics of the first three steps. 
These rules and heuristics are de- 
signed to infer the simplest plausi- 
ble hierarchy for an example. In 
the fourth step, the user provides 
additional examples and the system 
applies the rules and heuristics of 
the first three steps. The process 
terminates when the same hierar- 
chy is inferred for two consecutive 
examples. 

To demonstrate the inference 
process, we present a few examples 
and discuss the rules and heuristics 
applied. As a guide, Table 2 pro- 
vides a summary of the rules and 
heuristics. Our intent is to provide a 
basic understanding of the kinds of 
rules rather than a detailed expla- 
nation of each. A more detailed 
account is given in [16, 171. 

The field-clustering heuristics 
group fields into nodes based on 
their cardinality, positioning, and 
mapping. In Figure 2, all fields that 
have a cardinality of 1 are clustered 
together. Similarly, BIN-NO and # 
OF BAGS are clustered because 

they have identical cardinalities, are 
positioned adjacently, and have a 
1: 1 mapping among the values. 

After identifying the nodes, 
paths of nodes and the hierarchical 
position of nodes within a path are 
determined. Two adjacent nodes 
are either a parent-child combina- 
tion or on different paths. The 
parent-child rules use information 
about node cardinality and missing 
values to handle the first case. In 
Figure 2, the node containing 
TASK is selected as the parent of 
the node containing MATERIAL 
because the cardinality of TASK is 
smaller than the cardinality of MA- 
TERIAL, and there is a missing 
value for TASK where there is a 
value for MATERIAL. 

If two adjacent nodes are not re- 
lated as parent-child, they must be 
on different paths. The path detec- 
tion rules use information about 
missing values and node contain- 
ment to decide that two nodes are 
on different paths. Since the Work 
Order and Job Assignment forms 
only have a single path, the path 
detection rules do not apply. 

To decide the parent of node 
n+ I, which lies on a different path 
than node n, the multipath parent 
rule is used. This rule eliminates 
nodes as potential parents. Node m 
is eliminated as a potential parent 
of node n+ 1 if node m contains a 
value in a row where node nf 1 has 
a blank. The root node is never 



eliminated by this rule. If multiple 
parent nodes are still possible, we 
select the potential parent with the 
largest level (i.e., lowest in the tree). 
This is equivalent to choosing the 
nearest, plausible node as the par- 
ent. 

For each instance provided, we 
apply the previously discussed rules 
to identify the simplest, plausible 
hierarchy which represents the 
given instance. The chosen hierar- 
chy, however, may not be the true 
one because there are multiple 
plausible hierarchies for any form 
instance. Our approach is to ask for 
at least two instances and then to 
select the hierarchy that covers all 
the instances. The process termi- 
nates when identical hierarchies 
have been inferred for consecutive 
instances. 

To help choose the covering hi- 
erarchy, we use hierarchy prefer- 
ence heuristics. The first heuristic 
gives preference to a structure with 
more levels and nodes but the same 
“umber of paths as a” alternative 
structure. For example, a structure 
with 4 levels, 4 nodes, and I path is 
given preference over a str”ct”re 
with 3 levels, 3 “odes, and 1 path. A 
slightly different heuristic gives 
preference t” a structure with the 
same number of levels but addi- 
tional nodes and paths. These heu- 
ristics define the less general than re- 

lation meaning that if hierarchy A 
is less general than B, then every 
valid instance of A is also a valid 
instance of B. This relation is tran- 
sitive so that every form instance 
can plausibly represent multiple 
hierarchies. The “umber of possi- 
ble hierarchies is only limited by the 
number of fields on the form. 

When we compare two instances, 
we choose the most general hierar- 
chy under consideration; that is, 
the more general structure is the 
taxonomy. Applied to Figure 3b, 
assume that from consecutive ex- 
amples we inferred (4,1,4) and 
(3,1,3) hierarchies where the ““m- 
bers denote levels, paths, and 
“odes. Based on the hierarchy 
preference heuristics, we would 
choose the former structure be- 

cause it has more levels and nodes 
but an equal number of paths. 

The hierarchy preference heu- 
ristics cannot be applied t” all pairs 
of structures. For example, there is 
a” ambiguity between str”ct”res 
(4,1,4) and (2,3,4) because the 
former contains more levels but 
fewer paths than the latter. There 
may, however, be existing instances 
that plausibly represent both str”c- 
tures. If the preference heuristics 
do not apply for two instances, the 
system requests the user to provide 
another example. 

Node Keys 
After a hierarchy is inferred, the 
“ode and local keys are determined 
by identifying, ranking, and testing 
potential keys. A field in the root 
node is a potential key if it has no 
duplicates across form instance 
examples, no examples with null 
values, and is not a computed field. 
For dependent nodes, keys are 
formed by concatenating the key of 
its parent with its local key. A field 
is a potential local key if it has no 
duplicates within its immediate par- 
ent, “O examples with null values, 

and is not a computed field. 
We “se several heuristics to rank 

potential keys. First, fields with 
unique values across all examples 
on a form are ranked the highest. 
Second, we further rank the first 
group and the remaining fields by 
data type: 1) integer, 2) alphanu- 
meric, 3) alphabetic, and 4) floar. 
Third, ties after the first two rank- 
ings are broke” by a left t” right 
preference. 

The system tests the potential 
ranked order keys by generating 
additional examples to eliminate 
potential keys. The system gener- 
ates a duplicate value in the field 
under test and different values for 
the other fields. If the user accepts 
the duplicate value, the potential 
key is eliminated from considera- 
tion. For example, in node 2 of the 
Work Order form, TASK, COST/ 
SQFT, and SQFI are potential 
keys. AMOUNT is eliminated be- 
cause it is computed. TASK is 
ranked more plausible than COST/ 
SQFT because of its string data 
type and position. The system tests 
TASK by generating the last value 
(“Ceiling Acoustics”) and different 
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values for COST/SQFT and SQFl-. 
If the user accepts the example, 
TASK is eliminated as a potential 
key. Similarly, the system can gen- 

erate new examples for COST/ 
SQFT and SQFT. 

Testing stops when all keys have 
been tested or when the user indi- 
cates. The user may wish to stop 
testing when one key is found or 
after some percentage of the fields 
are tested. The database designer 
can use the feedback facility to see a 
history of the fields tested and the 
keys identified. 

DepentienCieS 
Some functional dependencies and 
multivalued dependencies can Lx 
inferred from the hierarchical 
strocture, the node keys, and the 

mathematical formulas. A func- 
tional dependency (FD) A-B 
means that for a given value ofA, at 
most one B value is possible. A node 
key determines the other &Ids in 
its node. For the dependent nodes, 
the node key is always composite 
because of the concatenation be- 
tween the local key and the node 
key of its parent. If there are sev- 
era1 candidate node keys, there is a 
mutual dependence among them. 
Functional dependencies are also 

implied by mathematical formulas 
given by the user. A formula speci- 
ties a dependency between the 
computed field and the fields in the 
formula. 

Multivalued dependencies al- 
ways occur in pairs. The mul- 
tivalued dependency (MVD) A - 
BIG means that each A value is asso- 
ciated with a collection of B and C 
values and the B and C value collec- 
tions are independent. Further, an 

MVD is embedded if the relation 
containing A, B, and C also contains 
another collection of attributes 
which are not part of A, B, or C. 
Multipath structures imply MVDs 
(possibly embedded). If 0, and DI 
are siblings with common parent P,, 
the MVD P,.NK- D,.LKID&.LK 
holds where NK represents the 
node key and LK the local key. 
Multipath structures are not com- 
mon because independence among 
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collections of fields can be confus- 
ing. 

The system generates examples 
to test a subset of the remaining 
FDs. An example eliminates the 
FD, A + B if two rows agree on the 
same A value but differ on the B 
value. The system generates exam- 
ples by holding the determinant 
constant and creating a new value 
for the determined field. If the user 

accepts the example, the potential 
FD is eliminated. Users can also 
augment the initial examples with 
new examples. In addition, the user 
can cut and paste previous exam- 
ples using the example history func- 
tion. 

Because the number of potential, 
remaining FDs is large, the Form 
Definition System only generates 
examples to test FDs with a single 
field determinant (see [8] for a re- 
cent approach to test for a cover of 
FDs). Even with this restriction, the 

number of potential, remaining 
FDs in a node is the number of per- 
mutations of N fields taken two at a 
time (P$‘). If this level of testing 
proves to he too much of a burden, 
the user can stop at any point. It 
may be more practical not to try for 
exhaustive requirements collection 
directly from the user. The de- 
signer can later examine the state of 
the testing process using the feed- 
back facility and take appropriate 
action. 

As an example, consider testing 
functional dependencies among the 
fields of node 2 of the Work Order 
Form (Figure 3a). Assume that 
TASK is the only local key and 
AMOUNT is computed. Thus, 
there are six remaining FDs (i.e., 
3!/(3-2)!) with a single field deter- 
minant. The given example set in 
Figure 1 does not eliminate any of 
the remaining FDs so the system 
generates additional examples. For 
each poskible determinant (TASK, 
COST/SQFT, SQFT), the system 
generates examples with the last 
determinant value paired with a 
different determinee value. For 

example, to test the dependency 
SQFT + COST/SQm, a new row 
is generated with a “do not care” 

value for TASK, 25 for SQFT, and 
a new value for COST/SQFT. 

InfOr~atlve Feedback 
Informative feedback is provided 
in two categories: the background 
knowledge for making inferences 
and the inferences made on a given 
form. For the background knowl- 
edge, the system provides the deli- 
nitions of the important terms such 
as field, field cardinality, node, root 
node, dependent node, numbering 
scheme for nodes, and so on. Visual 

displays are used for explaining 
concepts related to the hierarchical 
structure of a form. 

The system offers explanatory 
feedback for all the form properties 
it infers. The feedback is organized 
by major (hierarchical structure, 
keys, dependencies) and minor cat- 
egories (e.g., node clustering and 
parent-child relationships). Within 
each category, there are three levels 
of detail. The highest level of ex- 
planation provides a summary of 

the results. The next level of detail 
presents the rules and heuristics 
applied during the inferencing 
process. The lowest level lists a 
complete trace of the inferencing 
steps. The following is the lowest 
level of explanation generated by 
the Form Definition System for the 
field clustering heuristics applied to 
the Work Order instance in 
Figure I. 

****Explain Hierarchy**** 

Form Name: WORK ORDER 
Instance number I: 
A. Field Clustering. 
Fields with the cardinality of one 
are grouped into a root node. 
Fields that have the same cardinal- 
ity, are positioned adjacently, and 
have a 1: I mapping in every row 
are grouped into a dependent 
node. 
The following fields have a cardi- 

nality of I, therefore, they are 
grouped into the roat node. 

DATE 
WORK ORDER NO 
BILLTO NAME 
BILLTO ADDRESS 
JOB NAME 



JOB ADDRESS 
DATE REOUIRED 
TOTAL BEFORE TAX 
TAX 
TOTAL 
CUSTOMER TYPE 
SALESPERSON 

The following fields have cardinal- 
ity of 2, are adjacent to each other, 
and have a 1: 1 mapping on every 
row. Therefore, they are grouped 
into the same dependent node. 

TASK 
COST/SQFT 
SQFT 
AMOUNT 

Expert Database Deslgn 
System (EDDS) 
The Expert Database Design Sys- 
tel” (EDDS) produces an Entity- 
Relationship Diagram (ERD) based 
on the analysis of the forms con- 
tained in the Form Abstraction 
Base [2]. EDDS incrementally 
builds a schema diagram by analyz- 
ing one form at a time. A collection 
of rules is used to determine the 
order in which the forms are an- 
alyzed and to identify the entities, 
attributes, and relationships that 
represent the forms. The system 
applies the rules during a dialogue 
with a designer. The rules help a 
designer derive a consistent schema 
diagram that represents the forms. 
It should be noted, however, that 
not all of what may be included on 
an ERD of an enterprise may ap- 
pear on the set of its forms. The 
ERD (which is derived from the set 
of the forms) may have to be modi- 
fied or augmented to correctly and 
completely represent the enter- 
prise’s data schema. In [lo] we de- 
fined a restricted natural language 
to support the analysis of forms in 
conjunction with EDDS. 

Similar to other works [l, 6, 131, 
our expert system is designed to aid 
in the documentation, reorganiza- 
tion, and consistency and complete- 
ness checking of the design. Fur- 
thermore, due to its consultative 
nature, it aids a designer in making 
decisions and in highlighting the 
possible design alternatives. The 
designer may confirm or discon- 
firm any of the software’s sugges- 

dons as the schema is being devel- 
oped in a session. 

The Architecture Of EDDS 
The EDDS contains a knowledge 
base and three databases. The Data 
Design Knowledge Base (DDKB) 
contains general data design rules 
as well as rules for mapping from 
the forms to ERDs. The Form Ab- 
straction Base (FAB) contains the 
form definitions as discussed previ- 
ously. The Design Database (DDB) 
contains the evolving schema dia- 
gram (i.e., a” ERD). The Design 
Status Base (DSB) records the cur- 
rent stat”s and past design deci- 
sions. The three databases (FAB, 
DSB, and DDB) enable continuity 
of work over time and between dif- 
ferent sessions of the same design. 

The inference engine is a data- 
driven rule interpreter. It matches 
the facts in the three databases 
(FAB, DSB, and DDB) to the ante- 
cedents of the rules in DDKB. 
When in doubt about a design deci- 
sion, the inference engine asks for 
confirmation from the human de- 
signer. Depending on the contents 
of the databases and the designer’s 
response to inquiries, the inference 
engine decides which rule to fire 
“ext. A rule is tired whenever an 
assertion is matched to the anteced- 
ent of the rule. As a design session 
progresses, the ERD for the collec- 
tion of forms is gradually evolved. 

The inference engine uses six 
distinct groups of rules corre- 
sponding to the six phases of data- 
base design supported by the 
EDDS. The form selection phase de- 
termines the next form to analyze. 
The entity i&nh&&n phase deter- 
mines form fields that represent 
entities. The attribute attachment 
phase adds attributes to the previ- 
ously identified entities, while the 
relatimhip identifuation phase con- 
nects the previously identified end- ’ 
ties with relationships. The cardi- 
n&y identification phace makes 
decisions on the minimum/maxi- 
mum cardinalities of an entity in a 
relationship. The conrirtency phase 
ensures the consistency of the 
evolving schema diagram. Each 

phase corresponds to one group of 
rules. Some rules cross the bounda- 
ries between phases in that their 
consequents are not limited to a 
single phase. The collection of the 
six groups of rules constitute the 
Data Design Knowledge Base. 

Across all six phases, we can di- 
vide the rules into two groups. One 
group is a collection of mappings 
and decisions which are made by 
the system without affirmation 
from our consultation with the de- 
signer. The second group of rules 
prompt the consequent of the rule 
as a suggestion to the designer. The 
designer then either rejects or ac- 
cepts the system’s suggestion. 

The system operates on one 
form at a time using the knowledge 
about previously analyzed forms 
which are contained in DDB. Ini- 
tially, a form to be analyzed is cho- 
sen and an entity relationship dia- 
gram that represents the form is 
derived according to the rules of 
the next five phases. Another form 
is then chosen for analysis. The 
previously designed schema is now 
augmented with the result of the 
analysis of the current form. This 
process continues until no more 
form fields remain and all the re- 
quirements of the last three groups 
of rules are satisfied. 

Figure 4 is the ERD output from 
EDDS for the integrated Work 
Order and Job Assignment Forms. 
Entities and relationships are 
shown by rectangles and diamonds, 
respectively. The minimumlmaxi- 
mum cardinalides are shown by 
separating the two by a colon and 
enclosing them in parentheses. As 
a” example of the interpretation of 
minlmax cardinalides, consider the 
relationship between SALESPER- 
SON and WORKORDER. The 
(0:m) for SALESPERSON means 
that a salesperson can issue zero or 
more work orders. The (1:l) for 
WORKORDER means that a work 
order must be associated to exactly 
one salesperson. 
F-arm Analysis 
We now describe the rules underly- 
ing each of the design phases. Most 
of the rules are mappings from the 
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for” model TV an instance of an 
ERD. We will present some repre- 
sentative rules in the following suh- 
sections. To make a “ore readable 
presentation, pseudocode in the 
for” of the IF...THEN... rules will 
be used. (The actual code was writ- 
ten in Pascal. See [3] for “ore de- 
tails.) Using Figure 4, examples of 
application of some of the rules will 
be given. For a complete list of the 
rules and their discussion, see [31. 

Fm Selection. The form selection 
phase determines the next form to 
analyze using the origin types (see 
Table 1). The form selection deci- 
sions are made by EDDS without 
consultation with the designer. The 
system considers two cases. The 
first case is when no forms have 
been analyzed o= when no forms 
are related to the collection of pre- 
viously analyzed forms. In this case, 
the form with zero destination 
iieldsl is chosen. If “ore than one 
form satisfies this criterion, the 
form with the largest number of V 
(i.e., Value) fields is chosen because 
the analysis of V fields is straight- 
forward (see the subsection on At- 
tribute Attachment). 

The second case considers the 
remaining forms that have fields 
originating from the previously 
analyzed forms. The rationale is to 
maximize the number of destina- 
tion fields whose source is on previ- 
ously analyzed forms. The next 
form to analyze is the one most 
closely related to the previously 
analyzed forms. The strength of 
the relationship between form B 
and for” A is measured by the 
number of destination fields in B 
that have their sources in A. The 
number of V fields is used, as de- 
scribed in the previous paragraph, 
to resolve cases where the strength 
is equal. 

As an example, suppose that 
WORK ORDER does not have any 
destination fields. JOB ASSIGN- 
MENT has the following destina- 
tion fields: WORK-ORDER-NO, 
JOB-LOCATION, TASK, and 

‘Form fields whose wigi” types are F worm 
triggered) or Fv (form-value rriggered) are 
called destination fads. 
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SQFT where the origin type of all 
these fields is F and their sources 
are from the WORK ORDER form. 
Thus, WORK ORDER is chosen as 
the first form to analyze. Suppose 
that there is another form called 
DAILY CREW ASSIGNMENT 
containing information about the 
crew “embers for each job. Fur- 
the= assume that the WORK- 
ORDER-NO, TASK, and SQFT are 
three fields on this form whose 
sources are in the WORK ORDER 
for”. According to the form selec- 
tion rule, the JOB ASSIGNMENT 
for” will be the next form to ana- 
lyze since it has one “ore destina- 
tion field whose source is on the 
previously analyzed forms than the 
DAILY CREW ASSIGNMENT 
form. 

The following two rules are 
pseudocode for the actual rules. In 
these rules, PF is the list of previ- 
ously analyzed forms, RF is the list 
of remaining forms, QF is the list of 
qualifying forms, and F is the final 
form selected. The predicate 
DEST-FIELDS-IN-RF returns true 
if at least one form in its second 
argument contains a destination 
field whose source is in its first ar- 
gument. The predicate SMALL- 
EST-NUMBER-F-FV-FIELDS re- 
turns a list of forms in its second 
argument that have the smallest 
number of F and FV fields. The 
predicate LARGEST-NLJMBER-V- 
FIELDS returns a form name in its 
second argument from among the 
forms in its first argument, which 
has the largest number of V fields. 
If “ore than one form qualities, 
one is arbitrarily chosen. The result 
of both rules is to make F the a=- 
rent form and to delete F from the 
remaining forms list. 

IF (NOT (DEST-FIELDS-IN-RF 
(PF, RF))) -no related forms 
AND 
SMALLEST-NLJMBER-F-FV- 
FIELDS (RF. OF) AND 
LARGES%&itiBER_V_ 
FIELDS (QF, F) 

THEN 
ASSERT (IS-FORM-TO- 
ANALYZE (F)) 

DELETE (F, RF) 
IF DEST-FIELDS-IN-RF (PF, RF) 

-some related forms 
AND 
LARGEST-NUMBERF-FV- 
FIELDS (PF, RF, QF) AND 
LARGEST-NUMBERV- 
FIELDS (QF, F) 

I-HEN 
ASSERT (IS-FORM-TO- 
ANALYZE (F)) 
DELETE (F, RF) 

Entity Identfimtion. ‘Co identify pas- 
sible entities on a form, we use heu- 
ristic rules that are based on the 
local keys, dependencies, origin, 
name, and grouping of form fields. 
These rules suggest that a form 
field may represent an entity. The 
designer is asked to confirm the 
suggestion. Informal examples of 
these rules follow: 

l Any form field designated as a 
determinant in a functional de- 
pendency represents an entity (e.g., 
TASK-NAME representing entity 
TASK). 
l For” field(s) on the left o= right- 
hand sides of the MVD may repre- 
sent an entity. 
l Any for” field designated as a 
local key may represent an entity. 
l Any for” field matching a com- 
mon candidate key suffix such as 
NAME, NO, NUMBER, o= # may 
represent an entity (e.g., WORK 
ORDER NO representing the en- 
tity WORK-ORDER). 
. A group form field may repre- 
sent an entity. Examples of group 
fields are BILL TO and JOB LO- 
CATION, which represent CUS- 
TOMER and JOB-LOCATION 
entities. The subfields of the group 
are attributes of the identified en- 
tity. 
l Any form field that is the source 
of another form field, whether of 
this form o= another, may repre- 
sent an entity. 

As an example, consider the group/ 
subfield rule (fifth in the preceding 
list): 

IF INLIST (FF, RFF) AND 
SUB-FIELD (FF) AND 
(ORIGIN (FF, ‘U’) OR 





fields on an entity or a relationship, 
the mere likely it is that this field is 
another attribute of that entity or 
relationship. The proximity factors 
are computed from left tn right and 
top tn bottom on a form. The prox- 
imities of the remaining form fields 
to each of the previously identified 
entities and relationships are re- 
computed each time a form field is 
removed from the list of the re- 
maining form fields. 

To illustrate the proximity heu- 
ristic, suppose the form field AS- 
SIGNMENT NO of Figure 2 has 
identified the entity JOB ASSIGN- 
MENT of Figure 4a. The proximity 
factors for the DATE OF JOB and 
JOB LOCATION NAME to the 
JOB ASSIGNMENT entity are 
both I. The proximity factors for 
JOB LOCATION ADDRESS and 
CREW FOREMAN are, respec- 
tively, 2 and 3. Now, assume that 
the JOB LOCATION is identified 
as an entity with the t-.vn attributes 
JOB LOCATION NAME and JOB 
LOCATION ADDRESS. These tvvn 
attributes, therefore, will no longer 
be in the list of the remaining form 
fields. The proximity factors for 
the tvvn entities JOB ASSIGN- 
MENT and JOB LOCATION are 
now recomputed for all the remain- 
ing form fields. This factor is equal 
to I for both pairs of (DATE OF 
JOB, JOB ASSIGNMENT) and 

(CREW FOREMAN, JOB LOCA- 
TION). Looking at the proximity 
factors, the designer decides which 
form field, if any, should be an at- 
tribute of JOB ASSIGNMENT or 
JOB LOCATION. In this case, as is 
shown in Figure 4b, the designer 
decided that the DATE OF JOB 
is an attribute of JOB ASSIGN- 
MENT. 

For each remaining form field, 
which cannnt be attached by any of 
the rules, the designer can define a 
new entity or relationship, attach 
the form field to an existing entity 
or relationship, or leave the form 
field on the list of remaining form 
fields. The first tvvn choices will 
always trigger the chain of rules 
again. 

Relatiomhtp and Cardilzality IdentEfE- 
cation. Relationships and car- 
dinalities are identified from the 
origin of form fields, hierarchical 
structure of the forms, and both 
functional and multivalued de- 
pendencies. A relationship is estab- 
lished between tvvn entities where a 
form field in one functionally de- 
termines a form field in the other. 
The maximum cardinalities will be 
I and m for the former and the lat- 
ter entities, respectively. The PRE- 
PARES relationship between 
WORK ORDER and SALES PER- 
SON is an example of this rule since 
WORK ORDER NO determines 
NAME of SALES PERSON. The 
pseudocode for this rule is as fol- 
lows: 

IF ATTRIBUTE-OF (FFI, El) 
AND 
ATTRIBUTE-OF (FFZ, E2) 
AND 
SOURCE (FFZ, FFI) 
AND 
(ORIGIN (FFZ, ‘V’) 
OR 
ORIGIN (FF2, ‘FV’)) 

THEN 
ESTABLISH-RELATIONSHIP 
(El, E2, R, ROLI, ROLZ) 
ASSERT (MAXCARD 
(El, R, ‘I’)) 
ASSERT (MAXCARD 
(E2, R, ‘m’l) 

ROLI and ROLZ are, respec- 
tively, the role names of El and E2 
in relationship R. The designer is 
prompted tn provide the names for 
these roles. 

In a multivalued dependency, 
separate relationships are estab- 
lished between each of the deter- 
minees and the determinant. The 
maximum cardinality of the deter- 
minant is m in both relationships. 

When nn relationships, either 
direct or indirect, have been identi- 
lied between tvvn adjacent levels t 
and i+ I, the designer is prompted 
to identify one. In the identified 
relationship, the tuax cardinality of 
the entity at level i will he m. CON- 
SISTS OF is an example of a direct 
relationship between tin levels of a 

form. There is an indirect relation- 
ship between JOB ASSIGNMENT 
and TASK through ASSIGNED 
and CONSISTS OF relationships. 

Entities on tvvn different forms 
are related tn each other by using 
the information on local keys and 
the origin types of form fields. If a 
form field is a rnnt key, and it is also 
the origin of an F type field on a 
second form, then there could be a 
relationship between the entity rep- 
resented by this rnnt key tn an en- 
tity in the second form which con- 
tains its rnnt key. The ASSIGNED 
relationship between WORK 
ORDER and JOB ASSIGNMENT 
is identified through this rule. 

While identifying the relation- 
ships between entities, the designer 
is asked tn specify the role name for 
each entity in the relationship. The 
role names are used tn identify re- 
flexive relationships (i.e., a relation- 
ship between the same entity) and 
multiple relationships between the 
same tvvn entities. 

To preserve the functional de- 
pendencies implied by node keys 
which are on the same level of a 
form, all other form fields in the 
same node nnnt either be an attri- 
bute of the same entity as the node 
key, or be an attribute of another 
entity which is functionally related 
(directly or indirectly) to the entity 
of the node key. Entity El is di- 
rectly functionally related tn Entity 
E2 in relationship RI if the maxi- 
mum cardinality of El with respect 
to E2 is one. Entity E3 is indirectly 
functionally related tn El if there 
exists a relationship R2 between E2 
and E3 and the maximum cardinal- 
ity of E2 with respect to E3 is one. 

Finally, there are rules for as- 
signing cardinality of I. 

l If a field of an entity is a node 
key, then the minimum cardinality 
of this entity is ‘I’ in a relationship 
tn an entity that has a form field on 
the same node and for which no 
nulls are allowed. 
l An identification-dependent en- 
tity (an entity that is existent- 
dependent and not self-identified) 
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is assigned a 1 for both its minimum 
and maximum cardinalities. 

Inlegr$ Conrtmintr. Two types of 
integrity rules are applied to check 
the consistency and completeness 
of the evolving ER diagram. The 
form-mapping constraints check 
the mapping from the form model 
to the evolving schema diagram. 
The first form-mapping constraint 
ensures there must be at least one 
relationship, direct or indirect, con- 
necting entities in adjacent levels of 
a form. We give the pseudocode for 
this rule. Here, the predicate 
LEVEL(FF, L) designates the level 
(L) of the form field FF on its form. 

IF ATTRIBUTEOF (FFl, El) 
AND 
ATTRIBUTE-OF (FFZ, E2) 
AND 
INSAME_FORM (FFl, FFZ) 
AND 
LEVEL (FFl, Ll) 
AND 
LEVEL (FF2, L2) 
AND 
EQUAL (+(LI, I), L2) 
AND 
NOT (RELATIONSHIP- 
BETWEEN (El, E2, R)) 

THEN 
ESTABLISH-RELATIONSHIP 
(El, E2, R, ROLl, ROLP) 

The second form-mapping con- 
straint ensures that the implied 
functional and multivalued map- 
pings between form fields are 
maintained in the evolving schema 
diagram. The third form-mapping 
constraint ensures that all form 
fields, except those with an origin 
of F, are represented on the dia- 
gram. 

The second collection of integ- 
rity rules enforce constraints on the 
ERD. Some of the integrity rules 
such as the uniqueness of entity and 
relationship names and the re- 
quirement of unique role names for 
each entity in two or more relation- 
ships are enforced as the diagram is 
constructed. Other rules are en- 
forced after the designer indicates 
that a form analysis is complete. 

Examples of these rules are: 

1) Each entity must have at least 
one candidate key except for iden- 
tification-dependent entities, 

2) All entities involved in a rela- 
tionship must have an associated 
minimum-maximum cardinality, 
and 

3) One candidate key of each entity 
must be designated as the primary 
key. 

Implementation and 
usage Status 
Prototype versions of the Form 
Definition System and the Expert 
Database Design System have been 
implemented. These systems were 
originally implemented in Pascal on 
a Vax 111780 [3]. In the original 
design, the Form Definition System 
did not provide an inference corn- 
ponent for the novice user. In later 
research [15], the Form Definition 
system was redesigned and 
reimplemented in Lightspeed Pas- 
cal 1141 on a Macintosh SE. The 
standard features of the Macintosh 
environment, such as pull-down 
menus, dialogue boxes, and win- 
dows, were utilized in the user in- 
terface. 

The Form Definition System was 
tested in a preliminary study using 
subjects from the Computing Ser- 
vices Division of the University of 
Massachusetts at Boston [15, 171. 
The purpose of the study was to 
collect evidence about the types of 
mistakes made, the ability of novice 
users to provide examples of re- 
quirements, and the completeness 
of collected requirements. We ob- 
served that the system was useful in 
educating users and collecting re- 
quirements, but that some depend- 
encies were missed by the novice 
users. We concluded that the Form 
Definition System is most useful in 
providing a ccxmn~n vocabulary 
and goals among end users and 
data processing professionals, 
rather than in providing exhaustive 
requirements collection by end 
“set% 

Conclusion 
We described an approach to sys- 
tematically use electronic forms in 
the database requirements and de- 
sign processes. The foundation of 
our study was a simple form model 
that includes hierarchically struc- 
tured forms with an event-driven 
routing. The Form Definition Sys- 
tem provides an inference compo- 
nent to assist an end user with view 
definitions for their forms where a 
view definition consists of the hier- 
archical structure and functional 
dependencies among form fields. 
The inference component uses a 
collection of rules and heuristics 
along with a purposeful dialogue. 
An explanation facility provides 
feedback at several levels of detail. 
The Expert Database Design Sys- 
tem assists a designer in the view 
integration process. The system 
provides rules for incrementally 
integrating the form views and 
heuristics for mapping the form 
fields into entity types and relation- 
ships. 

We believe that forms provide an 
important input to the database 
design process that should be for- 
malized into existing database de- 
sign methodologies. The form- 
based approach is especially rele- 
vant when forms are important in 
the database and end users are ac- 
customed to form-based work. For 
completeness, the approach de- 
scribed here should be combined 
into a database design methodology 
that permits input from other 
sources in addition to forms such as 
natural language descriptions. 

The work of Joohin Choobineh was 
partially supported by the Center 
for Management of Information 
Systems, Texas A&M University. q 
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