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ABSTRACT

The MobileASL project aims to increase accessibility by en-
abling Deaf people to communicate over video cell phones
in their native language, American Sign Language (ASL).
Real-time video over cell phones can be a computationally
intensive task that quickly drains the battery, rendering the
cell phone useless. Properties of conversational sign lan-
guage allow us to save power and bits: namely, lower frame
rates are possible when one person is not signing due to turn-
taking, and signing can potentially employ a lower frame
rate than fingerspelling. We conduct a user study with na-
tive signers to examine the intelligibility of varying the frame
rate based on activity in the video. We then describe several
methods for automatically determining the activity of sign-
ing or not signing from the video stream in real-time. Our
results show that varying the frame rate during turn-taking
is a good way to save power without sacrificing intelligibility,
and that automatic activity analysis is feasible.

Categories and Subject Descriptors

K.4.2 [Social Issues|: Assistive technologies for persons
with disabilities; H.5.1 [Information Interfaces and Pre-
sentation]: Multimedia Information Systems- Video

General Terms

Human Factors

Keywords

Low Power, Activity Analysis, Sign Language, Deaf Com-
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1. INTRODUCTION

Mobile phones with the ability to display, capture, and
transmit video are becoming more widespread in the mar-
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ketplace. These phones will soon enable better access to the
mobile cell phone network for people within the signing Deaf
Community. While many of the approximately one million
Deaf people in the U.S. [15] are already using internet based
video phones, there is currently no equivalent form of com-
munication over the mobile phone network in the U.S. This
is partly due to bandwidth constraints [12] and partly due to
limited processing power of phones when required to com-
press video at such low bit rates. As mobile phone networks
improve (for example, 3G technology is available in several
countries such as Sweden and Japan and some major cities
in the U.S. [1]) and video compression techniques advance,
the challenge will shift from minimizing the bit rate to mini-
mizing the processor load. As part of the MobileASL project
[3, 6], we are developing video encoding techniques that re-
duce both computation and bandwidth without significantly
harming sign language intelligibility.

A major side effect of the intensive processing involved in
video compression on mobile phones is battery drain. Insuf-
ficient battery life of a mobile device can destroy its useful-
ness if a conversation cannot last more than a few minutes.
In an evaluation of the power consumption of a handheld
computer, Viredaz and Wallach found that decoding and
playing a video was so computationally expensive that it re-
duced the battery lifetime from 40 hours to 2.5 hours [20].
For a sign language conversation, not only do we want to
play video, but also we want to capture, encode, transmit,
receive and decode video all at once and all in real-time.
Needless to say, we can expect battery life to be even more
quickly depleted.

One way to save battery life is to encode videos at a lower
frame rate (i.e. encoding fewer frames per second). De-
creasing the frame rate reduces the average number of pro-
cessor cycles needed (see Figure 1) and reducing cycles helps
save power. Previous studies have shown that when playing
video, 30% of the power consumption is due to the processor
[20]. Not only does encoding fewer frames save power, send-
ing fewer frames saves power. Several studies have shown
that the transmit mode consumes more power than the re-
ceive mode [5, 10]. Sending fewer frames also reduces the
total bandwidth consumed by the user and helps reduce the
load on the network. Depending on the pricing model, the
user could also benefit; for example, if the company bases
its fees on the amount of data transmitted, a lower frame
rate would result in a cheaper bill for the user.

Our goal is to enable real-time mobile sign language con-
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Figure 1: Average processor cycles per second for
a video encoded at 10 frames per second, 5 frames
per second, and 1 frame per second.

versations and part of that goal will be minimizing the frame
rate of video transmitted. However, we do not want to send
a video at such a low frame rate that it becomes unintelligi-
ble. Previous work has shown that frame rates as low as 6
frames per second can be intelligible for signing, but higher
frame rates are needed for fingerspelling [11, 19, 13]. In our
work, we leverage the natural structure of two-sided conver-
sations as well as linguistic aspects of sign language, such as
fingerspelling, that may require more or less temporal infor-
mation. Because conversation involves turn-taking (times
when one person is signing while the other is not), we can
save power as well as bit rate by lowering the frame rate dur-
ing times of not signing, or “just listening” (see Figure 2).
We can also try to increase intelligibility by increasing the
frame rate during fingerspelling.

WERRR M

signing just listening signing

time -

Figure 2: From left to right: a sufficient video frame
rate is chosen when the signer is signing, the frame
rate decreases when the signer is not signing (or
just listening), and increases again when the signer
begins signing.

In this work, we examine the feasibility of adjusting the
frame rate for different activity in the video. We first de-
scribe a user study in which Deaf participants evaluate videos
with differing frame rates. We then describe methods for
determining the signer’s activity from only the information
available in the video in order to automatically find appro-
priate times to adjust the frame rate.

2. RELATED WORK

The intelligibility of varying frame rates depending on
video content has not, to our knowledge, been examined.
Conversational sign language is similar to spoken language
in that multiple people may “hold the floor” at once [7]. Fur-
thermore, ASL contains back-channel feedback [8], in which
the listener indicates understanding, similar to a hearing
person saying “uh-huh.” Since users of MobileASL may be
“signing over one another,” we want to know if reducing the
frame rate when one user is not signing negatively affects
intelligibility.

A related topic is sign language recognition, in which re-
searchers try to translate sign language into English text.
Several good surveys detail the state-of-the-art [16, 14]. How-
ever, the goal of our project does not involve translation or
interpretation. Instead, we aim to increase accessibility by
enabling Deaf people to communicate over cell phones. The
domain of mobile communication restricts potential solu-
tions to those that can utilize only video and that are com-
putationally simplistic enough to run in real-time on limited
mobile phone processors.

Johnson and Caird investigated the effects of frame rate
on sign language instruction [13]. They found that 1 and 5
frames per second (fps) were sufficient for novices to learn
from ten ASL videos, each containing one sign. The effect
of frame rate on intelligibility of isolated ASL signs has also
been studied by Sperling et al. who found insignificant dif-
ferences in intelligibility from 30 to 15 fps, slight reduction
in intelligibility from 15 to 10 fps, and considerable reduc-
tion from 10 to 5 fps [19]. Foulds similarly found 6 fps can
accurately represent ASL and fingerspelling for individual
signs when smoothly interpolated to 30 fps [11]. Since our
videos contain more “conversationally-paced” signing with
many rapidly-produced signs, and our users could be consid-
ered experts in sign language, 5 fps is likely a lower bound
for sufficient comprehension.

Automatic activity analysis of video is an active topic of
research in the computer vision community. While conver-
sational sign language video is not widely studied, there are
several related problems that have received attention. Shot
change detection [17] determines when a scene changes in a
video, so that it can be parsed automatically and key frames
extracted. There is usually no need for real-time analysis in
shot change detection, so most algorithms analyze the en-
tire video at once. Furthermore, there are usually substan-
tial differences between scenes, while in our videos there are
only minor differences between the signing and not signing
portions. Our baseline differencing method is a common
starting point for shot change detection. Another related
area is human motion analysis [21]. Usually the goal of mo-
tion analysis is to track or recognize people or activities from
video. Often the computer vision techniques are not real-
time, and require processing power far beyond the scope of
a mobile phone.

3. STUDY DESIGN

To better understand intelligibility effects of altering the
frame rate of sign language videos based on language con-
tent, we conducted a user study with members of the Deaf
Community. The purpose of the study was to investigate
the effects of (a) lowering the frame rate when the signer
is not signing (or “just listening”) and (b) increasing the



frame rate when the signer is fingerspelling. The hope was
that study results would motivate the implementation of
our proposed automatic techniques for determining conver-
sationally appropriate times for adjusting frame rates in real
time with real users.

The videos used in our study were recordings of conver-
sations between two local Deaf women at their own natural
signing pace. During the recording, the two women alter-
nated standing in front of and behind the camera so that
only one person is visible in a given video. The resulting
videos contain a mixture of both signing and not signing (or
“just listening”) so that the viewer is only seeing one side
of the conversation. The effect of variable frame rates was
achieved through a “Wizard of Oz” method by first man-
ually labeling video segments as signing, not signing, and
fingerspelling and then varying the frame rate during those
segments.

Even though the frame rate varied during the videos, the
bits allocated to each frame were held constant so that the
perceived quality of the videos would remain as consistent
as possible across different encoding techniques. This means
that the amount of data transmitted would decrease with
decreased frame rate and increase for increased frame rate.
The maximum bit rate was 50 kbps.

We wanted each participant to be able to view and eval-
uate each of the 10 encoding techniques described below
without watching the same video twice and so we created
10 different videos, each a different part of the conversa-
tions. The videos varied in length from 0:34 minutes to
2:05 minutes (mean = 1:13) and all were recorded with the
same location, lighting conditions, and background. The
x264 codec [2], an open source implementation of the H.264
(MPEG-4 part 10) standard [18], was used to compress the
videos.

Both videos and interactive questionnaires were shown on
a Sprint PPC 6700, PDA-style video phone with a 320 x
240 pixel resolution (2.8” x 2.17) screen.

3.1 Signing vs. Not Signing

We studied four different frame rate combinations for videos
containing periods of signing and periods of not signing.
Previous studies indicate that 10 frames per second (fps)
is adequate for sign language intelligibility, so we chose 10
fps as the frame rate for the signing portion of each video.
For the non-signing portion, we studied 10, 5, 1, and 0 fps.
The 0 fps means that one frame was shown for the entire
duration of the non-signing segment regardless of how many
seconds it lasted (a freeze-frame effect). Figure 3 shows the
average cycles per second required to encode video using
these four techniques and the savings gained from reducing
the frame rate during times of not signing. A similar bit rate
savings was observed; on average, there was a 13% savings
in bit rate from 10-10 to 10-5, a 25% savings from 10-10 to
10-1, and a 27% savings from 10-10 to 10-0.

3.2 Signing vs. Fingerspelling

We studied six different frame rate combinations for videos
containing both signing and fingerspelling. Even though our
previous studies indicate that 10 fps is adequate for sign lan-
guage intelligibility, it is not clear that that frame rate will
be adequate for the fingerspelling portions of the conversa-
tion. During fingerspelling, many letters are quickly pro-
duced on the hand(s) of the signer and if fewer frames are
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Figure 3: Average processor cycles per second for
the four different variable frame rates. The first
number is the frame rate during the signing period
and the second number is the frame rate during the
not signing period.

shown per second, critical letters may be lost. We wanted
to study a range of frame rate increases in order to study
both the effect of frame rate and change in frame rate on
intelligibility. Thus, we studied 5, 10, and 15 frames per
second for both the signing and fingerspelling portions of
the videos resulting in six different combinations for signing
and fingerspelling: 5 and 5, 5 and 10, 5 and 15, 10 and 10,
10 and 15, and 15 and 15.

3.3 Study Procedure

Six adult, female members of the Deaf Community be-
tween the ages of 24 and 38 participated in the study. All
six were Deaf and had life-long experience with ASL; all
but one (who used Signed Exact English in grade school
and learned ASL at age 12) began learning ASL at age 3
or younger. All participants were shown one practice video
to serve as a point of reference for the upcoming videos and
to introduce users to the format of the study. They then
watched 10 videos: one for each of the encoding techniques
described above.

Following each video, participants answered a five- or six-
question, multiple choice survey about his or her impressions
of the video (see Figure 4). The first question asked about
the content of the video, such as “Q0: What kind of food
is served at the dorm?” For the Signing vs. Fingerspelling
videos, the next question asked “Q1: Did you see all the
finger-spelled letters or did you use context from the rest
of the sentence to understand the word?” The next four
questions asked:

Q2: “During the video, how often did you understand what
the signer was saying?”

Q3: “How easy or how difficult was it to understand the
video?”

Q4: “Changing the frame rate of the video can be distract-
ing. How would you rate the annoyance level of the
video?”



Q5: “If video of this quality were available on the cell phone,
would you use it?”

The viewing order of the different videos and different en-
coding techniques for each part of the study (four for Sign-
ing vs. Not Signing and six for Signing vs. Fingerspelling)
was determined by a Latin squares design to avoid effects of
learning, fatigue, and/or variance of signing or signer on the
participant ratings. Post hoc analysis of the results found
no significant differences between the ratings of any of the
10 conversational videos. This means we can safely assume
that the intelligibility results that follow are due to varied
compression techniques rather than other potentially con-
founding factors (e.g. different signers, difficulty of signs,
lighting or clothing issues that might have made some videos
more or less intelligible than others).

4. RESULTS

For the variable frame rates studied here, we did not vary
the quality of the frames and so the level of distortion was
constant across test sets. Thus, one would expect to see
higher ratings for higher frame rates. Our hope was that the
ratings would not be statistically significant meaning that
our frame rate conservation techniques do not significantly
harm intelligibility.

4.1 Signing vs. Not Signing

For all of the frame rate values studied for non-signing
segments of videos, survey responses did not yield a statis-
tically significant effect on frame rate. This means that we
did not detect a significant preference for any of the four re-
duced frame rate encoding techniques studied here, even in
the case of 0 fps (the freeze frame effect of having one frame
for the entire non-signing segment). Numeric and graphical
results can be seen in Table 1 and Figure 4. This result
may indicate that we can obtain savings by reducing the
frame rate during times of not signing without significantly
affecting intelligibility.

Many participants anecdotally felt that the lack of feed-
back for the 0 fps condition seemed conversationally un-
natural; they mentioned being uncertain about whether the
video froze, the connection was lost, or their end of the con-
versation was not received. For these reasons, it may be
best to choose 1 or 5 fps, rather than 0 fps, so that some of
feedback that would occur in a face to face conversation is
still available (such as head nods and expressions of misun-
derstanding or needed clarification).

4.2 Signing vs. Fingerspelling

For the six frame rate values studied during fingerspelling
segments, we did find a significant effect of frame rate on par-
ticipant preference (see Table 2). As expected, participants
preferred the encodings with the highest frame rates (15 fps
for both the signing and fingerspelling segments), but only
slight differences were observed for videos encoded at 10 and
15 fps for fingerspelling when 10 fps was used for signing.
Observe that in Figure 4, there is a large drop in ratings
for videos with 5 fps for the signing parts of the videos.
In fact, participants indicated that they understood only
slightly more than half of what was said in the videos en-
coded with 5 fps for the signing parts (Q2). The frame rate
during signing most strongly affected intelligibility, whereas

the frame rate during fingerspelling seemed to have a smaller
effect on the ratings.

This result is confirmed by the anecdotal responses of
study participants. Many felt that the increased frame rate
during fingerspelling was nice, but not necessary. In fact
many felt that if the higher frame rate were available, they
would prefer that during the entire conversation, not just
during fingerspelling. We did not see these types of re-
sponses in the Signing vs. Not Signing part of the study,
and this may indicate that 5 fps is just too low for comfort-
able sign language conversation. Participants understood
the need for bit rate and frame rate cutbacks, yet suggested
the frame rate be higher than 5 fps if possible.

These results indicate that frame rate (and thus bit rate)
savings are possible by reducing the frame rate when times
of not signing (or “just listening”) are detected. While in-
creased frame rate during fingerspelling did not have neg-
ative effects on intelligibility, it did not seem to have posi-
tive effects either. In this case, videos with increased frame
rate during fingerspelling were more positively rated, but the
more critical factor was the frame rate of the signing itself.
Increasing the frame rate for fingerspelling would only be
beneficial if the base frame rate were sufficiently high, such
as an increase from 10 fps to 15 fps. However, we note that
the type of fingerspelling in the videos was heavily context-
based; that is, the words were mostly isolated commonly
fingerspelled words, or place names that were familiar to the
participants. This result may not hold for unfamiliar names
or technical terms, for which understanding each individual
letter would be more important.

In order for these savings to be realized during real time
sign language conversations, a system for automatically de-
tecting the time segments of “just listening” is needed. The
following section describes a potential solution.

S. VIDEO PROCESSING

We would like to automatically detect from our video
stream when the user is signing, not signing, and finger-
spelling, so we can lower or raise the frame rate accordingly.
In this paper we tackle the question of automatically rec-
ognizing when the user is signing versus not signing, leav-
ing the harder problem of fingerspelling detection to future
work. For the purposes of frame rate variation, we can only
use the information available to us from the video stream.
We also must be able to determine the class of activity in
real time.

We used the same four conversational videos from the user
study. In each video, the same signer “Gina” is filmed by
a stationary camera, and she is signing roughly half of the
time. We are thus using an easy case as our initial attempt,
but if our methods do not work well here, they will not
work well on more realistic videos. We used three different
techniques to classify each video into signing and not signing
portions. In all the methods, we train on three of the videos
and test on the fourth. We present all results as comparisons
to the ground truth “Wizard of Oz” labeling.

5.1 Differencing

A baseline method is to examine the pixel differences be-
tween successive frames in the video. If frames are very
different from one to the next, that indicates a lot of activ-
ity and thus that the user might be signing. On the other
hand, if the frames are very similar, there is not a lot of
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Figure 4: Average ratings on survey questions for variable frame rate encodings (stars).

Signing v Not Signing (fps) 10v 0 10v1 10v5 10 v 10 Sig (F5,15)

Q2 (0 not at all...1 all the time) 0.71 0.71 0.79 0.83 1.00, n.s.
SD=1.88 SD=0.10 SD=0.19 SD=0.20

Q3 (1 difficult...5 easy) 2.50 3.17 3.50 3.83 1.99,n.s.
SD=1.64 SD=0.98 SD=1.05 SD=1.17

Q4 (1 very...5 not annoying) 2.17 2.50 2.83 3.67 1.98, n.s.
SD=1.33 SD=1.05 SD=1.33 SD=1.51

Q5 (1 no...5 yes) 2.33 2.33 2.50 3.33 1.03,n.s.
SD=1.75 SD=1.37 SD=1.52 SD=1.37

Table 1: Average participant ratings for videos with reduced frame rates during non-signing segments.

motion so the user is probably not signing. As each frame
is processed, it is subtracted from the previous frame, and
if the differences in pixel values are above a certain thresh-
old, the frame is classified as a signing frame. This method
is sensitive to extraneous motion and is thus not a good
general purpose solution, but it gives a good baseline from
which to improve.

Formally, for each frame k in the video, we obtain the
luminance component of each pixel location (i,5). We sub-
tract from it the luminance component of the previous frame
at the same pixel location. If the sum of absolute differences

is above the threshold 7, we classify the frame as signing.
Let f(k) be the classification of the frame and Ix(7,7) be
the luminance component of pixel (i, j) at frame k. Call the
difference between frame k and frame k — 1 d(k), and let

d(1) = 0. Then:
d(k) = Y I(i,5) = Ta (6, 5))| (1)
(4,9) €I
i = { ] ST @



Signing v Fingerspelling (fps) 5v5 5v 10 5v 15 10 v 10 10v 15 15v 15 Sig (F5,25)

Q1 (1 letters only...5 context only) 2.17 3.00 3.33 4.17 3.67 4.00 3.23,n.s.
SD=0.75 SD=1.26 SD=1.37 SD=0.98 SD=1.21 SD=0.89

Q2 (0 not at all...1 all the time) 0.54 0.67 0.67 0.96 1.00 0.96 7.47,p < .01
SD=0.19 SD=0.38 SD=0.20 SD=0.10 SD=0.00 SD=0.10

Q3 (1 difficult... easy) 2.00 2.67 2.33 117 167 183  13.04,p < .01
SD=0.63 SD=1.37 SD=1.21 SD=0.41 SD=0.82 SD=0.41

Q4 (1 very...5 not annoying) 2.00 2.17 2.33 4.00 4.33 4.83 14.86,p < .01
SD=0.89 SD=1.36 SD=1.21 SD=0.89 SD=0.82 SD=0.41

Q5 (1 no..5 yes) 1.67 1.83 2.00 117 150 183  18.24,p < .01
SD=0.52 SD=1.60 SD=0.89 SD=0.98 SD=0.84 SD=0.41

Table 2: Average participant ratings for videos with increased frame rates during fingerspelling segments.

To determine the proper threshold 7, we train our method
on several different videos and use the threshold that returns
the best classification on the test video. Our results are
shown in column 2 of Table 3.

5.2 SVM

The differencing method performs well on our videos, be-
cause our camera is stationary and our background is fixed.
However, a major weakness of differencing is that it is very
sensitive to camera motion and to changes in the back-
ground, such as people walking by. For our application of
sign language over cell phones, the users will often be hold-
ing the camera themselves, which will result in jerkiness that
the differencing method would improperly classify. In gen-
eral we would like a more robust solution.

We can make more sophisticated use of the information
available to us. Specifically, the H.264 video encoder has
motion information in the form of motion vectors. For a
video encoded at a reasonable frame rate, there is not much
change from one frame to the next. H.264 takes advantage
of this fact by first sending all the pixel information in one
frame, and from then on sending a vector that corresponds
to the part of the previous frame that looks most like this
frame plus some residual information. More concretely, each
frame is divided into macroblocks that are 16 x 16 pixels.
The compression algorithm examines the following choices
for each macroblock and chooses the cheapest (in bits) that
is of reasonable quality:

1. Send a “skip” block, indicating that this macroblock
is exactly the same as the previous frame.

2. Send a vector pointing to the location in the previ-
ous frame that looks most like this macroblock, plus
residual information.

3. Subdivide the macroblock and reexamine these choices.

4. Send an “I” block, essentially the macroblock uncom-
pressed.

Choices 2 and 3 have motion vectors associated with them;
choice 4 does not. Choice 1 means no motion at all; choice 2
might indicate a big, sweeping motion, while choice 3 might
indicate small, rapid movements. Choice 4 usually indicates
the most motion of all, since the encoder only resorts to
it when it cannot find a section of the previous frame that
matches this macroblock. Figure 5 shows a visualization
of the macroblocks, with the subdivisions and motion vec-
tors. The subdivisions around the signer’s right hand indi-

Figure 5: Visualization of the macroblocks. The
lines emanating from the centers of the squares are
motion vectors.

cate small, quick movements, while the left arm and the face
are exhibiting slower, broader motions.

For each frame, we can obtain either motion vector infor-
mation for each macroblock or an indication that the en-
coder gave up. This is quite useful for determining what
kind of activity is taking place in the video. If we know
the hands are involved in big motions, we can classify the
frame as a signing frame; conversely, if the hands and face
are not moving very much, we can classify the frame as not
signing. Thus, for each frame, we will obtain features from
the encoder that will help us classify it.

We do not need all of the motion vector information from
all of the macroblocks. Instead, we would prefer to focus
on the face and hands. We perform skin-detection on the
video to determine the macroblocks most likely to contain
the face and hands. The skin detection is based on the color
value of the pixels, and so can be performed in real-time. We
then divide the frame into three parts: the top third, corre-
sponding to the face, and the bottom two thirds divided in
half, corresponding to the left and right hands. Any mac-
roblock with majority skin pixels we classify as skin. For
those macroblocks, we calculate a summary motion vector



Figure 6: Macroblocks labeled as skin and the cor-
responding frame division.

for the face, right hand, and left hand. As an additional fea-
ture, we count the overall number of I-blocks in the frame.
Figure 6 shows the macroblocks classified as skin and the
frame division. Note that this simple method won’t always
correspond to the face and hands, and yet yields reasonable
results. A more sophisticated method might do better, but
we would have to ensure it would work in real-time.

A well-known solution to the classification problem is Sup-
port Vector Machines (SVM) [9]. A support vector machine
is an algorithm that, given labeled training data in the form
of features and their classes, determines the optimal sepa-
rating hyperplane. The hyperplane is not necessarily in the
same dimension as the feature space; in fact, it is usually
transformed nonlinearly to a higher dimensional space in
which greater separation may be achieved.

We use libsvm [4], a publicly available software package,
to train and test our data. As with differencing, we train
on three of the videos and test on the fourth. Column 3 of
Table 3 contains our results. On the first two videos, the
differencing method does better, but on the last two, SVM
is superior.

5.3 Combination

Given these results, it would be nice to have the best of
both worlds; that is, to combine the results of SVM with the
results of the differencing method to make the best classifi-
cation choice possible.

The SVM returns a classification based on which side of
the hyperplane the test feature vector is on. Furthermore,
it also returns the distance between the hyperplane and the
feature vector. The distance can be viewed as a confidence
value. If a feature vector is far from the dividing hyperplane,
we are very certain of its classification. On the other hand,
if a feature vector is close to the hyperplane, we are unsure
if the classification is correct.

We can use a similar measure of distance for the differ-
encing method. If the difference is close to the threshold on
either side, we are not very confident of our classification,
but if the difference is much bigger or much smaller than
the threshold, we can be sure we are correct.

We combine differencing and SVM as follows. When the
SVM strongly classifies a vector, we use its classification.
Otherwise, we determine the classification by weighting the

Test video | Differencing | SVM | Combine False
Negative

ginal 88.1% 87.8% 89.9% 1.3%

gina2 87.2% 85.2% 88.5% 8.0%

gina3 88.8% 90.6% 91.1% 1.8%

ginad 86.0% 86.6% 87.2% 71%

Table 3: Results for the differencing method, SVM,
and the combination method. The last column is
the percent of frames that are false negatives, that
is, signing frames misclassified as not signing.

percent threshold, comparing it to the SVM distance and
choosing the classification of the larger one. Recall the def-
inition of d(k), f(k), and 7 from Equations 1 and 2. Let
g(k) be the classification returned by the SVM and p(k) be
the distance from the hyperplane. Let w be the weighting
factor. Then

h(k) ={ (k) if p(k) <w‘%
g(k) otherwise

We empirically determined w to be 3.01; this weighting
factor resulted in the best possible value for most of the
videos, and close to the best for the remainder. All four
videos have the best correctness when using the combination
method. The third column of Table 3 shows the results of
the combination method. We call misclassifying a frame as
not signing when it is actually signing a “false negative”; it
is a more signficant mistake than vice versa, since frames
will be dropped causing a decrease in intelligibility. The
fourth column of Table 3 lists the percent of false negatives.

While the results are promising, this study is necessarily
preliminary. A robust, generalized system would have to
cope with complex backgrounds, differences in skin tones,
and a non-stationary camera. Furthermore, different signers
have different styles. Some are more likely to have big, ener-
getic gestures and lots of movement even while not signing,
whereas others are “quieter.” There are also dialect vari-
ations from region to region, similar to accents in spoken
languages. A truly robust system would have to cope with
all these concerns.

6. CONCLUSION AND FUTURE WORK

In this work we examined the utility and feasibility of
varying the frame rate based on activity in the video. Our
user study results showed that we could obtain savings in
power and bits by lowering the frame rate during periods of
“not signing” without strongly affecting intelligibility. For
the fingerspelling videos, the users could not tolerate a 5 fps
rate, even when the fingerspelling was encoded at a higher
frame rate. In general, users would rather have a higher
frame rate overall, not just for the fingerspelling. Future
work could explore different types of fingerspelling, including
more complex and unfamiliar terms that the user cannot
easily determine from context, and evaluation of minimum
acceptable frame rates for sign language.

The preliminary results for classification are promising,
but there is much work to be done. We do not consider
temporal information in any of our methods. If a user is
signing, it is likely that the next frame will be a signing



frame; conversely, if they are not signing, it is likely that the
next frame will not be a signing frame. We treat all frames
independently, when it is clear that they are not. In the fu-
ture we plan to include temporal information into our SVM.
We also plan to test other machine learning techniques that
naturally incorporate temporal information, such as hidden
Markov models. Furthermore, we plan to experiment with
smarter ways to obtain features from the hands and face,
such as tracking them from one frame to the next.

We plan to create more realistic conversational videos,
with more background noise and camera motion, and test
our techniques on these videos. We would also like to incor-
porate some of the advanced work on shot change detection.
While their problem is quite different, in that it is not real
time and the change they detect is usually large, we think
we can apply some of their techniques to our classification
of sign language activity.

Because a mobile device used for sign language conversa-
tion will need to both encode and decode video at the same,
we will have access to information about both signers in the
conversation. It is likely that our classification system may
benefit from this knowledge; it may be easier to determine
“whom of these two people is signing” rather than “is this
person signing or not signing.”

Lastly, incorrectly classifying a “not signing” frame as
signing is less detrimental to the conversation than incor-
rectly classifying a signing frame as “not signing,” because
the next frames are skipped when one is classified as not
signing. We will use this fact to inform our training and
testing methods.

Reducing the frame rate during times of “not signing” is
an ideal way to save bits and power in a computationally
expensive video cell phone conversation. Mobile cell phones
are enabling the signing Deaf community easier access to
ubiquitous cell phone networks and results from this project
will enable easier to understand and longer lasting conver-
sations.
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