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Abstract

The stream programming paradigm aims to expose coarse-
grained parallelism in applications that must process contin-
uous sequences of events. The appeal of stream program-
ming comes from its conceptual simplicity. A program is a
collection of independent filters which communicate by the
means of uni-directional data channels. This model lends it-
self naturally to concurrent and efficient implementations on
modern multiprocessors. As the output behavior of filters
is determined by the state of their input channels, stream
programs have fewer opportunities for the errors (such as
data races and deadlocks) that plague shared memory con-
current programming. This paper introduces STREAMFLEX,
an extension to Java which marries streams with objects and
thus enables to combine, in the same Java virtual machine,
stream processing code with traditional object-oriented com-
ponents. STREAMFLEX targets high-throughput low-latency
applications with stringent quality-of-service requirements.
To achieve these goals, it must, at the same time, extend
and restrict Java. To allow for program optimization and
provide latency guarantees, the STREAMFLEX compiler re-
stricts Java by imposing a stricter typing discipline on fil-
ters. On the other hand, STREAMFLEX extends the Java vir-
tual machine with real-time capabilities, transactional mem-
ory and type-safe region-based allocation. The result is a
rich and expressive language that can be implemented ef-
ficiently.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21-25, 2007, Montréal, Québec, Canada.

Copyright (© 2007 ACM 978-1-59593-786-5/07/0010. .. $5.00

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors—run-time environments;
D.3.3 [Programming Languages]: Language Constructs and
Features—classes and objects; D.4.7 [Operating Systems]:
Organization and Design—real-time systems and embedded
systems.

General Terms Languages, Experimentation.

Keywords Real-time systems, Java virtual machine, Mem-
ory management, Ownership types, Stream processing.

1. Introduction

Stream processing is a programming paradigm fit for a class
of data driven applications which must manipulate high-
volumes of data in a timely and responsive fashion. Example
applications include video processing, digital signal process-
ing, monitoring of business processes and intrusion detec-
tion. While some applications lend themselves naturally to a
distributed implementation, we focus on single node systems
and, in particular, on programming language support for ef-
ficient implementation of systems that require microsecond
latencies and low packet drop rates.

In a stream processing language, a program is a collection
of filters connected by data channels. Each filter is a func-
tional unit that consumes data from its input channels and
produces results on its output channels. In their purest form,
stream processing languages are ideally suited to parallel im-
plementations as the output behavior of a filter is a determin-
istic function of the data on its input channels and its inter-
nal state. As filters are independent and isolated from one
another, they can be scheduled in parallel without concern
about data races or other concurrent programming pitfalls
that plague shared memory concurrent programs. The appeal
of this model is evidenced by a number of stream processing
languages and systems include Borealis [2], Infopipes [10],



Streamlt [32] and Gryphon [9]. These languages have a long
lineage which can be traced back to Wadge and Ashcroft’s
Lucid [5] data flow language and, to some extent, to the Es-
terel and Lustre family of synchronous languages [17, 13].

High performance stream processing systems that deal
with large volumes of data should be designed to fulfill at
least the following two key requirements (out of the eight
requirements given in [31]):

® keep the data “moving”: this means messages must be
processed with as little buffering as possible;

e respond “instantaneously”: any substantial pause may
result in dropped messages and must be avoided.

Stream processing applications, if they are to meet their non-
functional requirements, must be engineered with great care.
Moreover, the underlying infrastructure, the stream process-
ing language and its runtime system, must be designed and
implemented so as to avoid inherent inefficiencies. The chal-
lenge for stream processing language designers is to provide
abstractions that are expressive enough to allow rapid devel-
opment of applications without giving up on efficiency and
predictability. Consider, for instance, a network intrusion de-
tection system with a number of detection modules defined
as filters over a stream of network packets. Throughput of
the system is crucial to process event streams at rates in the
hundreds of MBps and latency is important to avoid drop-
ping packets and thereby possibly failing to detect attacks.
These requirements have obvious implications on both user-
defined streaming code and the underlying infrastructure.
Unlike stream programming languages such as Streamlt,
Lucid or Esterel, we propose to provide only a limited set
of new abstractions for stream processing and leverage a
host language for its general purpose programming con-
structs. This has the advantage of providing a familiar frame-
work for developers but comes at the cost of having to deal
with the impedance mismatch between the requirements of
stream processing and features provided by the host lan-
guage. In this paper, we introduce STREAMFLEX, an ex-
tension to the Java programming language with support
for high-throughput stream processing. Java is a pragmatic
choice as it is a mainstream language with a wealth of li-
braries and powerful IDEs. Not only does this make it easier
for programmers to accept the new abstractions, but it opens
up opportunities for seamlessly integrating stream proces-
sors in larger applications written in plain Java. However,
Java presents significant implementation challenges. In fact,
it is not obvious at first that Java is at all suitable for applica-
tions with stringent quality of service requirements. A Java
virtual machine implementation is the source of many poten-
tial interferences due to global data structures, just-in-time
compilation and, of course, garbage collection. In [30], we
have performed empirical measurements of the performance
of standard and real-time garbage collectors. Our stop-the-
world collector introduced pauses of 114 milliseconds; us-

ing a real-time collector pause time went down to around
1 milliseconds at the expense of application throughput. In
both cases, the pauses and performance overheads were too
severe for some of our target applications.

The STREAMFLEX programming model is inspired both
by the Streamlt language and, loosely, by the Real-time
Specification for Java [11]. STREAMFLEX includes changes
to the virtual machine to support real-time periodic execu-
tion of Java threads, a static type system which ensures iso-
lation of computational activities, a type-safe region-based
memory model that permits filters to compute even when
the garbage collector is running, and software transactional
memory for communication between filters and Java. The
contributions of this paper are the following:

¢ Programming Model: We present a new programming
model for real-time streaming which allows developers
to write stream processors in Java. The proposal does not
require changes to Java syntax. Filters are legal Java pro-
grams and, STREAMFLEX can be manipulated by main-
stream IDEs such as Eclipse. A number of standard li-
braries and API can be used within filters, and filters can
be integrated into Java applications.

e Filter Isolation: STREAMFLEX filters are isolated com-
ponents that communicate by non-blocking bounded
channels. Software transactional memory is used for syn-
chronization of shared data channels.

e Zero-Copy Message Passing: The STREAMFLEX type
system allows mutable data objects to be transefered
along linear filter pipelines without requiring copies.

¢ Implementation: We have implemented our proposal on
top of a real-time virtual machine and extended a version
of the javac compiler to enforce the STREAMFLEX type
system.

¢ Evaluation: We present an empirical evaluation of our
system. We show that STREAMFLEX programs outper-
form the corresponding Java variants. We also show our
implementation achieves a high degree of predictability.

STREAMFLEX is built on top of the Ovm virtual machine [4]
which comes with an implementation of the Real-time Spec-
ification for Java (RTSJ). While we initially envisaged us-
ing the RTSJ directly, we found the API too complex and
error prone for our needs. Instead, we based STREAM-
FLEX on a simpler real-time programming model called Re-
flexes [30]. Reflexes already provide some of the features
that are required by STREAMFLEX, namely, real-time pe-
riodic threads, region-based allocation and software trans-
actional memory. The main differences are in the program-
ming model, Reflexes are stand alone components with no
support for cooperation across multiple Reflexes. The STR-
EAMFLEX type system is an extension to the ScopelJ type
system of [34]. The relationship with previous work is fur-
ther detailed in Section 8.
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class Gen extends Filter {
IntChannel out; TimeChannel t;
int counter;
void work() {
out.put(counter++);

} }
} }

(a) Filter Gen

class Mid extends Filter {
IntChannel in, out;

void work() {
out.put(in.take());

(b) Filter Mid

class Sink extends Filter {
IntChannel in;

void work() {
}print(”got " +in.take());
}

(c) Filter Sink

Figure 1. Example of a STREAMFLEX pipeline.

2. Stream Processing

This section introduces the main concepts of STREAMFLEX.
A stream processing application is built out of a number of
filters connected by channels to form a filter graph. Filter
graphs are executed by the STREAMFLEX runtime engine
which manages both concurrency within any given graphs
and across multiple graphs.

The basic computational unit for processing one or more
data streams is the filter. A filter is a schedulable entity con-
sisting of user-defined persistent data structures, typed in-
put and output channels, an activity and an (implicit) trig-
ger on channel states. An activity can become schedulable
any time new data appears on one of the associated filter’s
input channel, more precisely a filter becomes schedulable
when it’s trigger predicate evaluate to true. The STREAM-
FLEX scheduler is responsible for releasing the activity with-
out any guarantee of timeliness. It only promises that any
schedulable activity will eventually be released. If program-
mers require timely execution of filters, they must use clocks.
Clocks generate events on time channels. When filter is con-
nected to a clock, the scheduler arranges for the filter to be
released periodically.

Simple Example. Figure 1 presents a purposefully simple
STREAMFLEX graph. User-defined filters are Java classes
that extend the pre-defined Filter class. The filters in this
example are arranged to form a simple pipeline. Activi-
ties are implemented by the work() method of each filter,
these methods are invoked repeatedly by the STREAMFLEX
scheduler when the filter’s trigger predicate evaluates to true.
By convention, work() methods are expected to eventually
yield—in most applications it would be a programming er-
ror for an activity to fail to terminate as this could prevent
evaluation of other triggers and block the entire pipeline.
The first filter in Figure 1 is an instance of the built-in
Clock class. The clock periodically puts a signal on the tim-
ing channel of the first filter, an instance of the user-defined
class Gen shown in Figure 1(a). Gen is a stateful filter with
a single integer output channel. Like any Java class, a filter

may have instance variables and methods. In this case, Gen
keeps a counter which it increments at each release before
putting the counter’s value on its output channel. The filter in
Figure 1(b) is simple and stateless. It consists of two integer
channels, one for input and one for output. Its only behavior
is to read a single value from its input and put it on its output
channel. Finally, Figure 1(c) is a seemingly innocuous filter
for printing the value received on its input channel.

Constructing Filter Graphs. STREAMFLEX filter graphs
are constructed by extending the built-in StreamFlexGraph.
The protocol is simple: the constructor creates and connects
all filters and clocks and then calls validate() to verify that
the graph is well formed. Once validate() has been called
the graph cannot be changed. Figure 2 demonstrates the
construction of the graph of Figure 1.

class Simple extends StreamFlexGraph {
Simple(int period) {

Clock clk = makeClock(period);
Filter gen = makeFilter(Gen.class);
Filter mid = makeFilter(Mid.class);
Filter sink = makeF|Ite (Sink.class);
connect(clk, gen, "timer");
connect(gen, 'ou ", mid, "in", 1);
connect(mid, "out”, sink, "in", 1);
validate();

Figure 2. Constructing the filter graph of Figure 1.

Interaction with Java. Running a stream processing appli-
cation on a standard JVM would uncover a number of draw-
backs of Java for applications with any quality of service
requirements. For starters, the print() statement in Figure 1
allocates a StringBuffer and a String at each release. Even-
tually filling up the heap, triggering garbage collection and
blocking the filter for hundreds of milliseconds. Another is-
sue is the default Java scheduler may decide to preempt a



filter at any point of time in favor of a plain Java thread.
STREAMFLEX ensures low-latency by executing filters in a
partition of the JVM’s memory which is outside of the con-
trol of the garbage collector. This allows the STREAMFLEX
scheduler to safely preempt any Java thread, including the
garbage collector. Activities can thus run without fear of
being blocked by the garbage collector. Another danger is
potential for priority inversion. To prevent synchronization
hazards, such as an activity blocking on a lock held by a
Java thread which in turn can block for the GC, filters are
isolated from the Java heap. Non-blocking synchronization
in the form of software transactional memory is used when
Java threads need to communicate with filters.

With these protections in place, integrating a STREAM-
FLEX filter graph into a Java application is simply a matter
of having plain Java code invoke public methods of a filter.

Memory Model. We mentioned that in STREAMFLEX fil-
ters are protected from interference from the garbage collec-
tor. But then, how does STREAMFLEX deal with the alloca-
tions occurring in Figure 1(c)? The answer is that we use a
region-based allocation scheme. Each time an activity is re-
leased, a new memory region is created and, by default, all
newly allocated objects are created in that region. When the
activity terminates, at the return of the corresponding work()
method, all objects allocated in the region are reclaimed at
the same time. Region-based allocation allows programmers
to use standard Java programming idioms without having to
incur disruptive pauses.

In terms of memory management, a STREAMFLEX graph
is thus composed of three kinds of objects: stable objects,
transient objects and capsules. Stable objects include the fil-
ter instance itself and its internal state, their lifetime is equal
to that of the filter. Transient objects live as long as the activ-
ity. Finally, capsules are data objects used in messages and
are managed by the STREAMFLEX runtime engine. Specify-

Stable HeapMemory

Filter

Transient

\ \ J

Capsules

Figure 3. Valid cross-regions references. Arrows indicate
allowed reference patterns between objects allocated in dif-
ferent regions.

ing whether an object is stable, transient or capsule is done at
the class level. By default, data allocated by a STREAMFLEX
thread is transient. Only objects of classes marked stable or
that extend Filter will persist between invocations. Stable ob-
jects must be managed carefully by the programmer as the
size of the stable area is fixed and the area is not garbage col-
lected. Figure 3 gives an abstract representation of memory.
In order to preserve type safety, the STREAMFLEX compiler
enforce constraints on patterns of references across the dif-
ferent partitions. Arrows in Figure 3 indicates allowed direc-
tionality for references.

STREAMFLEX allows allocation and transfer of user-
defined data types along channels. This should be contrasted
to systems that limit communication to primitives and ar-
rays. The advantage of using primitives is that one does not
need to worry about memory management or aliasing for
data transferred between filters, on the other hand if, for ex-
ample, one wants to communicate complex numbers, they
have to be sent as a pair of floats over a float channel. While
this may be acceptable in the case of simple data, encoding
richer data structures is likely to be cumbersome. In STR-
EAMFLEX, a channel can carry objects, thus Figure 4 shows
a natural way to express channels of complex numbers.

Primitive types only:

float realv = in.take();
float image = in.take();

STREAMFLEX

Complex ¢ = in.take();

Figure 4. Communicating complex numbers as pairs of
primitive numbers over a channel. In STREAMFLEX com-
plex numbers can be communicated as objects.

As suggested above, there are good reasons for restricting
the data types transferred on a channel. As soon as one
adds objects to the computational model, it is necessary to
provide support for their automatic memory management.
The problem is compounded if garbage collection pauses are
to be avoided. Consider for example the filter Err in Figure 5.
This filters retains a reference to a value that was taken from
a channel and puts the same value down its output channel.
When is it safe to reclaim the instance of Complex? There
is no obvious way, short of garbage collection, of ensuring

class Err extends Filter {
Complex retain;
void work() {
out.put( retain = in.take() );
}
}

Figure 5. When is it safe to reclaim the retain?.



that the virtual machine will not run out of memory. The
STREAMFLEX approach is to use a static type discipline and
rule out this program as ill-typed.

Example: Processing biological data. To conclude, we
consider a slightly more sophisticated example inspired by a
stochastic algorithm for protein backbone assignment [33].
The class MutatingFilter of Figure 6 processes a stream
of Strand objects which are capsules representing a se-
quence of protein pseudoresidues and a score summarizing
the “quality” of an assignment [33]. The filter takes a Strand
object, performs a random mutation and evaluates the result-
ing score. If this score indicates an improvement, the data is
copied to the Strand object and the Strand is sent on to the
next filter. The example illustrates the use of capsules. Here
a Strand extends the Capsule class. Capsule can contain ar-
rays and primitive fields. What is most noteworthy about this
code is that it looks exactly like normal Java.

class Strand extends Capsule {
final double[] residues;
double score;

}

class MutatingFilter extends Filter {
Channel<Strand> in, out;
void work() {
Strand strand = in.take();
double[] rds, mutated;
rds = strand.residues;
mutated = new double[rds.length];
mutate(rds, mutated);
double score = compute(mutated);
if (score < strand.score) {
arraycopy(mutated, rds);
strand.score = score;
}
out.put(strand);
}
}

Figure 6. An example of a filter using capsules to commu-
nicate with other filters.

3. The Programming Model

This section gives a more detailed presentation of the STR-
EAMFLEX programming model.

3.1 Graphs

A StreamFlexGraph is the abstraction of a stream processing
application. This class must be subclassed, and the program-
mer must implement at least one constructor and possibly
redefine the start() method. The constructor is responsible
of creating filters and connecting them. Once a graph is fully

constructed, the validate() method must be invoked to check
consistency of the graph. The checking involves verifying
that all channels are connected to filters with the right types,
that there is sufficient space available for the stable and tran-
sient stores of filters, and that clocks are given periods sup-
ported by the underlying virtual machine.! Once validate()
returns the graph cannot be changed—supporting dynamic
filter graphs is left for future work. The other methods of
the class are all declared protected and support the reflective
creation of filters and channels. Reflection is needed because
the creation of both channels and filters must be performed
in specific memory areas under the control of the STREAM-
FLEX runtime, it would be unsafe to construct any of these
objects on the heap.

public abstract class StreamFlexGraph {

public void start();
public void stop();
protected void validate() throws StreamFlexError;
protected Filter makeFilter(Class f);
protected Filter makeFilter(Class f, int stbSz,
int tranSz);
protected Clock makeClock(int periodInMicrosecs);
protected void connect(Clock src, Filter tgt,
String tgtField);
protected void connect(Filter src,
String srcField, Filter tgt, String tgtField, int size);

Figure 7. Graph interface (extract).

3.2 Filters

The abstract class Filter, shown in Figure 8 provides the
basic functionality for stream processing. A filter’s activity
is specified by providing an implementation of the work()
method of the abstract class. A filter can, optionally, imple-
ment the boolean trigger() method that indicates whether an
activity is schedulable or not.

public abstract class Filter {

public abstact void work();
protected boolean trigger();

}

Figure 8. Filter interface (extract).

The previous section introduced the notion of partitioned
memory for Filters. Objects allocated by a filter can have
either a lifetime that is bound to the lifetime of the entire

I Most operating systems can go down to the millisecond. In our experi-
ments, we use a release of Linux that has been patched to provide microsec-
ond periods.



filter graph or to the activation of the work() method. Oper-
ationally, this is achieved by associating the filter with two
memory regions, shown pictorially in Figure 9, the stable re-
gion is used for allocation of persistent data while the tran-
sient region is used as a scratch pad. The filter instance itself
is allocated in stable memory to ensure that it is also pro-
tected from the garbage collector.

The default allocation context while executing a filter’s
work() method, or any of its public methods, is always tran-
sient memory. Thus, by default any occurrence of new will
result in allocation of a transient object. In order to allocate
an object in stable memory, the class of that object must im-
plement the Stable marker interface. The assumption behind
this design choice is that allocation of persistent state is the
exception and that there is only a small number of object
types that will be used in stable memory.

HeapMemory pstm{FlexGraph
) Z— §
Stable Stable
Filter Filter

@,

Transient

Transient ! !

S\ A W W
o O OO O

Figure 9. Memory model of a StreamFlexGraph application
having two filters.

When the work() method returns, all transient data allo-
cated during its execution is reclaimed in constant time.”

In the current version of the STREAMFLEX, the sizes of
both memory regions are fixed and are chosen at filter instan-
tiation. Supporting dynamically sized regions is possible but
has not been implemented.

Exceptions that escape from the work() method must be
treated specially as the exception object and stack trace in-
formation are allocated in transient memory. To avoid creat-
ing a dangling pointer, the exception will be discarded and
replaced by a BoundaryError object which will terminate the
execution of the STREAMFLEX graph.

The implementation of filters is subject to a number of
constraints that aim to prevent dangling pointer errors. These
are detailed in Section 4.

2 Finalizers are not supported for objects allocated in transient memory, al-
lowing them would violate the constant time deallocation guarantee. Con-
sidering the isolated nature of filters, they are of dubious value anyway.

3.3 Channels

A Channel is a fixed-size buffer. Figure 10 gives an overview
of the channel interface which is straightforward. Each chan-
nel has methods for querying the number of available da-
tums, for adding a value at the end, taking a value from the
front of the buffer, and finally for returning a value to the
front. Channels are strongly typed. STREAMFLEX supports
generic channels, time channels as well as primitive chan-
nels for all of Java’s primitive types (IntChannel, FloatChan-
nel, etc.).

public class Channel<T extends Capsule> {

public int size();

public put(T val);

public T take();

public void untake(T val);

}

public class TimeChannel {
public double getTime();
public int missedDeadlines();

}

Figure 10. Channel interface (extract).

Operations performed on the set of channels attached to
a filter are atomic. From the point the work() method is
invoked to the point where it returns, all of the put/take
operations are buffered, it is only after work() returns that
all channels are updated.

The current version of STREAMFLEX does not support
growable channels and, in case of overflow, silently drops
capsules. Other policies are being considered but have not
been implemented. Variable sized channel, for example, can
be added if users are willing to take the chance that resize
operation triggers a garbage collection (an unlikely but pos-
sible outcome).

Timing channels are a special kind of primitive channel.
Their size is fixed to 1 and the replacement policy is to
retain the oldest value and keep a counter for overflows.
The only components allowed to write to a time channel are
clocks. Filters have access to only two methods: getTime()
which returns the first unread clock tick in microseconds
and missedDeadlines() which returns the number of clock
ticks that have been missed. All time channels of a filter are
emptied when the work() method returns and their overflow
counters are reset to zero.

3.4 Triggers

A trigger is a predicate on the state of the input channels of a
filter. A filter is said to be schedulable if its trigger evaluates
to true. The default trigger supported by all STREAMFLEX
filter is to yield true if data is present on any of the filter’s
input channels. More sophisticated trigger expressions are



planned but have not yet been incorporated in the system.
A simple one is to support rate specifications as proposed
by [32]. Rate specifications let users define the minimal
accept rate for channels. The trigger will only yield true if
sufficient input is available. A user-defined trigger() method
which evaluates an arbitrary predicate over the channels of
the filter could be used to ensure, for example, the presence
of data on all channels.

3.5 Clocks

To allow for periodic filters, STREAMFLEX provides Clocks.
Clocks are special kind of filters which can not be subclassed
or extended. They have a single output TimeChannel. Like
all other filters, they are created reflectively, using the make-
Clock() method, and configured with a period in microsec-
onds. During execution, a clock outputs a tick on its time
channel at the specified period.

In the current STREAMFLEX prototype, a periodic real-
time thread is associated with each clock. At each period the
following operations are performed: a new time is written to
the time channel, the trigger of the attached filter is evaluated
and if it yields true the filter’s work() method is evaluated.
The evaluation strategy is eager in the sense that, when a
work() method returns the same thread will try to evaluate
all of the subsequent filters. To ensure timeliness, the Clock
instance should be configured with a period that is larger
than the maximum processing time of the sequence of filters
that will be evaluated at each release.

3.6 Capsules

Subclasses of the built-in class Capsule are used as messages
on channels. Capsules are designed with one key require-
ment: allow for zero-copy communication in a linear filter
pipeline. This seemingly simple requirement turns out to be
challenging as it is necessary to answer the twin questions
of where to allocate capsules, and when to deallocate them.
Capsules cannot be allocated in the transient memory of a fil-
ter as they would be deallocated as soon as the filter’s work()
method returns. They should not be allocated in a filter’s sta-
ble memory as that area would quickly run out of space. In-
stead, we allocate them from a pool managed by the STR-
EAMFLEX runtime. A capsule is deallocated if it was taken
from a channel and, by the time work() returns, not been put
back onto another channel.

Capsules are user-defined classes that must abide by
certain structural constraints. They are restricted to having
fields of primitive types or of primitive arrays types. They
are constructed reflectively by the STREAMFLEX runtime,
as they must be allocated in a special memory area.

While we strive for zero-copy communication, there is
one case where copying capsules is necessary, this is when a
filter needs to put the same capsule on multiple output chan-
nels. The copies are done when modifications to channels
are published after the work() method returns.

3.7 Borrowed Arguments and Atomic Methods

Interacting with Java presents two main challenges. Firstly,
it is necessary to ensure that the interaction does not cause
the filters to block for the GC. Secondly, we would like to
avoid having to copy data transferred from the Java world.
We achieve these two goals with features inherited from the
underlying Reflexes system [30]: borrowed arguments and
atomic methods.

STREAMFLEX prevents blocking operations by replacing
lock-based synchronization with a simple form of transac-
tional memory called preemptible atomic regions in [24].
Any method on a filter that is invoked from plain Java code
must be annotated @atomic. For such methods, the STR-
EAMFLEX runtime ensures that their execution is logically
atomic, but with the possibility of preemption if the filter is
released. In which case the Java call is aborted and transpar-
ently re-executed later.

The @borrow annotation is used to declare a reference to
a heap-allocated object that can be read by a filter with the
guarantee that it is in consistent state and that the filter will
not retain a reference to it. The guarantee is enforced by the
STREAMFLEX type system discussed in Section 4.3

Figure 11 shows a filter with an atomic method that takes
a borrowed array. This method can be safely invoked from
Java code with a heap-allocated argument.

public class Writeable extends Filter {

©@atomic public int write(short[] b) {
for (int i=0,j=0; i<b.length; i++)
if (b[i]>64) data[j-+-+]=bli];
}

}

Figure 11. The method write() is invokable from Java. The
method is declared @atomic and the parameter b is borrowed
as it references a heap allocated object.

4. Type System

We present a type system that ensures memory safety by pre-
venting dangling pointers. The STREAMFLEX type system is
a variant of our work on ScopelJ [34] and Reflexes [30]. We
give a succinct presentation of the type system. The STR-
EAMFLEX type system is an implicit ownership type sys-
tem. As in other ownership type systems [14] there is a no-
tion of a dominator that encapsulates access to a subgraph
of objects—in our case every Filter instance encapsulates
all objects allocated within its stable and transient memory
regions. The type system ensures that references to objects

3 The ©@borrow is retained for backwards compatibility with [30], the STR-
EAMFLEX type system treats all reference arguments as implicitly bor-
rowed.



owned by a filter are never accessed from outside and pre-
vents dangling pointers caused by references to transient ob-
jects from stable ones. This remainder of this section reviews
the constraints imposed on the implementation of filters.

4.1 Partially Closed-World Assumption

A requirement for type-checking a filter is that all classes
that will be used within the filter must be available. We re-
fer to this as a partially closed-world assumption, as there
are no constraints on code outside of a filter. Classes used
within a filter fall in one of three categories: stable, tran-
sient and capsule classes. The reachable class set (RCS) de-
notes the union of these sets of classes. The first task of the
checker is to compute the RCS. This done by a straightfor-
ward reachability analysis starting with subclasses of Filter
and Capsule. Rapid type analysis [8] is used to resolve the
targets of method calls. The following informal rules define
the RCS and are implemented in a straightforward way in
the checker.

D1: Any subclass of Filter or Capsule is in RCS. O

D2: If class C is in RCS, all parents of C are also in
RCS. O

D3: Given the instance creation expression new C(...)
in class D, if D is in RCS then C is in RCS. O

D4: Given an invocation of a static method C.m() in
class D, if D is in RCS then Cis in RCS. O

The type checker validates all classes in the RCS. Taken
together rule D1-3 ensure that any object that can be created
while executing a method of a filter are in RCS. Furthermore,
the defining class of any static method that can be invoked
will be added to RCS. Native methods are currently allowed
on a case by case basis and are validated by hand.

Observe that the above rules do not prevent a class in the
RCS from having subclasses which are not in RCS—except
for filters and capsules. Basically, it means that the closed-
world assumption does not preclude the modular evolution
of software through subclassing which is standard strategy
used to evolve Java programs. While these rules are an ac-
curate description of the current implementation, they are
stricter than necessary. A more precise analysis would only
consider reachable methods, while our analyzers checks all
methods of a class. Similarly, for static methods it is not nec-
essary to add the defining class to the RCS, one only need to
verify the methods reachable from static method being in-
voked. While the imprecision has not affected the applica-
tions we have considered, we plan a more precise analysis,
along the lines of [6], for future versions of the system.

4.2 TImplicit Ownership

The key property to be enforced by the type system is that
all objects allocated within a filter must be properly encap-
sulated. No object allocated outside of a filter may refer to a

stable or transient object of that filter. Conversely, no stable
or transient object may refer to an object allocated outside of
the filter.

R1: The type of arguments to public and protected methods
of any subclass of Filter can be primitive types as well as
arrays of primitive types. Returns types of these methods are
limited to primitive types. The type of public and protected
fields of any subclass of Filter are limited to primitive types.
O

R1 ensures that methods and fields visible to clients of a
filter do not leak references across the filter boundary. To be
safe the rule requires encapsulation in both direction. Arrays
are a special case described in Section 4.4.

Within a filter is it necessary to prevent a stable object
from retaining a reference to a transient one, as this would
lead to a dangling pointer. This enforced by making it illegal
for a stable object to ever have a reference of transient type,
and similarly for static variables (see Section 4.3). This is
done at the class granularity. If a class is declared stable,
then it can only refer to other stable classes. Again arrays
are a special case discussed in Section 4.4.

Since the type system tracks classes, rather than objects
as would be done by a more precise escape analysis, we must
ensure that the subtyping relation cannot be used by transient
types to masquerade as stable types. DS makes it so that any
subtype of stable type is stable.

D5: Any class in RCS (transitively) implementing the
marker interface Stable is stable. The Filter class is stable.
O

R2: An instance field occurring either in a stable class or
in a parent of a stable class in RCS must be of either a
primitive type or a stable type. O

4.3 Static Reference Isolation

Enforcing encapsulation requires that communication
through static variables be controlled. Without any limi-
tations, static variables could be used to share references
across encapsulation boundaries and open up opportunities
for memory errors.

A drastic solution would be to prevent code in RCS from
reading or writing static reference variables. Clearly this is
safe as the only static variables that a filter is allowed to
use are ones with primitive types and these can not cause
dangling pointer errors. The question is of course how re-
strictive is this rule? While, for newly written code, it may
be straightforward, if a little awkward, to replace static vari-
ables with context objects threaded through constructors, the
same can not be said for library classes. It would be difficult
to refactor them and if one did, they would loose backwards



compatibility. We should thus strive to be as permissive as
possible to increase opportunities for code reuse. The key
observation here is that errors can only occur if it is possible
to store an object allocated within a filter in a static field or in
a field of an object reachable from a static field. This obser-
vation motivates extending the type system with the notion
of reference-immutable types. These are types that are tran-
sitively immutable in their reference fields.

D6: A class C is reference-immutable if all non-primitive
fields in the class and parent classes are declared final and
are of reference-immutable types.

D7: A type T is reference-immutable if it is primitive, an ar-
ray of reference-immutable types, or a reference-immutable
class. O

The analysis infers which types must be immutable based
on the use of static variables.

R3: Let C be a class in RCS, an expression reading a static
field of reference type T is valid only if the field is declared
final and T is reference-immutable. O

4.4 Encapsulating Arrays

The rules as stated until now allow programs to use prim-
itive arrays if they are static final fields as they are then
reference-immutable. Furthermore, any kind of array can be
safely allocated in transient memory. But it is not possible to
allocate an array in stable memory or use an array within a
capsule. We propose an extension to the type system that is
just large enough to allow some common stream processing
coding patterns.

R4: An instance field of a uni-dimensional array type is
allowed in a stable class if it is declared private final and
is assigned to a freshly allocated array in all constructors. O

This ensures that array fields of stable objects cannot refer-
ence either transient objects nor borrowed objects.

4.5 Capsules

A capsule is an object that is manipulated in a linear fashion.
At any given time the type system enforce that both of the
following holds: (1) there is at most a single reference to the
capsule from data channels, and (2) there are no references
to a capsule from stable memory. With these invariants the
implementation can achieve zero-copy management of cap-
sules.

RS5: The type of field of a subclass of Capsule may be either
primitive or an array of primitive. O

The above rule ensures that capsules are reference-immu-
table, while the next rule ensures that capsules can only be
instantiated by the STREAMFLEX runtime.

R6: A subclass of Capsule must have only a single con-

structor. It must be private and without parameters. O

The motivation for R6 is that STREAMFLEX must man-
age all allocation and reclamation of capsules. Otherwise, it
would be possible to allocate a capsule in transient mem-
ory and push a transient object an output channel, eventually
leading to dangling pointer error.

RT: Subclasses of Capsule cannot be stable classes. O

From the point of view of stable and transient classes,
a capsule is “just” like any other transient class. Thus, we
inherit the guarantee that when work() returns there will be
no reference to the capsule in the state of a filter.

S. Intrusion Detection System Example

To evaluate the power and applicability of STREAMFLEX on
real-world applications, we have implemented a real-time
Intrusion Detection System (IDS), inspired by [28], which
analyzes a stream of raw network packets and detects intru-
sions by pattern matching. Figure 12 shows the declaration
of the filter graph class Intrusion which instantiates and con-
nects the six filters that implement the intrusion detection
system. Figure 14 gives a graphical representation of the fil-
ter graph.

The capsules being passed around the system repre-
sent different network packets: Ethernet, IP, TCP and UDP.
Object-oriented techniques are useful in the implementation
as we model nested structure of protocol headers by inheri-
tance. For instance, the IP capsule (IP_Hdr) is a subclass of
the Ethernet capsule (Ether_Hdr) with extra fields to store IP
protocol information.

Figure 15 shows PacketReader. This filter creates cap-
sules representing network packets from a raw stream of
bytes. For our experiments we simulate the network with the
Synthesizer class (see start() in Figure 12). The synthesizer
runs as a plain Java thread, and feeds the reader with a raw
stream of bytes to be analyzed. Communication between the
synthesizer and the PacketReader is done by calling Pack-
etReader.write(). This method takes a reference to a buffer
of data allocated in plain Java and parses it to create packets.
write() is annotated @atomic to ensure that a filter can safely
preempt the synthesizer at any time.

The PacketReader buffers data in its stable memory with
the Buffer class. Buffer implements the Stable interface and
contains an array of bytes. To satisfy the type system, this
array had to be declared final and is freshly allocated in the
constructor.

The reader uses the readPacket() to initialize capsules
from the data stored in the buffer. startRead(), com-
mitRead(), and abortRead() are used to ensure that only
whole packets are read from the buffer. They do not need
synchronization since (i) potential higher priority filters have
no way to access the buffer (thanks to the isolation), and



public class Intrusion extends StreamFlexGraph {
private Clock clock;
private PacketReader read;
private Filter trust, vsip, tear, join, dump;

public Intrusion(int period) {
clock = makeClock(period);
read = (PacketReader)
makeFilter(PacketReader.class);
trust = makeFilter(TrustFilter.class);
vsip = makeFilter(VSIPFragments.class);
tear = makeFilter(TearDrop.class);
join = makeFilter(Joiner.class);
dump = makeFilter(PacketDumper.class);
connect(clock, read);
connect(read, trust, 10);
connect(trust, vsip, 10);
connect(trust, "ok", join, 10);

validate();

public void start() {
new Synthetizer(read).start();
super.start();

}
}

Figure 12. StreamFlex graph of the Intrusion Detection Sys-

tem Example.

public class TearDrop extends Filter {
private Channel<Ether_Hdr> in, out, fail;
private TearMatcher pm = new TearMatcher();

public void work() {
Ether_Hdr p = in.take();
if (p instanceof TCP_Hdr) {
TCP_Hdr t = (TCP_Hdr) p;
if (pm.step(t)) {
p.filtered = true;
p.filtered_by_TearDrop = true;
fail.put(p);
return;
}
}
out.put(p);
}
}
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Figure 14. Filters connexion of Intrusion (Figure 12).

public class PacketReader extends Filter {
private Channel<Ether_Hdr> out;
private Buffer buffer = new Buffer(16384);
public int underruns;

public void work() {
TCP_Hdr p;
p = (TCP_Hdr) makeCapsule(TCP_Hdr.class);
if (readPacket(p) < 0) underruns++;
else out.put(p);

@atomic public void write(byte|] b) {
buffer.write(b);

}

private int readPacket(TCP_Hdr p) {
try {
buffer.startRead();
for (int i=0; i<Ether Hdr.ETH_LEN; i++)
p.e_dst[i] = buffer.read_8();

return buffer.commitRead();
} catch (UnderrunEx e) { buffer.abortRead(); ... }

}
}

public class Buffer implements Stable {
private final byte|] data;
private int pos, lastpos;

public Buffer(int cap) { data = new byte[cap]; }
public int write(byte[] b) { ... }

public void startRead() { lastpos = pos; }
public int commitRead() { return pos—lastpos; }
public void abortRead() { pos = lastpos; }
public int read_32 throws UnderrunEx { ... }

public short read_16 throws UnderrunEx { ... }
public byte read_8 throws UnderrunEx { ... }

Figure 13. TearDrop, a filter of IDS.

Figure 15. PacketReader and Buffer implementation.



(ii) plain Java threads, that can access the buffer trough
write(), cannot preempt the filter execution.*

The packets first go to the TrustFilter which looks for
packets that match a trusted pattern, these will not require
further analysis. Other packets are forwarded to VSIPFrag-
ment. This filter detects IP fragments that are smaller than
TCP headers. These are dangerous as they can be used to
bypass packet-filtering firewalls. The TearDrop filter of Fig-
ure 13 recognizes attacks that involves IP packets that over-
lap.

The three filters, TrustFilter, VSIPFragment, and
TearDrop, have a similar structure: an input channel (in) for
incoming packets to analyse and two output channels, one
for packets caught by the filters (ok or fail), the other one
for uncaught packets (out). These filters also mark caught
packets with meta-data that can be used in further treatment,
logging or statistics. The TearDrop filter implementations
rely on an automaton (TearMatcher in Figure 13) stored in
stable space to recognize patterns on packet sequences that
correspond to attacks.

A special built-in filter, Joiner, is used to transform a
stream of data from multiple input filters to a single stream
of data. The last Filter, PacketDumper, gather statistics of
the whole intrusion detection process thanks to the meta-data
written on packed by the previous filters.

6. Implementation

We have implemented STREAMFLEX on top of Ovm, a
freely available Java virtual machine with an optimizing
ahead-of-time compiler and support for real-time computing
on uniprocessor embedded devices.

The Ovm virtual machine comes with a priority-preemp-
tive scheduler. The complete priority range is from 1-42,
where the subrange 12-39 represents real-time priorities and
the remaining are used for Java threads. The Clock class
is implemented as a thread with a real-time priority. The
thread is started as a result of an invocation of StreamFlex-
Graph.start(). This causes all filter threads to be scheduled
at a start time that may be the current time, or a user defined
future time.

6.1 Memory Regions

For each filter, the underlying implementation allocates a
fixed size continuous memory region for stable storage and
another region for its transient data. The size of each of the
above is set programmatically in the API. A filter and all of
its implementation specific data structures are allocated in
the stable area. These regions have the key property that they
are not garbage collected. In Ovm, each thread has a default
allocation area. The VM exposes low-level functionality for
setting allocation areas. The method setCurrentArea() al-
lows the implementation to change the allocation area for

4 We assume that filter run at higher priorities than plain Java threads as well
as a priority-preemptive scheduling policy.

the current thread. Regions are reference counted, each call
to setCurrentArea() increase the count of active threads by
one. reclaimArea() decrease the counter by one for that area,
if the counter is zero all objects in the area are reclaimed.
reclaimAreaAndWait() is a blocking version of the above.
Essentially, they reset the allocation pointer to the start of
the area.

The VM statically identifies stable classes, and whenever
an instance of a stable class is created by a thread running
in a filter, the stable region is used instead of the transient
region to allocate the object. The allocation of arrays encap-
sulated within the constructor of a stable class is rewritten to
add code that checks if the thread is running within a filter
and, if yes, allocates the array in stable memory. The virtual
machine also supports allocation policies for meta-data. In
particular, we rely on a policy for lock inflation that ensures
that a lock is always allocated in the same area as the object
with which it is associated, regardless of the current alloca-
tion area.

Capsules are managed by the implementation. The only
way for a capsule to become garbage is if it is created or
removed from an input channel and not put back on an
output channel before the end of the filter’s work() method.
We thus keep track of all capsules created and used during an
invocation of work() and reclaim those that are not published
on output channels. Capsules are managed internally with
object pools allocated in dedicated regions.

When an exception is thrown within a filter, the object is
created with normal Java semantics. By default the exception
object and its stack trace are created in transient memory.
If the exception propagates out of the work() method, the
stack trace is printed and the STREAMFLEX computation is
terminated.

6.2 Atomicity

The implementation avoids blocking synchronization by
supplementing Java monitors with a simple transactional fa-
cility built on top of the preemptible atomic regions of [24].
We implement channels using the @atomic annotation for
methods that would otherwise be synchronized. The seman-
tics of @atomic is simple: the method will execute atom-
ically, unless another higher-priority thread preempts the
current thread in which case the method is aborted. Since
threads are scheduled with a priority preemptive scheduler,
we know that a thread can only be preempted by a higher pri-
ority thread. If an atomic method is aborted, all changes per-
formed within the atomic method are undone and the method
will automatically be re-executed when the higher priority
thread yields. For a schedulable task set, it is possible to
prove the absence of livelocks [24]. For each write within
an atomic the VM records the original value and address of
field in a log. An abort boils down to replaying the log in
reverse order. Enters and commits are constant time.



6.3 Borrowing

Borrowed arguments should not move or cause a garbage
collection. A general way to do this would be to identify all
borrowed objects, inflate their locks, and pin the objects to
ensure that the garbage collector does not try to move them.
As our prototype runs on uniprocessor VMs, careful assign-
ment of priorities together with the use of @atomic methods
ensures that a filter can never observe an inconsistent bor-
rowed object.

6.4 Type Checking

The STREAMFLEX type checker is implemented as a plug-
gable type system. The checker is approximately 300 lines
of code integrated as an extra pass in the javac 1.5 com-
piler. The type system defines a strict subset of the Java lan-
guage [20] without requiring any changes to Java syntax.
This approach is convenient as the rules are fairly compact
and that error messages are returned by the Java compiler—
no extra tool is required and message are returned with line
numbers in a format that is familiar to programmers.

6.5 Static analysis

The use of reflection and native methods in STREAMFLEX
code is limited to small set of operations. This together
with the partially closed-world assumption (see Section 4.1)
enforced by the type system permits the compiler to perform
aggressive devirtualization and inlining.

7. Evaluation

We conducted a number of experiments to evaluate to
which extent STREAMFLEX can be used to achieve high-
throughput while remaining predictable, both important
properties for streaming applications. We used the Intrusion
Detection System of Section 5 as a larger, more realistic,
benchmark.

We evaluated STREAMFLEX on two metrics: throughput
and precision of inter-arrival time for periodically triggered
STREAMFLEX filters. For the performance results, we con-
sidered two benchmark stream applications, and compared
them head-to-head with baseline numbers from similar tests
we conducted using plain Java. The baseline numbers are
made up of test executions in Java using our virtual machine
infrastructure as well as a standard Java platform as refer-
ence.

7.1 Base Performance

To evaluate the performance of STREAMFLEX, we per-
formed various measurements of our implementation on the
Ovm Java virtual machine. We considered here two bench-
mark applications developed at MIT for the StreamlIt project,
which we modified to make use of the STREAMFLEX API.
The benchmark applications used were (1) a beam-form cal-
culation on a set of inputs, and (2) a filter bank for multirate
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Figure 16. STREAMFLEX graph for the BeamFormer
benchmark.

signal processing.’ Figure 16 shows a graphical represen-
tation of the STREAMFLEX implementation of the Beam-
Former benchmark. It shows the structure and number of fil-
ters as well as their interconnections.

Both benchmark applications were configured to exe-
cute in a uniprocessor, single-threaded mode, and thus did
not take advantage of the parallelization possibilities of
the stream programming paradigm. All performance exper-
iments were performed on a 3.8Ghz Pentium 4, with 4GB
of physical memory. The operating system used was Linux
(vanilla kernel, version 2.6.15-27-server). For the Ovm vir-
tual machine, we configured it with a heap size of 512MB.

For the sake of comparison, we performed baseline mea-
surements on the automatically generated Java variants of
the StreamIt benchmark applications. The Java variants were
benchmarked both on the Ovm virtual machine as will as
the Java HotSpot virtual machine, version 1.5.0_10-b03, in
mixed mode. Reported values are for the third run of the
benchmark.

STREAMFLEX Java Java
Ovm Ovm HotSpot
BeamFormer 314 ms 1285 ms 1282 ms
FilterBank 1260 ms 4350 ms 3213 ms

Figure 17. Performance measurements showing actual run-
time in milliseconds of performing 10,000 iterations of the
benchmark applications using respectively STREAMFLEX
and the Java variants of the StreamlIt code on the Ovm virtual
machine and on the Java HotSpot virtual machine.

5A description as well as the actual code for both the utilized
Streamlt benchmark applications, SerializedBeamFormer.str and Filter-
BankNew.str are available for download at cag.csail.mit.edu/streamit.
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Figure 18. Frequencies of inter-arrival time (10,000 iterations) for a STREAMFLEX implementation of SerializedBeamFormer
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Figure 19. Missed deadlines over time (10,000 iterations; 5,000 depicted) for a STREAMFLEX implementation of the
SerializedBeamFormer benchmark. The x-axes depict iterations of the filter whereas the y-axis shows the deadline misses

in ps.

As depicted in Figure 17, STREAMFLEX performs signif-
icantly better than the Java variant executed on Ovm. Specif-
ically, the performance improvement amounts to a factor 3.5
to 4. It is interesting to compare Ovm and HotSpot. Look-
ing at the results for the Java code, we see that HotSpot is
somewhat faster (25%) than Ovm for FilterBank. The slow-
down can be in part explained by the fact that HotSpot is a
more mature infrastructure and also because of known inef-
ficiency in Ovm’s treatment of floating point operations. It
is interesting to observe that STREAMFLEX is a factor 2.5-
4 times faster than the Java code running on HotSpot. This

underlines that the performance gains are not caused by the
virtual machine itself.

7.2 Predictability

To evaluate predictability, we measured the inter-arrival time
and the number of deadline misses for a STREAMFLEX filter
triggered periodically. A missed deadline occurs for the ’th
firing of a filter with a period p if the actual completion
time, «;, comes after its expected completion time, ¢;, where
& = p([(o-1/p)] +1).

We considered the SerializedBeamFormer benchmark ap-
plication mentioned above, which we modified by schedul-



ing the entry filter, a void splitter filter, with a period of
80 us instead of being executed continuously. Experiments
were performed on an AMD Athlon 64 X2 Dual Core pro-
cessor 4400+ with 2GB of physical memory. The operating
system used was Linux (kernel version 2.6.17-hrt-dyntick5),
extended with high resolution timer (HRT) patches [1] con-
figured with a tick period of 1 us. We built Ovm with support
for POSIX high resolution timers, and configured it with an
interrupt rate of 1 us. The time-critical STREAMFLEX fil-
ters were all scheduled to run at a 80 us period and were
executed over 10,000 periods.

As depicted in Figure 18, nearly all interesting observa-
tions of the inter-arrival time are centered around the 80 us
period with only a few microseconds of jitter. This is as it
should be considering that the average iteration time of the
benchmark is to be around 50 us, leaving sufficient time for
the underlying virtual machine to prepare and schedule the
next period. In addition to the expected peak at 80 s, there
is a number of outliers around 160 ps. We attribute these
perturbations to coincidental measurement noise, probably
caused by buffering or flushing in the underlying operating
system.

Figure 19 depicts missed deadlines over time for the
STREAMFLEX benchmark application. Specifically, out of
10,000 periodic executions, we observed 223 missed dead-
lines, corresponding to a miss-rate of 2%. The missed dead-
lines are primarily centered around a range between 15-20
us throughout the iterations. Most likely, these missed dead-
lines are a consequence of a slight jitter in the inter-arrival
time, as depicted in Figure 18. Additionally, Figure 19 con-
veys a few observations randomly scattered around 30-50
us. These deadline misses are directly linked with the out-
lier observations of inter-arrival time around 160 s in that,
generally speaking, a deadline miss between two consecu-
tive periodic executions can cause for the inter-arrival time
of the two to be larger than twice the actual period, as de-
picted in Figure 20.
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Figure 20. Timeline showing how a missed deadline can
cause an inter-arrival time between two consecutive periodic
executions to be larger than twice the period.

Figure 20 shows that in the event of a deadline miss (when
actual completion time, «;_1, lies after the expected com-
pletion time, ¢;_1) of a firing, 7 — 1, the expected completion
time, ¢;, of the subsequent firing, 7, is set to be the end of
the first-coming complete period, i.e., any time remaining

in the current period is skipped. If the start of the subse-
quent periodic execution, ¢, is delayed (reflected in the ac-
tual start time, 6;, lying after the period start) it can cause
the inter-arrival time between the two consecutive periodic
executions, 7 — 1 and ¢, to be larger than twice the period p.

7.3 Intrusion Detection System

We performed various measurements of the Intrusion De-
tection System, Section 5, on the Ovm virtual machine. The
PacketReader creates capsules at a rate of 12.5kHz (a period
of 80us). At this rate, the filter is able to generate packets
in to the attack detection pipeline without experiencing any
underruns from the simulator. In other words, at a rate of
12.5KHz the simulator can provide packets at the rate which
matches the rate with which the IDS can analyze them. The
time used to analyze a single network packet (from the cap-
sule creation to the end of the Dumper filter) varies from 4us
to 10us with an average of 5us. One reason for this variation
is that some packets are identified as a possible suspects by
one of the filters, and thus require additional processing in
the automata. If we consider raw bytes on a period of Ous
(no idle time), the intrusion detection system implemented
using the STREAMFLEX API delivers an analysis rate of
750Mib/s.

7.4 Event Correlation

To evaluate the performance of a STREAMFLEX application
executed on Ovm with reflex support compared to a plain
Java variant executed on Ovm without reflex support. We
implemented a transaction tracking scenario in which a fil-
ter graph is set up to analyze a real-time stream containing a
constant flow of three different event types. Within this event
flow, the filter graph searches for and puts together transac-
tion tuples consisting of one of each of the three different
event types; all sharing the same transaction number. The
plain Java version only differs from the STREAMFLEX ver-
sion by replacing realtime threads by plain Java thread and
not exploiting memory area management, but instead allo-
cating all objects on the heap.

The filter graph is composed of three filters: Event-
Creator —EventMatcher —EventSummarizer, where the
former randomly generates a real-time stream of the three
event types, the subsequent filter analyzes the stream for
matching event types, and the final filter maintains real-time
statistics of number of found transactions, the latency be-
tween the time the individual event times were found etc.

Figure 21 depicts the inter-arrival time between consec-
utive executions when executing the application variants
scheduled with a period of 200 microseconds. Both for STR-
EAMFLEX and the plain Java variant, Ovm can achieve a
200 microsecond period. However, in the plain Java variant,
huge deadline misses are observed (2 peaks of 67 millisec-
onds) due to the garbage collection. No deadline misses are
observed with the STREAMFLEX application.
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Figure 21. Inter-arrival time over time for a STREAMFLEX
and a plain Java variant of a transaction tracking scenario
scheduled with a frequency of 5,000 Hz. The x-axis shows
the periodic executions (1,000 shown) and the y-axis shows
the logarithm of the inter-arrival time (in us).
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Figure 22. Processing time over time for a STREAMFLEX
and a plain Java variant of a transaction tracking scenario
(non periodic). The x-axis shows the periodic executions
(only 1,000 shown) and the y-axis shows the logarithm of
the processing time (in us).

Figure 22 depicts the processing time when executing the
application variants with filters that fire continuously. As can
be seen, the plain Java variant suffer regular delays that cor-
respond to GC activations that cost around 67 milliseconds
each. As expected there is no GC activations for STREAM-
FLEX. Note that, even if we ignore activations that involve
GC, the STREAMFLEX version is still faster than the plain
Java one.

8. Related Work

There are many languages and systems supporting stream
processing. The following stand out among them, Bore-
alis [2], Infopipes [10] and Streamlt [32]. These languages
have a history that can be traced back to Wadge and
Ashcroft’s Lucid [5] data flow language and the Esterel fam-
ily of synchronous languages [13, 21]. Infopipes [10] come
as an extension to a variant of Smalltalk (Squeak) and has
very rich set of operators. Streamlt [32], although it started
as a subset of Java, now comes with its own language and
compiler infrastructure that generate both Java and native
code and has a number of restrictions to ensure efficient
compilation to native code.

STREAMFLEX resembles these projects in that it in-
troduces a set of abstractions, such as filters, pipes/chan-
nels, splitters, and joiners designed for programming stream-
based applications. Using the Java programming language
for stream processing, and especially when aiming for high-
throughput is not obviously a good idea. Java is a general
purpose language whereas the above mentioned languages
enjoy implementations and compilers specially tuned for ef-
ficient execution of streaming applications. A Java virtual
machine introduces overheads due to, e.g., garbage collec-
tion and array bound checks, and must support dynamic
loading—a major drawback for compiler optimizations. The
benefits of using Java are significant as it has: a large com-
munity of programmers, high-quality IDEs such as Eclipse,
and numerous libraries.

STREAMFLEX and Infopipes support periodic scheduling
of filters. Infopipes, to the best of our knowledge, have to
deal with garbage collection by the underlying runtime sys-
tem. Hence, one must be very careful to ensure to limit al-
location in order not to which might hamper responsiveness
and thus predictability. In contrast, STREAMFLEX relies on
Reflexes to provide high responsiveness and, as demon-
strated earlier, is easily able to operate at periods of 80 us.

High Responsiveness. Achieving sub-millisecond re-
sponse time in Java has been the topic for numerous research
papers. The Achilles heel of Java is its reliance on garbage
collection. In order reach such response time one must cir-
cumvent the abrupt interference from the garbage collector
which for a standard Java virtual machine means freezing
of threads up to 100 milliseconds. We conducted a compar-
ative study of the Real-time Java Specification (RTSJ) [11]
region-based memory management API and a state-of-the
art real-time garbage collection algorithm [7]. Our conclu-
sion [27] is that real-time collectors are not suited for sub-
millisecond response times and that RTSJ scoped memory is
too error-prone for widespread adoption.

STREAMFLEX relies on a simplified version of the RTSJ
region API to ensure that sub-millisecond deadlines can be
met. We depart from the RTSJ by our use of static type sys-
tem to ensure memory safety. This has the major advantage
of avoiding the brittleness of RTSJ applications and also



brings performance benefits as we do not have to implement
run-time checks to prevent dangling pointers. STREAMFLEX
is built on top of Ovm and a simple real-time programming
model [30] which provides real-time threads, region-based
allocation and an extended type system. STREAMFLEX ex-
tends that model with stream programming constructs and
adapts the type system to particular needs of stream process-
ing.

Related approaches include Eventrons [29] and Exo-
tasks [6]. Eventrons® are closely related to Reflexes in that
they provide very low latency real-time processing, with pe-
riods of down to 50 us. Unlike the approach presented in this
paper, Eventrons use a run-time data-sensitive program anal-
ysis to verify the logic of the real-time part of an application.
This has the advantage of being more precise, at the cost of
a heavier run-time and delayed error reporting. Exotasks are
closer to STREAMFLEX as they allow allocation and can be
arranged in a graph of communicating real-time processors.
One of the main difference is that Exotasks use real-time
GC. For each filter in an exotask graph there is one real-time
collector. This means that Exotasks do not need to differen-
tiate between stable and transient data, but this comes at the
price of a higher latency.

Ownership types. Ownership types were first proposed by
Noble, Potter and Vitek in [25] as a way to control alias-
ing in object-oriented systems. Most ownership type sys-
tem require fairly extensive changes to the code of applica-
tions to add all the annotations needed by the type checker.
The STREAMFLEX type system is an extension of the im-
plicit ownership type system of [34] which is the latest in
a line of research that emphasized lightweight type systems
for region-based memory [3, 35]. STREAMFLEX ownership
is implicit because, unlike e.g. [14, 12], no ownership pa-
rameters are needed. Instead, ownership is defaulted using
straightforward rules. Most other ownership type systems
require each class to be equipped with one ore more owner
parameter. Much like Java generics, these parameters are ex-
pected to be erased at compile time. This approach has how-
ever an important drawback: it requires a complete refactor-
ing of all library classes and does not interact well with raw
types. While an implicit ownership type system is less ex-
pressive, the cost in complexity and the disruption to legacy
code arguably outweighs the benefits of the added expressive
power [34].

Real-time Event Channels. Previous work on event chan-
nels, in particular the Facet [23] event channel, is related to
our work. Facet is an aspect-oriented CORBA event chan-
nel written in Java with the RTSJ API. Facet is highly con-
figurable and provide different event models. However, it
shares the drawbacks given above for the RTSJ. In the RTSJ
it is very difficult to implement a zero-copy message safely.

6 Eventrons are available under the name XRTs in the IBM Websphere Real-
time product.

The Zen real-time CORBA platform [22], written with the
RTS]J, is another platform on which one could conceivably
implement a stream processor. Unfortunately, its implemen-
tation still suffers some performance problems. In our ex-
periments with Zen, we have not been able to achieve sub-
millisecond message round-trip times.

Zero-Copy Message Passing. The Singularity operating
system supports a notion of channels with messages allo-
cated in a region of restricted inter-process shared mem-
ory [18]. The use of language techniques to avoid copying is
similar to our approach for capsules. Singularity messages
are owned by a single process and are transferred in a lin-
ear fashion. Ennals et al. presented a linear type system for
programming network processors which ensured that every
packet is owned by a single thread at a time [15].

Logical Execution Time. Programming language based on
the logical execution time assumption such as Giotto [19]
have garnered much interest in the real-time community
lately. Using LET, the programmer specifies with every task
invocation the logical execution time of the task, that is, the
time at which the task provides its outputs. If the outputs
are ready early, then they are made visible only when the
specified logical execution time expires. This buffering of
outputs achieves determinacy in both timing and functional-
ity. We believe STREAMFLEX could be a good platform to
investigate LET in the context of Java. Our filters are already
deterministic (due to the isolation invariant), what seems to
be missing is the scheduling and deadline monitoring com-
ponent.

Exotasks [6] use a scheduling policy based on LET to
ensure time portability of real-time programs. Considering
the similarities between the two models, we believe that
it would be possible to have time portable STREAMFLEX
graphs. This makes for an interesting direction for future
work.

9. Conclusion

We presented a programming model, STREAMFLEX, for
high-throughput stream processing in Java. On the one hand,
STREAMFLEX extends the Java virtual machine with trans-
actional channels and type-safe region-based allocation. On
the other hand, STREAMFLEX restricts Java in that it pro-
vides a stricter typing discipline on the stream components
of the code. STREAMFLEX relies on the notion of priority-
preemptive threads that can safely preempt all other Java
threads, including the garbage collector. By introducing a
STREAMFLEX type system based on an implicit ownership,
we showed that using a simple set of type constraints, we
are able to provide a statically type-safe region-based mem-
ory model.

Our evaluation of STREAMFLEX is encouraging both in
terms of performance and predictability. In fact, when com-
paring the benchmark applications using STREAMFLEX to



equivalent implementations in Java, STREAMFLEX ran up
to 4 times faster than the Java version. As for predictability,
our evaluation indicated that we can achieve 80 ps response
times with only 2% of the executions failing to meet their
deadlines.

In this work we have only looked at static filter graphs. In
future work we intend to investigate more dynamic commu-
nication mechanisms such as type-based publish/subscribe
systems [16]. We will also look at alternative memory man-
agement models such as the hierarchical real-time garbage
collection technique of [26].
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