
Existence and Construction of Edge-Disjoint

Paths on Expander Graphs

Andrei Z. Broder∗ Alan M. Frieze† Eli Upfal‡

Abstract

Given an expander graph G = (V, E) and a set of q disjoint pairs
of vertices in V , we are interested in finding for each pair (ai, bi),
a path connecting ai to bi, such that the set of q paths so found is
edge-disjoint. (For general graphs the related decision problem is NP-
complete.)

We prove sufficient conditions for the existence of edge-disjoint
paths connecting any set of q ≤ n/(log n)κ disjoint pairs of vertices on
any n vertex bounded degree expander, where κ depends only on the
expansion properties of the input graph, and not on n. Furthermore,
we present a randomized o(n3) time algorithm, and a random NC
algorithm for constructing these paths. (Previous existence proofs
and construction algorithms allowed only up to nǫ pairs, for some
ǫ≪ 1/3, and strong expanders [19].)

In passing, we develop an algorithm for splitting a sufficiently
strong expander into two edge-disjoint spanning expanders.

1 Introduction

Given an expander graph G = (V,E) and a set of q disjoint pairs of vertices
in V , we are interested in finding for each pair (ai, bi), a path connecting ai

∗DEC Systems Research Center, 130 Lytton Ave, Palo Alto, CA 94301.
†Department of Mathematics, Carnegie-Mellon University. A portion of this work

was done while the author was visiting DEC SRC. Supported in part by NSF grants
CCR8900112 and CCR9024935.

‡IBM Almaden Research Center, San Jose, CA 95120, and Department of Applied
Mathematics, Weizmann Institute of Science, Rehovot, Israel.

1

to bi, such that the set of q paths so found is edge-disjoint.
For arbitrary graphs, the related decision problem is in P for fixed q

– Robertson and Seymour [21], but is NP-complete if q is part of the in-
put. However, this negative result can be circumvented for certain classes of
graphs. For certain bounded degree expander graphs, Peleg and Upfal [19]
have presented a polynomial time algorithm and a random NC algorithm for
constructing up to nǫ disjoint paths, were 0 < ǫ ≪ 1/3 is a constant that
depends on the expansion properties of the input graph.

In this paper we describe a new algorithm for constructing edge-disjoint
paths. Using it we can construct up to n/(lnn)κ disjoint paths on bounded
degree graphs with a sufficiently strong expansion property, where κ is a
constant that depends only on the expansion property of the input graph.
Our algorithm is based on two probabilistic tools: the rapid mixing properties
of random walks on expanders, and the Lovász Local Lemma [10].

As in [19], the disjoint paths are constructed in two stages. In the first
stage we choose a random set Q of 2q vertices that are at least κ1 ln lnn apart
from each other. (The constant κ1 will be defined later.) We connect the
original endpoints to the vertices ofQ in an arbitrary fashion via edge-disjoint
paths, such that each Q-vertex is the endpoint of exactly one path. A simple
flow argument proves constructively the existence of such edge-disjoint paths
on any graph with edge expansion larger than one.

Let ãi (resp. b̃i) denote the vertex in Q that was connected to the original
end-point ai (resp. bi) in the first stage. The core of the algorithm consists
of constructing edge-disjoint paths connecting ãi to b̃i, for i = 1, ..., q.

In the second stage of the algorithm we choose for each pair (ãi, b̃i) a
bundle of (lnn)2 random paths connecting them. The goal is to show via
the Lovász Local Lemma that there is one choice out of each bundle of
paths such that the set of chosen paths is edge-disjoint. However, the Local
Lemma cannot be applied to sets of paths chosen uniformly at random, since
the dependency graph that corresponds to such choices is too dense. The
crux of the proof is that for any expander graph there is a simple pruning
mechanism that reduces the dependency so that the Lemma can be applied.

To convert the existence proof to an explicit algorithm, we observe that
the dependency graph constructed in this process is almost surely composed
of sufficiently small components, such that the paths can be selected in poly-
nomial time by exhaustive search.

Each of the two stages of the algorithm requires an expander graph. If

2

we apply both stages to the same expander we prove:

Theorem 1 Given any n vertex, bounded degree, regular graph G with edge
expansion greater than one, and given any set of q ≤ n/(log n)κ disjoint pairs
of vertices in G, with high probability our algorithm finds in o(n3) steps a set
of paths in G connecting the q pairs, such that each edge in G participates in
no more than two paths. (The constant κ is exposed in the proof).

While the above result is sufficient for most applications, it is still of the-
oretical interest to find edge-disjoint paths. To achieve this goal we develop
a new algorithm for splitting a sufficiently strong expander into two edge-
disjoint spanning expanders. We believe that this algorithm is of independent
interest. The splitting algorithm requires a stronger, but still bounded de-
gree expander. Splitting it, and applying each stage of our algorithm to a
different set of edges we prove:

Theorem 2 Given an n vertex graph with sufficiently strong edge expansion,
and given any set of q ≤ n/(log n)κ disjoint pairs of vertices in G, with high
probability, our algorithm finds in o(n3) steps a set of edge-disjoint paths in
G connecting the q pairs. (The constant κ and the required edge expansion
are defined later).

The disjoint paths problem has numerous algorithmic applications. One
that has received increased attention in recent years is in the context of com-
munication networks for parallel and distributed computing. While packet
routing is the communication protocol of choice for bounded size messages,
it cannot always be used efficiently for high volume communication such as
in multi-media applications and in two way communication. A more effi-
cient way to transmit such information is through disjoint paths (virtual
circuits) that are dedicated to one pair of processors for the duration of the
communication. Our result gives yet more evidence of the usefulness of a
communication network with strong expansion properties [24, 16, 20].

A preliminary version of this paper has appeared in [8].

2 Preliminaries

There are various ways to define expander graphs; here we define them in
terms of edge expansion (a weaker property than vertex expansion).

3

Let G = (V,E) be a graph. For a set of vertices S ⊂ V let out(S) be the
set of edges with one end-point in S and one end-point in V \ S, that is

out(S) =
{

{u, v} | {u, v} ∈ E, u ∈ S, v 6∈ S
}

.

Similarly
in(S) =

{

{u, v} | {u, v} ∈ E, u ∈ S, v ∈ S
}

.

Definition 1 A graph G = (V,E) is a β-expander, if for every set S ⊂ V ,
|S| ≤ |V |/2, we have | out(S)| ≥ β|S|.
Definition 2 An r-regular graph G = (V,E) is an (α, β, γ)-expander if for
every set S ⊂ V

out(S) ≥
{

(3r/4 + α)|S| if |S| ≤ γ|V |
β|S| if γ|V | < |S| ≤ |V |/2

Definition 3 The t-neighborhood of a vertex u in G, is the set of all vertices
that are at distance t or less from u in G.

The notation dist(u, v) refers to the distance from vertex v to vertex u.
If U is a set of vertices, then dist(U, v) = minu∈U dist(u, v). If P is a path
(which we view as a set of edges), then dist(P, v) is the minimum over all
vertices u on P of dist(u, v). These definitions generalize in the obvious
manner when both arguments are paths, sets, etc.

A random walk on the undirected graph G = (V,E) is a Markov chain
{Xt} ⊆ V associated to a particle that moves from vertex to vertex according
to the following rule: the probability of a transition from vertex i, of degree
di, to vertex j is 1/di if {i, j} ∈ E, and 0 otherwise. (In case of a bi-
partite graph we need to assume that we do nothing with probability 1/2
and move off with probability 1/2 only. This technicality is ignored for the
remainder of the paper.) Its stationary distribution, denoted π, (or π(G))
is given by πv = dv/(2 |E|). A trajectory W of length τ is a sequence of
vertices [w0, w1, . . . , wτ] such that {wt, wt+1} ∈ E. The Markov chain {Xt}
induces a probability distribution on trajectories, namely the product of the
probabilities of the transitions that define the trajectory.

The notation B(m, p) stands for the binomial random variable with pa-
rameters m = number of trials, and p = probability of success.

The notation [m] stands for the set {1, 2, . . . ,m} for any positive integer
m.

4

3 The Sequential Algorithm

Below we present the algorithm for finding disjoint paths. If we relax the
requirements so that edges can be used twice, then the input can be any
β-expander, β > 1, and Phase 1 is entirely omitted. The algorithm involves
certain constants κ, κ1, κ2, κ3, and κ4. The required relations between these
constants are explicitly given in equations (13) – (15). At various points
of the algorithm we stop if certain conditions fail to hold. The subsequent
analysis shows that premature termination is unlikely.

Algorithm DisjPaths

Input: An r-regular graph G = (V,E), with sufficiently strong expansion.
A collection of q disjoint pairs of vertices {(a1, b1), . . . , (aq, bq)}. (The term
“sufficiently strong” will, of course, be fully explained below.)

Output: A set of q edge-disjoint paths, {P1, . . . , Pq} such that Pi connects
ai to bi.

Phase 1. Split G into two spanning expanders GR = (V,ER) and GB =
(V,EB) such that E = ER ∪ EB and ER ∩ EB = ∅. We require GR to be a
1-expander, and GB to be a β′-expander, for some β′ > 0. (The details of
this procedure are presented in Section 4.1.)

The steady state distribution of the random walk on GB is easily seen to
be given by

π(v) =
dB(v)

2|EB|
v ∈ V,

where dB(v) denotes the degree of the vertex v in GB. Our construction
guarantees that

1

2n
≤ π(v) ≤ 3

2n
for all v ∈ V . (1)

Phase 2. Choose independently (with replacement) according to the distri-
bution π(GB), a multiset of 4q vertices in V . Let R = {r1, . . . , r4q} be the
multiset of vertices so chosen.

Phase 3. Select a set Q ⊂ R of 2q vertices, such that every pair of vertices
in Q are κ1 ln lnn apart from each other, as follows:

5

Q← ∅
for i = 1, . . . , 4q while |Q| < 2q do

if dist(Q, ri) ≥ κ1 ln lnn then Q← Q ∪ {ri} fi

od

If at the end of this procedure |Q| < 2q then stop. The algorithm has failed.

Phase 4. Let S = {a1, . . . , aq, b1 . . . , bq}. Using a flow algorithm in GR,
connect in an arbitrary manner the vertices of S to the vertices of Q by 2q
edge-disjoint paths. (Except for the edges on these paths, no other edges of
GR are used for the final construction.) If such a flow can not be constructed
then stop. The algorithm has failed. (This can happen only if GR did not
have sufficient edge expansion.)

Phase 5. Let ãi (resp. b̃i) be the vertex in Q that was connected to ai
(resp. bi). For each pair (ãi, b̃i) construct m = (lnn)2 paths, Pi,1, . . . , Pi,m
connecting ãi to b̃i, as follows:

for j = 1, 2, . . . ,m do

Pick a vertex xi,j according to the distribution
π(GB).

Choose a trajectory W ′
i,j (resp. W ′′

i,j) of length

τ = κ2 lnn that goes from ãi to xi,j (resp. b̃i to xi,j)
in GB, according to the distribution on trajectories,
conditioned on wi,j,0 = ãi and wi,j,τ = xi,j. (The
distribution for W ′′

i,j is analogous.)

Let Wi,j be the walk formed by W ′
i,j followed by W ′′

i,j

reversed.

Reduce Wi,j to a path Pi,j by removing cycles.

od

(The purpose of the remainder of the algorithm is to find among the set of
q · m paths constructed in this phase, a solution set, that is, a subset of q
edge-disjoint paths, one for each pair (ãi, b̃i).)

6

Phase 6. We shall refer to the set of paths Bi = {Pi,1, Pi,2, . . . , Pi,m} as
bundle i. The purpose of this phase is to prune from each bundle those paths
that go “too close” to the endpoints of other bundles or to each other.

Let w′
i,j,t and w′′

i,j,t denote the t’th vertices of W ′
i,j and W ′′

i,j respectively.
Let Mi,j = {w′

i,j,t, w
′′
i,j,t : t ≥ (κ1 − κ3) ln lnn}.

for i = 1, 2, . . . , q do

for j = 1, 2, . . . ,m do

(a) if dist(Mi,j,
⋃

k<jMi,k) ≤ 2κ3 ln lnn then
Bi ← Bi \ {Pi,j} fi

(b) if dist(Wi,j, Q \ {ãi, b̃i}) < κ3 ln lnn then
Bi ← Bi \ {Pi,j} fi

od

od

(Condition (a) ensures that outside the (κ1− κ3) ln lnn neighborhood of the
common endpoints, all paths remaining in Bi are at least 2κ3 ln lnn apart.
Condition (b) ensures that all paths in Bi are at least κ3 ln lnn from the
endpoints of other bundles.)

Let mi denote the number of paths left in bundle i for i = 1, 2, . . . , q, and
rename the paths such that Bi = {Pi,1, . . . , Pi,mi

}.
Check that for all i ∈ [q], the number of paths in Bi satisfies mi ≥

(lnn)2/2. If this does not hold then stop. The algorithm has failed.

Phase 7. Let H = (VH , EH) be the graph defined by

VH =
{

(i, j) | i = 1, . . . , q; j = 1, . . . ,mi

}

and
EH =

{

{(i, j), (i′, j′)} | i 6= i′ and Pi,j ∩ Pi′,j′ 6= ∅.
}

The i’th row of H is the set of vertices {(i, j) | 1 ≤ j ≤ mi}. A row represents
the bundle of paths associated to a certain pair of endpoints, and a solution
set corresponds to an independent set of size q that spans all the q rows of
H.

Let ∆H denote the maximum degree of a vertex in H. If there is an i
such that mi ≤ 8∆H then stop, the algorithm has failed. (As shown in the

7

analysis of this phase, the Local Lemma implies that the condition mi > 8∆H

is sufficient for the existence of at least one solution set.)
Optionally, for efficiency reasons, we can arbitrarily delete paths from

each bundle until for every i, we have mi = 8∆H + 1.

Phase 8. Let H ′ = ([q], EH′) be the graph on q vertices defined by

EH′ =
{

{i, i′} | ∃j, j′ s.t. Pi,j ∩ Pi′,j′ 6= ∅.
}

(In other words H ′ contains an edge from i to i′ iff any of the paths from ãi
to b̃i intersects any of the paths from ãi′ to b̃i′ . Clearly H ′ can be obtained
from H by contracting each row of H to a single vertex.)

If any connected component of H ′ has size greater than 3 lnn/(2 ln lnn)
then stop. The algorithm has failed.

Phase 9. For each connected component J of H ′, find by exhaustive search,
an independent set in H, of size |J |, that spans the rows of H corresponding
to the vertices of J . (We checked in Phases 6 and 7 that such a set exists,
and we checked in Phase 8 that the components of H ′ are sufficiently small
to ensure that the exhaustive search takes only polynomial time.)

The union of independent sets thus found is independent and spans all
the rows of H, and hence corresponds to a solution set.

The final path from ai to bi is the union of the paths from ai to ãi, and
from bi to b̃i found in Phase 4, and the path from ãi to b̃i selected here.

End DisjPaths

Observation: Phase 6 and phase 7 are essential only for the proof and can
be omitted while running the algorithm. In this case, the exhaustive search
in phase 9 would still take only polynomial time, but with small probability
(corresponding to failure in phase 6 or 7) it might not find a solution set.
Nevertheless, the running time is likely to be shortened if phase 6 and 7 are
run, since the search space is reduced.

8

4 Analysis of the algorithm

4.1 Splitting Expanders

In this subsection we present an algorithm which partitions the edge set of
the input graph into two spanning expanders.

Algorithm Split

Input: An r-regular (α, β, γ)-expander graph G = (V,E). For simplicity we
assume that r = 4s, for an integer s.

Output: Two spanning β′-expanders GR = (V,ER) and GB = (V,EB) such
that E = ER ∪EB and ER ∩EB = ∅. (The constant β′ is greater than 1 and
will be exposed in the proof.)

1. Using an arbitrary Euler tour, orient the edges of G so that each vertex
has indegree and outdegree 2s.

2. For each vertex v, randomly divide the edges from v into a red set and a
blue set, each of size s. Set ER (resp. EB) to be the set of red (resp. blue)
edges, un-oriented.

End Split

Clearly, our construction guarantees that (1) holds, since in each subgraph
every vertex has degree at least s and at most 3s, and each subgraph has
exactly ns edges.

We now analyze the probability that Split will produce useful results.
We start by defining two functions, H and ψ, on [0,1]:

H(γ) = ((1− γ)1−γγγ)−1,

ψ(ǫ) = (1− ǫ) ln(1− ǫ) + ǫ

(Observe that ψ(ǫ) ≥ ǫ2/2.)
Let inR(S), outR(S) refer to in(S) and out(S) as applied to the graph GR.

9

Theorem 3 Suppose that G is an (α, β, γ)-expander and let 0 < ǫ < 1 be
such that

β >
2

ψ(ǫ)
γ−1 lnH(γ). (2)

For every set S ⊂ V , |S| ≤ |V |/2, we have

min{outR(S), outB(S)} ≥ min{α, (1− ǫ)β/2} |S| , (3)

with probability 1− o(1) as n→∞.

Proof: We obtain a lower bound for outR. We consider two cases.

Case 1: |S| ≤ γn. By construction every vertex has degree at least s in GR.
Hence

s|S| ≤ 2 inR(S) + outR(S)

≤ 2 in(S) + outR(S). (4)

On the other hand, by the definition of G,

4s|S| = 2 in(S) + out(S)

≥ 2 in(S) + (3s+ α)|S|. (5)

Inequalities (4) and (5) imply

outR(S) ≥ α|S|. (6)

Case 2: γn ≤ |S| ≤ n/2. Partition out(S) so that 2 edges are in the same
subset if in the Euler orientation they have the same start vertex.

Let there be m such sets, A1, . . . , Am, with |Ai| = ki ≤ 2s, and
∑m
i=1 ki =

k, where k ≥ β|S| by the definition of G. Let Zi be the number of edges of
Ai which are colored red. Clearly the Zi’s are independent. For any t > 0
and k/2 > u > 0 we have

Pr(Z1 + · · ·+ Zm ≤ k/2− u)
= Pr

(

exp
(

−t(Z1 + · · ·+ Zm − k/2 + u)
)

≥ 1
)

≤ E
(

exp
(

−t(Z1 + · · ·+ Zm)− k/2 + u
))

= et(k/2−u)
m
∏

i=1

E(e−tZi).

10

But

E(e−tZi) =

(

2s

s

)−1 ki
∑

j=0

(

ki
j

)(

2s− ki
s− j

)

e−tj

≤
(

1 + (e−t − 1)
ki
2s

)s

≤ exp
(

(e−t − 1)ki/2
)

For a proof of the first inequality above see either Hoeffding [14] (Section
6) or Chvátal [9]. (Note that although Z1, Z2, . . . , Zm are independent, a
simple application of Theorem 2 of [14] will not suffice. This is because the
Zi have too large a range. The interested reader can check that one obtains
a factor s−2 in the exponent of the probability bound.)

Hence

Pr
(

Z1 + · · ·+ Zm ≤ k/2− u
)

≤ exp
(

t(k/2− u) + (k/2)(e−t − 1)
)

(7)

Putting t = − ln(1−2u/k) minimizes the RHS of (7) which then becomes

exp
(

−(k/2− u)(ln(1− 2u/k))− u
)

. Hence if u = ǫk/2, then

Pr
(

Z1 + . . .+ Zm ≤ (1− ǫ)k/2
)

≤ e−kψ(ǫ)/2

and consequently

Pr
(

outR(S) ≤ (1− ǫ)β|S|/2
)

≤ e−β|S|ψ(ǫ)/2.

Thus

Pr
(

There exists |S| ≥ γn such that outR(S) ≤ (1− ǫ)β|S|/2
)

≤
∑

i≥γn

(

n

i

)

e−βkψ(ǫ)/2
(8)

Now if i = θn, for θ ≥ γ then
(

n
i

)

= eo(n)H(θ)n, and the summand, ui say,

on the RHS of (8) is then

exp
(

n(o(1) + lnH(θ)− βθψ(ǫ))/2
)

.

11

Now

θ−1 lnH(θ) = − ln θ + 1− θ

2
− θ2

6
− θ3

12
− . . .

clearly decreases with θ and so if β satisfies (2) then ui is exponentially small.
The result follows. 2

Corollary 1 Suppose that G is an (α, β, γ)-expander. Let 0 < ǫ0 < 1 be the
unique solution to

1− ǫ
ψ(ǫ)

=
γ

lnH(γ)
(9)

and let

β0 =
2

ψ(ǫ0)
γ−1 lnH(γ).

If α > 1 and β > β0 then both GR and GB are β′-expanders for some β′ > 1,
with probability 1− o(1).

Proof: The existence of ǫ0 follows from the fact that the LHS of (9) decreases
from ∞ to 0 as ǫ increases from 0 to 1. Plugging β > β0 in (3) we get that
β′ > 1. 2

It is fairly easy to apply this to the Ramanujuan graphs of Lubotsky,
Phillips and Sarnak [17] and to random regular graphs. It follows from
Lemma 2.3 of Alon and Chung [4] that

|X| = δn implies out(X) ≥ r(1− λ)(1− δ)|X|, (10)

where λ is the second largest eigenvalue of the transition probability matrix
associated with the random walk on G. If G is one of the Ramanujan graphs
then λ = 2

√
r − 1/r and if G is a large random r-regular graph then λ ≈

2/
√
r (see Friedman, Kahn, and Szemerédi [13]). One can then show that in

these cases min {outR(S), outG(S)} ≥ (r/4 − o(1)) |S| for |S| ≤ |V | /2, as r
grows. (For simplicity take γ = ǫ = r−1/3.)

The above ideas can be extended to arbitrary graphs. We need to be able
to assert that (i) small sets of vertices, |S| ≤ γn, contain few edges; and that
(ii) one can orient the edges so that every vertex has large outdegree. Given
(ii) we can then randomly split the edges into two sets. It is known (Fenner
and Frieze [11], Frank [12]) that the edge set of a graph can be oriented

12

so that the out-degree of each vertex is at least k iff |µ(S)| ≥ k|S| for all
S ⊆ V where µ(S) = {e ∈ E : e ∩ S 6= ∅}, and that this can be checked
in polynomial time. We do not however consider this generalization in this
paper.

4.2 Analysis of the Main Algorithm

Let P denote the transition probability matrix of the random walk on GB,
and let P (t)

v,w denote the probability that the walk is at w at step t given that
it started at v. Let λ be the second largest eigenvalue of P . (All eigenvalues
of P are real.) It is known that

P (t)
v,w = π(w) +O(λt

√

π(w)/π(v)). (11)

To ensure rapid convergence we need λ ≤ 1− ǫ for some constant ǫ > 0.
This holds for all expanders (Alon [1]). In particular if

outB(S) ≥ β′|S| for all S ⊆ V , |S| ≤ |V |/2, (12)

for some constant β′ > 0, Sinclair and Jerrum [22] show that (12) implies

λ ≤ 1− 1

2

(

β′

r

)2

We will now explicitly state our claims about the performance of our al-
gorithm. As input, G is an n-vertex, bounded degree, r-regular (α, β, γ)-
expander graph where α > 1 and β > β0, with β0 as in Corollary 1.

Suppose that

κ > max{7, κ1 ln r, 2 + κ3 ln r}, (13)

κ1 >
4 + 2κ3 ln r

lnλ−1
+ κ3, (14)

κ2, κ3 >
3

lnλ−1
. (15)

Theorem 4 Under the above assumptions with n sufficiently large, given
any set of q = n/(log n)κ disjoint pairs of vertices in G such that α > 1 and
β > β0, with high probability our algorithm finds in o(n3) time, edge-disjoint
paths connecting these q pairs.

13

In Section 3 we pointed out for each phase the conditions under which it
might fail. We now proceed to bound the associated failure probabilities.

Phase 1: The failure probability of this phase is o(1) by Corollary 1. Also
the time to carry out the construction is O(n). 2

Phase 3: The κ1 ln lnn neighborhood of any vertex contains at most ν =
rκ1 ln lnn = (lnn)κ1 ln r vertices. Using (1), the probability that ri is rejected
is thus never more than 3qν/2n. Thus the probability that this phase fails is
at most

Pr(B(4q, 3qν/2n) ≥ 2q)

and this is o(1) if
κ1 ln r < κ, (16)

since q ≤ n/(lnn)κ. It is of course straightforward to carry out this selection
in o(n2) time. 2

Phase 4: A straightforward application of the Max-Flow Min-Cut Theorem
shows that success is certain provided that GR is a β′-expander for some
β′ > 1. By Corollary 1 this happens with probability 1− o(1). Furthermore
it only takes o(n3) time to find the required flow as arc capacities are 1 for
the arcs of the network. 2

Phase 5: The remainder of the proof relies heavily on the fact that the
trajectories W ′

i,j constructed by our algorithm, have the same distribution
(up to negligible factors) as m independent random trajectories of length
τ = κ2 lnn from ãi, the difference being that we pick the endpoint of the
trajectory using π instead of P

(τ)
ãi,·

. Using (11), since

κ2 >
3

lnλ−1
(17)

we see that
|P (τ)
v,w − π(w)| = O(n−3)

for all v, w.
In order to allow us to view the trajectories W ′

i,j ,W
′′
i,j as having exactly

the same distribution as random trajectories we can imagine generating W ′
i,j

as follows:

14

(a) Choose x = xi,j according to the distribution P
(τ)
ãi,.

.

(b) Choose a random trajectory W ′
i,j from ãi to x.

(c) If θ(x) = P
(τ)
ãi,x
− π(x) > 0 then with probability θ(x)/P

(τ)
ãi,x

do

1. discard W ′
i,j;

2. choose y ∈ Ω− = {v : θ(v) < 0} with probability θ(y)/θ(Ω−);

3. choose a new random trajectory W ′
i,j from ãi to y.

It is not hard to see that the endpoint of W ′
i,j other than ãi is now chosen

according to the distribution π. Furthermore, conditioned on (1) - (3) above
never being executed, we can view W ′

i,j as a random walk of length τ from
ãi. But

Pr((1)− (3) occur during the algorithm)

= O(qmmax θ(x)) = O((lnn)2−κ/n) = o(1).

This justifies viewing the W ′
i,j ,W

′′
i,j as unbiased random walks.

The next question to answer is as to how, given xi,j, do we compute a
random trajectory of length τ from ãi to xi,j. This is not difficult.

To simplify notation, suppose we want to compute a random trajectory
W = [u0 = u, u1, . . . , ut = v] of length t from a vertex u to a vertex v. If w
is a neighbor of v then

Pr(ut−1 = w|ut = v) =
P (t−1)
u,w Pw,v

P
(t)
u,v

. (18)

Thus our algorithm to generate W is to choose w according to (18) and then
choose a random trajectory of length t − 1 from u to w. To compute P (t)

we need only compute powers of P . Because G has bounded degree we can
compute P k from P k−1 in O(n2) time. Thus the total time to compute all
the trajectories is O(τn2) = o(n3), for κ > 7. 2

Phase 6: We prove several intermediate propositions. Our aim is to show
that relatively few paths get deleted.

15

Proposition 1 Assume that

κ1 ≥
4 + 2κ3 ln r

lnλ−1 + κ3

. (19)

Then with probability 1 − o(1) the number of paths deleted due to condition
(a) is O(lnn) simultaneously for each i ∈ [q].

Proof: Recall that Mi,j = {w′
i,j,t, w

′′
i,j,t : t ≥ (κ1 − κ3) ln lnn}, and a path

Pi,j is deleted due to condition (a) if dist(Mi,j,
⋃

k<jMi,k) ≤ 2κ3 ln lnn.
For t ≥ (κ1−κ3) ln lnn the probability that w′

i,j,t = v is (by equation (11))

O(λt + 1/n) = O((lnn)−(κ1−κ3) lnλ−1
for any vertex v. Also the 2κ3 ln lnn

neighborhood of
⋃

k<jMi,k is of size O((lnn)3+2κ3 ln r) and so the probability
that W ′

i,j or W ′′
i,j wander into this neighborhood after (κ1 − κ3) ln lnn steps,

is only
O((lnn)3+2κ3 ln r−(κ1−κ3) lnλ−1

) = O(1/ lnn),

given (19). Thus the number of paths deleted from bundle i is dominated by
a binomial random variable B(N, p) with Np = O(lnn).

The inequality (see, e.g. [7] Theorem I.7)

Pr(B(N, p) ≥ aNp) ≤
(

e

a

)aNp

(20)

is, for sufficiently large a, enough to verify the proposition. (Take a =
c lnn/(Np) for a sufficiently large c.) 2

Proposition 2 Assume that

κ ≥ 2 + κ3 ln r. (21)

Let
Ni = {v ∈ R− {ãi, b̃i} : dist(v,Bi) ≤ κ3 ln lnn}

Then |Ni| = O(lnn) simultaneously for each i ∈ [q], with probability 1−o(1).

Proof: The size of the κ3 ln lnn neighborhood of all the bundles Bi together
is O((lnn)3+κ3 ln r). The number of vertices in R chosen in this neighborhood
is a binomial with mean O(lnn), given (21). The result follows again by
using (20). 2

16

We can now bound the number of paths deleted from each bundle in
Phase 6 due to condition (b). Recall that the vertices of Q \ {ãi} are at least
κ1 ln lnn away from ãi. Hence, if two paths in a bundle are simultaneously
closer than κ3 ln lnn to the endpoint of another bundle, then one of them is
deleted by condition (a). Thus any v ∈ Ni ∩Q can lead to the deletion of a
single path via condition (b), so almost surely only a total O(lnn) paths are
deleted from each bundle. 2

Phase 7: We start by proving

Proposition 3 The maximum degree in the graph H (the incidence graph
of the paths) satisfies ∆H = O((lnn)2/ ln lnn), almost surely.

Proof: We will show below in the analysis of Phase 8 that with probability
1−o(1) the graph H ′ has maximum component size O(lnn/ ln lnn) and so it
suffices to prove that with probability 1− o(1) for every i, j, k, the trajectory
W ′
i,j meets only O(lnn) trajectories in the bundle Bk.
Now fix i, j, k. The pruning done in Phase 6 allows us to assume now

that dist(W ′
i,j, {ãk, b̃k}) is at least κ3 ln lnn. Consider a trajectory W ′

k,l. The

probability that W ′
k,l meets W ′

i,j is by (11) of order O((lnn)2−κ3 lnλ−1
) =

O(1/(lnn)) provided that

κ3 ≥
3

lnλ−1
. (22)

Treating the construction of each W ′
k,l as an independent trial we see that

the expected number of trials in which W ′
i,j ∩W ′

k,l 6= ∅ is O(lnn). We can
now use (20). 2

We now show that if we reach the start of Phase 7 and mi > 8∆H for
each i then we can be sure that there is a set of disjoint paths contained in
our bundles. We use the following lemma [10, 23]:

Lovász Local Lemma. Let A1, . . . , AN be events with dependency graph

GA. Let deg(i) be the degree of Ai in GA. If

Pr(Ai) ≤ p, for all i,

deg(i) ≤ d, for all i,

4pd < 1,

17

then

Pr(
∧

Āi) > 0.

Consider the experiment in which a random vertex is chosen from each
row of H. The events Ai (the “bad” events) are defined by the choice of 2
vertices joined by an edge. The maximum degree in the dependency graph
for the Lovász Local Lemma is 2m∆H and each bad event has probability at
most 4/m2. The Local Lemma now proves easily that our independent set
exists, since m = (lnn)2 and ∆H = O((lnn)2/ ln lnn).

(N. Alon has shown in [2] the existence of such spanning independent sets
in a similar setting using the same technique. Later he proved in [3] that
for m sufficiently large relative to the dependency degree there is a proper
m-coloring of the graph so that each row uses m colors. Furthermore, J. Beck
has shown that this coloring can be found in polynomial time [6]. However,
for our purposes it is necessary to show that the component size does not
exceed O(log n/ log log n) (see below), hence these more sophisticated algo-
rithms seem unnecessary.) 2

Phase 8: Pair the vertices in R \ Q arbitrarily. Connect each of the q
new pairs by m random walks as is Phase 5. Define a supergraph H ′′ ⊃ H ′

obtained from H ′ by adding q additional vertices corresponding to bundles of
paths connecting vertices of R \Q, and by adding extra edges in an obvious
way (we ignore the pruning of Phase 6).

Let π(r) be the other end of a bundle that has endpoint r. Let W̃r be the
set of m random walks of length τ starting at vertex r ∈ R. We claim that if
r is fixed and r′ is chosen uniformly at random from R \{r, π(r)}, then there
exists a constant κ4 such that the probability that W̃r and W̃r′ intersect is
bounded by

Pr(W̃r ∩ W̃r′ 6= ∅) ≤
κ4(lnn)6

4n
. (23)

To see this, consider a random walk from r′ of length τ and assume for the
moment that r′ is chosen uniformly at random in R. Since r′ is thus chosen
from the steady state of the random walk, the expected number of vertices
of W̃r visited by this random walk is O(mτ 2/n). Summing over all walks
in W̃r′ we obtain O(m2τ 2/n) as the expected number of visits to W̃r. The
probability of at least one visit is bounded by this expectation. Now if r′

18

is chosen uniformly at random only within R \ {r, π(r)}, the probability of
intersection increases at most by a factor of (1− 2/ |R|)−1 = 1 + o(1). Thus
we have (23).

Each bundle Bi is composed of two sets of m random walks. Hence, for
i fixed, and i′ chosen uniformly at random in {1, . . . , 2q} \ {i} we have

Pr({Bi, Bi′} is an edge of H ′′) ≤ κ4
(lnn)6

n
. (24)

Furthermore, if σ is a random permutation of [2q],

Pr(H ′′ contains a component of size ≥ k)

≤
∑

S⊆[2q]
|S|=k

∑

T∈Ωσ(S)

Pr(ET) =

(

2q

k

)

∑

T∈Ωσ([k])

Pr(ET),

where ΩA denotes the set of trees with vertex set A, and ET denotes the event
that H ′′ contains a tree isomorphic to T , under the isomorphism i↔ Bi. The
inequality is immediate because any component of size ≥ k must contain a
tree of size k, and the equality follows from symmetry.

We can restrict our attention to the range where k/q < 1/2. We claim
that Pr(ET) ≤ (2κ4(lnn)6/n)k−1. Indeed consider the edges of T in a breadth
first search order from some arbitrary root; Assume that we have already
explored l− 1 edges, and thus l vertices numbered without loss of generality
1, . . . , l. The probability that the l’th edge exists is given by the probability
that for a certain fixed i ∈ {1, . . . , l} the bundle Bi intersects B′

i where i′ is
chosen uniformly at random (via σ) in {l + 1, . . . , 2q}. This probability can
be proven via essentially the same argument used to derive (23) and (24) to
be less than (1 − (2l)/(2q))−1κ4(lnn)6/n, independently of the existence of
previous edges.

Now, since |Ωσ([k])| = kk−2 we obtain that

Pr(H ′′ contains a component of size ≥ k)

= O





(

2qe

k

)k
(

2κ4(lnn)6

n

)k−1

kk−2





= O









n

(lnn)6

(

4eκ4q(lnn)6

n

)k








19

= O





n

(lnn)6

(

4eκ4

(lnn)κ−6

)k


 = o(1)

for κ > 7 and k ≥ k0 = lnn/(ln lnn). 2

Phase 9: The execution time of Phase 9, given that there are no large
components in H ′′, is bounded by

n

(lnn)κ
((lnn)2)lnn/ ln lnn = o(n3).

2

5 Random NC Algorithms

In this section we show that our construction can be done in random NC.
To convert DisjPaths to a random NC algorithm we need to modify phases
2 and 3 of the algorithm. We replace them by the following two phases:

Phase 2∗. Each vertex v ∈ V is included in R with probability 8qπv inde-
pendent of the other vertices.

Phase 3∗. A vertex u ∈ R is in Q if no vertex in its κ1 ln lnn neighborhood
is in R.

We now consider each phase in turn.

• Phase 1: The algorithm Split is in NC since computing an Euler Path
is in NC [5].

• Phase 2∗ and 3∗: With probability 1 − o(1), R has at least 4q ver-
tices. The probability that a vertex in R has another vertex in R in
its κ1 ln lnn neighborhood is smaller than 1/2, thus with probability
1− o(1), Q has at least 2q vertices. The fact that Q might have more
than 2q vertices does not matter since the flow algorithm gives an in-
teger solution, and only 2q vertices in Q will participate in the flow.

• Phase 4: Flow with unit capacities is in Random NC [15, 18].

20

• Phase 5,6, and 7: By attaching one processor to each of the q(lnn)2

paths used in the algorithm, all these phases can be computed in
O(lnn) time.

• Phase 8: Computing connected components is in NC.

• Phase 9: Observe that there are no more than n/(lnn)κ components,
and with high probability there are no more than

((lnn)2)lnn/ ln lnn = n2

choices of paths for each component. Given a possible choice, it can
be checked by one processor in O(ln2 n) steps. Thus, phase 9 can be
computed by o(n3) processors in O(ln2 n) parallel steps.

References

[1] N. Alon. Eigenvalues and expanders. Combinatorica, 6:83–96, 1986.

[2] N. Alon. The linear arboricity of graphs. Israel Journal of Mathematics,
62:311–325, 1988.

[3] N. Alon. The strong chromatic number of a graph. Random Structures
and Algorithms, 3:1–8, 1992.

[4] N. Alon and F. R. K. Chung. Explicit construction of linear sized tol-
erant networks. Discrete Mathematics, 72:15–19, 1989.

[5] B. Awerbuch, A. Israeli, and Y. Shiloach. Finding Euler circuits in
logarithmic parallel time. In F. P. Preparata, editor, Advances in Com-
puting Research 4: Parallel and Distributed Algorithms, pages 69–78.
JAI Press, Greenwich, CT, 1987.

[6] J. Beck. An algorithmic approach to the Lovász Local Lemma I. Random
Structures and Algorithms, 2:343–365, 1991.

[7] B. Bollobás. Random Graphs. Academic Press, 1985.

21

[8] A. Z. Broder, A. M. Frieze, and E. Upfal. Existence and construction of
edge-disjoint paths on expander graphs In Proceedings of 24th Annual
ACM Symposium on Theory of Computing, pages 140–149, 1992.

[9] V. Chvátal. Probabilistic methods in graph theory. Annals of Operations
Research, 1:171–182, 1984.

[10] P. Erdös and L. Lovász. Problems and results on 3-chromatic hyper-
graphs and some related questions. In A. Hajnal et al., editors, Infinite
and Finite Sets, volume 11 of Colloq. Math. Soc. J. Bolyai, pages 609–
627. North Holland, 1975.

[11] T. I. Fenner and A. M. Frieze. On the connectivity of random m-
orientable graphs and digraphs. Combinatorica, 2:347–359, 1982.

[12] A. Frank and A. Gyarfas. How to orient the edges of a graph? Colloq.
Math. Soc. J. Bolyai, 18:353–364, 1978.

[13] J. Friedman, J. Kahn, and E. Szemerédi. On the second eigenvalue
in random regular graphs. In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pages 587–598, 1989.

[14] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58:13–30,
1963.

[15] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect match-
ing is in random NC. Combinatorica, 6:35–48, 1986.

[16] T. Leighton and B. Maggs. Expanders might be practical: Fast algo-
rithms for routing around faults in multibutterflies. In Proceedings of
the 30th Annual Symposium on Foundations of Computer Science, pages
264–274, 1990.

[17] A. Lubotsky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combina-
torica, 8:261–277, 1988.

[18] K. Mulmuley, V. Vazirani, and V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7:105–113, 1987.

22

[19] D. Peleg and E. Upfal. Constructing disjoint paths on expander graphs.
Combinatorica, 9:289–313, 1989.

[20] D. Peleg and E. Upfal. The token distribution problem. SIAM Journal
of Computing, 18:229–243, 1989.

[21] N. Robertson and P. D. Seymour. Graph minors-XIII: The disjoint paths
problem. To appear.

[22] A. Sinclair and M. Jerrum. Approximate counting, uniform genera-
tion, and rapidly mixing Markov chains. Information and Computation,
82:93–133, 1989.

[23] J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, 1987.

[24] E. Upfal. An o(log n) deterministic packet routing scheme. In Proceed-
ings of 21st Annual ACM Symposium on Theory of Computing, pages
241–250, 1989.

23

