
A Hypercubic Sorting Network with

Nearly Logarithmic Depth

C. Greg Plaxton”
Department of Computer Science

University of Texas at Austin

Abstract

A natural class of “hypercubic” sorting networks is defined. The regular structure of these

sorting networks allows for elegant and efficient implementations on any of the so-called

hypercubic networks (e.g., the hypercube, shuffle-exchange, butterfly, and cube-connected

cycles). This class of sorting networks contains Batcher’s 0(lg2 n)-depth bitonic sort, but

not the O(lg n)-depth sorting network of Ajtai, Kom16s, and Szemer6di. In fact, no o(lg2 n)-

depth compare-interchange sort was previously known for any of the hypercubic networks.

In this paper, we prove the existence of a family of 2°(=J lg n-depth hypercubic sorting

networks. Note that this depth is o(lg*+’ n) for any constant c >0.

1 Introduction

A comparator network is an n-input, n-output

acyclic circuit made up of wires and 2-input, 2-

output comparator gates. The input wires of the

network are numbered from O to n — 1, as are

the output wires. The inputs to the network

may be thought of as arbitrary integer values.

The two outputs of each comparator gate are la-

belled MAX and MIN, respectively, while the two

inputs are not labeled. On input z and y, a com-

parator gate emits max{z, y} on its MAX output

and min{z, y} on its MIN output. It is straight-

forward to prove (by induction on the depth of

the network) that any comparator network in-

duces some permutation of the input (an inte-

“This research was supported by NSF Research Initia-

tion Award CCR–9111 591, and Texas Advanced Research

Program (TARP) Award #003658480.

Permission to copy without fee all or part of this material is

grantad provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notica and tha

title of the publication and its date appaar, and notica is givan

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fea

and/or specific permission.

24th ANNUAL ACM STOC - 5/92/VICTORIA, B. C., CANADA

01992 ACM 0-89791-51 2-71921000410405 . ..$1 .50

ger n-tuple) at the n outputs. We say that a

given comparator network sorts a particular n-

tuple vector if the value emitted at output i is

less than or equal to the value emitted at output

i+l, Osi<n–1.

An n-input sorting network is an n-input com-

parator network that sorts every possible input

vector. It is straightforward to prove that any n-

input comparator network that sorts the n! per-

mutations of [n] ‘~f {O,. ... n – 1} is an n-input

sorting network. In fact, any n-input compara-

tor network that sorts the 2n n-tuples of {O, 1}”

is an n-input sorting network. The latter obser-

vation is known as the O-1 principle for sorting

networks [6].

It is natural to consider the problem of con-

structing sorting networks of optimal depth.

Note that at most Ln/2J’ comparisons can be per-

formed at any given level of a comparator net-

work, Hence the well-known Q (n lg n) sequential

lower bound for comparison-based sorting im-

plies an fl(lg n) lower bound on the depth of any

n-input sorting network. An elegant 0 (lg2 n)-

depth upper bound is given by Batcher’s bitonic

sorting network [2]. For small values of n, the

depth of bitonic sort either matches or is very

405

http://crossmark.crossref.org/dialog/?doi=10.1145%2F129712.129751&domain=pdf&date_stamp=1992-07-01

close to matching that of the best construc-

tions known (a very limited number of which are

known to be optimal) [6]. Thus, one might sus-

pect the depth of Batcher’s bitonic sorting net-

work to be optimal to within a constant factor,

or perhaps even to within a lower-order additive

term. Consider Knuth’s Exercise 5.3.4.51 (posed

as an open problem): “Prove that the asympt-

otic value of ~(n) is not O(n log n) ,“ where S(7t)

denotes the minimal size (number of compara-

tor gates) of an n-input sorting network of any

depth. One source of the difficulty of this par-

ticular exercise was subsequently revealed bjy Aj-

tai, Kom16s, and Szemer6di [1], who provided an

optimal O (lg n) -depth sorting network construc-

tion (hereinafter referred to as the “AKS sorting

network”).

While the AKS sorting network represents a

major theoretical breakthrough, it suffers from

two significant shortcomings. First, the multi-

plicative constant hidden by the O-notation is

sufficiently large that the result remains imprac-

tical. Second, the structure of the network is suf-

ficiently “irregular” that it does not seem to map

efficiently to common interconnection schemes.

In fact, Cypher has proven that any emulation of

the AKS network on the cube-connected cycles

(a hypercubic network) requires Q(lg2 n) time [5].

The latter issue is of significant interest, since a

primary motivation for considering the problem

of constructing small-depth sorting networks is

to obtain a fast parallel sorting algorithm for

a general-purpose parallel computer. In other

words, it would be highly desirable to identify a

small-depth sorting network that could be imple-

mented efficiently on a network that is also useful

for performing operations other than sorting.

In [7], Leighton and P]axton pursue a novel ap-

proach towards circumventing the two shortcom-

ings of the AKS network mentioned above. They

consider the construction of small-depth “proba-

bilistic’> sorting networks that sort most, but not

all, of the n! possible permutations. Their main

result is an O(lg n)-depth comparator network

(hereinaftxx ~eferred to as the “LP probabilistic

sorting network’;) that sorts all but en! of the n!

possible input permutations, where

c~~ = 2–2

i’or any constant c >0. It should be emphasized

that the LP probabilistic sorting network is in

fact a standard, deterministic comparator net-

work. The use of the term “probabilistic” is mo-

tivated by the fact that a device that sorts most

permutations will sort a randomly chosen per-

mutation with high probability. At the expense

of failing to sort a small fraction of the possible

input permutations, the LP probabilistic sorting

network provides two advantages over the AKS

construction: (i) the multiplicative constant hid-

den by the O-notation is significantly smaller,

and (ii) the “regular” construction permits an ef-

ficient implementation on any of the hypereubic

networks (e.g., the hypercube, shuffle-exchange,

butterfly, and cube-connected cycles).

The goal of the present paper is to demon-

strate that the LP probabilistic sorting network

can be used as a building block for a nearly log-

arithmic depth family of deterministic sorting

networks. Furthermore, these networks can be

mapped efficiently (with a small constant factor

slowdown) to any of the hypercubic networks.

Before elaborating on this result in greater de-

tail, we will describe a more formal framework

for approaching the notion of “network regular-

ity” alluded to above.

An interesting alternative view of sorting net-

works is given by the following formulation. De-

fine an n-input comparator network of depth d

as a sequence of d pairs (ni, vi) ~O ~ i < d, where

each Xi denotes a permutation of [n], and each

vi denotes a bit vector of length in/2J. Imagine

the input to the network (an integer n-tuple, as

above) as being e.rranged in a set of n registers

numbered from O to n – 1. Define [n/2J disjoint

pairs of registers by pairing register M with reg-

ister 2i + 1, 0 < i < in/2j. The network runs

in d steps, where the action of the ith step is de-

termined by the pair (ni, vi> O s i < d. At the

beginning of each step, every register will con-

tain a single value. To perform the ith step, the

contents of the n registers are first permuted ac-
cor&llg to l)t!rIllUttLtkMI Ti. After applying this

406

permutation, the following in/2J operations are

performed, one corresponding to each bit in the

vector vi. [The order in which these operations is

performed can easily be seen to be immaterial.]

The operation corresponding to b ‘~f vi(j), the

jth bit of vi, O < j < [n/2J, may be described as

follows. If b = O, then no action is performed. If

b = 1, then the values in the ~th pair of registers

are interchanged if the value stored in register 2~

is greater than the value stored in register 2j + 1.

Such a comparator network is called a sorting

network if and only if every possible input per-

mutation is mapped to the identity permutation.

It is straightforward to see that the two defi-

nitions of sorting networks provided thusfar are

equivalent in power: A sorting network ~ de-

fined in one model is isomorphic to an equal-

depth network Af’ defined in the other model.

The appeal of the definition offered in the pre-

ceding paragraph is that it suggests an approach

towards formalizing the notion of network regu-

larity. For instance, one might ask whether it is

possible to construct a small-depth sorting net-

work in which all of the Ti’s are equal to the

same fixed permutation n. We will in fact be

interested in considering various restrictions on

the Ti’s, and because of this, it will be natural to

alter the definition of the vi’s slightly. Following

the notation of Knuth’s Exercise 5.3.4.47, we de-

fine vi as a in/2j -tuple of values drawn from the

set {O, 1, –, +}. The operation corresponding to

the jth such value is as follows.

Do nothing.

Interchange the values stored in registers 2j

and 2j + 1. Note: Knuth does not actually

consider this operation.

Compare the values in the jth pair of reg-

isters, and interchange them if the value

stored in register 2j is greater than the value

stored in register 2j + 1.

Compare the values in the jth pair of reg-

isters, and interchange them if the value

stored in register 2j is less than the value

stored in register 2j + 1.

We will refer to any comparator (resp., sorting)

network presented in this format as a (m~, vi) -type

comparator (resp., sorting) network. Given that

every sorting network is also a (mi, vi)-type sort-

ing network, this definition will only be of inter-

est in the context of some associated restriction

on either the Ti’s or the vi ‘s.

For n = 2~ where d is a nonnegative integer,

the shuffle permutation ~,h is defined as follows.

If id-l .0 ci. denotes the binary representation of

some integer i, O ~ i < 2d, we have

~~h(i&l --- io) = i&z --- i&&l.

The “unshuffle” permutation is simply the in-

verse of the permutation ~~h and will be de-

noted n~hl. Knuth’s Exercise 5.3.4.47 (posed as

an open problem) may be viewed as asking for

the depth complexity of (ni, vi)-type sorting net-

works in which every permutation mi is equal to

~,h. Batcher’s bitonic sort provides an 0(lg2 n)

upper bound for this problem, and in a recent

paper, Plaxton and Suel [9] have established an

Q(lg2 n/ Ig lg n) lower bound. Of course, the

same lower bound applies if all of the mi’s are

set to 7r;hl.

From a practical point of view, it may be

unnecessarily restrictive to consider (ni, vi)-type

sorting networks in which either every permuta-

tiOII Ti is (?qUd tO 7T~h, Or every Pf3V.TNItZttiOII fi~

1. For inst ante, parallel computersis equal to T;h

based on hypercubic networks do not typically

limit the programmer to strict “ascend” (or strict

“descend”) algorithms but will allow efficient

implementation of any “ascend/descend” algo-

rithm. This observation motivates the following

definition. A hypercubic comparator (resp., sort-

ing) network is defined as a (TZ, vi)-type com-

parator (resp., sorting) network in which each

permutation ~~ belongs to the set {~,h, x~l}. In

view of the Q (lg2 n/ lg lg n) lower bound of Plax-

ton and Suel, the main result of the present paper

is perhaps unexpected, namely, that there exist

hypercubic sorting networks of depth

20(- lgn.

Note that this depth is o(lgl+’ n) for any con-

stant e > 0. A more precise form of the upper

bound is given in Section 5.

407

The remainder of the paper is organized as fol-

lows. Section 2 contains various additional defi-

nitions. Section 3 reviews the sorting properties

guaranteed by the LP construction; as mentioned

above, the LP probabilistic sorting network con-

struction provides the basic building block for

the family of networks defined in the present pa-

per. Section 4 describes how to construct a high-

order merging network from a comparator net-

work that sorts most input permutations. Sec-

tion 5 makes use of the high-order merging net-

work to develop a somewhat unusual recurrence

for the depth complexity of sorting. The analy-

sis of this recurrence is presented in Appendix A.

Section 6 offers some concluding remarks.

2 Additional definitions

Let Z“ denote the set of all integer n-tuples, and

let II(n) denote the set of n! permutations over

[n]kf{o,. o., n-l}.

A O-1 permutation of length n is an n-tuple

over {O, 1}. Thus {O, 1}~ denotes the set of 2n

O-1 permutations.

The input-output behavior of any particular

sorting network corresponds to a mapping from

Z~ to Zm. If we restrict our attention to inputs in

II(n), the mapping is from II(n) to II(n). Simi-

larly, by restricting the input to {O, 1 }~ we obtain

a mapping from {O, l}n to {O, 1}”.

Given a sorting network Af, we define Sort(~)

as the set of all integer n-tuples sorted by hf.

Let S(d) denote the optimal depth of a 2d-

input hypercubic sorting network.

Let M (a, b) denote the set of all integer 2“f~-

tuples F = (zo,.. ., Z2a+~_1 such that the com-

ponents of 7 are sorted in 2“ blocks of size 2b. In

other words, we require that x~zb+j < Xizb+j+l

for 0<i<2aand O~j<2b–1.

Let ltl(a, b) denote the optimal depth of a

2“+b-inPut hypercubic comparator network hf

such that M (a, b) ~ Sort(~).

Let n denote an arbitrary permutation in II(n)

and let k denote an integer in [n + 1], We de-

fine the kth O-1 permutation corresponding to n,

denoted n~-1, as follows

{

O if 0<7r(i) <k,
7rg-1(i) =

1 ifk<7r(i) <n.

Note that n~-1 contains k O’s and (n — k) 1 ‘s. For

any permutation n in II(n), let I’(n) denote the

set of (n+ 1) O-1 permutations corresponding to

T. Formally, we have

For any permutation m in 11(2~), let Jf. de-

note the 2~-input hypercubic comparator net-

work of depth 2d — 1 based on Bene5 permu-

tation routing [3]. Note that of the four oper-

ations {O, 1, +, —} defined in the introduction,

only {O, 1} are used in Afm.

Several variable names are used throughout

the paper. The constant 8*, the function 6, and

the function ~ (with associated constant c) are

defined in Section 3. The function k. and the

constant a“ are defined in Section 5. The func-

tion a is defined in Appendix A.

The phrase “sufficiently large” should be inter-

preted as “larger than some appropriately chosen

positive constant .“

3 Sorting most inputs

Throughout this section as well as the remainder

of the paper, let

6* Ef lg(4 – 2ti) = 0.228,

1

8 ‘f 8*- f(d)’

where c denotes some nonnegative real constant.

The source of the constant 6* will become evident

in the proof of Lemma 3.1 below. Note that 6 is

not a constant, but a function of d. However, for

d ~ 2, 6 is bounded from above and below by

constants since 6*/2 S 8 < 6*.

Theorem 1 below does not appear in [7], but

it can be proven relatively easily given the tech-

niques developed in that paper. Note that the

408

theorem expresses a trade-off between the sorting

power of a network and its depth; this trade-off is

controlled by the choices of k and ~. In order to

focus on the essence of the claim without becom-

ing overly distracted by the technical details of

this trade-off, the reader may initially prefer to

think off as a (large) constant function. In Sec-

tion 5, we will find that our best upper bound

on the depth of hypercubic sorting networks is

actually obtained by applying Theorem 1 with

k = b“-] 3 and

f(d) = e(~).

Theorem 1 Let d, k, and n denote integers such

that n = 2d and O ~ k < d. There exists

an n-input hypercubic comparator network M of

depth

S(k) + @(d+ (d – k)f (d))

such that

ls07t(Af) n II(7z)I ~ (1 – 0(~32-26k))7d.

c1

We begin our progress towards a proof of The-

orem 1 by considering the following essential

lemma adapted from the “butterfly tournament”

analysis of [7].

Lemma 3.1 Let n = 2d for some nonnegative

integer d, let v = 1 – ~, and let X = [n].

Then there exists a fixed permutation m of X and

a fixed subset Y of X such that IY I = O(n~) and

the following statement holds true with probabil-

ity at lead 1 – @3/22-26d): If a random input

permutation is applied to an n-input butterfly

comparator network then output i will receive a

value in the range [m(i) – O(n~), m(i) + O(n~)]

for all i in X \ Y.

Proofi This lemma is adapted from Theorem 1

of [7], with two main changes. First, while the

original theorem set Y to a particular constant

(approximately 0.822) less than 1, it is now be-

‘ng ‘et ‘0 1 – T%”
{

Second, the probability

of failure explicit y stated above is significantly

smaller than the bound implicit in the state-

ment of the original theorem. These changes

do not result from any new techniques for ana-

lyzing the behavior of butterfly comparator net-

works. Rather, they reflect a trade-off between

the value of 7 and the probability of failure. For

the application described in [7] (a 7.44 lg n-depth

network that sorts a randomly chosen input per-

mutation with very high probability), the best

trade-off is obtained by setting 7 to the smallest

possible value for which the probability of fail-

ure is less than 2–2’d for some constant e > 0.

For the present application, we prefer to allow

7 to approach 1 in order to obtain a very small

probability of failure.

We now indicate how to adapt the arguments

of [7], which led to a “low” 7, “high” probabil-

ity of failure result, to obtain the desired “high”

7, “low” probability of failure result. [Unfortu-

nately, the proof provided in [7] is rather lengthy,

and so it will not be reproduced in its entirety.]

We first modify the statement of Lemma 3.4

of [7]. The revised claim is that at most nl – Iif(d)

–b*+& .
of the ha (p, g)’s can exceed n If this

bound did not hold then we would have

~~(d,p, q) > n
l–1/f(d)n–6*~+1 /f(d)

nl–6*A=

On the other hand, setting A = 3 we find that

r; = (10 + 7fi)/16 (as discussed in [7]), and

hence

113(d,p, q) < (~;)d

= Jg(lo+7@-4

nl–31g(4–2@=

Note that the constant 8“ has been defined in

such a way that the preceding upper and lower

bounds on H3 (d, p, q) yield the desired contra-

diction. No other choice of the constant A would

allow 8* to be set to a larger value, and so we may

conclude that the stated value of 6* is “best pos-

sible” with regard to this particular approach.

On the other hand, the approach itself almost

certainly does not provide a tight bound on the

actual performance of the butterfly comparator

network. In other words, it is likely that a tight

409

analysis would result in a slightly higher value

for the constant 6“ than lg(4 – 2@.

Given the bound established in the preceding

paragraph, we can now define the set Y intro-

duced in the statement of the lemma. Namely,

we can define Y as the set of at most n I–l/f(d) <

n~ outputs a for which ha (2–n8, 1 – 2–n$) e=

ceeds n ‘6*+*. For each output @in X \Y, we

can now argue as in [7]

v~ —u~ <

=

In what follows, let i

that

zn~n–b’+ti

()
O n-h .

denote the integer cor-

responding to the binary string a. By defi-

nition, we have gi(ua) = 2–n6 and gi (vQ) =

l– 2–n8.
Thus, the reasoning used to prove

Lemma 3.2 of [7] gives /i(Luanj) = 0(@2-n’)

and f~ ([Vo7Zj) = 1 – O(@2–nb). Lemma 3.1

of [7] implies that output i will have rank k in

the range [uanJ ~ k < [vanl with probability

1 – O(@2–nb). Since IX \ YI ~ IX] = n, these

bounds will hold for all binary strings a in X \ Y

simultaneously with probability 1 – 0(n3i22-nb).

Following [7], the desired permutation m can now

be constructed by sorting the outputs accord-

ing to the pa ‘s. This completes the proof of

Lemma 3.1. D

With the preceding lemma in hand, we are now

able to sketch the proof of Theorem 1. As in the

proof of Lemma 3.1, we will not reproduce in de-

tail those arguments which are treated at length

in [7], but will focus our discussion on the addi-

tional insights needed to establish Theorem 1.

Given a comparator network JV and an input

permutation x, we say that N sorts T to within

A positions if every output z receives a value in

the range i – A to i + A. Let n = 2d, and let

N denote an n-input comparator network that

(on a random input permutation) sorts all but a

known set of n~ outputs to within n~ positions

with probability at least 1 – c, for real values

0< ~ <1 and e ~ O. In [7], it is shown that an

n-input comparator network N’ consisting ofi

(i) the network N, followed by

(ii)

(iii)

(iv)

some fixed permutation To (for a hypercubic

construction, this can be implemented with

the network Nmo), followed by

a set of disjoint binary tree insertion net-

works applied to low-order subcubes of the

output, followed by

some fixed permutation ml (for a hypercubic

construction, the network Nml can be used),

will sort a randomly chosen input permutation to

within O(nv) positions with probability at least

1 – c. The depth of the network N’ exceeds

that of network N by ~(d). Furthermore, if

N is a hypercubic comparator network, then N’
canbe implemented as a hypercubic comparator

network with an additional depth that remains

~(d). Thus, Lemma 3.1 implies the existence of

an n-input, @(d)-depth hypercubic comparator

network N; that sorts a randomly chosen input

permutation to within

()(nl-~)

positions with probability at least

1 – O ~n3~22-2’dJ .

Having defined the family of hypercubic com-

parator networks N;, a simple variant of the LP

probabilistic sorting network construction may

be described as follows. The construction will be

applied only for sufficiently large values of d (for

d = O(l), we can sort in constant depth).

1.

2.

3.

Apply the ~(d) -depth network N;. The

output is now sorted to within n~ positions

for some real value ~ = 1 – * + O(lid)”

Apply some fixed permutation T (for a hy-

percubic construction, the network N. can
be used).

“sort” low-order subcubes of dimension

[~dl recursively unless the depth of recur-

sion is such that the dimension of the sub-

cubes to be sorted is less than or equal to

k, in which case we apply an optimal-depth

hypercubic sorting network of depth S(k).

410

4. Merge adjacent pairs of subcubes using two

sets of bitonic merge operations.

The last step is needed in order to take care of

boundary effects across subcubes. The overall

depth of the construction is easily proven to be

S(k) + El(d + (d – k)~(d)), and it is straightfor-

ward to prove that the same asymptotic bound

is achievable in the hypercubic comparator net-

work model.

To prove Theorem 1, we also need to pro-

vide an upper bound on the probability of fail-

ure of the probabilistic sorting network given by

the preceding construction (i.e., the probability

that the network fails to sort a randomly cho-

sen input permutation). An easy upper bound

is given by the sum of the individual probabili-

ties of failure of the N$-type subnetworks (with

various values of i, k < i ~ d) from which it is

composed. The number of such subnetworks is

clearly O (n3i2) (a crude bound), since they are

disjoint and the total number of gates in the net-

work is O(ndf(d)) = O(n3t2). Furthermore, the

probability of failure of each subnetwork (i.e., the

probability that it fails to sort every output to

within 27~ positions) is

o (n3/22–26k)
Hence, the overall probability of failure is

O (n32-2’k) ,

and the proof of Theorem 1 is complete.

4 Deterministic merging

Many sorting algorithms, both sequential as well

as parallel, are based on merging. For instance,

sequential merge sort and Batcher’s bitonic sort-

ing network are both based on 2-way merging.

Since merging two sorted lists of length n/2 re-

quires fl(lg n) depth, one cannot hope to obtain

a o(lg2 n)-depth sorting network (hypercubic or

otherwise) by repeated 2-way merging. This sec-

tion describes how to use a comparator network

N that sorts most inputs to construct a high-

order merging network, that is, a k-way merging

network for some k >> 2. A similar technique

has recently been used by Ajtai, Kom16s, and

Szemer6di [4] as part of an improved version of

their original sorting network construction. The

multiplicative constant associated with the new

construction is significantly lower than the con-

stant established by Paterson [8].

The following lemma represents a slight gen-

eralization of the O-1 principle cited in Section 1.

Lemma 4.1 Let N denote an n-input compara-

tor network. Let X ~ {O, 1}” and let

Then X G Sort(N) if and only if Y G Sort(N).

Proofi By a straightforward extension of the

proof of the O-1 principle, which corresponds to

the case where X = {O, 1}”. D

The following special case of Lemma 4.1 will

prove to be useful.

Corollary 4.1.1 Let a and b denote two non-

negative integers, let n = 2“+~, and let N de-

note an arbitrary n-input comparator network.

Then M(a, b) (1 {O, 1}” ~ sort(N) if and only if

M(a, b) n II(n) G Sort(N).

In the sequence of lemmas to follow, we will

make use of a network N that sorts most in-

put permutations in order to construct a net-

work N’ that sorts most or all of a fixed set of

permutations. In each case, the depth of net-

work N’ only exceeds the depth of network N

by the depth required to implement an arbitrary

fixed permutation. In the classical sorting net-

work model, no additional depth is needed to

implement a fixed permutation. On a 2~-input

hypercubic sorting network, an arbitrary permu-

tation can be implemented in depth 2d – 1 using

Bene5 routing as discussed in Section 2. While

this disparity leaves open the possibility that our

network constructions will be significantly more

efficient (i.e., by more than a constant factor) in

the classical comparator network model than in

the hypercubic comparator network model, such

is not the case. In fact, the total depth devoted

to routing fixed permutations will account for

411

only a constant fraction of the overall depth of with IX I < 1/6 there exists a permutation n in

our hypercubic comparator networks. Further- II(n) such that the network N’ consisting of Nm

more, the method by which fixed permutations followed by N satisfies

are implemented represents the sole difference

between our constructions in the classical model
lx] g soTt(N’).

and the corresponding constructions in the hy- The preceding claim also holds for X G {O, 1}”.
percubic model.

Proofi Immediate from Lemma 4.2 and the ob-
Lemma 4.2 Let N denote an n-input compara- servation that [Sort(N’) n X I must be an integer.
tor network such that lSort(N) n II(n) I ~ (1 – n

c)n!, O s e S 1. Then for every set X ~ II(n) U

there exists a permutation n in II(n) such that Lemma 4.3 Let a and b denote two nonneg-

the network N’ consisting of N= followed by N ative integers, let n = 2a+b, and let N de-
satisfies note an n-input comparator network such that

ISCM(JV’) nxl 2 (1 - c)lxl.
lSort(N) rl ~-(n)l 2 (1 – E)n!, O ~ e <1. Further

assume that

The preceding claim also holds for X G {O, 1}”. (2b + 1)2” < 1/6.

Proofi We first consider the case X Q

II(n). Construct an undirected bipartite graph

(U, V, 1?) as follows. Let the vertices of U be in

one-to-one correspondence with the elements of

X, and let the vertices of V be in one-to-one

correspondence with the elements of II(n). Thus

IUI = 1X1 and IVI = n!. A vertex u in U is

connected to a vertex v in V if and only if the

permutation u is sorted by the circuit Af’ that

results if x is set to v. The degree of every ver-

tex in U is equal to [sort(N) nll(~)l 2 (1 – e)n!,

and so’ the sum of the degrees of the vertices in

U is at least (1 – c) IX I n!. This sum is identical

to that attained over V, and so some vertex v

in V must have degree at least (1 – e) 1X1. Set

Ir=v.

Now consider the case X C {O, 1}”. Construct

a set Y ~ II(n), IYI s 1X1, by choosing for

each O-1 permutation no-l in X a permutation

n such that To-l belongs to l?(m). Now apply

the preceding argument to the set Y, along with

Lemma 4.1. D

We will only make use of the following special

case of Lemma 4.2.

Corollary 4.2.1 Let N denote an n-input com-

parator network such that lSort(N) n II(rt) I >

(1-c) n!, 0< c <1. Then forevery set X G II(n)

Then there exists a permutation n in II(n) such

that the network N’ consisting of N. followed by

N satisfies

&l(a, b) n II(n) G Sort(N’).

Proofi By Corollary 4.1.1 it is sufficient to

prove the existence of a permutation n in II(n)

such that

M(a, b) n {O, 1}” G so~t(N’).

Note that

lM(a, b) rl {O, l}nl = (2b + 1)2”.

Thus, the claim follows by Corollary 4.2.1.0

5 Sorting all inputs

In this section, we make use of Theorem 1 and

Lemma 4.3 in order to construct a nearly loga-

rithmic depth family of hypercubic sorting net-

works. At a high level, the construction is simply

baaed on recursive merging: the input is par-

titioned into some number of equal-sized lists,

each of these lists is sorted recursively, and the

resulting sorted lists are merged together. The

recursion is cut off by applying bitonic sort on

subproblems that are sufficiently small. The pri-

mary question that remains to be addressed is

412

how to perform the merge step efficiently. The

following lemma proves that the merge step can

itself be reduced to sorting.

Let 8“, 8, and ~ be as defined in Section 3. In

addition, let

k. %f [f (d)(lgd + 3)/81 , md

d:f
u* –21g6* % 4.260.

Lemma 5.1

every integer

M(lt?k] ,d–

For every positive integer d, and

k such that k. < k < d, we have

Lt?k]) s S(k) +@(d+ (d- k)f (d)).

Proofi Let n = 2d. By Theorem 1, there exists

an n-input hypercubic comparator network N of

depth S(k) + @(d+ (d – k)f (d)) such that

[Sort(N) fl II(n)[> (1 - 0(n32-2’’))n!,

For d sufficiently large, this implies

ls07t(JV) n rl(~)l 2 (1 - 7t42-2’k))d

= (1 - 22’gd+2-2’’)n!

> (1 – 2–2 ‘k-’) n!,

where the last inequality holds because $k >

~ko ~ lg d + 3. The result now follows from

Lemma 4.3 since

()
Zldkj

Zd- 16’~J + ~ < (n2)26’k

22 61k+lg d+l
=

7

and

6k–1 = #k+(8-6’)k-l

= /j’k+~-l
f(d)

> b’k+lgd+l.

c1

As a consequence of the preceding lemma,

we can develop a recurrence for upper-bounding

S(d). For all a, O S a s d, we have

S(d) < S(d – a) + M(a, d – a).

Thus S(d) is less than or equal to

o~.dS(d – [f’kj) + M([&’kj , d – [b’k])

which is at most

~Om.nd S(d – L&’k]) + S(k) + @(d+ (d – k)f (d)).

Let S’(d) denote the best upper bound on S(d)

obtainable via this recurrence. If O S d S 1 +

11/8’j, we have S’(d) = ~(l). For larger values

of d, S’(d) is less than or equal to

~omind S’(d – lt?kj) + S’(k) + @(d+ (d – k)f (d)).

In Appendix A it is proven that

S’(d) = @(df (d)2=+@f@i~(dJJ ~).

It is now straightforward to optimize the choice

of the constant c in the definition of f(d). In

particular, setting c = ~ provides our best upper

bound on S(d), namely,

S(d) = O(d2_lg d).

6 Concluding Remarks

We have defined the class of “hypercubic” sort-

ing networks and established a nearly logarith-

mic upper bound on the depth complexity of such

networks. Of course, it would be very interest-

ing to close the remaining gap. Given the tech-

niques developed in this paper, the problem of

constructing an optimal O (lg n)-depth hypercu-

bic sorting network has been reduced to the prob-

lem of constructing an O (lg n)-depth comparator

network that sorts a randomly chosen input per-

mutation with probability at least 1 – 2–”6 for

some constant e >0,

One unfortunate characteristic of our hypercu-

bic sorting network construction is its lack of uni-

formity. In particular, no polynomial-time algo-

rithm is known for generating the family of net-

works for which existence has been established.

There is reason to believe that such a genera-

tion algorithm might exist; providing a random-

ized polynomial-time generation algorithm is a

straightforward

in the paper.

extension of the results proven

413

A Analysis of the recurrence

Throughout this section, let 6“, 6’, ~, ko, and

a* be as defined in Sections 3 and 5. Also, let

Q‘ ‘~f –21g $’. Note that CT’= a“(l + El(l/~(d)).

Consider the recurrence defined by Z’(d) = 1

0 ~ d <1 + [1/6’] and

Z’(d) = @hJ(d – [b’k]) + Z’(k) + df(d)

if

otherwise. In this section, we will prove the fol-

lowing theorem:

Theorem 2 The solution to the above recur-

rence is

Z’(d) = @d~(d)2@@).

Corollary 2.1 The solution to the recurrence

for S’(d) in Section 5 is

S’(d) = @(d~(d)2@@@)

= @(d~(d)2_+o(~/f(~JJ~).

Proofi Consider the first equality. The only

significant dlfierence between the recurrence for

S’(d) and the recurrence for Z’(d) is the lower

bound on k; we require k > k. in the former case

but only k ~ 1 for the latter recurrence. Thus

any lower bound proven for T(d) also applies

to S’(d). We now argue that the upper bound

proven for T(d) also applies to S’(d). In order to

obtain the upper bound on T(d) (see the proof of

Lemma A.1 below) we set k = [d/2mdJ in the

recurrence for T(d). This choice of k is greater

than or equal to k. for d sufficiently large.

d = 0(1), we can sort in constant depth.

For the second equality, note that

m= -O + @(l/f(d)))

II

For

The upper and lower bounds implied by The-

orem 2 will be established separately. The upper

bound is addressed by the following lemma.

Lemma A. 1 There exists a positive constant co

such that

T(d) s codf(d)2=d@+ 1

for all d >1.

Proofi We prove the claim by induction on d.

Note that the claim holds for 1 s d < do, where

do denotes an arbitrary positive constant. We

are free to choose do sufficiently large that

for all d ~ do. Now fix d > do and assume that

the claim of the lemma holds for all smaller val-

ues of d. Setting k =
1 1

k* = d/2fid in the

recurrence for Z’(d), and letting d* = d – Lc$’k*j,

we obtain

T’(d) < T(d*) + Z“(k*) + df(d). (1)

Note that 1 < k* < d. Hence, the induction

hypothesis implies that

T(d*) < cod*.f(d*)2@-/i@+ 1

< cod* f(d)2=d@ + 1

= codf(d)@(2- – 6’)

+O(f(d)2@~).

In the above inequality, we have also made use of

the fact that ~ is monotonically nondecreasing.

A second application of the induction hypothesis

implies that

Z’(k*) s cok*f(k*)2-@ + 1

Note that

(m- v@2)2=Igd - ~~d+o’,d.

~~- [@-~/21. l?ordandso lgd– o’lgd<

sufficiently large (i.e., assuming that the constant

414

do is chosen sufficiently large), we have @ >

@/2 and SO

T(k*) < cl)df(d)2-”’/2(@ – &72) + 1

= c@’df(d)(&l – @2) + 1.

Substituting our upper bounds for Z’(d*) and

Z’(k*) into Equation (l), we obtain

z’(d) < codj(d)2-@ –co8’df(d)@/2

+df(d) + o(j(d)2-1/ii7).

For sufficiently large choices of the positive con-

st ants co and do, the preceding inequality implies

that

T(d) ~ codf(d)2=~ + 1,

as required. lJ

The lower bound of Theorem 2 is established

by the following lemma.

Lemma A.2 There exists a positive constant co

such that

T(d) 2 codf(d)2@@

for all d 21.

Proofi The proof is by induction on d. Let do

denote an integer constant strictly greater than

1 + [1/8’]. The claim of the lemma is certainly

satisfied for d < do. Now fix d ~ do and assume

that the claim holds for all smaller values of d.

In the following, let

?’(n) = j(n)2=@, and

s(n) = nr (n),

for all integers n >0. Letting d’ = d – [#k], 1<

k < d, we begin by investigating the difference

between s(d) and s(d’). We have

d’ = d(l – Lt?k] /d),

lg d’ = lgd[l-e(&Jl
[(&)]/m’”ml-@

@m’ =
[Gall,

#m l.~

f(d’) = f(d) ~ - e(a
)1

, and

r(d’)
= ‘(dv-%ia)l

Thus,

s(d’) = s(d) – 16’k] r(d) – @(r(d) k/~).

and for d sufficiently large there exists a positive

constant c1 such that

.s(d’) > s(d) – [$’k] r(d) – clr(d)k/@. (2)

Letting -t(d, k) = ~~d + lg k – lg d, we can

develop a useful approximation for s(k), 1 S k <

d, as follows. Note that <m–lg d S t(d, k) <

m. Several Of the ~-bounds that follow
cent ain functions that include a t (d, k) factor. In

such cases, the function may be asymptotically

negative. If g (n) is asymptotically negative then

the expression @(g(n)) should be interpreted as

–Q(lg(n)[), We have

lgk =

~=

2- =

f(k) =

r(k) =

Thus,

(lg d - ~~)

.(1 + @(t(d, k)/lg d))

(m- W2)(1 - @(l/L3d))

.(1+ @(t(d, k)/lg d)),

#2-(1 - @(l/~))

.(1+ @(t(d, k)/~)),

f(d)(l - @(l/@))

.(1 + @(t(d, k)/@)),

6’r(d)(l – Cl(l/@))

.(1 + @(t(d, k)/~)),

and

s(k) = t?kr(d)(l – @(l/@))

o(1 + @(t(d, k)/@))

= #kr(d) – @(k~(d)/@)

+El(kr(d)t(d, k)/@),

and for u! sufficiently large there exist positive

constants C2 and C3 such that

s(k) a t?kr(d) – c2kr(d)/~

+cskr(d)t(d, k)/~. (3)

415

Using the recurrence for T(d) along with two

applications of the induction hypothesis, we have

z’(d) = #.l..dT(d’) + T(k) + dj(d)

> Jprld q)s(d’)+ Co$(k) + fzy((i).

We can now apply the bounds of Equation (2)

and Equation (3) to obtain

z’(d) > glhd C(js(d)+ df(d)
——

+co(c3t(d, k) – c1 – c2)k?-(d)/@

= Inrnhd COS(d) + o!f(d)
.-

+co(c3t(d, k) – c1 – c2)2@’~)df(d) .

If -t(d, k) ~ C4 ‘~f (cl +C2)/C3 then it is immediate

that Z’(d) ~ Cos(d), and the induction is com-

plete. On the other hand, if 2t(@) < C5 ‘~f 2Q

then

co(c3t(d, k) – c1 – c2)2W>@ > -CO(C1 + C2)C5.

Setting co s [(cl + C2)C5]–1 we once again have

Z’(d) z Co.s(d), as required. D

References

[1]

[2]

[3]

[4]

[5]

[6]

M. Ajtai, J. Kom16s, and E. Szemer6di. An

O(n log n) sorting network. Combinatorics,

3:1-19, 1983.

K. E. Batcher. Sorting networks and their

applications. In Proceedings of the AFIPS

Spring Joint Computer Conference, vol. 32,

pages 307-314, 1968.

V. E. Beneil Optimal rearrangeable multi-

stage connecting networks. Bell System Tech-

nical Journal, 43: 1641–1656, 1964.

V. Chvatal. Personal communication.

R. E. Cypher. Theoretical aspects of VLSI

pin limitations. Technical Report RJ7115,

IBM Almaden Research Center, November

1989.

D. E. Knuth. The Art of Computer Program-

ming, volume 3. Addison-Wesley, Reading,

MA, 1973.

[7]

[8]

[9]

F. T. Leighton and C. G. Plaxton. A (fairly)

simple circuit that (usually) sorts. In Pro-

ceedings of the 31st Annual IEEE Symposium

on Foundations of Computer Science, pages

264-274, October 1990.

M. S. Paterson. Improved sorting networks

with O(log n) depth. Aigorithmica, 5:75–92,

1990.

C. G. Plaxton and T. Suel. A lower bound for

sorting networks based on the shuffle permu-

tation. Technical Report TR–92–07, Univer-

sity of Texas at Austin, Department of Com-

puter Science, March 1992.

416

