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We consider the following distributed optimization problem: Given a
set X,,..., X, of pairwise independent random variables and a target

value T, a subset of the X,’s must be selected whose sum is close to 7.
However, no cooperation is permitted in determining the set; each vari-
able must be “programmed” in advance, joining or not joining according to
its own value. Such conditions may arise, for example, when supply of
some commodity is controlled at several random sources. Under these
general conditions we show that the mean square error in approximating
T is always minimized by programming each X, to join if its value is
between 0 and 6;, for appropriate choice of thresholds 6;.

When in addition the variables are identically distributed, we give
conditions under which the 6,s must be equal. The case of uniform
distribution on [0, 1] (in which our conditions fail) is analyzed in detail,
showing the rather bizarre behavior of the 6;’s which may take place in
general as the target value is gradually changed.

We analyze also the problem in which the variables are permitted to
contribute any part of themselves to the sum; here it turns out that in an
optimal strategy, each program will be of the form “contribute the mini-
mum of X; and v;,” with all the y;’s equal in the i.i.d. case.

Finally, we show how the original target shooting problem can be
generalized to a kind of load balancing, where variables are assigned to
different buckets, each with its own target, and the penalty is a weighted
sum of squared errors. The surprising result here is that when the
weights are equal, an optimal solution assigns variables only according to
their signs.

1. Introduction. The setting is Hollywood, California. A movie is being
made and it is time to film the balloon scene. The prop engineer wants 1500
pounds of people on the balloon, for optimum performance. The director,
megaphone in hand, is facing 46 “extras” of unknown weight. What should he
tell them? ‘

The setting is Waco, Texas. Each of six oil wells is connected by pipelines
to a single storage tank, and also to a local refinery, and at any time can
direct all of its output to one or to the other. The refinery is designed to
handle a steady flow of 280 barrels per minute, and discrepancies must be

Received March 1994; revised December 1994.

'The bulk of the research explicated herein was carried out while the first author was visiting
the second and third at Bellcore, under the auspices of DIMACS.

AMS 1991 subject classification. Primary 62C99.

Key words and phrases. Distributed optimization, load balancing.

834

Y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to OZza
The Annals of Applied Probability . RIKGIS

. ®
Www.stor.org



TARGET SHOOTING WITH PROGRAMMED R.V.’S 835

corrected by expensive trucking of oil to or from the storage tank, but the well
outputs are variable. How should the individual well outputs be directed?

The above situations are two examples of what we call target shooting (a
third, motivating, example concerns load balancing in a telephone signalling
network; unfortunately the details are beyond the scope of this work). An
instance of a target shooting problem consists of a set of random variables,
pairwise independent and of known distribution. In the balloon case these are
the weights of the extras; in the oil case, the outputs of the wells. Some of the
variables are to be selected, with the object of having their sum be close to a
given target: in the balloon case 1500 pounds; in the oil case, 280 barrels per
minute. The error or discrepancy in target shooting is the difference between
the target value and the actual sum of the selected variables; we seek to
minimize the expected value of the square of this quantity.

Many different kinds of constraints for the selected process are imaginable.
Here are four possibilities, beginning with the ideal case where all the values
of the random variables are known in advance:

1. Offline. The selection is made with knowledge of the values of each X,.
Although optimal selection can be NP-hard [2], the results even with a
primitive algorithm can be expected to be excellent. (For example, with the
distributions identical, continuous and fixed, the expected error will be
exponentially small relative to n.) In our examples, one might imagine
that the director has the time to ask each extra for his or her weight and
that oil routing is controlled remotely by the refinery.

2. Online. The values of the X;’s are revealed in subscript order, and after
each revelation that random variable must be selected or rejected. Imag-
ine, for example, that the movie extras are weighted one by one and each
told immediately whether to get on the balloon or go home. In the oil case,
the refinery pipeline is routed serially through the wells and selection is
made at each well on the basis of both output level of that well and current
flow in the pipeline. In the online case one may typically expect errors on
the order of c/n.

3. Online initial segment. Variables X,,..., X, must be selected for some &,
with the partial sums as online information. For example, the movie
extras are lined 'up and marched onto the balloon, until the balloon’s
weight reaches (or nears) the target value. Here the expected error will be
essentially constant relative to n.

4. Fixed selection. Any set of random variables may be selected, but with no
advance knowledge of their values; that is, the extras are selected blindly
and the wells are set up with fixed routing. Here of course the central limit
theorem applies and we may expect discrepancies on the order of ¢/ Vn .

The conditions considered here fit somewhere between cases 2 and 4 above,

> though it will be seen that performance is not much better than in case 4.
Suppose that each movie extra is presumed to know his or her own weight,
but that the director must instruct everyone immediately. He may say
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“Extras number 1 through 10, get on the balloon,” as he might in case 4
above, but he can also say, “Everyone whose weight is between 130 and 145
pounds get on the balloon” or even something like, “Extras 1 through 5 get on
the balloon, 6 through 10 get on only if you weigh less than 90 pounds, and
the rest of you go home.” Each extra is in effect a processor in a distributed
system with limited information (its own weight) and no communication; this
is the point of view taken by Papadimitriou and Yannakakis [3], who study
an intriguing bin-packing problem under these (among other) conditions. (For
a survey of approximation algorithms for bin-packing, the reader is referred
to [1])

In the oil case, each well is provided with a valve which can direct flow
either to the refinery or to storage, depending on the current output of that
well.

Thus, in our “programmed random variables” case, a strategy consists of a
list of instructions to the random variables, each telling a random variable
whether or not to join, based on its own value. We may thus identify an
instruction with a subset S; of the range of X, the instruction to X; then
being, “join if your value falls in the set S,.”

One might equally well consider more general “mixed” strategies, in which
an instruction takes the form of a function f; and variable X, joins randomly
with probability f;(X;), but it is easy to see that any mixed strategy can be
replaced by a pure one with the same or better performance. Nonetheless,
mixed strategies can be useful in the analysis, as in the proof of Theorem 2.4
below.

Our first general result (Theorem 2.4) states that assuming only pairwise
independence of the random variables X, there is always an optimal solu-
tion, and moreover there is an optimal solution in which each set S, is a
closed interval, one of whose endpoints is 0. Thus, when (as in our examples)
the random variables are nonnegative, all instructions can be taken to be of
the form “join if your value is at most 6,.”

One might expect that if the random variables are identically distributed,
then the 6, thresholds should all be equal, and that is indeed the case
(Theorem 3.1) when the r.v.’s have a density function f satisfying |x|f(x) <
1/2.

In the general'ii.d. case, however, the 6,’s tend to be equal only for low
values of the target; as the target value increases, instructions diversify. The
behavior of the thresholds as a function of the target value is not generally
either continuous or monotone. The case of uniform distributions on [0, 1] is
presented in Theorem 4.2 and the accompanying figure; it illustrates both the
elegant and the grotesque features that are manifested in general.

We remark here that it is not simply the square penalty function that
causes the bizarre behavior: calculations using a linear penalty function
revealed a somewhat similar pattern, at least for small values of n. The
linear penalty function may beé more realistic in some circumstances (e.g., our
oil well example), but, as will be seen, the selection of the penalty function as
the square of the discrepancy is central to our analysis.
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In Section 5, we consider a variation of target shooting which we call the
partial contribution case: here each random variable may contribute any part
of itself to the sum. The random variables X are taken to be nonnegative and
an instruction becomes a function g; from the range of X; to the nonnegative
reals such that g(x) < x for all «.

This makes no sense in the balloon scenario, but it is reasonable that the
oil wells might be equipped with values which can direct any part of the flow
to the local refinery and the rest to storage, depending on current output. We
spend less time with the partial contribution cases, not because it is less
plausible, but because the results are cleaner.

It turns out (Theorem 5.1) that in the partial contribution case, all instruc-
tions in an optimal solution may be assumed to be of the form “contribute the
minimum of your value and v,” Moreover, we see in Theorem 5.2 that
behavior in the ii.d. case is much better than before: the cutoffs y; are all
equal in the (essentially unique) optimal solution.

In the final section, we generalize the original target-shooting problem by
stipulating that each random variable may be assigned to any of the k
buckets. Each bucket will have its own target and its own weight, the final
penalty now being the weighted sum of the squared errors; thus target
shooting is the case £ = 2 with weights 1 and 0.

When the weights are instead equal, we obtain a load-balancing problem
with an unexpectedly simple solution. In particular, if the X,’s are nonnega-
tive, there is an optimal solution in which the instructions require no input:
that is, each variable is assigned to some bucket, regardless of the value of
the variable.

2. General results. Let X,,...,X, be pairwise independent random
variables, taking values in R. In this section, we will not assume that they
are identically distributed. For S a measurable subset of R, let X® be the
random variable defined by

XS _ X, X, eS8,
! 0, otherwise.
For T a real number and S;,..., S, subsets of R, define

n 2
AT(SD""Sn) =E(T— EXi(Si)) .
1

We seek to minimize Ay(Sy,...,S,). It is perhaps not entirely obvious that
the minimum is attained: we shall prove this in due course.

In any case, we can rewrite the objective mean square error as a sum of
squared bias plus variance, and since pairwise independence of the X’s
implies that the X(5” are uncorrelated, the variance of the sum of the X{5”
equals the sum of their variances. Hence we have the following lemma.
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LEMMA 2.1.
n 2 n
Ar(Sy,...,S,) = (T— ):Ex;so) + Y o2(XS)).
1 1

Note that the above requires only pairwise independence of the X; and
that it reduces the objective function A, to a function depending only on the
expectation and variance of the individual X{5). Thus if (X,,..., X,) and
(Xi,..., X}) are two n-tuples of pairwise independent random variables, such
that X; and X] have the same distribution for each i, then the objective
function Ay is the same for the X; as for the X/. In particular, the two infima
are the same and are attained (if at all) at the same values of S,. In other
words, the pairwise independent random variables X; may be assumed to be
mutually independent without affecting the analysis. Note, however, that it is
not enough to assume merely that the X, are pairwise uncorrelated: we need
that all the variables X{5? are pairwise uncorrelated.

Lemma 2.1 also provides us with a method of approaching the minimiza-
tion problem. The essence is as follows.

CoroLLARY 2.2. IfS,,...,S,,S},...,S; (k < n) are subsets of R, then
Ar(Sy,.-,81,8hi15--58,) <A7(S4, -5 8:,Sk115---,8,)
iffAp(Sy,...,8,) < Ap(SL, ..., S,), where

T"=T- Y EX®.
Jj=k+1

PrOOF. Immediate from Lemma 2.1. O

A consequence is that if we have an optimal solution vector, then each
subvector also solves a reduced minimization problem. This will be particu-
larly useful to us in the case £ = 1, where we conclude that any set which
occurs in an optimal solution vector must solve a minimization problem for
the case n = 1 and some target T".

Let us then consider the case n = 1. We are looking for the set S minimiz-
ing E(T — X®)2, Then X must “join” if it is closer to 7' than 0 is, but not if it
is farther; hence the minimum is attained by setting S = {x € R: |T — x| <
IT[}. Thus if T > 0, we take S = [0,27T] (or [0, 2T)), whereas if T is negative,
we set S = [2T, 0] (or (2T, 0)).

Thus we have the following theorem:

THEOREM 2.3. For any n-tuple of sets (S,,...,S,), there is an n-tuple
(Iy,...,1,) of closed intervals, each having one endpoint 0, such that
Ap(Iy,..., 1) < Ap(Sy,...,S).

For real 6, let S(6) denote the closed interval between 0 and 6, and
for real values 6,,...,6,, let X = XSO and AL(,,...,86,) =

no

Ar(S(6,),...,8(6,). Our problem is now to minimize Ap(6,,..., 6,).
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We are now in a position to prove our claim that there is an optimum
strategy. This can be shown using techniques of weak convergence, but we
prefer to proceed a little more directly. However, it is noteworthy that both of
the proofs depend crucially on Theorem 2.3.

THEOREM 2.4. For all pairwise independent random variables X,..., X

n
and all real T, there exist values 01y...,86, such that Ap(0y,...,0,) <

Ar(ey,..., d,) forall real ¢,,..., &b, !

PrROOF. It is convenient to extend the class of random variables X(%
slightly. We wish to allow mixed (i.e., randomized) instructions of the form:
“Join if your value is in the interval [0, 6,); if it is equal to 6;, join with
probability p;; do not join if it lies outside the interval [0, §,].” Given a value
q € [0,1] and a real-valued random variable X, we define a random variable
X(q) as follows. Let 6 = inflx € R: Pr(X < x) > q}. If Po(X = 6) = 0, then
X(g) = X©. Otherwise, let ¢; = P(X < §) and ¢, = P{X < 0),s0 q; < q <
q,, and set p = (¢ — q,)/(q, — q,). Now, if 8 > 0, set

X, Xe][o,9),

X( ) _ 07 X & [09 0]’
Y7 )X,  if X = 6, with probability p,
0, if X = 6, with probability 1 — p,

and similarly if 6 < 0. Clearly the random variables X(q) include the previ-
ously considered random variables X(®,

Now, the function E(T — £X,(g,))* is continuous in the variables ¢, and
defined on the closed unit n-cube; therefore, it must have an absolute
minimum. However, suppose the minimum is attained at some mixed strat-
egy and let i be the least index for which X; is used with probability p when
X; = 6, for some p € (0,1). From Corollary 2.2 and Theorem 2.3 we know
that replacing p by 0 or 1 leaves the value of the objective function un-
changed. It follows by induction that the minimum is also obtained at a pure
(deterministic) strategy. O

The problem remains of finding the values 6,,...,6, which minimize
Ar(8y,...,6,). We know from Corollary 2.2 that these satisfy

(2.1) 6, = 2(T - EX}"ﬂ)

J*i

for all i. We call the equations (2.1) the fundamental equations.
Now let C = 2(T — £7_ ,EX[%)). The fundamental equations tell us that, at
the optimum, each 6; satisfies 6, — 2EX[%) = C.

THEOREM 2.5. Suppose that each X; has a density function f; such that
lx|f(x) < 1/2 for every i and x, and there is no interval on which |x| fi(x) =

1/2 for some i. Then the fundamental equations have a unique solution,
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giving the values of the 6, minimizing Ap(6,,...,6,).
PRrROOF. Suppose the X, are as given. Then
EX(® = [zlf(x) dx
0
(for negative as well as nonnegative 6) and so
0
9 — 2EX® = f (1 — 2|xIf,(x)) dx.
0

By assumption, the integrand is nonnegative and not equal to zero over any
interval, so 8 — 2EX{? is a continuously increasing function of . Hence each
threshold 6, is determined uniquely by C, 6; = 6,(C). Also, each term E X(%(®)
is continuously increasing in C, so the equation

C = 2(T - TEX™©)
has a unique solution C for each value of 7. O

3. Identical distributions. In this section, we shall assume that the
X;’s are identically distributed, as X. We first note the immediate conse-
quence of Theorem 2.5 for this case.

THEOREM 3.1. Suppose that the X; have a density function f such that
|x|f(x) < 1/2 for every x and there is no interval on which |x|f(x) =1/2.
Then the optimum is obtained by taking all 6, equal to the unique solution of

9=2(T - (n — )EX®).

The conditions of Theorem 3.1 are satisfied for many commonly occurring
distributions, but by no means for all. The more interesting phenomena occur
when these conditions are not satisfied: we shall see that this essentially
implies that the optimum will not always have the 6, equal.

If the distribution X is not continuous and Pr(X = 6) > 0 for some 6, then
10+ (n — DEX® is discontinuous at that value of 6. Therefore, there is a
value T, not assumed by this function and for T = T, there can be no
solution to the fundamental equations with all the 6, equal. The other case
we consider is where X has a density f, but we do not have |x|f(x) < 1/2
everywhere.

THEOREM 3.2. Suppose that X, ..., X, are i.i.d. random variables with a
density function f(x). Suppose also that 6,f(6,) > 1/2 for some real 6,. Then
there is a value of T such that A, is minimized at a point where not all the 0;

are equal.

Proor. We employ some elementary calculus to show that the point
(85, ..., 0,) is not a local minimum for the function Ay, where T = 36, +
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(n — DEX ), This will imply that the optimum is attained at some other
solution to the fundamental equations, which will not have all 6, equal.
Note first that

Ar(y,...,0,) = (T— Z,E(X("t)))z + o(X0)

- (T_ le:‘xf(x) dx)2 + }i:foo"xzf(x) dx
_ zi:(j;oixf(x)dx)z.

Differentiating this expression with respect to 6, yields

—20if(0i)(T— 3 f”fxf(x)dx) + 67/(8) — 26,(6,) ["xf(x) dx
j=1"0 0

= eif(()i)[—2T+ 2y foo’xf(x) dx + Gi].

J*i
This is 0 at a solution of the fundamental equations. We next compute the

matrix of second derivatives at the point (6, ..., 6,). We have
3%An
02 0:1(6;),
2AT
26; 36, =26,1(6,)6,1(6;),
for i #j.

Thus the matrix of partial derivatives fails to be nonnegative definite if the
submatrix

00F(6o)  203f(6,)°
202£(8,)°  6,1(6,)

has negative determinant, which is the case since 6,f(6,) > 1/2 by assump-
tion. O ’

THEOREM 3.3. Suppose that X,,..., X, are i.i.d. random variables with
density function f(x). The following statements are equivalent:

@) 1xlf(x) < 1/2 for all «.

(i1) For every real T, Ap(6,,...,6,) is minimized by taking all 6,’s equal to
the root of )
6=2(T - (n - 1E(X®)).

Proor. That (ii) implies (i) follows from Theorem 3.2. The proof of Theo-
- rem 2.5 almost suffices to show that (i) implies (ii), the missing case being
where |x|f(x) = 1/2 over an interval.
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We know that, at a solution (6, ..., 6,) of the fundamental equations, all
the 6, have the same value of 6, — 2 /{i|x|f(x) dx. If |x|f(x) < 1/2 for all x,
then this is a nondecreasing function of 6;, so all the 6, lie in some interval
I =[a, b] over which f(x) = 1/2|x|. Since f is a density function, I cannot
contain the origin; it is convenient to invoke symmetry and assume 0 < a < b.

We set A = [fxf(x)dx and B = [§x?f(x) dx, and calculate A (6,,...,6,)
in the case where all the 6,’s lie in the interval I:

1)
Ar(64,...,0,) = (T— nA — Zfo'gdx)

X 1 2
+nB + Z[”’de—Z(A+ "‘—dx)
i a i a

naZ 2

1 1 2 .
=|T-nA+ —na—=-Y60,| +nB— — + ) —

_n(A— %)2— (A— %);fﬁ— %Zijof.

The terms involving ¥,02 cancel out and the remaining expression de-
pends only on Y6, Hence A, is also minimized at (0,,...,60,), where
0, = (1/n)L;6,. O

If T is nonnegative, it might at first sight seem likely that all the
thresholds 6; can be taken nonnegative too. A simple example showing that
this is not always so comes from considering two random variables X, X, so
that Pr(X; = 1) = 0.99, Pr(X; = —0.1) = 0.01 and target 0.9. It is evident
that the correct strategy is to set 6, =1 and 6, = —0.1. The same phe-
nomenon may occur when the X, are normally distributed with mean 1 and
sufficiently small variance. We now give a simple condition which prevents
such pathological behavior.

PRrOPOSITION 3.4. Suppose that X,,..., X, are real-valued random vari-
ables such that 2[EX(%| <|6| for all i and all real 6 + 0. Then, for all
positive T', Ap(6,,...,80,) is minimized at a point where all 0; are strictly
positive.

Proor. Recall that, at the optimum, each 6, satisfies 6§, — 2EX/% = C
for some constant C. The condition implies that this function of 6, is positive
if 6, is positive, negative if it is negative and 0 if 6, = 0. Therefore, all the 6,
have the same sign as C. However, we also have C = 2(T — L, E(X /%)) and
so, since T is positive, so are all the §,. O

If we weaken the conditions of Proposition 3.4 slightly to allow § = 2EX(®
for positive values of 6 only, the conclusion is that all 6, are nonnegative at
the optimum.



TARGET SHOOTING WITH PROGRAMMED R.V.’S 843

Our final result of this section shows that, in normal circumstances, if the
target is small, the optimum is obtained by taking all the 6, equal.

THEOREM 3.5. Suppose that X;,..., X, are i.i.d. random variables such
that 2[EX{”| < 10|, with strict inequality if 6 is negative. Suppose also that,
in the range (0,al, X, has a density function f(x) such that xf(x) < 1/2.
Then, for all T < a/2, Ap(6,,...,6,) is minimized by taking all the 0; equal.

Proor. We have that, at the optimum, all the 6, will be nonnegative.
Therefore, each 6§, will be at most 27" < a. In this range, we know that the
optimum is attained with all 6; equal. O

Theorem 3.5 is quite weak: we shall see shortly that often much more is
true. However, it is in one sense best possible. If the X; are distributed so
that Pr(X, = a) is 1, then for targets below a/2 it is correct to reject all X’s,
while for targets just above a/2, it is correct to accept one X; and reject the
rest.

4. The uniform case. In this section, we shall restrict attention to a
specific case, namely, the one in which all the X; are distributed as uniform
[0,1] variables. This example seems to be fairly typical of the general
behavior in this problem. We shall obtain the complete solution for the
problem in this case.

The first thing to observe is that all thresholds 6 > 1 are equivalent, so
that if the fundamental equations call for a value of 6 larger than 1, this can
be interpreted as the instruction to accept any value of X;, that is, X{* = X.

Next, observe that the random variables have a density

f(x)={1, xe[0,1],

0, otherwise,
so xf(x) > 1/2 in the range (1/2,1].

On the other hand, 2[E(X{?))| < |6] for all 6, so the general theory tells us
that, when T is positive, all the thresholds will be nonnegative. Also, for
T < 1/4, all the thresholds will be equal, but at some larger values this will
cease to be the case. The intuition is that at small values of the target we
should accept all suitably small values of X;, whereas at larger values we
should accept a certain number of the X, regardless (§; = 1) and tend not to
take the rest.

Next we perform a few simple calculations. The expectation EX(® is given
by [¢xdx = 62/2, for 0 < 9 < 1. The variance o ?(X?) is equal to

E(X®)’ — (EX®)’ = ["x®dx - 0*/4 = 6%/3 - 6%/4,
0
. for 0 < 6 < 1. For 0 > 1, the mean is 1/2 and the variance is 1/12. The form

of the objective function thus depends on the number of §; which lie strictly
in the interval [0, 1). We suppose without loss of generality that 0 < 0, <
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0, < - <6,<1<86,,; < <6, The objective function can then be ex-
pressed as
1~ n—m 1~ 1 n—m
Ap(0y,...,60) =|T—- =3 62— + =Y 62— — Y 0*+ ,
76 ") ( 2;';1 ' 2 ) 3;‘;1 ' 4;‘;1 ' 12
and the fundamental equations say that, for i < m,
1~ n—m

(4.1) 6, =2 T—Egloj?_ . )

J

J#i
Therefore, the value of 6, — 2 = 6,(1 — 6,) is the same foreach i = 1,..., m,

and so the 6, take on at most two distinct values below 1 and these two
values sum to 1. Also, we have

n—m-—1
2 b

1 m
(4.2) 1< 2(:1' -3 > 67—
j=1
if m < n, since this is the fundamental equation for 6,.

Let us next consider the case n = 2. This is of interest in its own right, but
our primary purpose is to use Corollary 2.2 to deduce information about the
general case. We consider the possibilities m = 0,1,2 in turn.

If m = 0, condition (4.2) gives 1 < 2T — lor T > 1.

If m = 1, condition (4.1) gives 8 = 2T — 1, which is possibleif 1/2 < T < 1
[and satisfies condition (4.2)].

The interesting case is m = 2. Here we have the coupled equations

6, =2T - 02, 6,=2T— 67.
One solution to this system is obtained by setting 6, = 6,: this gives
v1+ 8T -1
3 .

Recall from Theorem 3.2 that such a solution only gives a local minimum
when 6, f(0,) < 1/2, which in this case implies that 7' < 3/8.

Solutions to the coupled equations with 6, + 6, satisfy 6; = 1 — 6,, which
gives 0, = 2T — (1 — 6,)?, and so

0, = 0, =

1-v8T -3 1+ v8T -3
S e

This solution is valid for 3/8 < T < 1/2.

Summarizing, we have the following picture of the optimal solution in the
case n = 2. For values of T' up to 3/8, we should take 6, = 6,. At T'= 3/8,
both values of 6 are 1/2. Between T'= 3/8 and T' = 1/2, 6, drops to 0 while
6, rises to 1. Between T'=1/2 and T = 1, 6, remains at 1 while 6, rises
linearly from O to 1. Beyond 7" = 1, we do best to take 6, = 6, = 1.

We now move on to the general case: n > 3. If m < 2, Corollary 2.2 tells us
that the solution is as for n = 2, with a reduced target T — (n — 2)/2.
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If m > 3, we have two different types of solution. First, all the 6, below 1
could take the same value; second, we could have one 6, above 1/2 and the
remaining 6; below, with the two values summing to 1. (We cannot have
more than one 6; above 1/2 since by Corollary 2.2 they would solve a reduced
problem with n = 2.)

Set T* = T'— (n — m)/2. For the first solution, we have

6, =2T* — (m — 1)6?
for each i < m, yielding
o Y1+ 8T*(m - 1) -1
! 2(m - 1)

This gives a local minimum provided 7* < (m + 1)/8.
For the second type of solution, with 6, = 6,= - =6, ,_, <1/2 and
0, =1 — 0,, the fundamental equations give

0, =2T* — (m — 2)67 — (1 - 91)2,

1++/1+4(m—-1)(2T* - 1)
1 2(m — 1)

The square root is defined when T* > 1/2 — 1/(8m — 8), and the negative
root also requires 7* < 1/2.

The next step is to show that the positive root above does not correspond to
a local minimum. As before, we form the matrix of partial derivatives. Recall
that, at a stationary point,

3%A a%A
L -9, ~ = 20,0,
96; 36, 36,
so the matrix is
0, 202 - 202 20,0,
262 6, e 202 20,6,
20?2 202 .- 6, 26,0,
26,6, 20,0, - 26,6, 6,
This matrix has m — 2 eigenvectors of the form (1,0,...,0, —1,0,...,0),
with the —1 occurring in each of the rows 2,..., m — 1. The remaining two
eigenvectors are of the form (1,1,...,1, x)’, with eigenvalue A(x). Such a

vector is an eigenvector iff (1, x)! is an eigenvector of the matrix

6, +2(m —2)02 20,6,
2(m — 1)6,6, )

m
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with eigenvalue A(x). Therefore the original matrix is nonnegative definite iff
this reduced matrix has nonnegative determinant. The determinant in ques-
tion is
0,6,(1+ 2(m —2)6, — 4(m — 1)6,6,)
= 6,(1 - 6,)(1 - 26,)(1 - 2(m - 1)6,),
on setting 6, = 1 — 6,. Since 0 < 6; < 1/2, the first three terms above are
nonnegative. Thus a solution with 6, > 1/(2m — 2) will not be a local
minimum. This rules out the solution
1+ y/1+4(m—1)(2T* - 1)
1 2(m — 1) '

For each m, we are left with two candidate solutions:

A Vy1+8T*(m—-1) —1 Vi valid for 0 < T m+1
.= < < M
(A) 6 2(m = 1) i, valid for 0 < <=5

1—/1+4(m-1)(2T*- 1)

(B) 0= =0,_1= 2(m -1) , 0,=1-—0,,

lid f ! T* !

- — < < —=.

VT Tem 1) 57 T2

For each fixed m, we now compare solutions (A) and (B) in the range
where (B) is valid. The reader may wish to skip the proof of Lemma 4.1 on
first reading and proceed to Theorem 4.2.

LEmMA 4.1. Supposem > 3 and 1/2 — 1/(8m — 8) < T* < 1/2. Solution
(A) has a lower value of the objective function than solution (B) iff it has a
higher value of

(::i) B 4(m1— 1)"

ProoF. In both solutions (A) and (B), we have 62 = 6, — 2(T* — U), for
every i, where U = 3Y,672. We shall use this identity to reduce the objective
function A;. to a function of T* and U.

Multiplying through by 6? and summing over i, we obtain

YRt - 1Y 6f - (T - U

i=1 i=1

Therefore,

Ape(0y,...,6,) =(T* —=U)’ + & ¥ 63+ (T* - U)U.

i=1
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Similarly,
1~ U T* -U\
— 03 = — — | ——— 0.
12 i; ' ( 6 )E‘l '

6
and X2, 6, = 2U + 2m(T* — U). Combining all the above, we have

. , U (T*-U .
Ap(01,...,6,) = (T* - U) +E—(—3—)(U+m(T - U))

+(T* - U)U
- (1 - —@)(T* —uy+ 2ur -y + 2
3 3 6

For fixed T*, this function, g(U), say, is quadratic in U, with leading term
(1 — m)U?/38. It is maximized when g'(U) = 0, which is when
m— 2 1
+
) im -1’

u=r1*
(m—l

and the result follows. O

For solution (A), the quantity mentioned in Lemma 4.1 turns out to be

1

and for solution (B) it is

———/1+4@T* - )(m - 1) (1 +42T* - 1)(m - 1) +m —2).
4(m - 1)

At the bottom of the range, T* = 1/2 — 1/(8m — 8), the first expression is
positive and the second zero, so solution (A) is better. However, as T*
increases through the range, the second expression grows faster than the
first. The conclusion is that if solution (B) is ever optimal, it is optimal at
T* =1/2.

At the point T* = 1/2, the first expression above is

\/4m—3(m—\/4m—3)
4(m - 1)*

)

while the second is just 1/(4m — 4). The second is larger iff m < 5.
Therefore, for m > 6, solution (B) is never optimal, while for 3 <m < 5,
solution (B) beats solution (A) in some range 1/2 — £ < T* < 1/2, where
£<1/(8m — 8).
We now have to compare solutions with different values of m. For the
moment, let us just consider the solutions (A). Set D(m, T') equal to the value
of the objective function when n — m of the 6, are set to 1 and the remainder
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are set as in solution (A):

n—m
D(m,T) = Ape(dpr-er bp) + —35—
1+8T*(m—-1) —1 -
. vV ( ) =l g™
2(m — 1) 2

We shall regard D(m,T) as a function of a real variable m, for m > 1, and

take its derivative.
To begin with, ¢, satisfies (m — 1)¢2 + ¢,, = 2T — n + m, so, differen-
tiating throughout by m, we have

¢31 + (2(m -1)¢, + 1)
Now D(m,T) can be written in the form

¢m(1—¢m))2 (dai ¢:,i) n—m
—— +m|— - — |+

2 3 4 12 °

dd,

= 1.
dm

D(m,T) = (
and so
oD(m,T)
oy,

1
Ed’m(l - d)m)(l - 2¢m) + m¢31(1 - d)m)

1
Therefore,
dD(m,T) o2 b 1 dD(m,T) d¢,

+
am 3 4 12 od,  dm

1-6,)%(362 +2¢,, +1) 1
SO B0t L - g0 62)

1— 2
= _(—%m)(_sd)ri - 2¢m -1+ 6¢m + 6¢3&)
(1 - d’m)2 ”

= " (3¢5 + 44, — 1).

Now ¢,, increases with m, so D(m,T) decreases with m until ¢,, = (/7T —
2)/3 = 0.23, and increases thereafter.

Translating back, our conclusion is that to optimize over all solutions of
type (A), we should take m to be one of the two integers either side of the
value m, making ¢,, equal to (VY7 — 2)/3. This value m, turns out to be

o 27T +1  3-V7
- + .
.For each integer m = 5,6,...,n — 1, the target T' can be chosen so that

m, = m: for this value of the target, the optimal solution is a type (A) solution
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with exactly m thresholds less than 1. It remains to be shown that solutions
of type (B) are optimal for some values of T'. Recall that, for m = 3,4, 5, the
type (B) solution beats the type (A) solution in a range 1/2 — e < T — (n —
m)/2 <1/2, with £ <1/(8m — 8). In the range (n —m + 1)/2 — 1/(8m —
8) < T <(n—m+ 1)/2, the value my(T') lies between m — 1 and m. How-
ever, the type (A) solution with m — 1 non-1 6,’s does not in fact satisfy the
fundamental equations (7'* is less than 0, so the equations call for negative
values of 6,). Thus the only candidate for a type (A) solution in this range is
that with just m non-1 6,’s, and we know this is beaten by the type (B)
solution.

Thus we have a complete picture of the optimal solution for every value of
the target T'. One other quantity of interest is the value of T' at which we first
get m # n: this is

11 — 47 o1
n( 18 ) + O0(1).

We summarize the results in the following theorem and accompanying
Figure 1.

THEOREM 4.2. Let X,,..., X, be pairwise independent random variables
with the uniform distribution on [0,1] and let T be a positive real target.
Values of 0,,...,6, minimizing Ap(6,,...,6,) satisfy the following state-
ments:

G) For T < Ty(n) = n((11 — 4V7)/18) + O1), all the 6, are equal to
(V1+8T(n—-1) —1)/@2n — D).

(ii) For each m = 5,6,...,n — 1, there is a range of T around
9n — (47 — 2)ym + TWT — 17
T= 18 ’

where n — m of the ;s are 1 and the rest are equal to (/1 + 8T*(m — 1) —
1)/@Q(m — 1)), where T* =T — (n — m)/2.

(iii) For m = 5,4,3, there is an &(m) < 1/(8m — 8) such that, in the
range —e(m)<T—(n —m + 1)/2 <0, we have n — m of the 6;s equal to
1, m — 1 of them equal to

1-y/1+4(m-1)(2T* - 1)
! 2(m — 1)

and the remaining one equal to 1 — 6,.

@Gv) For m = 4,3, in the range (n —m)/2 <T <(n —m + 1)/2 — e(m),
(n — m) of the 6,s are 1 and the remainder are all equal, with value as given
in (ii) above.

<) For (n—2)/2<T <(4n —5)/8, n—2 of the 6’s are 1 and the
other two are equal to %(\/1 +8(T - (n —-2)/2) — D).

(vi) For 4n —5)/8 <T<(n —1)/2, n —2 of the 6/s are 1 and the
other two are given by (1 + \/8(T — (n — 2)/2) — 3).
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1

Fic. 1. Behavior of the 6;’s as a function of T.

(vii) For (n —1)/2 <T <n/2, all but one of the 6s are 1 and the
remaining one is equal to 2T — (n — 1).
(viii) For T > n/2, all the 6,’s are equal to 1.

5. The partial contribution case. We return finally to the general case
of pairwise independent and nonnegative random variables X;,..., X, with
positive target T. Now, however, we consider measurable functions g; from
the range of X, to the nonnegative reals such that-g(x) < x for all x, and we
define

n 2
Ar(&1,---58n) = E(T - L gi(Xi)) .
i=1

We seek to minimize A (g4,..., g,)-
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Thus, we allow in effect any random variable to contribute itself or any
part of itself to the sum. Surprisingly, this greater freedom brings better
behavior.

Note that if the sum of the X,’s happens to be (with probability 1) bounded
below by some B > T, then there are multiple solutions W1th expected error
0. We call this the “overkill” case.

THEOREM 5.1. In the partial contribution case, there is an optimal strat-
egy in which every g; is of the form g (x) = min(x, v,); in other words, each
variable X, is instructed to contribute all of itself up to vy, Moreover, this
strategy is unique up to measure 0 except in the overkill case, and the v, can
be taken to be the unique solutions to the equations

=T- Y E(mln{ s yj})

‘]*l

PROOF. Proofs of the analogous forms of Lemmas 2.1 and 2.2, with sets S,
replaced by functions g;, go through without a hitch; thus we may again
reduce to the n = 1 case. With one random variable X and target T', however,
it is immediate that A;(g) is uniquely minimized by the function g(x) =
min(x, T'). Since this function is given (possibly in more than one way) by a
threshold y, we conclude that all the g;’s may be defined by v,’s as claimed.

Moreover, if T; is the target for X; with the other programs already
chosen, then T; = T — L, ,E(min{X}, y;}). We may as well take y, = 7, satis-
fying the equatlons of the theorem.

To show uniqueness, choose an optimal solution and define the v,’s as
above. Then K = vy, — Eg,(X)) is independent of i. This function is stricily
increasing in 7v;, so the value of K determines all the y, = y,(K). It remains
only to note that except in the overkill case, the equations K = Vv —
E(min{x, y,(K)}) admit only a single solution. O

THEOREM 5.2. When the variables are identically distributed, the cutoffs Vi
of the optimal partial contribution strategy may be taken to be equal, with
value given by the unique root of the equation

y=T - (n — 1)E(min{x, y}). .

6. Load balancing. The original target shooting problem generalizes to
what we call load balancing in the following manner. Suppose that there are
k buckets B;, each with a target T; and a nonnegative weight w; which
reflects the 1mportance we attach to hlttlng that bucket’s target. Each ran-
dom variable X; must assign itself to one bucket, according to its own value;
thus we may encode the ith set of instructions as a (measurable) function #;
from the range of X, to the set {1,2,..., k} of bucket indices.
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Our penalty will now be the expected value of the weighted sum of squared
errors, namely,

A(hy,...,h,) = E

k 2
Lu(f,- ¥ x| )
Jj=1 h(X)=j
When £ =2, w, > 0,w, = 0and T, = T, we are back to target shooting, in
which case we know from Theorem 2.3 that there is an optimal solution in
which each A; is defined to be 1 on an interval [0, 6,] (or [6,,0]) and 2
elsewhere. The load balancing version is a generalization of this.

THEOREM 6.1. In the load balancing case, there is always an optimal
solution in which each h; can be described as follows: There is a partition of
the real line into intervals I,,1I,,...,1,, some of which may be empty or
unbounded, such that h(X,) =j iff X; lies in I,

ProoF. It is easily seen that the analogue of Corollary 2.2 carries through
for our new penalty function, enabling us once again to reduce to the n = 1
case. From this reduction the above statement (and more) can be derived in
straightforward manner. O

Of particular interest, naturally, is the equal weight case. Let us note first
that when w;, = w, = - = w,, any constant additive shift of the targets has
no effect on the problem. For example, setting all targets equal to 0 (or to any
other constant) is tantamount to trying to balance the loads equally.

Now Theorem 6.1 simplifies drastically.

THEOREM 6.2. In load balancing with equal weights, there is always an
optimal solution in which for each variable X; there are two buckets B, and
B,- such that X; goes into B;+ if it is nonnegative and into B;- otherwise.

It follows, of course, that when the random variables have nonnegative
ranges to begin with, they can be assigned optimally to buckets without
looking—by no means an intuitively obvious result, at least to us. This
theorem suggests, even more than earlier results, that our no-cooperation,
no-feedback constraints are very severe indeed.

The possible unification of Sections 5 and 6 seems to call for a final remark.
Suppose each variable may partition itself at will, sending a (possibly empty)
part to each bucket. Then again the usual reduction to the n = 1 case can be
effected and one can verify that there is a well-behaved optimal solution, in
which the partition of X; varies continuously with X,. We leave further
analysis of this case to the future.
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