
Biconnectivity Approximations

and Graph Carvings *

Samir Khtdler

University of Maryland

Abstract

A spanning tree in a graph is the smallest connected

spanning subgraph. Given a graph, how does one find

the smallest (i.e., least number of edges) 2-connected
spanning subgraph (connectivity refers to both edge and

vertex connectivity, if not specified) ? Unfortunately,

the problem is known to be NP-hard.

We consider the problem of finding an approximation

to the smallest 2-connected subgraph, by an efficient al-

gorithm. For 2-edge connectivity our algorithm guaran-

tees a solution that is no more than ~ times the optimal.

For 2-vertex connectivity our algorithm guarantees a so-

lution that is no more than ~ times the optimal. The

previous best approximation factor is 2 for each of these

problems. The new algorithms (and their analyses) de-

pend upon a structure called a carving of a graph, which

is of independent interest. We show that approximating

the optimal solution to within an additive constant is

NP-hard as well.

We also consider the case where the graph haa edge

weights. We show that an approximation factor of 2
is possible in polynomial time for finding a k-edge con-

nected spanning subgraph. This improves an approxi-

mation factor of 3 for k = 2 due to [FJ81], and extends

it for any k (with an increased running time though).

“Partially supported by NSF grants CCR-890S949, CCR-
9103135 and CCR-9111348. Institute for Advanced Computer
Studies (UMIACS), University of Maryland, College Park, MD
20742.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notica and the

titla of the publication and its data appear, and notica is given

that copying is by permission of the Association for Computing

Machinery. To copy otharwise, or to republish, requiree a fse

and/or epecific permission.

24th ANNUAL ACM STOC - 5/92/VICTORIA, B. C., CANADA

01992 ACM 0-89791-51 2-71921000410759$1 .50

Uzi Vishkin

University of Maryland

& Tel-Aviv University

1 Introduction

Let a graph G = (V, 1?) represent a feasible communi-

cations network. An edge (a, b) denotes the feasibility

of adding a link from site a to site b. A spanning tree in

G is the smallest connected subgraph, i.e., the cheapest

network that will allow the sites to communicate. No-

tice that the network is highly susceptible to failures,

since it cannot even survive a single link or site failure.

For more reliable communication, one desires spanning

subgraphs of higher connectivity.

In this paper we consider the problem of finding the

smallest 2-connected spanning subgraph (edge or vertex

connected). These problems are easily seen to be NP-

hard by a reduction from the Hamilton cycle problem

(the graph has a Hamilton cycle, if and only if it has

a 2-connected (edge or vertex) spanning subgraph with

n edges). We will study approximation algorithms for

this problem.

Contributions:

We give linear time algorithms to find a subgraph H =
(V, EH) in G = (V, E), such that H is 2-connected. The

number of edges in H is guaranteed to be no more than

c OPT where OPT is the size of an optimal solution.

For the case of 2-edge connectivity we obtain c = $,

and for the case of 2-vertex connectivity we obtain c =
~
3“ From the results presented, a natural question that

arises is: what are the limits for the edge and vertex

cases ? We also show that unless P = NP there is no
polynomial time algorithm that will produce a solution

that is guaranteed to be of cost no more than OPT+ C,
where C is some constant.

For the csse of weighted graphs we observe that an

approximation factor of 2 is possible in O(nk log n(m +

n log n)) time for finding the smallest weight k-edge con-

nected subgraph based on algorithms by [G91a, FT89,

Ed79]. This improves upon the approximation factor of

3 due to [FJ81] for k = 2.

In designing the approximation algorithms we iden-

759

http://crossmark.crossref.org/dialog/?doi=10.1145%2F129712.129786&domain=pdf&date_stamp=1992-07-01

tified the carving and tme-carvingl of a graph as struc-

tures that are useful for establishing lower bounds on

the optimal solution. These notions might be of inde-

pendent interest for understanding graph connectivity

issues.

Significance of the Approximation Results:

Improving biconnectivity approximation factors can re-

sult in significant savings in the design of a physical net-

work since it enables discarding a fraction of the edges

that were needed before.

The algorithm has been implemented and tests on

random graphs indicates that it achieves approximation

factors in the range 1.1 . ..1.2. The approximation fac-

tors got better as the graphs got denser; it went down

to around 1.02 in the densest graphs that we checked.

Previous Approximation Results:

We note that an approximation factor of 2 is easy to

obtain. Do a Depth First Search, and from each vertex

(except the root) pick the highest going back edge. This

gives a 2-connected spanning subgraph with at most

2n – 2 edges, while n is a trivial lower bound on any

optimal solution. Other schemes for obtaining approx-

imation factors of 2 follow as simple consequences of

[Wh32, CT91, N190].

Related Work:

The question of finding minimum cost k-connected

spanning subgraphs can be posed in the context of

weighted graphs as well. For the case k = 1, the prob-

lem reduces to that of finding a minimum spanning tree.

For k = 2, the problem is Np-hard and a scheme that
gave an approximation factor of 3 was given by [FJ81] in

0(n2) time. This was made simpler and improved to ob-
taining the same approximation factor in O(rn+n log n)

time by [KT91]. (Actually, the problem solved is of in-

creasing the connectivity of an existing network from 1

to 2, but it can be used for an approximation factor of

3 as well.)

When the edge weights satisfy the triangle inequality

(and the underlying feasibility graph is a clique), there
is extensive literature on the k-edge connected span-

ning subgraph problem [FJ82, GB92, GMS92, MK89,

SWK69].
For the case of edge or vertex connectivity when the

underlying feasibility graph is a clique (any edge can

be added at unit cost), one can solve the problem of
the smallest k-connected spanning subgraph optimally

[Ha62].

For the case of increasing the edge connectivity of

an existing network from any A to k, when the un-

derlying feasibility graph is a clique (any edge can be
added at unit cost), the problem can be solved opti-

mally [WN87, NGM90, G91b]. Naor, Gusfield and Mar-

tel [NGM90] use a clever extension of the basic “DFS ap-

1Both these me distinct from the “block–cut tree” described

in Even’s book @lv79].

preach of [ET76] to generalize the technique to work for

any k. (Eswaran and Tarjan solved the case of increas-

ing connectivity from 1 to 2 in their paper, where the

problem was actually first introduced.) For the case of

vertex connectivity, for k = 2, 3 the best algorithms are

due to [ET76, RG77, HR91b] and [HR91a] respectively.

A more general edge connectivity problem was con-

sidered by Frank [Fr90] when the feasibility graph is a

clique, and shown to be solvable in polynomial time.

This result has recently been improved by [G91b].

The problem of finding a minimal (not minimum)

2-connected (edge and vertex) spanning subgraph was

studied by [KR91] and [HKRT92]. (A graph with prop-

erty P is minimal with respect to property P if it loses

property P on deletion of any edge.) The relationship

to this paper is that any minimal biconnected graph has

at most 2(n — 1) edges, which gives an approximation

factor of 2.

Studying biconnectivity properties of graphs has led

to a few fundamental graph algorithmic techniques.

(1) The power of Depth First Search was illustrated

through biconnectivity [Ta72].

(2) The Tree Euler Tour technique for a parallel bicon-

nectivity algorithm [TV85].

(3) The design of the Ear Decomposition Search algo-

rithm in [MSV86] was originally motivated by extend-

ing [Vi85] from a strong orientation algorithm into an

alternative biconnectivity algorithm. Its use as a gen-

eral technique for parallel graph algorithms came at a

later stage.

(4) Application of Graph Decompositions [G191, Fr91]

to dynamic 2-edge and 3-edge connectivity.

Improving approximation factors: Considerable atten-

tion has been given to improving constant approxima-

tion factors. For example, Johnson [J082] reports a se-

ries of 8 papers that give such improvements for bin

packing, starting from an approximation factor of 2

down to 1.18333, and recently to (1 + c). For st einer

trees, a similar series exists [KMB81, TM80, Ze91,

BR92] .

Outline of Paper:

Section 2 gives basic definitions related to edge and ver-

tex connectivity. Section 3 describes the algorithm for

the edge connectivity case (this section is very simple

and gives the flavor of the results and analysis for the
vertex case, which is more involved). Section 4 describes

the algorithm for the vertex connectivity case. Section

5 describes the results for weighted graphs. In Section 6

we show that the problem of finding a constant additive

approximation to the optimal solution is lVP-hard.

760

2 Some definitions

We will be dealing only with connected graphs G =

(V, E), with no parallel edges. A graph is said to be k-

vertez (k-edge) connected if it has at least (k + 1) ver-

tices (edges), and the deletion of any (k – 1) vertices

(edges) leaves the graph connected. A single vertex in a

connected graph whose deletion disconnects the graph

is called a cut vertex (also known as articulation ver-

tex). A graph with no cut vertices is called biconnected.

A bridge in a graph is a single edge whose deletion dis-

connects the graph. A graph with no bridges is called

2-edge connected. In a rooted tree, the pammt of a

vertex u is denoted by p(u).

3 Edge Connectivity Case

Given a 2-edge connected graph G(V, E), let OPT de-

note the minimum number of edges in a 2-edge con-

nected spanning subgraph of G. We present an algo-

rithm that finds a subgraph H = (V, EH) that is 2-edge

connected with I EH I at most ~OPT.

High-level Description of the Algorithm

We search G using depth-first-search (DFS). A DFS

rooted spanning tree T is computed; T has at most

n – 1 edges, and all the non-tree edges are back edges

(i.e., one of the endpoints of the edge is an ancestor

of the other in T). All edges of T are picked for EH.

During the depth-first search the algorithm also picks

a set of non-tr~e edges that will increase the edge con-

nectivity by “covering” all the edges in T (since each

edge in T threatens to remain a bridge). A back edge

may be chosen just before withdrawing from a vertex for

the last time. Before withdrawing from a vertex v, we

check whether the edge (v, p(v)), joining v to its parent,

is currently a bridge or not. If (v, p(o)) is still a bridge,

we cover it by adding to EH a back edge from a descen-

dant of v to Iow[v], where 10W[V] is the vertex with the

smallest dfs-number that can be reached by following

zero or more downgoing tree edges from v, and a single

back edge.

The algorithm maintains the foIlowing

data-structures during the DFS.

dfs[v]: A serial number given to a vertex the first time

it is visited during DFS.

10WH [v]: This is defined to be the smallest numbered

vertex that can be reached by following zero or more

downgoing tree edges from v, and a single back edge

that belongs to EH.

savior[v]: This is defined to be the descendant end
vertex of the back edge that goes to 10W[V].

Correctness and Complexity:

It is quite easy to see that H is 2-edge connected, and

that the algorithm runs in time O(n + m). A detailed

description of the algorithm maybe found in [KV92].

In Fig l(a), the vertices are shown numbered with

the DFS numbering. The back edges are added in the

following order: (6, 4), (7, 3), (9, 2), (3, 1).

3.1 The Approximation Analysis

Our analysis finds a partition of the vertices, called a

tree-carving, which is used to prove a lower bound on

OPT, the number of edges in the optimal solution. The

upper bound of ~ on the approximation factor is es-

tablished using this lower bound. After presenting the

concept of a tree-carving, we apply it to the approxima-

tion analysis.

3.1.1 Tree-Carving

Definition 3.1 A tree-carving of a graph is a parti-

tion of the vertex set V into subsets Vi, V2, ..., V.. with

the following properties. Each subset constitutes a node

of a tme I’. For every vertex v e Vj, all the neighbors

of v in G belong to either Vj itself, or vk when vk is

adjacent to Vj in the tree r. The size of the tree-carving

is k.

We will refer to the vertices of I’ as nodes, and the

edges of r ss arcs.

An example of a graph G, and a tree-carving for it is
shown in Fig. 1. The carving tree I’ is shown in Fig. 2.

Theorem 3.2 (Tree-Carving Theorem)

If the graph G = (V, E) has a ime-carving of size k,

then a lower bound on the number of edges of any 2-

edge connected spanning subgraph in G is 2(k – 1).

It is interesting to note that the same simple proof

implies that the smallest ~-connected subgraph of G

must have at least J(k – 1) edges (for A > O).

Proof: There are k – 1 arcs in the tree I’. Each such arc

e = (Vi, Vj) partitions the vertices in G into two sets
Se and V – Se. (Deletion of arc e breaks I’ into two

trees rl and 1’2, where V; belongs to 171. Se is defined

to be the union of the sets VY that belong to I’1.) In

any 2-edge connected spanning subgraph we have: (1)

at lesst two edges going from Se to V – Se, and (2) the

two edges implied by any other arc f in I’ are different

than the ones implied by arc e. Since I’ has k -1 arcs,

we get a lower bound of 2(k – 1). o

3.1.2 Using !Jlee-Carvings for the Approxima-

tion Analysis

Given T, the DFS spanning tree, we will be interested
in the following partition of the vertices of G, called

the

end

DFS-tme partition. Some recursive calls DFS(V, u)

by adding the back edge (savior[v], 10W[V]) to EH,

761

and some do not add any edge. For each call DFS(V, u)

where a back edge is added to EH, ‘remove” the tree

edge (u, W) from ~ the resulting connected components

of T (with some tree edges removed) provides the DFS-

partition. Furthermore, T induces a rooted trve struc-

ture I’ on the sets in the DFS-tree partition.

In Fig l(a), the vertices are shown numbered with

the DFS numbering. The back edges are added in

the following order: (6, 4), (7, 3), (9, 2), (3, 1). Now con-

sider the tree T, and remove the following tree edges:

(5, 6), (5, 7), (8, 9), (1, 2). This gives us the DFS-tree

partition.

Theorem 3.3 The DFS-trve partition yields a tree-
carving of G.

Pmofi Let (VI, V2) be any non tree edge in G. Suppose

that VI is in set VI of the DFS-tree partition and V2

is in set V2. The only thing that has to be proven is

that exactly one of the following three possibilities must

occur: VI = V2, or set VI is the parent set of set Vz (in

the rooted tree structure I’), or Vz is the parent set of

set VI. This is readily implied by the definition of low

and the selection of back edges. ❑

Corollary 3.4 Since the number of arcs in the trce-

carving is exactly the same as the number of back edges

that am added to EH we conclude that OPT ~ 2(k – 1),

whew k – 1 is the number of added back edges.

Theorem 3.5 The algorithm outputs a solution of size

no mow than ~ OPT.

Proof.c The number of edges added by the algorithm to

H is: (i) (n – 1), for the tree edges, plus (ii) k – 1 back

edges, where k is also the size of the tree-carving. Hence,

the number of edges in EH is n -1 + k – 1. A lower

bound on the OPT solution is max(n, 2(k – l)), since n

is the minimum number of edges in a 2-edge connected

graph with n vertices (each vertex should have degree

at least 2), and 2(k – 1) follows from Corollary 3.4.

Hence, the ratio of the algorithm’s solution to the OPT

solution is

<
n–l-i– k-l

max(n, 2(k – 1))”

Ifn~2(k– 1), then clearly the ratio is < 3/2. If

n~2(k– 1), it is again easy to see that the ratio is

< 3/2.

We have an example to show

asymptotically tight.

3.1.3 Worst Case Example

We provide an example (see Fig.

c1

that the ratio of ~ is

3) with n = 16, where

the algorithm outputs EH with 15’+ 8 = 23 edges. The

optimal solution has 16 edges. The figure describes two

762

copies of the graph G; in each copy not all the edges

are shown. The left copy shows only the 15 tree edges

and the 8 back edges that are added by the algorithm

(highest ones). In the right copy, the 16 edges that

form a Hamiltonian cycle are shown along with the tree

edges.

Clearly we can generalize the example into a graph

with n vertices that hss n/2 leaves attached to n/2 ver-

tices in a path (like a “broom”). In this case the ratio

will be * , which converges to ~.

4 Vertex Connectivity Case

We now describe the algorithm that finds a 2-vertex

connected spanning subgraph H = (V, EH), of a given

2-vertex connected graph G, with I EH I at most gOPT.

To motivate the presentation we start by applying the

“greedy” approach of the 2-edge connectivity approxi-

mation algorithm of the previous section to the example

in Fig. 4. The DFS tree is the straight path and it is

easy to see that each back edge must be added to cover

a vertex that threatens to be a cut vertex. The graph

shown is actually Hamiltonian, and clearly the example
can be extended to yield approximation factors that are

as close to 2 as we want. For this reason we design the

algorithm to identify redundant edges in the DFS tree

and discard them,

For the analysis of the algorithm, we will define the

notion of a carving of a graph, which is not as simple as

the tree-carving that worked for the edge connectivity

case.

High-level Description of the Algorithm

We first provide an overview of the algorithm. In the

graph G, do a depth-first-search to compute a DFS

spanning tree T. The idea is to now pick a set of back

edges that will increase the vertex connectivity of the

tree to two by “detouring” around each vertex of the

tree T. During the Depth First Search all the tree edges

are added to EH, as well as some subset of back edges.

Some of the tree edges may be identified as redundant

and discarded during the DFS. The back edges are cho-

sen when the DFS traversal is visiting a vertex for the

last time. When DFS retreats out of a vertex v for the

last time, we check if the vertex u (parent of v) is po-
tentially a cut vertex or not. If yes, we can cover it by
adding to EH the highest going back edge from a de-

scendant of v. (This will at least prevent the separation

of v from p(u) under the deletion of u.) If the back edge

emanates from v we discard the tree edge joining v with

u (see Fig. 5). This is called the discarding rule.

Complexity:

It is quite easy to see that the algorithm runs in time

O(n + m). A detailed description of the algorithm may
be found in [KV92].

4.1 Correctness of the Algorithm

The correctness of thealgorithm iseatablished via the

following theorem.

Theorem 4.1 The subgraph H = (V, E~) obtained by

the algorithm is 2-vertez connected.

Pmofi For the proof, it will be helpful to think of the

algorithm as working in two phases.

Phase ~: ‘Baverse the graph using DFS, add all the tree

edges to EH.

Phase 2: ‘Ikaverse the graph using DFS, add the re-

quired back edgea to EH, and discard the tree edges by

applying the discarding rule.

We first state two lemmas that are used in the proof
of the theorem.

Lemma 4.2 For each non-root vertex v, the following

paths exist in H, fmm the end of Phase 1 till the end of

the algorithm.

1.

2.

Pathu(v): fmm v to its panmt p(v), using vertices

outside the DFS subtree rooted at v (except for v

itself).

PUthD(v, z): fmrn v, to each x that is a descendant

of v, using only vertices in the subtwe rooted at v.

By PUihD(V), we will wfer to the set of the paths

PathD(v, x), for all descendants x.

Lemma 4.3 Let v be a vertez, and suppose that neither

v nor p(v) are the mot. When the algom”thm terminates,

them is a path from v to its gmndpamnt w (i. e., w =

P(P(v))) that does not use p(v).

We complete the proof of the theorem by showing

that no single vertex can disconnect H. Observe that

the root of the DFS tree cannot be a cut vertex. (Since

G is biconnected, the root has only one child v and

using PathD(v), v can reach all the vertices, without

using the root.) Let v be a non-root vertex. We will

prove that H remains connected on deletion of v, by

showing that every remaining vertex has a path to p(v).

Consider deleting v from T. We obtain a connected

component corresponding to each child of v, and one

corresponding to the parent (that contains the root).

(1) Let u be a child of v. Using PathD(v), clearly u is

connected (in H) to all vertices in its subtree in T. Using

Lemma 4.3, we can connect each such u with p(v). (2)

We now consider the component of T containing p(v).

Let the path from p(v) to the root in T be Q = [VI =

p(v), vz, . . .v~ = root]. Clearly p(v) is connected (in H)
to all of its ancestors on path Q by using f’athu(vl) to

V2, and Pat hU(v2) to us etc. Consider a vertex z (other

than v), that is a child of some vi. Using PathD(Z)

paths, z is connected (in H) to all the vertices in its

subtree in T, including SZLViOrH [z]. Using the back edge

(saviorH[z], 10WHIZ]), z can connect to the path Q, and

thereby to p(v), as well. o

4.2 The Approximation Analysis

We would first like to motivate the need for a slightly

different structure than the one in the previous section,

by showing the short-comings of the tree-carving in han-

dling the vertex connectivity csse, Consider the graph

shown in Fig. 6. It consists of 1 units of 4 vertices

each. The “root” of each unit is connected to v in the

DFS tree, and v is connected to r. Clearly the num-

ber of back edges added by the algorithm equals 31. It

should be clear that we cannot find a tree-carving of

size greater than 21! + 2. The 21 leaves form singleton

sets in the carving, and since they all have edges to v,

the set containing v in the tree-carving contains all the

other vertices (except for r). Since n = 4.t + 2, and the

number of added edges is 34, we get a ratio of ~, and

this is not as good as we would like to claim.

Our analysis finds a partition of the vertices, called a

carving, which is used to prove a lower bound on OPT,

the number of edges in the optimal solution. The upper

bound of ! on the approximation factor is established

using this lower bound. After presenting the concept of

a carving, we apply it to the approximation analysis.

4.2.1 Carving

Definition 4.4 A carving of a gmph is a partition-

ing of the vertex set V into a collection of subsets

V1,V2,...,vk with the following properties. Each sub-

set constitutes a node of a meted tree I’. Each non-leaf

node Q of I’ has a special grey vertex denoted by g(vj)

that belongs to p(Vj). Fo~ evey vertez v c ~, all the

neighbors of v that arc in ancestor sets of Vi belong to

either

1. K.

2. ~, where U is the parent of K in the tme r.

9. Vl, where VI- is the gmndparent in the tree r. In

this case however, the neighbour of v can only be

9(U).

The size of the carving is k.

We will refer to the vertices of I’ as nodes, and the

edges of r as arcs. An example of a graph G together
with a carving for it is shown in Fig. 7.

Theorem 4.5 (Carving Theorem)
If the graph G = (V, E) has a carving of size k with 4

leaves in r, then a lower bound on the number of edges

of any 2-vertez connected spanning subgmph in G is (k+

1– 1).

763

Proof: Consider the rooted tree I’, Each node of the tree

other than the root has a unique parent node. Consider

any leaf node X; Claim (1): in any 2-vertex connected

spanning subgraph there must be at least two edges with

exactly one endpoint in X. This implies that there are

at lesst 21 edges in the OPT solution. Now consider any

non-leaf node X that is not the root. Claim (2): in any

2-vertex connected spanning subgraph there must beat

least one edge that has one endpoint in X and the other

in an ancestor set of X. (Some vertices that belong to

the children sets of X may have edges going to g(X),

but since g(X) is not a cut vertex, Claim (2) follows.)

There is no overlap in the counting scheme for different

sets. There are k – 1 – 1 nodes satisfying Claim (2) in

the tree I’. This shows that 24+ (k – 1 – 1) is a lower

bound on the size of any 2-vertex connected spanning

subgraph. ❑

4.2.2 Using Carvings for a Lower Bound on

OPT

Given T, the DFS spanning tree, we will be interested
in the following partition of the vertices of G, called

the DFS-tme partition. Some recursive calls DFS(V, u)

end by adding the back edge (savior[v], 10W[V]) to EH

without discarding any tree edge. (These are the re-

cursive calls that cause a net increase in the number of

back edges.) For each such call DFS(V, u), “remove” the

tree edge (u, v) from T; the resulting connected compo-

nents of T (with some tree edges removed) provides the

DFS-partition. lhmthermore, T induces a rooted tree

structuw on the sets in the DFS-tree partition.

Let 1 denote the number of back edges emanating

from the leaves, and z denote the net increase due to

the other back edges. The net increase in the number

of edges is 1+ Z.

Theorem 4.6 The DFS-tree partition yields a carving

of G.

Before describing the proof, we give some definitions

that make the proof clearer. The algorithm adds an

edge to EH just before it leaves v for the last time and

discovers that 10WHIW] = v (which implies that v is a
leaf), or discovers that 10WH [v] = u (which implies that

u is threatening to be a cut vertex). In the first case we
add to EH the highest going back edge from the leaf v,

and create a singleton leaf set in the DFS-tree partition.

In the second case (only when no tree edge is discarded),

we pick the highest going back edge from a descendant

of v, and find a new set for the DFS-tree partition. The

gmy vertex of this set is defined to be u. (Recall that

the grey vertex is a vertex in the parent set.)

Definition 4.7 Given a set of vertices K, its mot is

the vertex with the smallest dfs number in the set. It is
denoted as mot~i).

Proposition 4.8 The mot of a set in the carving is the

vertex v such that the tme edge (v, p(v)) was wmoved

from the DFS tree.

Proof (Of Theorem 4.6): Consider coloring all the ver-

tices that are roots of a set red. Each vertex joins the

set corresponding to its closest red ancestor (in the DFS

tree). It is clear that this gives us a “tree” structure on

the sets. Consider a non-tree edge e = (v, w). Since

there are no cross edges assume that w is an ancestor

of v. Assume that v E ~. We need to prove that the

endpoint w either (1) belongs to the same set ~, (2) to

the parent set ~, (3) or w is the grey vertex of Vj, in

the parent set of Vj.

Suppose that w is in set vh such that vh is neither Vi,

nor ~. So Vh is a proper ancestor of ~ in r. The algo-

rithm picked the highest going back edge when mark-

ing root (u) finished. This must go to a vertex z with

z < w. Hence when marking v’ = root(Vj) finished,

10WHIV’] ~ Z. The only way v’ can be colored red, is if

z = w = p(v’), in which case w is the grey vertex of Vj.

•1

Corollary 4.9 (Lower Bound)

The number of arcs in the carving is exactly the same

as the net number of back edges that are added to EH

(k – 1 =1+ z), and the number of leaves in the carving

twe is the same as the number of back edges added from

leaf vertices. Thus we conclude that OPT > 2!+ x,

whew x is the net increase due to non-leaf back edges

and 1 is the number of leaves in the carving tme I’.

Proofi Corresponding to each back edge we have one set

in the carving and thus k —1 = 1+ Z. Each leaf is put in

a singleton leaf set in the tree I’, and since a back edge

is added from each leaf the claim follows. Substituting

for k in Theorem 4.5 yields OPT z 2t?+ x. •1

A lower bound for the OPT solution is max(n, 2.4+ z).

(The bound of n edges follows from a degree argument

since each vertex should have degree at least 2. The

other bound follows from Theorem 4.5 and Corollary

4.9.)

4.2.3 An Upper Bound on I EH I

The number of edges added by the algorithm is as fol-

lows: first (n – 1) edges (for the tree edges), then an

extra (.4+ z) edges (this denotes the net increase).

Theorem 4.10 The number of edges added by the al-

gorithm (net inc~ase) can be upper bounded by #(n +1)

where n is the number of vertices and 1 is the number

of leaves in the DFS tree T.

Notice that this gives an upper bound of ~(n – /) for
z (the net increase = 1 + z).

/b4

Proof: We prove this theorem by a simple charging 4.2.4 Wrapping up the Approximation Analy-

scheme. The back edges that are added break naturally sis

into

1.

2.

3.

It

three categories.
Theorem 4.12 The algorithm outputs a solution of

$Upe A) Back edges that emanate from a leafv in
size no more than ~ OPT.

Proof; The ratio of the algorithm’s solution to the OPT

(Type B) Back edges that emanate from a non-leaf
solution is upper bounded by -j.

w in T, and delete the tree edge (v, p(v)) when they By Theorem 4.10 we know that z ~ ~(n -1). The sp-

are added. proximation ratio of the algorithm is upper bounded by

the maximum possible value of the following function:

(Type C) Back edges that emanate from a non-leaf
v in T, and do not delete any tree edgea when they

are added.

Case 1:
is clear that the net increase in the number of edges

is only due to edges of types A and C. We give a simple

proof to upper bound the number of added edges. For

each edge of type A emanating from a leaf v, we put a

charge of 1 to each leaf vertex. For each edge of type C

emanating from a vertex v, we put a charge of # to v

and a charge of # to p(v), The following lemma shows

that no non-leaf vertex can get charged more than once.

Case 2:

Lemma 4.11 By this process each non-leaf vertex gets

a charye of at most ~.

Pmojl Suppose that there is a vertex v that gets charged

more than once due to edges of type C being added.

There are two cases; either it could get charged due to

back edges emanating from children U1 and U2, or it

could get charged due to a back edge emanating from v

and a back edge emanating from a child U1 (all of type

c).
First notice that if any Ui is a leaf vertex, then it

would not charge v. Hence we can assume that ui’s

are non-leaf vertices and hence 10WH [ui] < ui when we

mark ~i finished. In the first case, if either 10WH[u1] or

10WH [uz] is equal to v, before the back edges emanating

from U1 and U2 are added then these back edges are of

type B. Now suppose that both 10WHIU1] and 10WH [U2]

are less than v. In this case only one of the back edges

emanating from U1 or U2 can be chosen (the one that

goes higher).

In the second case, low~[ul] s v when we mark U1

finished. If it is equal to v, then the edge emanating

from U1 is of type B. If it is < v then again only one

of the two back edges emanating from v and U1 can be

chosen (the one that goes higher). n

Hence after this process, each leaf vertex has a charge

of 1, and each non-leaf vertex has a charge of at most

~. Thus the total number of added edges (net increase)

is no more than 1 + ~ (n – 1) = ~ (n + 1). Thus Theorem

4,10 follows. ❑

n+(t?+z)

msx(n, 2/ + z)

n~2t?+z

We wish to compute the maximum of 1 + ~ sub-

ject to the constraints on i, t. The constraints are

n – 21 z z and !j(n — 1) ~ z. Under these con-

straints we have to maximize ~. By drawing

the fessible region on the (1, z) plane we can see

that it is maximum for-l = n/3 and z = n/3 thus

giving 5 as an upper bound.

ng21+z

We wish to compute the maximum of ~. Re-

placing n by 24+ z, (since its an upper bound) we

get,
3e + 28

2e-tx
=2–A

u

where u= 2+$. To compute the maximum value

we wish to maximize u. The constraints are n —

21 ~ z and ~(n – 1) ~ z. Under these constraints

we have to maximize ~. This time we get (t = l),

hence we get u = 3 and hence the maximum value

is ~.

c1

4.2.5 Worst Case Example

Fig. 8 describes an instance of an example where the

algorithm achieves an approximation factor that is as

bad as $ in the limit. (The example is due to Saran,

Vaziraru and Young.) There is a path of alternating

“black” and “white” vertices of length 277J+ 1, with m

white vertices. (In this instance m = 4.) There are m

leaves that are connected to the black vertices (one to

each, except at the root). This describes the DFS tree

T completely. There are back edges that connect each

leaf to the closest black ancestor that is not the parent.

There are also back edges that connect adjacent white
vertices on the path, and back edges connect alternate

black vertices on the path. Here n = 3m + 1. The num-

ber of back edges added from the leaves is m, and the

number of back edges added from non-leaf vertices is

765

m – 1. The total number of edges in the subgraph ob-

tained by the algorithm is 5m– 1, but the graph is easily

seen to be Hamiltonian. (Take all the leaves and their

adjacent edges, and add to it a path connecting suc-

cessive white vertices together with the extreme edges
of the alternating path.) Thus the ratio is ~, and

approaches ~ asymptotically.

5 Weighted Graphs

Consider the following problem: Given a graph G =

(V, E) with weights on the edges, find the smallest

weight spanning subgraph H = (V, EH) that is k-edge

connected (for any k).

The problem is known to be NP-hard [GJ78]. An al-

gorithm that achieves an approximation factor of 3 for

k = 2 is implied by [FJ81] as follows. Find the min-

imum spanning tree. Consider the problem of adding

the least weight set of edges to add to the tree to obtain

a 2-edge connected subgraph. Not surprisingly, this is

NP-hard as well [GJ78]. They gave an algorithm with

an approximation factor of 2 for the problem of aug-

menting connectivity, yielding an approximation factor

of 3 for the least weighted 2-edge connected subgraph.

(The same factor for 2-vertex connectivity is obtained

as well.)

Consider a directed graph G with weights on the

edges, and a fixed root r. How does one find the

cheapest directed subgraph HD that has k-edge disjoint

paths from a fixed root r to each vertex v ? Gabow

[G91a] gives the fastest implementation of a weighted

matroid intersection algorithm to solve this problem in

O(kn(rn + n log n) log n) time. (See also [Ed79, FT89].)

To solve our problem (approximation algorithm) take

the undirected graph G, and replace each undirected

edge (u, v) by two directed edges (u, v) and (v, u) with

each edge having weight W(U, v) (the weight of the undi-

rected edge). Call this graph GD. Now run Gabow’s al-

gorithm on the graph GD. If at least one of the directed

edges (u, v) or (v, u) is picked in HD, then we add (u, v)

to EH.

Lemma 5.1 The graph EH is a k-edge connected span-

ning subgraph of G.

Proofi Suppose in contradiction that there is a k – 1

edge cut in H. Assume that it separates H into pieces

Cl and C2. Let r be in C’l, now consider a vertex v

in C’2. It is clear that r cannot have k edge disjoint

directed paths to v. Thus, there cannot be a cut set of

size k — 1. •1

Theorem 5.2 The total weight of EH is at most twice

the weight of the OPT solution.

Proof Consider the OPT solution for the problem.

Consider all the antiparallel edges corresponding to
edges in OPT. We get a directed subgraph in GD of

cost 2c(OPT) (where c(OPT) is the total weight of the

edges in OPT). From r there are k edge disjoint undi-

rected paths to any vertex v; they also yield k directed
paths from r to v that are edge disjoint. Thus, this

subgraph has the property of having k directed edge

disjoint paths from r to any vertex v. Thus the opti-

mum solution found by Gabow’s algorithm must only

be cheaper. c1

6 What can we hope for ?

In this paper we showed that we can get multiplicative

approximation factors of ~ and ~ for the 2-connected

(edge and vertex respectively) spanning subgraph prob-

lem. In this section we ask: Is a multiplicative constant

the best that we could hope for ? Can one hope to get

an additive constant ? We answer this question nega-

tively by proving that no additive constant is possible.

The proofs may be found in [KV92].

Theorem 6.1 If P # NP, then there is no polynomial

time approximation a!gon”thm that can obtain a solution

to 2-edge connected spanning subgraph that is s OPT+

C, for any constant C.

Theorem 6.2 If P # NP, then there is no polyno-

mial time approximation algorithm that can obtain a

solution to 2-vertez connected spanning subgraph that is

~ OPT+ C, for any constant C.

Acknowledgments: We thank Yossi Matiaa and Neal

Young for help in the generation of random graphs. We

thank Huzur Saran, Vijay Vazirani and Neal Young for

gifting the example in Subsection 4.2.5 on the occa-

sion of the first author’s wedding. We thank Ramki

Thurimella for useful discussions. We also thank Umesh

Vazirani for useful comments on an earlier draft.

References

[BR92] P. Berman and V. Ramaiyer, “Improved ap-

proximations for the steiner tree problem,” 3rd
Annual Symposium on Discrete Algorithms, pp.

325-334, (1992).

[CT91] J. Cheriyan and R. Thurimella, “Algorithms for

parallel k-vertex connectivity and sparse certifi-

catees,” 23rd Annual Symposium on Theory of

Computing, pp. 391-401, (1991).

[Ed79] J. Edmonds, “Matroid intersection,” Annals

of Discrete Mathematics, No. 4, pp. 185–204,

(1979).

766

[Ev79] S. Even, Graph Algorithms, Computer Science

Press, Potomac, Md., (1979).

[ET76] K. P. Eswaran and R. E. Tarjan, “Augmenta-

[Fr91]

[Fr90]

tion problems,” SIAM Journal on Computing,

Vol. 5, No. 4, pp. 653-665, (1976).

G. N. Fredrickson, “Ambivalent data structures

for dynamic 2-edge connectivity and k small-

est spanning trees: 32nd Annual Symposium on
Foundations of Computer Science, pp. 632-641,

(1991).

A. Frank, “Augmenting graphs to meet edge-

connectivity requirements? 31’t Annual Sympo-

sium on Foundations of Computer Science, pp.

708-718, (1990).

[FJ81] G. N. Fredrickson and J. J6.16, “Approximation

algorithms for several graph augmentation prob-

lema~ SIAM Journal on Computing, Vol. 10, No.

2, pp. 270-283, (1981).

[FJ82] G. N. Fredrickson and J. J&J6, “On the rela-

tionship between the biconnectivity augmenta-

tion and traveling salesman problems,” Z’heorei-

ical Computer Science, Vol. 19, No. 2, pp. 189–

201, (1982).

[FT89] A. Frank and E. Tardos, “An application of sub-

[G9:

[G9:

modular flows,” Linear Algebra and its Applica-
tions, 114/115, pp. 320-348, (1989).

a] H. N. Gabow, “A matroid approach to finding

edge connectivity and packing arborescences,”

23’d Annual Symposium on Theory of Comput-

ing, pp. 112–122, (1991).

b] H. N. Gabow, “Applications of a poset repre-

sentation to edge connectivity and graph rigid-

ity,” 32 nd Annual symposium on Foundations of

Computer Science, pp. 812-822, (1991).

[GB92] M. X. Goemans and D. J. Bertsimas, “Surviv-

able networks, linear programming relaxations

and the parsimonious property,” to appear in

Mathematical Programming, (1992).

[GJ78] M. R. Garey and D. S. Johnson, “Computers

and Intractability: A guide to the theory of NP-

completeness”, Freeman, San Francisco (1978).

[G191] Z. Galil and G. Italiano, “Fully dynamic algo-

rithms for edge connectivity problems,” 23rd An-

nual Symposium on Theory of Computing, pp.

317-327, (1991).

[GMS92] M. Groetschel, C. L. Monma and M. Steer,

“Computational results with a cutting plane al-
gorithm for designing communication networks

with low-connectivity constraints,” to appear,

Operations Research, (1992).

[Ha62] F. Harary, “The maximum connectivity of a

graph? Proc. Nat. Acad. Sci., 48, pp. 1142-1146,

(1962).

[HKRT92] X. Han, P. Kelsen, V. Ramachandran and R.

E. Tarjan, “Computing minimal spanning sub-

graphs in linear time,” 3rd Annual Symposium

on Discrete Algorithms, pp. 146-156, (1992).

[HR91a] T. S. Hsu and V. Ramachandranj “A lin-

ear time algorithm for triconnectivity augmenta-

tion,” 32nd Annual Symposium on Foundations
of Computer Science, pp. 548–559, (1991).

[HR91b] T. S. Hsu and V. Ramachandran, “On finding

a smallest augmentation to biconnect a graph,”

2nd Annual International Symposium on Algo-

rithms, Springer Verlag LNCS 557, pp. 326–335,

(1991).

[HT73] J. E. Hopcroft and R. E. Tarjan, “Dividing

a graph into triconnected components,” SIAM

Journal on Computing, Vol. 2, No. 3, pp. 135-

158, (1973).

[HT74] J. E. Hopcroft and R. E. Tarjan, “Efficient pla-

narity testing,” Journal of the ACM, Vol. 21, No.

4, pp. 549-568, (1974).

[J082] D. S. Johnson, “The NP-completeness column:

An ongoing guide,” Journal of Algorithms, 3, pp.

288-300, (1982).

[KMB81] L. Kou, G. Markowsky and L. Berman, “A

fast algorithm for steiner trees,” Acts Informat-

ica, 15, pp. 141-145, (1981).

[KR91] P. Kelsen and V. Ramachandran, “On finding

minimal two-connected subgraphs,” 2nd Annual

Symposium on Discrete Algorithms, pp. 178-187,

(1991).

[KT91] S. Khuller and R. Thurimella, “Approxima-

tion algorithms for graph augmentation,” Tech-

nical Report UMIACS-TR-91-132, CS-TR-2766,

Univ. of Maryland, September (1991), to appear

in Journal of Algm-ithms.

[KV92] S. Khuller and U. Vishkin, “Biconnectivity ap-

proximations and graph carvings,” Technical Re-

port UMIACS-TR-92-5, CS-TR-2825, Univ. of

Maryland, January (1992).

767

[MK89] C. L. Mcmma and C. W. Ko, “Methods for

designing survivable communication networks,”

NATO Advanced Research Workshop, Denmark,

(1989).

[MSV86] Y. Maon, B. Schieber, and U. Vishkin. “Par-

allel Ear Decomposition Search (EDS) and st-

numbering in graphs,” Theondical Computer

Science, 47, pp. 277-298, (1986).

(NGM90] D. Naor, D. Gusfield and C. Martel, “A

[N190]

fat algorithm for optimally increasing the edge

connectivity,” 31’t Annual Symposium on Foun-

dations of Computer Science, pp. 698–707,

(1990).

H. Nagamochi and T. Ibaraki, “Linear time algo-

rithms for finding a sparse k-connected spanning

subgraph of a k-connected graph,” to appear, Al-

gorithmic.

[RG77] A. Rosenthal and A. Goldner, “Smallest aug-

mentations to biconnect a graph,” SIAM Journal

on Computing, Vol. 6, No. 1, pp. 55-66, (1977).

[SWK69] K. Steiglitz, P. Weiner and D. J. Kleitman,

“The design of minimum-cost survivable net-

works,” IEEE ‘i%msactions on Circuit Theory,

CT-16, 4, pp. 455-460, (1969).

[Ta72] R. E. Tarjan, “Depth-first search and linear

graph algorithms,” SIAM Journal on Comput-

ing, Vol. 1, No. 4, pp. 146–159, (1972).

[TM80] H. Takahashi and A. Matsuyama, “An ap-

proximate solution for the steiner tree problem

in graphs,” Math, Japonica, 24, pp. 573–577,

(1980).

[TV85] R. E. Tarjan and U. Vishkin, “An efficient par-

allel biconnectivity algorithm,” SIAM Journal

on Computing, 14, pp. 862–874, (1985).

[Vi85] U. Vishkin, “On efficient parallel strong orien-

tation,” Information Processing Letters, 20, pp.

235-240, (1985).

[Wh32] H. Whitney, “Non-separable and planar

graphs,” ZYans. Amer. Math Sot., 34, pp. 339-

362, (1932).

[WN87] T. Watanabe and A. Nakamura, “Edge-
connectivity augmentation problems,” J. of

Comp. and Sys. Sciences, 35 (l), pp. 96-144,

(1987).

[Ze91] A. Zelikovsky, “The 11/6 approximation algo-

rithm for the steiner problem on networks,”

manuscript, to appear in Information and Com-

putation.

(a) G

:,,

,
:*,

:
‘9.-

(b) Tree-Carving of size 5 for G

Figure 1: A graph G and a tree-carving for it.

Figure 2: The carving tree r.

768

G

.*
●“ :

,.’ ..:
●*,,.”” ●*.“4

.“ .“; :
.* ,,’:’ :.’

.“ *8::
,’ :::

:’ ,*, *
,0;:

: .
:::: :*:; :::

:’;: :,,
::::
::::, :::~

; ::
;,::
o:::

::::
*
*:::
*● *::
.,
● ,*,
**::
.s, ,

\ ;::

S*::
*

A
:*:*
:’
0 4

,..O

r.. ●**
‘., -..

; ●, ‘** 9.
‘.‘8 “. $. ;

‘9 ●* ●, ,
‘. : ●, “,
● ,,

:~ ;;,,,, ;
:0, ;
,s,
,s, :
a:, ,
9 ,
,*; ,

: :“:
, ::0:0 ,:.::,* ;:: :0:,
; :::
** ,
:::”.::;: :;
::~,:::
:,$:
,: :
% ;

/

:
:

:
:

:
j: :

;:::

h
;,:::,. .;

— DFS tree edges

‘--- Back edges added by algorithm

“- Hamiltonian cyclein G

Example to illustrate worst case performance.

.

G

Figure5: Rule fordiscarding tree edges.

Figure 6: Example to slhow

carving.

a unit of 4 vertices

short-comings of tree-

Figure 4: Example to show the necessity of discarding.

769

(a) G

.,,,
‘..

,,
:
~
*

●

:,:
,
:

(b) Carving of size 6 for G

node of V3 and V5

(b)

(a) The graph G

The edges picked by Algorithm 2-VC

(c) The tree r
Figure 8: Example to illustrate worst case performance.

Figure 7: A graph G, a carving for it, and the carving

tree r.

770

