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Predicate Abstraction with Indexed Predicates
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Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems
using a combination of a decision procedure for a subset of first-order logic and symbolic methods
originally developed for finite-state model checking. We consider models containing first-order
state variables, where the system state includes mutable functions and predicates. Such a model
can describe systems containing arbitrarily large memories, buffers, and arrays of identical pro-
cesses. We describe a form of predicate abstraction that constructs a formula over a set of
universally quantified variables to describe invariant properties of the first-order state variables.
We provide a formal justification of the soundness of our approach and describe how it has been
used to verify several hardware and software designs, including a directory-based cache coherence
protocol.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs—Invariants

General Terms: Verification, Predicate Abstraction

Additional Key Words and Phrases: formal verification, invariant synthesis, infinite-state verifi-
cation, abstract interpretation, cache-coherence protocols

1. INTRODUCTION

Graf and Saı̈di introducedpredicate abstraction[Graf and Saidi 1997] as a means of au-
tomatically determining invariant properties of infinite-state systems. With this approach,
the user provides a set ofk Boolean formulas describing possible properties of the system
state. These predicates are used to generate a finite state abstraction (containing at most
2k states) of the system. By performing a reachability analysis of this finite-state model, a
predicate abstraction tool can generate the strongest possible invariant for the system ex-
pressible in terms of this set of predicates. Prior implementations of predicate abstraction
[Graf and Saidi 1997; Saidi and Shankar 1999; Das et al. 1999;Das and Dill 2001; Ball
et al. 2001; Flanagan and Qadeer 2002; Chaki et al. 2003] required making a large num-
ber of calls to a theorem prover or first-order decision procedure, and hence could only be
applied to cases where the number of predicates was small. More recently, we have shown
that both BDD and SAT-based Boolean methods can be applied toperform the analysis
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2 · S. K. Lahiri, R. E. Bryant.

efficiently [Lahiri et al. 2003].

In most formulations of predicate abstraction, the predicates contain no free variables, and
hence they evaluate to true or false for each system state. The abstraction functionα has
a simple form, mapping eachconcretesystem state to a singleabstractstate based on
the effect of evaluating thek predicates. The task of predicate abstraction is to construct
a formulaψ∗ consisting of some Boolean combination of the predicates such thatψ∗(s)
holds for every reachable system states.

To verify systems containing unbounded resources, such as buffers and memories of arbi-
trary size and systems with arbitrary numbers of identical,concurrent processes, the system
model must supportfirst-orderstate variables, in which the state variables are themselves
functions or predicates [Ip and Dill 1996; Bryant et al. 2002b]. For example, a memory
can be represented as a function mapping an address to the data stored at an address, while
a buffer can be represented as a function mapping an integer index to the value stored at the
specified buffer position. The state elements of a set of identical processes can be modeled
as functions mapping an integer process identifier to the state element for the specified
process. In many systems, this capability is restricted toarraysthat can be altered only by
writing to a single location [Burch and Dill 1994; McMillan 1998]. Our verifier allows a
more general form of mutable function, where the updating operation is expressed using
lambda notation.

In verifying systems with first-order state variables, we require quantified predicates to de-
scribe global properties of state variables, such as “At most one process is in its critical
section,” as expressed by the formula∀i, j : crit(i) ∧ crit(j) ⇒ i = j. Conventional
predicate abstraction restricts the scope of a quantifier towithin an individual predicate.
System invariants often involve complex formulas with widely scoped quantifiers. The
scoping restriction (the fact that the universal quantifierdoes not distribute over conjunc-
tions) implies that these invariants cannot be divided intosmall, simple predicates. This
puts a heavy burden on the user to supply predicates that encode intricate sets of properties
about the system. Recent work attempts to discover quantified predicates automatically
[Das and Dill 2002], but this is a formidable task.

In this paper we present an extension of predicate abstraction in which the predicates in-
clude free variables from a set ofindexvariablesX (and hence the nameindexed predi-
cates). The predicate abstraction engine constructs a formulaψ∗ consisting of a Boolean
combination of these predicates, such that the formula∀Xψ∗(s) holds for every reach-
able system states. With this method, the predicates can be very simple, with the pred-
icate abstraction tool constructing complex, quantified invariant formulas. For example,
the property that at most one process can be in its critical section could be derived by
supplying predicatescrit(i), crit(j), andi = j, wherei andj are the index sym-
bols. Encoding these predicates in the abstract system withBoolean variablesci, cj, and
eij, respectively, we can verify this property by using predicate abstraction to prove that
ci ∧ cj⇒ eij holds for every reachable state of the abstract system.

Flanagan and Qadeer use a method similar to ours [Flanagan and Qadeer 2002], and we
briefly described our method in an earlier paper [Lahiri et al. 2003]. Our contribution in
this paper is to describe the method more carefully, exploreits properties, and to provide
a formal argument for its soundness. The key idea of our approach is to formulate the
abstraction functionα to map a concrete system states to the set of all possible valuations
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of the predicates, considering the set of possible values for the index variablesX . The
resulting abstract system is unusual; it is not characterized by a state transition relation and
hence cannot be viewed as a state transition system. Nonetheless, it provides an abstraction
interpretation of the concrete system [Cousot and Cousot 1977] and hence can be used to
find invariant system properties.

Assuming a decision procedure that can determine the satisfiability of a formula with uni-
versal quantifiers, we prove the following completeness result: Predicate abstraction can
prove any property that can be proved by induction on the state sequence using an induction
hypothesis expressed as a universally quantified formula over the given set of predicates.
For many modeling logics, this decision problem is undecidable. By using quantifier in-
stantiation, we can implement a sound, but incomplete verifier. As an extension, we show
that it is easy to incorporateaxiomsinto the system, properties that must hold universally
for every system state. Axioms can be viewed simply as indexed predicates that must
evaluate to true on every step.

The ideas have been implemented in UCLID [Bryant et al. 2002b], a platform for model-
ing and verifying infinite-state systems. Although we demonstrate the ideas in the context
of this tool and the logic (CLU) it supports, the ideas developed here are not strongly tied
to this logic. We conclude the paper by describing our use of predicate abstraction to verify
several hardware and software systems, including a directory-based cache coherence proto-
col devised by Steven German [German ]. We believe we are the first to verify the protocol
for a system with an unbounded number of clients, each communicating via unbounded
FIFO channels.

1.1 Related Work

Verifying systems with unbounded resources is in general undecidable. For instance, the
problem of verifying if a system ofN (N can be arbitrarily large) concurrent processes
satisfies a property is undecidable [Apt and Kozen 1986]. Despite its complexity, the
problem of verifying systems with arbitrary large resources (e.g. parameterized systems
with N processes, out-of-order processors with arbitrary large reorder buffers, software
programs with arbitrary large arrays) is of significant practical interest. Hence, in recent
years, there has been a lot of interest in developing techniques based on model checking
and deductive approaches for verifying such systems.

McMillan uses “compositional model checking” [McMillan 1998] with various built-in
abstractions to reduce an infinite-state system to a finite state system, which can be model
checked using Boolean methods. The abstraction mechanismsincludetemporal case split-
ting, datatype reduction[Clarke et al. 1992] andsymmetry reduction. Temporal case split-
ting uses heuristics to slice the program space to only consider the resources necessary
for proving a property. Datatype reduction uses abstract interpretation [Cousot and Cousot
1977] to abstract unbounded data and operations over them tooperations over finite do-
mains. For such finite domains, datatype reduction is subsumed by predicate abstraction.
Symmetry is exploited to reduce the number of indices to consider for verifying unbounded
arrays or network of processes. The method can prove both safety and liveness properties.
Since the abstraction mechanisms are built into the system,they can often be coarse and
may not suffice for proving a system. Besides, the user is often required to provide auxil-
iary lemmas or to decompose the proof to be discharged by symbolic model checkers. For
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instance, the proof of safety of the Bakery protocol [McMillan et al. 2000] or the proof
of an out-of-order processor model [McMillan 1998] required non-trivial lemmas in the
compositional model checking framework.

Regular model checking[Kesten et al. 1997; Bouajjani et al. 2000] uses regular languages
to represent parameterized systems and computes the closure for the regular relations to
construct the reachable state space. In general, the methodis not guaranteed to be complete
and requires variousaccelerationtechniques (sometimes guided by the user) to ensure ter-
mination. Moreover, approaches based on regular language are not suited for representing
data in the system. Several examples that we consider in thiswork can’t be modeled in
this framework; the out-of-order processor which containsdata operations or the Peter-
son’s mutual exclusion are few such examples. Even though the Bakery algorithm can be
verified in this framework, it requires considerable user ingenuity to encode the protocol
in a regular language.

Several researchers have investigated restrictions on thesystem description to make the
parameterized verification problem decidable. Notable among them is the early work by
German and Sistla [German and Sistla 1992] for verifying single-indexed properties for
synchronously communicating systems. For restricted systems, finite “cut-off” based ap-
proaches [Emerson and Namjoshi 1995; Emerson and Kahlon 2000; 2003] reduce the prob-
lem to verifying networks of some fixed finite size. These bounds have been established
for verifying restricted classes of ring networks and cachecoherence protocols. Emer-
son and Kahlon [Emerson and Kahlon 2003] have verified the version of German’s cache
coherence protocol with single entry channels by manually reducing it to a snoopy pro-
tocol, for which finite cut-off exists. However, the reduction is manually performed and
exploits details of operation of the protocol, and thus requires user ingenuity. It can’t be
easily extended to verify other unbounded systems including the Bakery algorithm or the
out-of-order processors.

The method of “invisible invariants” [Pnueli et al. 2001; Arons et al. 2001] uses heuristics
for constructing universally quantified invariants for parameterized systems automatically.
The method computes the set of reachable states for finite (and small) instances of the
parameters and then generalizes them to parameterized systems to construct a potential
inductive invariant. They provide an algorithm for checking the verification conditions for
a restricted class of system called thestratifiedsystems, which include German’s protocol
with single entry channels and Lamport’s Bakery protocol [Lamport 1974]. However, the
method simply becomes a heuristic for generating candidateinvariants for non-stratified
systems, which includes Peterson’s mutual exclusion algorithm [Peterson 1981] and the
Ad-hoc On-demand Distance Vector (AODV) [C.Perkins et al. 2002] network protocol.
The class ofbounded-datasystems (where each variable is finite but parameterized) con-
sidered by this approach can’t model the the out-of-order processor model [Lahiri et al.
2002] that we can verify using our method.

Predicate abstraction with locally quantified predicates [Das and Dill 2002; Baukus et al.
2002] require complex quantified predicates to construct the inductive assertions, as men-
tioned in the introduction. These predicates are often as complex as invariants themselves.
In fact, some of the invariants are used are predicates in [Baukus et al. 2002] to derive in-
ductive invariants. The method in [Baukus et al. 2002] verified (both safety and liveness) a
version of the cache coherence protocol with single entry channels, with complex manually
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provided predicates. Baukus et al. [Baukus et al. 2002] usesthe the logic ofWSIS(weak
second order logic with one successor) [Büchi 1960; Thomas1990], which does not allow
function symbols and thus can’t model the out-of-order processor model. The automatic
predicate discovery methods for quantified predicates [Dasand Dill 2002] have not been
demonstrated on most examples (except the AODV model) we consider in this paper.

Flanagan and Qadeer [Flanagan and Qadeer 2002] use indexed predicates to synthesize
loop invariants for sequential software programs that involve unbounded arrays. They also
provide heuristics to extract some of the predicates from the program text automatically.
The heuristics are specific to loops in sequential software and not suited for verifying more
general unbounded systems that we handle in this paper. In this work, we explore formal
properties of this formulation and apply it for verifying distributed systems. In a recent
work [Lahiri and Bryant 2004], we provide a weakest precondition transformer [Dijkstra
1975] based syntactic heuristic for discovering most of thepredicates for many of the
systems that we consider in this paper.

2. NOTATION

Rather than using the commonindexed vectornotation to represent collections of values
(e.g.,~v

.
= 〈v1, v2, . . . , vn〉), we use anamed setnotation. That is, for a set of symbolsA,

we letv indicate a set consisting of a valuevx for eachx ∈ A.

For a set of symbolsA, let σA denote aninterpretationof these symbols, assigning to
each symbolx ∈ A a valueσA(x) of the appropriate type (Boolean, integer, function, or
predicate). LetΣA denote the set of all interpretationsσA over the symbol setA.

For interpretationsσA andσB over disjoint symbol setsA andB, let σA · σB denote an
interpretation assigning eitherσA(x) or σB(x) to each symbolx ∈ A ∪ B, according to
whetherx ∈ A or x ∈ B.

Figure 1 displays the syntax of the Logic of Counter arithmetic with Lambda expressions
and Uninterpreted functions (CLU), a fragment of first-order logic extended with equality,
inequality, and counters. Anexpressionin CLU can evaluate to truth values (bool-expr),
integers (int-expr), functions (function-expr) or predicates (predicate-expr). Notice that
we only allow restricted arithmetic on terms, namely that ofaddition or subtraction by
constants. Notice that we restrict the parameters to a lambda expression to be integers, and
not function or predicate expressions. There is no way in ourlogic to express any form of
iteration or recursion.

For symbol setA, let E(A) denote the set of all CLU expressions overA. For any ex-
pressionφ ∈ E(A) and interpretationσA ∈ ΣA, let thevaluation ofφ with respect toσA,
denoted〈φ〉σA be the (Boolean, integer, function, or predicate) value obtained by evaluat-
ing φ when each symbolx ∈ A is replaced by its interpretationσA(x).

Let v be a named set over symbolsA, consisting of expressions over symbol setB. That
is, vx ∈ E(B) for eachx ∈ A. Given an interpretationσB of the symbols inB, evaluating
the expressions inv defines an interpretation of the symbols inA, which we denote〈v〉σB .
That is,〈v〉σB is an interpretationσA such thatσA(x) = 〈vx〉σB for eachx ∈ A.

A substitutionπ for a set of symbolsA is a named set of expressions over some set of
symbolsB (with no restriction on the relation betweenA andB.) That is, for eachx ∈ A,
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bool-expr ::= true | false | bool-symbol

| ¬bool-expr| (bool-expr∧ bool-expr)

| (int-expr= int-expr) | (int-expr< int-expr)

| predicate-expr(int-expr, . . . , int-expr)

int-expr ::= lambda-var| int-symbol

| ITE(bool-expr, int-expr, int-expr)

| int-expr+ int-constant

| function-expr(int-expr, . . . , int-expr)

predicate-expr ::= predicate-symbol| λ lambda-var, . . . , lambda-var. bool-expr

function-expr ::= function-symbol| λ lambda-var, . . . , lambda-var. int-expr

Fig. 1. CLU Expression Syntax. Expressions can denote computations of Boolean values, integers, or functions
yielding Boolean values or integers.

there is an expressionπx ∈ E(B). For an expressionψ ∈ E(A∪C), we letψ [π/A] denote
the expressionψ′ ∈ E(B ∪ C) resulting when we replace each occurrence of each symbol
x ∈ A with the expressionπx. These replacements are all performed simultaneously.

PROPOSITION 2.1. Letψ be an expression inE(A∪C) andπ be a substitution having
πx ∈ E(B) for eachx ∈ A. For interpretationsσB andσC , if we letσA be the interpretation
defined asσA = 〈π〉σB , then〈ψ〉σA·σC

= 〈ψ [π/A]〉σB·σC
.

This proposition captures a fundamental relation between syntactic substitution and expres-
sion evaluation, sometimes referred to asreferential transparency. We can interchangeably
use a subexpressionπx or the result of evaluating this subexpressionσA(x) in evaluating a
formula containing this subexpression.

3. SYSTEM MODEL

We model the system as having a number ofstate elements, where each state element
may be a Boolean or integer value, or a function or predicate.We use symbolic names to
represent the different state elements giving the set ofstate symbolsV . We introduce a set
of initial statesymbolsJ and a set ofinput symbolsI representing, respectively, initial
values and inputs that can be set to arbitrary values on each step of operation. Among
the state variables, there can beimmutablevalues expressing the behavior of functional
units, such as ALUs, and system parameters such as the total number of processes or the
maximum size of a buffer. Since these values are expressed symbolically, one run of the
verifier can prove the correctness of the system for arbitrary functionalities, process counts,
and buffer capacities.

The overall system operation is characterized by aninitial-state expression setq0 and a
next-stateexpression setδ. The initial state consists of an expression for each state element,
with the initial value of state elementx given by expressionq0x ∈ E(J ). The transition
behavior also consists of an expression for each state element, with the behavior for state
elementx given by expressionδx ∈ E(V∪I). In this expression, the state element symbols
represent the current system state and the input symbols represent the current values of the
inputs. The expression gives the new value for that state element.
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We will use a very simple system as a running example throughout this presentation. The
only state element is a functionF, i.e. V = {F}. An input symboli determines which
element ofF is updated. Initially,F is the identify function:

q0F = λu . u.

On each step, the value of the function for argumenti is updated to beF(i+1). That is,

δF = λu . ITE(u = i, F(i+1), F(u))

where the if-then-else operationITE selects its second argument when the first one evalu-
ates to true and the third otherwise. For the above example,J = {} andI = {i}.

3.1 Concrete System

A concrete system state assigns an interpretation to every state symbol. The set of states of
the concrete system is given byΣV , the set of interpretations of the state element symbols.
For convenience, we denote concrete states using letterss andt rather than the more formal
σV .

From our system model, we can characterize the behavior of the concrete system in terms
of an initial state setQ0

C ⊆ ΣV and a next-state function operating on setsNC : P(ΣV)→
P(ΣV). The initial state set is defined as:

Q0
C

.
= {

〈

q0
〉

σJ
|σJ ∈ ΣJ },

i.e., the set of all possible valuations of the initial stateexpressions. The next-state function
NC is defined for a single states as:

NC(s)
.
= {〈δ〉s·σI |σI ∈ ΣI},

i.e., the set of all valuations of the next-state expressions for concrete states and arbitrary
input. The function is then extended to sets of states by defining

NC(SC) =
⋃

s∈SC

NC(s).

We can also characterize the next-state behavior of the concrete system by a transition
relationT where(s, t) ∈ T whent ∈ NC(s).

We define the set of reachable statesRC as containing those statess such that there is some
state sequences0, s1, . . . , sn with s0 ∈ Q0

C , sn = s, andsi+1 ∈ NC(si) for all values of
i such that0 ≤ i < n. We define thedepthof a reachable states to be the lengthn of the
shortest sequence leading tos. Since our concrete system has an infinite number of states,
there is no finite bound on the maximum depth over all reachable states.

With our example system, the concrete state set consists of integer functionsf such that
f(u+1) ≥ f(u) ≥ u for all u andf(u) = u for infinitely many arguments off .

4. PREDICATE ABSTRACTION WITH INDEXED PREDICATES

We useindexedpredicates to express constraints on the system state. To define the abstract
state space, we introduce a set ofpredicatesymbolsP and a set ofindexsymbolsX . The
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Abstract System Concrete System
Formula State Set System Property State Set
ψ SA = 〈ψ〉 ∀Xψ∗ SC = γ(SA)

p ∧ q {TT} ∀x : f(x) ≥ 0 ∧ x ≥ 0 ∅
p ∧ ¬q {TF} ∀x : f(x) ≥ 0 ∧ x < 0 ∅
¬q {FF,TF} ∀x : x < 0 ∅
p {TF,TT} ∀x : f(x) ≥ 0 {f |f(x) ≥ 0}

p ∨ ¬q {FF, TF, TT} ∀x : x ≥ 0 ⇒ f(x) ≥ 0 {f |x ≥ 0 ⇒ f(x) ≥ 0}

Table I.Example abstract state sets and their concretizations Abstract state elements are represented by their
interpretations ofp andq.

predicates consist of a named setφ, where for eachp ∈ P , predicateφp is a Boolean
formula over the symbols inV ∪ X .

Our predicates define an abstract state spaceΣP , consisting of all interpretationsσP of the
predicate symbols. Fork

.
= |P|, the state space contains2k elements.

As an illustration, suppose for our example system we wish toprove that state elementF
will always be a functionf satisfyingf(u) ≥ 0 for all u ≥ 0. We introduce an index
variablex and predicate symbolsP = {p, q}, with φp

.
= F(x) ≥ 0 andφq

.
= x ≥ 0.

We can denote a set of abstract states by a Boolean formulaψ ∈ E(P). This expression
defines a set of states〈ψ〉

.
= {σP | 〈ψ〉σP = true}. As an example, our two predicates

φp andφq generate an abstract space consisting of four elements, which we denote FF,
FT, TF, and TT, according to the interpretations assigned top andq. There are then 16
possible abstract state sets, some of which are shown in Table I. In this table, abstract state
sets are represented both by Boolean formulas overp andq, and by enumerations of the
state elements.

We define theabstraction functionα to map each concrete state to the set of abstract states
given by the valuations of the predicates for all possible values of the index variables:

α(s)
.
=

{

〈φ〉s·σX |σX ∈ ΣX

}

(1)

=
⋃

σX∈ΣX

{

〈φ〉s·σX
}

(2)

Note that (2) is simply a restatement of (1) using set union notation.

Since there are multiple interpretationsσX , a single concrete state will generally map to
multiple abstract states. Figure 2 illustrates this fact. The abstraction functionα maps a
single concrete states to a set of abstract states — each abstract state (〈φ〉s·σX ) resulting
from some interpretationσX . This feature is not found in most uses of predicate abstrac-
tion, but it is the key idea for handling indexed predicates.

Working with our example system, consider the concrete state given by the functionλu.u,
in Figure 3. When we abstract this function relative to predicatesφp andφq, we get two
abstract states: TT, whenx ≥ 0, and FF, whenx < 0. This abstract state set is then
characterized by the formulap⇔ q.
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abstraction
concretization

Concrete Domain

Abstract Domain

α(s)

s
γ(SA)

SA

t u

Fig. 2. Abstraction and Concretization.

We then extend the abstraction function to apply to sets of concrete states in the usual way:

α(SC)
.
=

⋃

s∈SC

α(s). (3)

=
⋃

σX∈ΣX

⋃

s∈SC

〈φ〉s·σX (4)

Note that (4) follows by combining (2) with (3), and then reordering the unions.

α γ

x

F (x)

{TT,FF}

x

F (x)

∀x : F (x) ≥ 0 ⇔ x ≥ 0λu.u

Fig. 3. Abstraction and Concretization for the initial state for the example.

PROPOSITION 4.1. For any pair of concrete state setsSC andTC :

(1) If SC ⊆ TC , thenα(SC) ⊆ α(TC).

(2) α(SC) ∪ α(TC) = α(SC ∪ TC).

These properties follow directly from the way we extendedα from a single concrete state
to a set of concrete states.
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We define the concretization functionγ to require universal quantification over the index
symbols. That is, for a set of abstract statesSA ⊆ ΣP , we letγ(SA) be the following set
of concrete states:

γ(SA)
.
=

{

s|∀σX ∈ ΣX : 〈φ〉s·σX ∈ SA

}

(5)

Consider the Figure 2, where a set of abstract statesSA has been concretized to a set of
concrete statesγ(SA). It shows a concrete statet that is not included inγ(SA) because
one of the states it abstracts to lies outsideSA. On the other hand, the concrete stateu is
contained inγ(SA) becauseα(u) ⊆ SA. One can provide an alternate definition ofγ as
follows:

γ(SA)
.
= {s|α(s) ⊆ SA} (6)

The universal quantifier in the definition ofγ has the consequence that the concretization
function does not distribute over set union. In particular,we cannot view the concretization
function as operating on individual abstract states, but rather as generating each concrete
state from multiple abstract states.

PROPOSITION 4.2. For any pair of abstract state setsSA andTA:

(1) If SA ⊆ TA, thenγ(SA) ⊆ γ(TA).
(2) γ(SA) ∪ γ(TA) ⊆ γ(SA ∪ TA).

The first property follows from (5), while the second followsfrom the first.

Consider our example system with predicatesφp andφq. Table I shows some example
abstract state setsSA and their concretizationsγ(SA). As the first three examples show,
some (altogether 6) nonempty abstract state sets have emptyconcretizations, because they
constrainx to be either always negative or always nonnegative. On the other hand, there
are 9 abstract state sets having nonempty concretizations.We can see by this that the
concretization function is based on the entire abstract state set and not just on the individual
values. For example, the sets{TF} and{TT} have empty concretizations, but{TF,TT}
concretizes to the set of all nonnegative functions.

THEOREM 4.3. The functions(α, γ) form a Galois connection, i.e., for any sets of
concrete statesSC and abstract statesSA:

α(SC) ⊆ SA ⇔ SC ⊆ γ(SA) (7)

PROOF. (This is one of several logically equivalent formulationsof a Galois connection
[Cousot and Cousot 1977].) The proof follows by observing that both the left and the
right-hand sides of (7) hold precisely when for everyσX ∈ ΣX and everys ∈ SC , we have
〈φ〉s·σX ∈ SA. Let us prove the two directions:

(1) If : Let α(SC) ⊆ SA. By the definition ofα in (1), this implies that for everys ∈
SC and for interpretationσX ∈ ΣX , 〈φ〉s·σX ∈ SA. By the definition ofγ in (5),
γ(SA) contains precisely those concrete statess′ for which 〈φ〉s′·σX ∈ SA, for every
interpretationσX ∈ ΣX . Thus, for everys ∈ SC , s ∈ γ(SA) and consequently,
SC ⊆ γ(SA).
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(2) Only if : Let SC ⊆ γ(SA). Hence, by (5), for everys ∈ SC , 〈φ〉s·σX ∈ SA, for
every interpretationσX ∈ ΣX . By the definition ofα in (1), α(s) ∈ SA. Further, by
extendingα for the entire setSC by (3), we getα(SC) ⊆ SA.

Alternately, the functions (α, γ) form a Galois connection if they satisfy the following
properties for any sets of concrete statesSC and abstract statesSA:

SC ⊆ γ(α(SC)). (8)

α(γ(SA)) ⊆ SA. (9)

These properties can be derived from (7). Similarly, (7) canbe derived from (8) and (9).
The containment relation in both (8) and (9) can be proper. For example, the concrete state
set consisting of the single functionλu . u abstracts to the state setp ⇔ q, which in turn
concretizes to the set of all functionsf such thatf(u) ≥ 0⇔ u ≥ 0, for any argumentu.
This is clearly demonstrated in Fig 3. On the other hand, consider the set of abstract states
represented byp ∧ q. This set of abstract states has an empty concretization (see Table I),
and thereby satisfiesα(γ(SA)) ⊂ SA.

5. ABSTRACT SYSTEM

Predicate abstraction involves performing a reachabilityanalysis over the abstract state
space, where on each step we concretize the abstract state set viaγ, apply the concrete next-
state function, and then abstract the results viaα. We can view this process as performing
reachability analysis on an abstract system having initialstate setQ0

A

.
= α(Q0

C) and a
next-state function operating on sets:NA(SA)

.
= α(NC(γ(SA))). Note that there is no

transition relation associated with this next-state function, sinceγ cannot be viewed as
operating on individual abstract states.

It can be seen thatNA provides anabstract interpretation[Cousot and Cousot 1977] of the
concrete system:

(1) NA is null-preserving:NA(∅) = ∅

(2) NA is monotonic:SA ⊆ TA ⇒ NA(SA) ⊆ NA(TA).

(3) NA simulatesNC (with a simulation relation defined byα): α(NC(SC)) ⊆ NA(α(SC)).

THEOREM 5.1. NA provides anabstract interpretationof the concrete transition sys-
temNC .

PROOF. Let us prove the three properties mentioned above:

(1) This follows from the definition ofNA and the fact thatγ(∅) = ∅, NC(∅) = ∅ and
α(∅) = ∅.

(2) By the definition ofNA, and using the fact thatγ, α andNC are monotonic.NC

is monotonic since it distributes over the elements of a set of concrete states, i.e.
NC(SC) =

⋃

s∈SC
NC(s).
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(3) From (8), we know thatSC ⊆ γ(α(SC)). By the monotonicity ofNC , NC(SC) ⊆
NC(γ(α(SC))). Sinceα is monotonic, we haveα(NC(SC)) ⊆ α(NC(γ(α(SC)))).
Now applying the definition ofNA, we get the desired result.

6. REACHABILITY ANALYSIS

Predicate abstraction involves performing a reachabilityanalysis over the abstract state
space, where on each step we concretize the abstract states via γ, apply the concrete tran-
sition relation, and then abstract the results viaα. In particular, defineRi

A, the set of states
reached on stepi as:

R0
A = Q0

A (10)

Ri+1
A = Ri

A ∪NA(R
i
A) (11)

= Ri
A ∪

⋃

s∈γ(Ri

A
)

⋃

t∈NC(s)

α(t) (12)

PROPOSITION 6.1. If s is a reachable state in the concrete system such thatdepth(s) ≤
n, thenα(s) ⊆ Rn

A.

PROOF. We prove this by induction onn. Forn = 0, the only concrete states having
depth0 are those inQ0, and by (10), these states are all included inR0

A.

For a statet having depthk < n, our induction hypothesis shows thatα(t) ⊆ Rn−1
A . Since

Rn−1
A ⊆ Rn

A, we therefore haveα(t) ⊆ Rn
A.

Otherwise, suppose statet has depthn. Then there must be some states having depthn−1
such thatt ∈ NC(s). By the induction hypothesis, we must haveα(s) ⊆ Rn−1

A . By (8),
we haves ∈ γ(α(s)), and Proposition 4.2 then implies thats ∈ γ(Rn−1

A ). By (12), we can
therefore see thatα(t) ⊆ Rn

A.

Since the abstract system is finite, there must be somen such thatRn
A = Rn+1

A . The set of
all reachable abstract statesRA is thenRn

A.

PROPOSITION 6.2. The abstract system computes an overapproximation of the set of
reachable concrete states, i.e.,

α(RC) ⊆ RA (13)

Thus, even though determining the set of reachable concretestates would require examin-
ing paths of unbounded length, we can compute a conservativeapproximation to this set
by performing a bounded reachability analysis on the abstract system.

Remark6.3. It is worth noting that we cannot use the standard “frontier set” optimiza-
tion in our reachability analysis. This optimization, commonly used in symbolic model
checking, considers only the newly reached states in computing the next set of reachable
states. In our context, this would mean using the computationRi+1

A = Ri
A ∪ NA(R

i
A −

Ri−1
A ) rather than that of (12). This optimization is not valid, dueto the fact thatγ, and

thereforeNA, does not distribute over set union.
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As an illustration, let us perform reachability analysis onour example system:

(1) In the initial state, state elementF is the identity function, which we have seen abstracts
to the set represented by the formulap ⇔ q. This abstract state set concretizes to the
set of functionsf satisfyingf(u) ≥ 0⇔ u ≥ 0. This is illustrated in Fig 3.

(2) Let h denote the value ofF in the next state. If inputi is −1, we wouldh(−1) =
f(0) ≥ 0, but we can still guarantee thath(u) ≥ 0 for u ≥ 0. This is illustrated
in Fig 4. Applying the abstraction function, we getR1

A characterized by the formula
p ∨ ¬q (see Table I.)

(3) For the second iteration, the abstract state set characterized by the formulap∨¬q con-
cretizes to the set of functionsf satisfyingf(u) ≥ 0 whenu ≥ 0, and this condition
must hold in the next state as well. Applying the abstractionfunction to this set, we
then getR2

A = R1
A, and hence the process has converged.

-1
x

F (x)

∀x : x ≥ 0 ⇒ F (x) ≥ 0
∧x < −1 ⇒ F (x) ≤ 0

x

F (x)

x

F (x)

α γ

∀x : x ≥ 0 ⇒ F (x) ≥ 0

NC

∀x : F (x) ≥ 0 ⇔ x ≥ 0

{TT,FF,TF}

Fig. 4. Reachability after 1 iteration for the example.

7. VERIFYING SAFETY PROPERTIES

A Boolean formulaψ ∈ E(P) can be viewed as defining apropertyof the abstract state
space. Such a property is said to hold for the abstract systemwhen it holds for every
reachable abstract state. That is,〈ψ〉σP = true for all σP ∈ RA.

For Boolean formulaψ ∈ E(P), define the formulaψ∗ ∈ E(V ∪ X ) to be the result of
substituting the predicate expressionφp for each predicate symbolp ∈ P . That is, viewing
φ as a substitution, we haveψ∗ .

= ψ [φ/P ].

PROPOSITION 7.1. For any formulaψ ∈ E(P), any concrete states, and interpreta-
tion σX ∈ ΣX , if σP = 〈φ〉s·σX , then〈ψ∗〉s·σX = 〈ψ〉σP .

This is a particular instance of Proposition 2.1.
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We can view the formulaψ∗ as defining a property∀Xψ∗ of the concrete state space. This
property is said to hold for concrete states, written∀Xψ∗(s), when〈ψ∗〉s·σX = true for
everyσX ∈ ΣX . The property is said to hold for the concrete system when∀Xψ∗(s) holds
for every reachable concrete states ∈ RC .

With our example system, letting formulaψ
.
= p ∨ ¬q, and noting thatp ∨ ¬q ≡ q⇒ p,

we get as a property of state variableF that∀x : x ≥ 0⇒ F(x) ≥ 0.

PROPOSITION 7.2. Property∀Xψ∗(s) holds for concrete states if and only if〈ψ〉σP =
true for everyσP ∈ α(s).

This property follows from the definition ofα (Equation 1) and Proposition 7.1.

Alternately, a Booleanψ ∈ E(P) formula can also be viewed as characterizing a set of
abstract states〈ψ〉

.
= {σP | 〈ψ〉σP = true}. Similarly, we can interpret the formula

∀Xψ∗ as characterizing the set of concrete states〈∀Xψ∗〉
.
= {s | 〈∀Xψ∗〉s = true}.

PROPOSITION 7.3. If SC
.
= 〈∀Xψ∗〉 andSA

.
= 〈ψ〉, thenSC = γ(SA).

PROOF. Expanding the definition ofSC , we get

SC = {s | ∀σX ∈ ΣX : 〈ψ∗〉s·σX = true} (14)

= {s | ∀σX ∈ ΣX : σP = 〈φ〉s·σX ⇒ 〈ψ〉σP = true} (15)

= {s | ∀σX ∈ ΣX : 〈φ〉s·σX ∈ SA} (16)

Observe that (15) follows from (14) by expanding the definition of SC and (16) follows
from (15) by using Proposition 7.1.

The purpose of predicate abstraction is to provide a way to verify that a property∀Xψ∗(s)
holds for the concrete system based on the set of reachable abstract states.

THEOREM 7.4. For a formulaψ ∈ E(P), if propertyψ holds for the abstract system,
then property∀Xψ∗ holds for the concrete system.

PROOF. Consider an arbitrary concrete states ∈ RC and an arbitrary interpretation
σX ∈ ΣX . If we letσP = 〈φ〉s·σX , then by the definition ofα (Equation 1), we must have
σP ∈ α(s). By Propositions 4.1 and 6.2, we therefore have

σP ∈ α(s) ⊆ α(RC) ⊆ RA

By the premise of the theorem we have〈ψ〉σP = true, and by Proposition 7.1, we have
〈ψ∗〉s·σX = 〈ψ〉σP = true. This is precisely the condition required for the property∀Xψ∗

to hold for the concrete system.

Thus, the abstract reachability analysis on our example system does indeed prove the prop-
erty that any valuef of state variableF satisfies∀x : x ≥ 0⇒ f(x) ≥ 0.

Using predicate abstraction, we can possibly get afalse negativeresult, where we fail
to verify a property∀Xψ∗, even though it holds for the concrete system, because the
given set of predicates does not adequately capture the characteristics of the system that
ensure the desired property. Thus, this method of verifyingproperties is sound, but possibly
incomplete.
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For example, any reachable statef of our example system satisfies∀x : f(x) < 0 ⇒
f(−x) ≥ −x, but our reachability analysis cannot show this.

We can, however, precisely characterize the class of properties for which this form of
predicate analysis is both sound and complete. A property∀Xψ∗ is said to beinductive
for the concrete system when it satisfies the following two properties:

(1) Every initial states ∈ Q0 satisfies∀Xψ∗(s).
(2) For every pair of concrete states(s, t), such thatt ∈ NC(s), if ∀Xψ∗(s) holds, then

so does∀Xψ∗(t).

PROPOSITION 7.5. If ∀Xψ∗ is inductive, then∀Xψ∗ holds for the concrete system.

This proposition follows by induction on the state sequenceleading to each reachable state.

Let ρA be a formula that exactly characterizes the set of reachableabstract states. That is,
〈ρA〉 = RA.

LEMMA 7.6. ∀Xρ∗A is inductive.

PROOF. By definition,〈ρA〉σP = true if and only if σP ∈ RA, and so by Proposition
7.2,∀Xρ∗A(s) holds for concrete states if and only if α(s) ⊆ RA.

We can see that the first requirement is satisfied for anys ∈ Q0, sinceα(s) ⊆ α(Q0) ⊆ RA

and therefore∀Xρ∗A(s) holds by Proposition 7.2.

Now suppose there is a statet ∈ NC(s) and∀Xρ∗A(s) holds. Then we must haveα(s) ⊆
Ri

A for somei ≥ 0. From (8), we haves ∈ γ(α(s)) ⊆ γ(Ri
A), and therefore, by (12),

α(t) ⊆ Ri+1
A ⊆ RA. Thus, the second requirement is satisfied.

LEMMA 7.7. If ∀Xψ∗ is inductive, thenψ holds for the abstract system.

PROOF. We will prove by induction oni that〈ψ〉σP = true for everyσP ∈ Ri
A. From

the definition ofRA, it then follows that〈ψ〉σP = true for everyσP ∈ RA, and therefore
ψ holds for the abstract system.

For the case ofi = 0, (10) indicates thatR0
A = α(Q0). Thus, by the definition ofα

(Equation 1) for everyσP ∈ R0
A, there must be a states and an interpretationσX ∈ ΣX

such thatσP = 〈φ〉s·σX . By the first property of an inductive predicate and by Proposition
7.1, we have〈ψ〉σP = 〈ψ∗〉s·σX = true.

Now suppose that〈ψ〉σP = true for all σP ∈ Ri
A. Consider an elementτP ∈ R

i+1
A . If

τP ∈ Ri
A, then our induction hypothesis shows that〈ψ〉τP = true. Otherwise, by (12),

and the definitions ofα (Equation 1), the transition relationNC , andγ (Equation 5), there
must be concrete statess andt satisfying:

(1) τP ∈ α(t). That is,τP = 〈φ〉t·τX for someτX ∈ ΣX .
(2) t ∈ NC(s).
(3) s ∈ γ(Ri

A). That is, for allσX ∈ ΣX , if σP
.
= 〈φ〉s·σX , thenσP ∈ Ri

A.

By Proposition 7.1 we have〈ψ∗〉s·σX = 〈ψ〉σP = true, and therefore∀Xψ∗(s) holds.
By the second property of an inductive predicate,∀Xψ∗(t) must also hold. Applying
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Proposition 7.1 once again, we therefore have〈ψ〉τP = 〈ψ∗〉t·τX = true. This completes
our induction.

This lemma simply shows that if we present our predicate abstraction engine with a fully
formed induction hypothesis, then it will be able to performthe induction proof. But, it
has important consequences.

For a formulaψ ∈ E(P) and a predicate setφ, the property∀Xψ∗ is said tohave an
induction proof overφ when there is some formulaχ ∈ E(P), such thatχ ⇒ ψ and
∀Xχ∗ is inductive. That is, there is some way to strengthenψ into a formulaχ that can be
used to prove the property by induction.

THEOREM 7.8. A formulaψ ∈ E(P) is a property of the abstract system if and only if
the concrete property∀Xψ∗ has an induction proof over the predicate setφ.

PROOF. Suppose there is a formulaχ such that∀Xχ∗ is inductive. Then by Lemma
7.7, we know thatχ holds in the abstract system, and whenχ ⇒ ψ, we can infer thatψ
holds in the abstract system.

On the other hand, suppose thatψ holds in the abstract system. Then the formulaρA
(characterizing the set of all reachable abstract states) satisfiesρA ⇒ ψ and∀Xρ∗A is
inductive. Hence∀Xψ∗ has an induction proof overφ.

This theorem precisely characterizes the capability of ourformulation of predicate abstrac-
tion — it can prove any property that can be strengthened intoan induction hypothesis
using some combination of the predicates. Thus, if we fail toverify a system using this
form of predicate abstraction, we can conclude that either 1) the system does not satisfy the
property, or 2) we did not provide an adequate set of predicates out of which the predicate
abstraction engine could construct a universally quantified induction hypothesis.

COROLLARY 7.9. The property∀Xρ∗A is the strongest inductive invariant for the con-
crete system of the form∀Xχ∗, whereχ ∈ E(P). Alternately, for any other inductive
property∀Xχ∗, whereχ ∈ E(P), ∀Xρ∗A ⇒ ∀Xχ

∗.

PROOF. The proof follows easily from Theorem 7.8, the fact thatρA ⇒ χ wheneverχ
is a property of the abstract state space, Proposition 7.3 and Proposition 4.2.

Remark7.10. To fully automate the process of generating invariants, we need to fur-
ther discover the predicates automatically. Other predicate abstraction tools [Ball et al.
2001; Henzinger et al. 2002; Chaki et al. 2003; Das and Dill 2002] generate new pred-
icates based on ruling out spurious counterexample traces from the abstract model. This
approach cannot be used directly in our context, since our abstract system cannot be viewed
as a state transition system, and so there is no way to characterize a counterexample by a
single state sequence. In this paper, we do not address the issue of discovering the indexed
predicates: we provide a syntactic heuristic based on the weakest precondition transformer
in a separate work [Lahiri and Bryant 2004].
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8. QUANTIFIER INSTANTIATION

For many subsets of first-order logic, there is no complete method for handling the uni-
versal quantifier introduced in functionγ (Equation 5). For example, in a logic with un-
interpreted functions and equality, determining whether auniversally quantified formula
is satisfiable is undecidable [Börger et al. 1997]. Instead, we concretize abstract states
by considering some limited subset of the interpretations of the index symbols, each of
which is defined by a substitution for the symbols inX . Our tool automatically gener-
ates candidate substitutions based on the subexpressions that appear in the predicate and
next-state expressions. Details of the quantifier instantiation heuristic can be found in an
earlier work [Lahiri et al. 2002]. These subexpressions cancontain symbols inV , X , and
I. These instantiated versions of the formulas enable the verifier to detect specific cases
where the predicates can be applied.

More precisely, letπ be a substitution assigning an expressionπx ∈ E(V ∪ X ∪ I) for
eachx ∈ X . Thenφp [π/X ] will be a Boolean expression over symbolsV , X , andI that
represents some instantiation of predicateφp.

For a set of substitutionsΠ and interpretationsσX ∈ ΣX andσI ∈ ΣI , we define the
concretization functionγΠ as:

γΠ(SA, σX , σI)
.
=

{

s|∀π ∈ Π : 〈φ [π/X ]〉s·σX ·σI
∈ SA

}

(17)

PROPOSITION 8.1. For any abstract state setSA and interpretationsσX ∈ ΣX and
σI ∈ ΣI :

(1) γ(SA) ⊆ γΠ(SA, σX , σI) for any set of substitutionsΠ.

(2) γΠ(SA, σX , σI) ⊆ γΠ′(SA, σX , σI) for any pair of substitution setsΠ andΠ′ satisfy-
ingΠ ⊇ Π′.

(3) For any abstract state setTA, if SA ⊆ TA, thenγΠ(SA, σX , σI) ⊆ γΠ(TA, σX , σI),
for any set of substitutionsΠ.

These properties follow directly from the definitions ofγ andγΠ and Proposition 2.1.

PROPOSITION 8.2. For any concrete state setSC , set of substitutionsΠ, and interpre-
tationsσX ∈ ΣX andσI ∈ ΣI :

SC ⊆ γΠ(α(SC), σX , σI). (18)

This property follows directly from Theorem 4.3 and Proposition 8.1. It shows that for
a given interpretationσX andσI , the functions(α, γΠ) satisfy one of the properties of
a Galois connection (Equation 8), but they need not satisfy the other (Equation 9). For
example, whenΠ = ∅, the quantified condition of (17) becomes vacuous, and hence
γΠ(SA, σX , σI) = ΣV .

We can useγΠ as an approximation toγ in defining the behavior of the abstract system.
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That is, defineNΠ over sets of abstract states as:

NΠ(SA) =
{

〈φ [δ/V ]〉s·σX ·σI
|σX ∈ ΣX , σI ∈ ΣI , s ∈ γΠ(SA, σX , σI)

}

(19)

=
⋃

σX∈ΣX

⋃

σI∈ΣI

⋃

s∈γπ(SA,σX ,σI)

{

〈φ [δ/V ]〉s·σX ·σI

}

(20)

Observe in this equation thatφp [δ/V ] is an expression describing the evaluation of predi-
cateφp in the next state.

It can be seen thatNΠ(SA) ⊇ NA(SA) for any set of abstract statesSA. As long asΠ
is nonempty (required to guarantee thatNΠ is null-preserving), it can be shown that the
system defined byNΠ is an abstract interpretation of the concrete system:

(1) NΠ(∅) = ∅, if Π is nonempty.

(2) NΠ is monotonic: This follows from the definition ofNΠ in (20) and Proposition 8.1.

(3) α(NC(SC)) ⊆ NΠ(α(SC)): This follows from the fact thatα(NC(SC)) ⊆ NA(α(SC))
andNA(SA) ⊆ NΠ(SA).

We can therefore perform reachability analysis:

R0
Π = Q0

A (21)

Ri+1
Π = Ri

Π ∪NΠ(R
i
Π) (22)

These iterations will converge to a setRΠ.

PROPOSITION 8.3.

(1) RA ⊆ RΠ for any set of substitutionsΠ.

(2) RΠ ⊆ RΠ′ for any pair of substitution setsΠ andΠ′ satisfyingΠ ⊇ Π′.

To see the first property, consider the following way of expressing the equation forRi+1
A

(12) using the alternative equation forα (4), and rearranging the order of the union opera-
tions:

Ri+1
A = Ri

A ∪
⋃

σX∈ΣX

⋃

σI∈ΣI

⋃

s∈γ(Ri

A
)

{

〈φ [δ/V ]〉s·σX ·σI

}

The property then follows by Proposition 8.1, using induction oni. The second property
also follows by Proposition 8.1 using induction oni.

THEOREM 8.4. For a formulaψ ∈ E(P), if 〈ψ〉σP = true for everyσP ∈ RΠ, then
property∀Xψ∗ holds for the concrete system.

PROOF. Since〈ψ〉σP = true for everyσP ∈ RΠ andRA ⊆ RΠ (by Proposition 8.3),
〈ψ〉σP = true for everyσP ∈ RA. Hence by Theorem 7.4, the property∀Xψ∗ holds for
the concrete system.
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This demonstrates that using quantifier instantiation during reachability analysis yields a
sound verification technique. However, when the tool fails to verify a property, it could
mean, in addition to the two possibilities listed earlier, that 3) it used an inadequate set of
instantiations, or 4) that the property cannot be proved by any bounded quantifier instanti-
ation.

9. SYMBOLIC FORMULATION OF REACHABILITY ANALYSIS

We are now ready to express the reachability computation symbolically, where each step
involves finding the set of satisfying solutions to a quantified CLU formula. We will then
see how this can be converted into a problem of finding satisfying solutions to a Boolean
formula.

On each step, we generate a Boolean formulaρiΠ, that characterizesRi
Π. That is

〈

ρiΠ
〉

=
Ri

Π. The formulas directly encode the approximate reachability computations of (21) and
(22).

Observe that by composing the predicate expressions with the initial state expressions,
φ
[

q0/V
]

, we get a set of predicates over the initial state symbolsJ indicating the con-
ditions under which the predicates hold in the initial state. We can therefore start the
reachability analysis by finding solutions to the formula

ρ0Π(P) = ∃X∃J
∧

p∈P

p⇔ φ
[

q0/V
]

(23)

PROPOSITION 9.1.
〈

ρ0Π
〉

= Q0
A

Let us understand the expressionρ0Π by showing why it representsQ0
A. Expanding the

definition ofQ0
A, we get:

Q0
A =

⋃

σX∈ΣX

⋃

s∈Q0

C

{

〈φ〉s·σX
}

(24)

Again,Q0
C =

⋃

σJ∈ΣJ

{

〈

q0
〉

σJ

}

. Using Proposition 2.1, we can rewrite (24) as:

Q0
A =

⋃

σX∈ΣX

⋃

σJ∈ΣJ

{

〈

φ
[

q0/V
]〉

σJ ·σX

}

(25)

To generate a formula for the next-state computation, we first generate a formula for
γπ(R

i
Π, σX , σI) by forming a conjunction over each substitution inΠ, where we com-

pose the current-state formula with the predicate expressions and with each substitutionπ:
∧

π∈Π

(

ρiΠ [φ/P ]
)

[π/X ].

The formula for the next-state computation combines the alternate definition ofNΠ (20)
and the formula forγΠ above:

ρi+1
Π (P) = ρiΠ(P) ∨

∃V∃X∃I





∧

π∈Π

(

ρiΠ [φ/P ]
)

[π/X ] ∧
∧

p∈P

p⇔ φp [δ/V ]



. (26)
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To understand the quantified term in this equation, note thatthe left-hand term is the for-
mula forγΠ(ρiΠ, σX , σI), while the right-hand term expresses the conditions under which
each abstract state variablep will match the value of the corresponding predicate in the
next state.

PROPOSITION 9.2.
〈

ρi+1
Π

〉

= Ri+1
Π

Let us see how this symbolic formulation would perform reachability analysis for our ex-
ample system. Recall that our system has two predicatesφp

.
= F(x) ≥ 0 andφq

.
= x ≥ 0.

In the initial state,F is the functionλu.u, and thereforeφp
[

q0/V
]

simply becomesx ≥ 0.
Equation (23) then becomes∃x [(p⇔ x ≥ 0) ∧ (q⇔ x ≥ 0)], which reduces top⇔ q.

Now let us perform the first iteration. For our instantiations we require two substitutions
π andπ′ with πx = x andπ′

x = i+1. For ρ0Π(p, q) = p ⇔ q, the left-hand term of
(26) instantiates to(F(x) ≥ 0 ⇔ x ≥ 0) ∧ (F(i+1) ≥ 0 ⇔ i+1 ≥ 0). Substituting
λu.ITE(u = i, F(i+1), F(u)) for F in φp gives(x=i∧F(i+1) ≥ 0)∨(x 6=i∧F(x) ≥ 0).

The quantified portion of (26) forρ1Π(p, q) then becomes:

∃ F, x, i :





F(x) ≥ 0⇔ x ≥ 0 ∧ F(i+1) ≥ 0⇔ i+1 ≥ 0
∧ p⇔ [(x=i ∧ F(i+1) ≥ 0) ∨ (x 6=i ∧ F(x) ≥ 0)]
∧ q⇔ x ≥ 0



 (27)

The only values ofp andq where this formula cannot be satisfied is whenp is false andq
is true.

As shown in [Lahiri et al. 2003], we can generate the set of solutions to (23) and (26)
by first transforming the formulas into equivalent Boolean formulas and then performing
quantifier elimination to remove all Boolean variables other than those inP . This quantifier
elimination is similar to the relational product operationused in symbolic model checking
and can be solved using either BDD or SAT-based methods.

10. USING A SAT SOLVER TO PERFORM REACHABILITY ANALYSIS

Observe that (26) has a general formχ′(P) = χ(P)∨∃A θ(A,P), whereθ is a quantifier-
free CLU formula,A contains Boolean, integer, function, and predicate symbols, andP
contains only Boolean symbols. Several methods (includingthose in [Bryant et al. 2002b;
Strichman et al. 2002; Bryant et al. 2002a]) have been developed to transform a quantifier-
free CLU formulaθ(A,P) into a Boolean formulãθ(Ã,P), whereÃ is now a set of
Boolean variables, in a way that preserves satisfiability.

By taking care [Lahiri et al. 2003], this transformation canbe performed in a way that
preserves the set of satisfying solutions for the symbols inP . That is:

{σP |∃σA : 〈θ〉σA·σP
= true} = {σP |∃σÃ :

〈

θ̃
〉

σ
Ã
·σP

= true} (28)

Based on such a transformation, we can generate a Boolean formula forχ′ by repeatedly
calling a Boolean SAT solver, yielding one solution with each call. In this presentation, we
consider an interpretationσP to represent a Boolean formula consisting of a conjunction
of literals:p whenσP(p) = true and¬p whenσP(p) = false. Starting withχ′ = χ, and
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θ̃′ = θ̃ ∧ ¬χ, we perform iterations:

σA, σP ← SATSolve(θ̃′)

χ′ ← χ′ ∨ σP

θ̃′ ← θ̃′ ∧ ¬σP

until θ̃′ is unsatisfiable.

To illustrate this process, let us solve (27) to perform the first iteration of reachability
analysis on our example system. We can translate the right-hand term into Boolean form
by introducing Boolean variablesa, b, c, d ande encoding the predicatesF(x) ≥ 0, x ≥ 0,
F(i+1) ≥ 0, i+1 ≥ 0, andx = i, respectively.

The portion of (27) within square brackets then becomes

a⇔ b ∧ c⇔ d ∧ (p⇔ [(e ∧ c) ∨ (¬e ∧ a)]) ∧ (q⇔ b).

To this, let us add the consistency constraint:e ∧ b ⇒ d (encoding the property that
x = i ∧ x ≥ 0 ⇒ i+1 ≥ 0). Although the translation schemes will add a lot more
constraints (e.g., those involving uninterpreted function symbol), the above constraint is
sufficient to preserve the property described in (28). For simplicity, we will not describe
the other constraints that would be added by the algorithms in [Lahiri et al. 2003]. Finally,
all the symbols apart fromp andq are existentially quantified out.

It is easy to verify that the equation above with the consistency constraint is unsatisfiable
only for the assignment whenp is false andq is true.

11. AXIOMS

As a special class of predicates, we may have some that are to hold at all times. For
example, we could have an axiomf(x) > 0 to indicate that functionf is always positive,
or f(y, z) = f(z, y) to indicate thatf is commutative. Typically, we want these predicates
to be individually quantified, but we can ensure this by defining each of them over a unique
set of index symbols, as we have done in the above examples.

We can add this feature to our analysis by identifying a subsetQ of the predicate symbolsP
to be axioms. We then want to restrict the analysis to states where the axiomatic predicates
hold. Let LetΣQ

P
denote the set of abstract statesσP whereσP(p) = true for everyp ∈ Q.

Then we can apply this restriction by redefiningα(s) (Equation 1) for concrete states to
be:

α(s)
.
=

{

〈φ〉s·σX |σX ∈ ΣX

}

∩ ΣQ
P (29)

and then using this definition in the extension ofα to sets (Equation 3), the formulation of
the reachability analysis (Equations 10 and 12), and the approximate reachability analysis
(Equations 21 and 22).
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The symbolic formulation of the approximate reachability analysis then becomes:

ρ0Π(P) = ∃X∃J





∧

p∈P−Q

p⇔ φ
[

q0/V
]

∧
∧

p∈Q

φ
[

q0/V
]





ρi+1
Π (P) = ρiΠ(P) ∨

∃V∃X∃I





∧

π∈Π

(

ρiΠ [φ/P ]
)

[π/X ] ∧
∧

p∈P−Q

p⇔ φp [δ/V ] ∧
∧

p∈Q

φp [δ/V ]



.

12. APPLICATIONS

We have integrated the method described in this paper into UCLID [Bryant et al. 2002b],
a tool for modeling and verifying infinite-state systems. Wehave used our predicate ab-
straction tool to verify safety properties of a variety of models and protocols. Some of the
more interesting ones include:

(1) A microprocessor out-of-order execution unit with an unbounded retirement buffer.
Prior verification of this unit required manually generating 13 invariants [Lahiri et al.
2002]. The verification did not require any auxiliary invariants from the user and the
proof script (which consists of the 13 simple predicates) ismore compact than other
verification efforts of similar models based on compositional model checking [McMil-
lan 1998] or theorem proving methods [Arons and Pnueli 1999;Hosabettu et al. 1999].

(2) A directory-based cache protocol with unbounded channels, devised by Steven Ger-
man of IBM [German ], as discussed below.

(3) Versions of Lamport’s bakery algorithm [Lamport 1974] that allow arbitrary number
of processes to be active at each step or allow non-atomic reads and writes.

(4) Selection sort algorithm for sorting an arbitrary largearray. We prove the property that
upon termination, the algorithm produces an ordered array.

(5) A model of the Ad-hoc On-demand Distance Vector (AODV) routing protocol [C.Perkins
et al. 2002]. This model was obtained from an earlier work [Das and Dill 2002], where
the protocol was verified using quantified predicates.

(6) A crucial invariant (similar to the one proved in [Arons et al. 2001]) for proving the
mutual exclusion for the Peterson’s [Peterson 1981] mutualexclusion algorithm.

12.1 Directory-based Cache Coherence Protocol

For the directory-based German’s cache-coherence protocol, an unbounded number of
clients (cache), communicate with a centralhomeprocess to gainexclusiveor shared
access to a memory line. The state of eachcache can be{invalid, shared, exclusive}.
The home maintains explicit representations of two lists ofclients: those sharing the cache
line (sharer list) and those for which the home has sent an invalidation request but has
not received an acknowledgment (invalidate list) — this prevents sending duplicate
invalidation messages.

The client places requests{req shared, reqexclusive} on a channelch 1 and the home
grants{grant shared, grantexclusive} on channelch 2. The home also sends invali-
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dation messagesinvalidate along ch 2. The home grants exclusive access to a client
only when there are no clients sharing a line, i.e.∀i : sharer list(i) = false. The
home maintains variables for the current client (current client) and the current request
(current command). It also maintains a bitexclusive granted to indicate that some
client has exclusive access. The cache lines acknowledge invalidation requests with ain-
validateackalong another channelch 3. At each step an inputcid is generated to denote
the process that is chosen at that step. Details of the protocol operation with single-entry
channels can be found in many previous works including [Pnueli et al. 2001]. We will refer
to this version asgerman-cache.

Since the modeling language of UCLID does not permit explicit quantifiers in the sys-
tem, we model the check for the absence of any sharers∀i : sharer list(i) = false

alternately. We maintain a Boolean state variableempty hsl, which assumes an arbitrary
value at each step of operation. We then add an axiom to the system: empty hsl ⇔ ∀i :
sharer list(i) = false

1. The quantified test∀i : sharer list(i) = false in the
model is replaced byempty hsl.

In our version of the protocol, eachcache communicates to the home process through three
directed unbounded FIFO channels, namely the channelsch 1, ch 2, ch 3. Thus, there are
an unbounded number of unbounded channels, three for each client2. It can be shown that
a client can generate an unbounded number of requests beforegetting a response from the
home. We refer to this version of the protocol asgerman-cache-fifo.

Proving Cache Coherence We first consider the versiongerman-cachewhich has been
widely used in many previous works [Pnueli et al. 2001; Emerson and Kahlon 2003;
Baukus et al. 2002] among others and then consider the extended systemgerman-cache-
fifo. In both cases, the cache coherence property to prove is∀i, j : cache(i) = exclusive
∧i 6= j ⇒ cache(j) =invalid. All the experiments are performed on an 2.1GHz Pentium
machine running Linux with 1GB of RAM.

12.1.1 Invariant Generation for german-cache.For this version, we derived two induc-
tive invariants, one which involves a single process indexi and other which involves two
process indicesi andj.

For single index invariant, we needed to add an auxiliary variablelast granted which
tracks the last variable which has been granted exclusive access [Pnueli et al. 2001]. The
inductive invariant which implies the cache coherence property was constructed using the
following set of predicates:

P
.
= { empty hsl, exclusive granted, current command = req shared, current command =

req exclusive, i = last granted, invalidate list(i), sharer list(i), cache(i) =
exclusive, cache(i) = invalid,ch 2(i) = grant exclusive, ch 2(i) = grant shared, ch 2(i) =
invalidate, ch 3(i) = invalidateack}.

These predicates naturally appear in the system description. First, the predicatesempty hsl

andexclusive granted are Boolean state variables. Next, for each enumerated state
variablex, with range{e1, . . . , em}, we add the predicatesx = e1, . . ., x = em−1, leav-

1Our current implementation only handles one direction of the axiom,∀i : empty hsl ⇒ sharer list(i) =
false, which is sufficient to ensure the safety property.
2The extension was suggested by Steven German himself
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ing the redundant predicatex = em. This explainscurrent command = req sharedand
current command = req exclusive. Next, we consider the values of the function and
predicate state variables at a particular indexi. In this example, such state variables are
thesharer list, invalidate list, cache, ch 1, ch 2 andch 3. We did not need to
add any predicate for thech 1 since the content of this channel does not affect the correct-
ness condition. Finally, the predicatei = last granted was added for the auxiliary state
variablelast granted.

With this set of 13 indexed predicates, the abstract reachability computation converged
after 9 iterations in 14 seconds. Most of the time (about 8 seconds) was spent in eliminating
quantifiers from the formula in (23) and (26) using the SAT-based quantifier elimination
method.

For the dual index invariant, addition of the second index variable j makes the process
computationally more expensive. However, the verificationdoes not require any auxiliary
variable to prove the correctness. The set of predicates used is:

P
.
= { cache(i) = exclusive, cache(j) = invalid, i = j, ch2(i) = grant exclusive,

ch2(i) = grant shared, ch2(i) = invalidate, ch3(i) = empty, ch2(j) = grant exclusive,
ch2(j) = grant shared, ch2(j) = invalidate, ch3(j) = empty, invalidate list(i),
current command = req exclusive, current command = req shared, exclusive granted,
sharer list(i), }.

The inductive invariant which implies the cache-coherencywas constructed using these 16
predicates in 41 seconds using 12 steps of abstract reachability. The portion of time spent
on eliminating quantifiers was around 15 seconds.

12.1.2 Invariant Generation for german-cache-fifo.For this version, each of the chan-
nels, namelych1, ch2 andch3 are modeled as unbounded FIFO buffers. Each channel
has a head (e.g.ch1 hd), which is the position of the earliest element in the queue and a
tail pointer (e.g.ch1 tl), which is the position of the firstfreeentry for the queue, where
the next element is inserted. These pointers are modeled as function state variables, which
maps processi to the value of the head or tail pointer of a channel for that process. For
instance,ch2 hd(i) denotes the position of the head pointer for the processi. The channel
itself is modeled as a two-dimensional array, wherech2(i, j) denotes the content of the
channel at indexj for the processi. We aim to derive an invariant over a single process
indexi and an indexj for an arbitrary element of the channels. Hence we add the auxiliary
variablelast granted. The set of predicates required for this model is:

P
.
= { cache(i) = exclusive, cache(i) = invalid, i = last granted, current command =

req shared, current command = req exclusive, exclusive granted, invalidate list(i),
sharer list(i), j = ch2 hd(i), j = ch3 hd(i), j ≤ ch2 hd(i), j < ch2 tl(i),
j ≤ ch3 hd(i), j < ch3 tl(i), j = ch2 tl(i)−1, ch1 hd(i) < ch1 tl(i), ch1 hd(i) =
ch1 tl(i), ch2 hd(i) < ch2 tl(i), ch2 hd(i) = ch2 tl(i), ch2(i, j) = grant exclusive,
ch2(i, j) = grant shared, ch2(i, j) = invalidate, ch3 hd(i) < ch3 tl(i), ch3 hd(i) =
ch3 tl(i), ch3 tl(i) = ch3 hd(i)+1, ch3(i, j) = invalidateack}.

Apart from the predicates required forgerman-cache, we require predicates involving en-
tries in the various channels for a particular cache entryi. Predicates likech1 hd(i) <
ch1 tl(i) andch1 hd(i) = ch1 tl(i) are used to determine if the particular channel is
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non-empty. To reason aboutactiveentries in a FIFO, i.e., those lying between the head (in-
clusive) and the tail, we need predicates likej ≤ ch2 hd(i) andj < ch2 tl(i). The con-
tent of the channel at a locationj is given by the predicates likech2(i, j) = grant exclusive
andch3(i, j) = invalidateack. Finally, a couple of predicates likech3 tl(i) = ch3 hd(i)+
1 andj = ch2 tl(i)−1 are added by looking at failures to prove the cache coherenceprop-
erty.

Our tool constructs an inductive invariant with these 26 predicates which implies the cache
coherence property. The abstract reachability took 17 iterations to converge in 1435 sec-
onds. The quantifier elimination process took 1227 seconds.
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