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Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems
using a combination of a decision procedure for a subset of first-order logic and symbolic methods
originally developed for finite-state model checking. We consider models containing first-order
state variables, where the system state includes mutable functions and predicates. Such a model
can describe systems containing arbitrarily large memories, buffers, and arrays of identical pro-
cesses. We describe a form of predicate abstraction that constructs a formula over a set of
universally quantified variables to describe invariant properties of the first-order state variables.
We provide a formal justification of the soundness of our approach and describe how it has been
used to verify several hardware and software designs, including a directory-based cache coherence
protocol.
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General Terms: Verification, Predicate Abstraction

Additional Key Words and Phrases: formal verification, invariant synthesis, infinite-state verifi-
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1. INTRODUCTION

Graf and Saidi introducegredicate abstractiofiGraf and Saidi 1997] as a means of au-
tomatically determining invariant properties of infingtate systems. With this approach,
the user provides a set bfBoolean formulas describing possible properties of théesys
state. These predicates are used to generate a finite stitacéibn (containing at most
2% states) of the system. By performing a reachability analgéthis finite-state model, a
predicate abstraction tool can generate the strongesbposs/ariant for the system ex-
pressible in terms of this set of predicates. Prior impletatons of predicate abstraction
[Graf and Saidi 1997; Saidi and Shankar 1999; Das et al. 1B88;and Dill 2001; Ball
et al. 2001; Flanagan and Qadeer 2002; Chaki et al. 2003jreztjmaking a large num-
ber of calls to a theorem prover or first-order decision pdoce, and hence could only be
applied to cases where the number of predicates was smaie foently, we have shown
that both BDD and SAT-based Boolean methods can be applipdrform the analysis
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efficiently [Lahiri et al. 2003].

In most formulations of predicate abstraction, the predigaontain no free variables, and
hence they evaluate to true or false for each system stateaBstraction function: has

a simple form, mapping eaotoncretesystem state to a singkgbstractstate based on
the effect of evaluating thé predicates. The task of predicate abstraction is to coctstru
a formulay* consisting of some Boolean combination of the predicateb saty*(s)
holds for every reachable system state

To verify systems containing unbounded resources, suchfeer$and memories of arbi-
trary size and systems with arbitrary numbers of ident@abcurrent processes, the system
model must suppofirst-order state variables, in which the state variables are themselve
functions or predicates [Ip and Dill 1996; Bryant et al. 2BP2For example, a memory
can be represented as a function mapping an address to éhstaisgtd at an address, while
a buffer can be represented as a function mapping an intedgex to the value stored at the
specified buffer position. The state elements of a set ofic&processes can be modeled
as functions mapping an integer process identifier to thie gl@ment for the specified
process. In many systems, this capability is restricteatit@ysthat can be altered only by
writing to a single location [Burch and Dill 1994; McMillar®®8]. Our verifier allows a
more general form of mutable function, where the updatingration is expressed using
lambda notation.

In verifying systems with first-order state variables, wguiee quantified predicates to de-
scribe global properties of state variables, such as “Attrone process is in its critical
section,” as expressed by the formiffaj : crit(i) A crit(j) = ¢ = j. Conventional
predicate abstraction restricts the scope of a quantifigiittuin an individual predicate.
System invariants often involve complex formulas with wydscoped quantifiers. The
scoping restriction (the fact that the universal quantifiees not distribute over conjunc-
tions) implies that these invariants cannot be divided srt@ll, simple predicates. This
puts a heavy burden on the user to supply predicates thatlemuicate sets of properties
about the system. Recent work attempts to discover quahfifiedicates automatically
[Das and Dill 2002], but this is a formidable task.

In this paper we present an extension of predicate abgiraictiwhich the predicates in-
clude free variables from a set wfdexvariablesX’ (and hence the namedexed predi-
cate3. The predicate abstraction engine constructs a formtilaonsisting of a Boolean
combination of these predicates, such that the forriidia’* (s) holds for every reach-
able system state. With this method, the predicates can be very simple, withgied-
icate abstraction tool constructing complex, quantifiaciiant formulas. For example,
the property that at most one process can be in its criticzgtisse could be derived by
supplying predicatesrit(i), crit(j), andi = j, wherei and j are the index sym-
bols. Encoding these predicates in the abstract systenBaittean variablesi, c¢j, and
eij, respectively, we can verify this property by using preticbstraction to prove that
ci A cj = eij holds for every reachable state of the abstract system.

Flanagan and Qadeer use a method similar to ours [Flanagb@aeer 2002], and we
briefly described our method in an earlier paper [Lahiri eR8I03]. Our contribution in
this paper is to describe the method more carefully, exptengroperties, and to provide
a formal argument for its soundness. The key idea of our a@mbrds to formulate the
abstraction functiom to map a concrete system statt the set of all possible valuations
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of the predicates, considering the set of possible valuethtbindex variablest’. The
resulting abstract system is unusual; it is not chara@dtig a state transition relation and
hence cannot be viewed as a state transition system. Néesthié provides an abstraction
interpretation of the concrete system [Cousot and Couspi[l&nd hence can be used to
find invariant system properties.

Assuming a decision procedure that can determine the silgfi of a formula with uni-
versal quantifiers, we prove the following completenesalte®redicate abstraction can
prove any property that can be proved by induction on the sequence using an induction
hypothesis expressed as a universally quantified formwdattne given set of predicates.
For many modeling logics, this decision problem is unddaielaBy using quantifier in-
stantiation, we can implement a sound, but incomplete eerifis an extension, we show
that it is easy to incorporatxiomsinto the system, properties that must hold universally
for every system state. Axioms can be viewed simply as indlgxedicates that must
evaluate to true on every step.

The ideas have been implemented in UCLID [Bryant et al. 2QG2platform for model-
ing and verifying infinite-state systems. Although we desteate the ideas in the context
of this tool and the logic (CLU) it supports, the ideas depeld here are not strongly tied
to this logic. We conclude the paper by describing our useedipate abstraction to verify
several hardware and software systems, including a dineti@sed cache coherence proto-
col devised by Steven German [German ]. We believe we arertiediverify the protocol
for a system with an unbounded number of clients, each corwatimg via unbounded
FIFO channels.

1.1 Related Work

Verifying systems with unbounded resources is in generdéaitlable. For instance, the
problem of verifying if a system oV (/V can be arbitrarily large) concurrent processes
satisfies a property is undecidable [Apt and Kozen 1986]. pidests complexity, the
problem of verifying systems with arbitrary large resowsrée.qg. parameterized systems
with N processes, out-of-order processors with arbitrary laegeder buffers, software
programs with arbitrary large arrays) is of significant picad interest. Hence, in recent
years, there has been a lot of interest in developing tedesigased on model checking
and deductive approaches for verifying such systems.

McMillan uses “compositional model checking” [McMillan 28] with various built-in
abstractions to reduce an infinite-state system to a firate system, which can be model
checked using Boolean methods. The abstraction mechainisladetemporal case split-
ting, datatype reductiofiClarke et al. 1992] andymmetry reductiarifemporal case split-
ting uses heuristics to slice the program space to only denshe resources necessary
for proving a property. Datatype reduction uses abstraetpnetation [Cousot and Cousot
1977] to abstract unbounded data and operations over th@pei@tions over finite do-
mains. For such finite domains, datatype reduction is subdurg predicate abstraction.
Symmetry is exploited to reduce the number of indices toidans$or verifying unbounded
arrays or network of processes. The method can prove batysaid liveness properties.
Since the abstraction mechanisms are built into the sydtesg,can often be coarse and
may not suffice for proving a system. Besides, the user imoéquired to provide auxil-
iary lemmas or to decompose the proof to be discharged by alenhodel checkers. For
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instance, the proof of safety of the Bakery protocol [Mchstillet al. 2000] or the proof
of an out-of-order processor model [McMillan 1998] reqdireon-trivial lemmas in the
compositional model checking framework.

Regular model checkinglesten et al. 1997; Bouajjani et al. 2000] uses regularlaggs

to represent parameterized systems and computes theelosithe regular relations to
construct the reachable state space. In general, the misthotiguaranteed to be complete
and requires variouacceleratiortechniques (sometimes guided by the user) to ensure ter-
mination. Moreover, approaches based on regular languag®asuited for representing
data in the system. Several examples that we consider itris can’'t be modeled in
this framework; the out-of-order processor which contalat operations or the Peter-
son’s mutual exclusion are few such examples. Even thougyB#kery algorithm can be
verified in this framework, it requires considerable usgeimuity to encode the protocol

in a regular language.

Several researchers have investigated restrictions osygtem description to make the
parameterized verification problem decidable. Notablersgrtbem is the early work by

German and Sistla [German and Sistla 1992] for verifyingleifindexed properties for

synchronously communicating systems. For restrictecegyst finite “cut-off” based ap-

proaches [Emerson and Namjoshi 1995; Emerson and Kahldh 2003] reduce the prob-

lem to verifying networks of some fixed finite size. These hgihave been established
for verifying restricted classes of ring networks and cacbkerence protocols. Emer-
son and Kahlon [Emerson and Kahlon 2003] have verified theimeiof German’s cache

coherence protocol with single entry channels by manualijucing it to a snoopy pro-

tocol, for which finite cut-off exists. However, the redustiis manually performed and
exploits details of operation of the protocol, and thus megguuser ingenuity. It can’'t be

easily extended to verify other unbounded systems inctutlie Bakery algorithm or the

out-of-order processors.

The method of “invisible invariants” [Pnueli et al. 2001;d%s et al. 2001] uses heuristics
for constructing universally quantified invariants for @areterized systems automatically.
The method computes the set of reachable states for finitk garall) instances of the
parameters and then generalizes them to parameterizesirsy/#d construct a potential
inductive invariant. They provide an algorithm for cheakthe verification conditions for
a restricted class of system called gimtifiedsystems, which include German’s protocol
with single entry channels and Lamport’s Bakery protocarfiport 1974]. However, the
method simply becomes a heuristic for generating candidaseiants for non-stratified
systems, which includes Peterson’s mutual exclusion glgor[Peterson 1981] and the
Ad-hoc On-demand Distance Vector (AODV) [C.Perkins et 802] network protocol.
The class obounded-dataystems (where each variable is finite but parameterized) co
sidered by this approach can’t model the the out-of-ordecgssor model [Lahiri et al.
2002] that we can verify using our method.

Predicate abstraction with locally quantified predicai2aq and Dill 2002; Baukus et al.
2002] require complex quantified predicates to constrietriductive assertions, as men-
tioned in the introduction. These predicates are often agpbex as invariants themselves.
In fact, some of the invariants are used are predicates inB=aet al. 2002] to derive in-
ductive invariants. The method in [Baukus et al. 2002] vedifiboth safety and liveness) a
version of the cache coherence protocol with single entayobls, with complex manually
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provided predicates. Baukus et al. [Baukus et al. 2002] treethe logic ofWSIS(weak
second order logic with one successor) [Buchi 1960; Thah8&9], which does not allow
function symbols and thus can’'t model the out-of-order pssor model. The automatic
predicate discovery methods for quantified predicates fpaksDill 2002] have not been
demonstrated on most examples (except the AODV model) weidenin this paper.

Flanagan and Qadeer [Flanagan and Qadeer 2002] use indexdidapes to synthesize
loop invariants for sequential software programs thatlveanbounded arrays. They also
provide heuristics to extract some of the predicates froepttogram text automatically.
The heuristics are specific to loops in sequential softwaden®t suited for verifying more
general unbounded systems that we handle in this paperisimthk, we explore formal
properties of this formulation and apply it for verifyingstlibuted systems. In a recent
work [Lahiri and Bryant 2004], we provide a weakest prectinditransformer [Dijkstra
1975] based syntactic heuristic for discovering most of fghedicates for many of the
systems that we consider in this paper.

2. NOTATION

Rather than using the commamdexed vectonotation to represent collections of values
(e.g., ¥ = (v1,v9,...,v,)), We use anamed sehotation. That is, for a set of symbalg
we letv indicate a set consisting of a valugfor eachx € A.

For a set of symbolsd, let o4 denote annterpretationof these symbols, assigning to
each symbok € A a valueog(x) of the appropriate type (Boolean, integer, function, or
predicate). Lebl 4 denote the set of all interpretationg over the symbol set.

For interpretations 4, andog over disjoint symbol setsl and B, let o4 - o denote an
interpretation assigning either (x) or op(x) to each symbok € A U B, according to
whetherx € Aorx € B.

Figure 1 displays the syntax of the Logic of Counter arithowith Lambda expressions
and Uninterpreted functions (CLU), a fragment of first-aridgic extended with equality,
inequality, and counters. Aexpressiorin CLU can evaluate to truth valuebdol-expy,
integers int-expn, functions function-expy or predicatesfredicate-expr. Notice that
we only allow restricted arithmetic on terms, namely tha@dtlition or subtraction by
constants. Notice that we restrict the parameters to a larekpression to be integers, and
not function or predicate expressions. There is no way irlagic to express any form of
iteration or recursion.

For symbol set4, let E(A) denote the set of all CLU expressions owér For any ex-
pressionp € E(A) and interpretatioms € X 4, let thevaluation of¢ with respect tar4,
denoted<¢>o_A be the (Boolean, integer, function, or predicate) valuaioled by evaluat-
ing ¢ when each symbal € A is replaced by its interpretation (x).

Let v be a named set over symbols consisting of expressions over symbol BetThat
is, vz € E(B) for eachx € A. Given an interpretatiosg of the symbols in3, evaluating
the expressions in defines an interpretation of the symbolsdnwhich we denotév)
Thatis,(v),, is an interpretation such thab4(x) = (vy),, for eachx € A.

A substitutionr for a set of symbolsd is a named set of expressions over some set of
symbolsB (with no restriction on the relation betweghand/5.) That is, for eackk € A,

oB"

oB
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bool-expr ::= true | false | bool-symbol
| —=bool-expr| (bool-exprA bool-expr
| (int-expr=int-expr) | (int-expr< int-expr)
| predicate-expfint-expr, . . . , int-expr)
int-expr ::= lambda-var| int-symbol
| ITE(bool-expt int-expr, int-expr)
| int-expr + int-constant

| function-expfint-expr, . . . , int-expr)
predicate-expr::= predicate-symbd| A lambda-var . . ., lambda-var. bool-expr
function-expr ::= function-symbo| A lambda-var . . ., lambda-var. int-expr

Fig. 1. CLU Expression Syntax. Expressions can denote computations of Boolean valuegarg, or functions
yielding Boolean values or integers.

there is an expression € F(B). For an expression € F(AUC), we lety [r/.A] denote
the expression’ € F(B U C) resulting when we replace each occurrence of each symbol
x € A with the expression,. These replacements are all performed simultaneously.

PROPOSITION 2.1. Lete) be an expression iR (A UC) andr be a substitution having
m € E(B) foreachx € A. Forinterpretationsz andoe, if we leto4 be the interpretation

defined agra = (7)., then(y),, . = (Y [/ A]) 0

This proposition captures a fundamental relation betwgetastic substitution and expres-
sion evaluation, sometimes referred taeferential transparencyWe can interchangeably
use a subexpressian or the result of evaluating this subexpressigrix) in evaluating a
formula containing this subexpression.

3. SYSTEM MODEL

We model the system as having a numbestafte elementsvhere each state element
may be a Boolean or integer value, or a function or predida use symbolic names to
represent the different state elements giving the sstaié symbol¥. We introduce a set
of initial state symbols7 and a set ofnput symbolsZ representing, respectively, initial
values and inputs that can be set to arbitrary values on g@apho$ operation. Among
the state variables, there can ipemutablevalues expressing the behavior of functional
units, such as ALUs, and system parameters such as the twtddar of processes or the
maximum size of a buffer. Since these values are expressedddigally, one run of the
verifier can prove the correctness of the system for arliftarctionalities, process counts,
and buffer capacities.

The overall system operation is characterized bynéial-state expression sej’ and a
next-statexpression set. The initial state consists of an expression for each stateant,
with the initial value of state elementgiven by expressiop? € E(J). The transition
behavior also consists of an expression for each state atemi¢h the behavior for state
element given by expressiofy, € E(VUZ). In this expression, the state element symbols
represent the current system state and the input symbabsep the current values of the
inputs. The expression gives the new value for that stateasie
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Predicate Abstraction with Indexed Predicates . 7

We will use a very simple system as a running example throuighés presentation. The
only state element is a functidn i.e. V = {F}. An input symboli determines which
element off is updated. InitiallyF is the identify function:

@ =Au.u.

On each step, the value of the function for argumieistupdated to b&(i+1). That s,
O = Au . ITE(u = i, F(i+1), F(u))

where the if-then-else operati¢fE selects its second argument when the first one evalu-
ates to true and the third otherwise. For the above exaripte,{} andZ = {i}.

3.1 Concrete System

A concrete system state assigns an interpretation to etateysymbol. The set of states of
the concrete system is given by, the set of interpretations of the state element symbols.
For convenience, we denote concrete states using letsrd rather than the more formal

oy.
From our system model, we can characterize the behavioeafdhcrete system in terms

of an initial state seR2, C ¥, and a next-state function operating on sEts: 2(%y) —
Z(Zy). The initial state set is defined as:

Qb = {<q0>(,j loy € X7},

i.e., the set of all possible valuations of the initial sexeressions. The next-state function
N¢ is defined for a single stateas:

Ne(s) = {{0) .0, loz € X1},

i.e., the set of all valuations of the next-state expressfonconcrete state and arbitrary
input. The function is then extended to sets of states byidgfin

No(Se) = |J Nols).
sES¢c

We can also characterize the next-state behavior of theretmsystem by a transition
relationT where(s, t) € T whent € N¢(s).

We define the set of reachable stalksas containing those statesuch that there is some
state sequenc®, s1, ..., s, With so € Q%, s,, = s, ands;; € N¢(s;) for all values of

¢ such that < i < n. We define thalepthof a reachable stateto be the length of the
shortest sequence leadingstoSince our concrete system has an infinite number of states,
there is no finite bound on the maximum depth over all reachsthales.

With our example system, the concrete state set consistdegfdér functions’ such that
fu+1) > f(u) > uforalluwandf(u) = u for infinitely many arguments of.

4. PREDICATE ABSTRACTION WITH INDEXED PREDICATES

We useindexedpredicates to express constraints on the system state fifie tlee abstract
state space, we introduce a sepadicatesymbolsP and a set oindexsymbolsX'. The
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Abstract System Concrete System

Formula State Set System Property State Set

Y Sa = () VXY Sc =(Sa)
PAQ {TT} Vx:£(x) >0Ax>0 0
PATq {TF} Vx:£(x) >0Ax <0 0

—q {FF, TF} Vx:x <0 0

P {TF, TT} Vx:£(x) >0 {f1f(z) > 0}
pV—q {FF,TF, TT} Vx:x>0=£(x) >0 {fle > 0= f(z) > 0}

Table I.Example abstract state sets and their concretizations Abstract state elements are represented by their
interpretations op andgq.

predicates consist of a named ggtwhere for eaclp € P, predicatep, is a Boolean
formula over the symbols i’ U X.

Our predicates define an abstract state spageconsisting of all interpretations of the
predicate symbols. Fdr = |P|, the state space contai2’s elements.

As an illustration, suppose for our example system we wigbréwe that state element
will always be a functionf satisfying f(u) > 0 for all v > 0. We introduce an index
variablex and predicate symbo#8 = {p, q}, with ¢, = F(x) > 0 and¢q = x > 0.

We can denote a set of abstract states by a Boolean fornalaZ(P). This expression
defines a set of statd®)) = {op|(¢),, = true}. As an example, our two predicates
¢p and ¢, generate an abstract space consisting of four elementshwte denote FF,
FT, TF, and TT, according to the interpretations assigneslandq. There are then 16
possible abstract state sets, some of which are shown ie Tdl this table, abstract state
sets are represented both by Boolean formulas pwrdq, and by enumerations of the
state elements.

We define thabstraction functiorx to map each concrete state to the set of abstract states
given by the valuations of the predicates for all possiblaesof the index variables:

a(s) = {(@),.q, lox € Zx} (1)
= U {{®en} (2)
ox EX x

Note that (2) is simply a restatement of (1) using set unicatmm.

Since there are multiple interpretatiofg, a single concrete state will generally map to
multiple abstract states. Figure 2 illustrates this fadie &bstraction function maps a
single concrete stateto a set of abstract states — each abstract stgig, () resulting
from some interpretatiosy . This feature is not found in most uses of predicate abstrac-
tion, but it is the key idea for handling indexed predicates.

Working with our example system, consider the concrete gfi@en by the function .. u,

in Figure 3. When we abstract this function relative to pratisp, and¢,, we get two
abstract states: TT, when > 0, and FF, wherx < 0. This abstract state set is then
characterized by the formuta< q.
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Abstract Domain

[m)

e | ' Y Sa
a(s)
* . ) concretizatior
abstraction

'

Y(Sa)

t
Concrete Domain

Fig. 2. Abstraction and Concretization.

We then extend the abstraction function to apply to sets nieie states in the usual way:

a(se) = | als) 3)

seSc

= U U @ 4)

ox€Xx SESc
Note that (4) follows by combining (2) with (3), and then réering the unions.

{TTFF}

Au.a Ve:F(z)>0&2>0

Fig. 3. Abstraction and Concretization for theinitial state for the example.

PROPOSITION 4.1. For any pair of concrete state setg: andT¢:

(1) If Sc CTe, thena(SC) - Oz(Tc).
(2) a(Sc) U Oé(Tc) = a(Sc U Tc).

These properties follow directly from the way we extendeftlom a single concrete state
to a set of concrete states.
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We define the concretization functionto require universal quantification over the index
symbols. That is, for a set of abstract statesC Y.p, we lety(S4) be the following set
of concrete states:

(Sa) = {slVox € Sx: (9),.,, € Sa} (5)

Consider the Figure 2, where a set of abstract stdiehas been concretized to a set of
concrete states(S4). It shows a concrete statethat is not included iny(S4) because
one of the states it abstracts to lies outsitje On the other hand, the concrete statis
contained iny(S4) becausex(u) C S4. One can provide an alternate definitiomoés
follows:

Y(Sa) = {sla(s) C Sa} (6)

The universal quantifier in the definition gfhas the consequence that the concretization
function does not distribute over set union. In particula cannot view the concretization
function as operating on individual abstract states, bilteraas generating each concrete
state from multiple abstract states.

PROPOSITION 4.2. For any pair of abstract state sefsy andT'4:

(1) If Sa C Ty, theny(Sa) C~(Ta).
(2) 7(Sa) Un(Ta) Cv(SaUTa).

The first property follows from (5), while the second follofvtsm the first.

Consider our example system with predicafgsand ¢,. Table | shows some example
abstract state sets, and their concretizationg(S4). As the first three examples show,
some (altogether 6) nonempty abstract state sets have eoptyetizations, because they
constrainx to be either always negative or always nonnegative. On ther dtand, there
are 9 abstract state sets having nonempty concretizatidfescan see by this that the
concretization function is based on the entire abstrate s&t and not just on the individual
values. For example, the sdtF} and{TT} have empty concretizations, b{itF, TT}
concretizes to the set of all nonnegative functions.

THEOREM 4.3. The functiong«a,~) form a Galois connection, i.e., for any sets of
concrete stateS- and abstract state§4:

a(Sc) € Sa < Sc C(Sa) @)

PROOF (Thisis one of several logically equivalent formulatiais Galois connection
[Cousot and Cousot 1977].) The proof follows by observinat thoth the left and the
right-hand sides of (7) hold precisely when for evegye ¥y and everys € S, we have
<¢>MX € S4. Letus prove the two directions:

(1) If : Leta(Sc) € Sa. By the definition ofa in (1), this implies that for every <
Sc and for interpretatiomy € Xx, (¢),,, € Sa. By the definition ofy in (5),
7(S54) contains precisely those concrete statefor which (@), ... € Sa, for every
interpretationoy € Xy. Thus, for everys € S¢, s € v(Sa) and consequently,
Sc Cy(Sa).
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(2) Onlyif: Let Sc C ~v(Sa). Hence, by (5), for every € Sc, (¢), .. € Sa, for
every interpretatiomy € Xx. By the definition ofx in (1), a(s) € Sa. Further, by
extendingx for the entire sef¢ by (3), we getn(Sc) C Sa.

O

Alternately, the functionsd(, ) form a Galois connection if they satisfy the following
properties for any sets of concrete statesand abstract states,:

Sc S y(a(Se)). (8)
a(y(Sa)) < Sa. 9)

These properties can be derived from (7). Similarly, (7) kbarderived from (8) and (9).
The containment relation in both (8) and (9) can be proparekample, the concrete state
set consisting of the single functionu . » abstracts to the state set= q, which in turn
concretizes to the set of all functiorissuch thatf (u) > 0 < « > 0, for any argument.
This is clearly demonstrated in Fig 3. On the other hand,idenshe set of abstract states
represented by A q. This set of abstract states has an empty concretizatieriTggge I),
and thereby satisfies(y(S4)) C Sa.

5. ABSTRACT SYSTEM

Predicate abstraction involves performing a reachahilitglysis over the abstract state
space, where on each step we concretize the abstract staite-seapply the concrete next-
state function, and then abstract the resultswi&\Ve can view this process as performing
reachability analysis on an abstract system having initiale set)% = «(Q%) and a
next-state function operating on sefSy(S4) = a(Ne(v(Sa))). Note that there is no
transition relation associated with this next-state fiomtsincey cannot be viewed as
operating on individual abstract states.

It can be seen thdV 4 provides arabstract interpretatiofiCousot and Cousot 1977] of the
concrete system:

(1) N4 is null-preservingN(0) = 0
(2) N4ismonotonic:Sa C Ty = Na(Sa) C Na(Ta).
(3) N4 simulatesV¢ (with a simulation relation defined ky): a(Ne(S¢)) € Na(a(Se)).

THEOREM 5.1. N4 provides amabstract interpretatioaf the concrete transition sys-
temN¢.

PROOF. Let us prove the three properties mentioned above:

(1) This follows from the definition ofV4 and the fact that/(0) = 0, Nc(0) = ¢ and
a(@) =0.

(2) By the definition of N 4, and using the fact that, « and N are monotonic. N¢
is monotonic since it distributes over the elements of a $atoacrete states, i.e.

Nc(Sc) = UseSc Nc(S).
ACM Transactions on Computational Logic, Vol. V, No. N, Awg2018.
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(3) From (8), we know thafc C ~(a(S¢)). By the monotonicity ofN¢, No(Se) C
Ne(v(a(Se))). Sincea is monatonic, we have (N (Sc)) € a(Ne(y(a(Se)))).
Now applying the definition ofV 4, we get the desired result.

O

6. REACHABILITY ANALYSIS

Predicate abstraction involves performing a reachahidlitglysis over the abstract state
space, where on each step we concretize the abstract statesapply the concrete tran-
sition relation, and then abstract the resultswvidn particular, defing?’, , the set of states
reached on stepas:

Ry = Q) (10)
R = Rl UNA(RY) (12)
=ryu U U et (12)

sev(Riy) tENG(s)

PROPOSITION 6.1. If sis areachable state in the concrete system suchdbyath (s) <
n, thena(s) C RY.

PROOF We prove this by induction on. Forn = 0, the only concrete states having
deptho are those i@y, and by (10), these states are all includedrfh.

For a state having depthk < n, our induction hypothesis shows thait) C R’[l. Since
R~ C R, we therefore have(t) C RY.

Otherwise, suppose statbas deptt. Then there must be some statieaving deptin — 1
such that € N¢(s). By the induction hypothesis, we must haves) C R”~'. By (8),
we haves € y(a(s)), and Proposition 4.2 then implies that (R’ '). By (12), we can
therefore see that(t) C R%. O

Since the abstract system is finite, there must be sosweh thati?’y = R’;"'. The set of
all reachable abstract statBg is thenR}.

PROPOSITION 6.2. The abstract system computes an overapproximation of thaf se
reachable concrete states, i.e.,

a(Rc) C Ry (13)

Thus, even though determining the set of reachable constiates would require examin-
ing paths of unbounded length, we can compute a consenagieximation to this set
by performing a bounded reachability analysis on the abissysstem.

Remark6.3. Itis worth noting that we cannot use the standard “fevrsiet” optimiza-
tion in our reachability analysis. This optimization, commy used in symbolic model
checking, considers only the newly reached states in cangptite next set of reachable
states. In our context, this would mean using the computdtig' = R, U N4(R}, —
Rfjl) rather than that of (12). This optimization is not valid, doghe fact thaty, and
thereforeN 4, does not distribute over set union.
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Predicate Abstraction with Indexed Predicates . 13

As an illustration, let us perform reachability analysisoam example system:

(1) Intheinitial state, state elemenis the identity function, which we have seen abstracts
to the set represented by the formglas q. This abstract state set concretizes to the
set of functionsf satisfyingf(u) > 0 < u > 0. This is illustrated in Fig 3.

(2) Leth denote the value df in the next state. If input is —1, we wouldh(—1) =
f(0) > 0, but we can still guarantee thafu) > 0 for « > 0. This is illustrated
in Fig 4. Applying the abstraction function, we g, characterized by the formula
p Vv —q (see Table I.)

(3) Forthe second iteration, the abstract state set clesirzet by the formula v —q con-
cretizes to the set of functionfssatisfying f (u) > 0 whenw > 0, and this condition
must hold in the next state as well. Applying the abstractiorttion to this set, we
then getR% = R, and hence the process has converged.

{TT,FF,TF}

F(x)

Ve:F(z) >0 2 >0 Ve:z>0= F(z) >0 Vo:z>0= F(z) >0
AN < —1= F(z) <0

Fig. 4. Reachability after 1iteration for the example.

7. VERIFYING SAFETY PROPERTIES

A Boolean formulay € E(P) can be viewed as definingmopertyof the abstract state
space. Such a property is said to hold for the abstract syatieem it holds for every
reachable abstract state. That(is),,, = true forall op € Ra.

For Boolean formulay € E(P), define the formula)* € E(V U X) to be the result of
substituting the predicate expressigyfor each predicate symbple P. That s, viewing
¢ as a substitution, we havg = ¢ [¢/P].

PrRoOPOSITION 7.1. For any formulayy € E(P), any concrete state, and interpreta-
tionoy € Yy, if op = (9),.,, then(v*), . = (@), .

This is a particular instance of Proposition 2.1.

s-ox
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We can view the formul@™* as defining a propertyX'«)* of the concrete state space. This
property is said to hold for concrete statevritten Vx'y*(s), when(y*), . = true for

everyoy € Y. The property is said to hold for the concrete system whEg*(s) holds
for every reachable concrete state Rc.

With our example system, letting formuja= p V —q, and noting thap V -q = q = p,
we get as a property of state variaBléhatvx : x > 0 = F(x) > 0.

PROPOSITION 7.2. PropertyVX'y)" (s) holds for concrete stateif and only if() ,, =
true for everyop € a(s).

This property follows from the definition af (Equation 1) and Proposition 7.1.

Alternately, a Boolean) € E(P) formula can also be viewed as characterizing a set of
abstract states)) = {op | (¢),, = true}. Similarly, we can interpret the formula
VXy* as characterizing the set of concrete stat€®y*) = {s | (VAY*), = true}.

PROPOSITION 7.3. If S¢ = (VXy*) andS4 = (v, thenSc = v(Sa).

PrROOF Expanding the definition of -, we get

Sc = {s|Vox € Xx : (¢%),,, = true} (14)
= {s|Vox € Xx : op =(9),,, = (¥),, =true} (15)
= {S | Voxy € Xx : <¢>S»UX S SA} (16)

Observe that (15) follows from (14) by expanding the defimitof S and (16) follows
from (15) by using Proposition 7.1

The purpose of predicate abstraction is to provide a wayibhat a property X *(s)
holds for the concrete system based on the set of reachaifacttstates.

THEOREM 7.4. For a formulay € E(P), if property holds for the abstract system,
then propertyvX'y)* holds for the concrete system.

PrROOF Consider an arbitrary concrete state= R- and an arbitrary interpretation
ox € Xx. Ifwe letop = (), ., then by the definition of (Equation 1), we must have
op € a(s). By Propositions 4.1 and 6.2, we therefore have

op € af(s) C a(Re) € Ra

By the premise of the theorem we hajg) . = true, and by Proposition 7.1, we have
(V") 4.0 = (¥),, = true. Thisis precisely the condition required for the propetdy)*
to hold for the concrete system(]

Thus, the abstract reachability analysis on our examplesydoes indeed prove the prop-
erty that any valu¢ of state variabl€ satisfiesvz : © > 0 = f(z) > 0.

Using predicate abstraction, we can possibly gétlse negativeesult, where we fail

to verify a propertyvX'+*, even though it holds for the concrete system, because the
given set of predicates does not adequately capture thaathastics of the system that
ensure the desired property. Thus, this method of verifgnogerties is sound, but possibly
incomplete.
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Predicate Abstraction with Indexed Predicates . 15

For example, any reachable stgtef our example system satisfigs : f(z) < 0 =
f(=z) > —=x, but our reachability analysis cannot show this.

We can, however, precisely characterize the class of ptiepeior which this form of
predicate analysis is both sound and complete. A propétty* is said to benductive
for the concrete system when it satisfies the following twaperties:

(1) Every initial states € Qo satisfiesv Xy*(s).
(2) For every pair of concrete statés t), such that € N (s), if VA*(s) holds, then
so does/X*(t).

PROPOSITION 7.5. If VX4* is inductive, thety Xy)* holds for the concrete system.

This proposition follows by induction on the state sequdeading to each reachable state.

Let p4 be a formula that exactly characterizes the set of reacladisiigact states. That is,
(pa) = Ra.

LEMMA 7.6. VX p% is inductive.

PROOF. By definition,(p4),, = trueifandonly ifop € R4, and so by Proposition
7.2,YXp% (s) holds for concrete stateif and only if a(s) C R4.

We can see that the first requirementis satisfied forsany)o, sincea(s) C a(Qo) € Ra
and therefor& X p*, (s) holds by Proposition 7.2.

Now suppose there is a state Nc(s) andVXp% (s) holds. Then we must have(s) C
RY, for somei > 0. From (8), we have € v(«a(s)) C v(RY), and therefore, by (12),
a(t) C Rfjl C R4. Thus, the second requirement is satisfied.

LEMMA 7.7. If YX9* is inductive, then) holds for the abstract system.

PROOF. We will prove by induction ori that(y) ,, = true for everyop € RY,. From
the definition ofR 4, it then follows that{y)) _ = true for everyop € R4, and therefore
1 holds for the abstract system.

For the case of = 0, (10) indicates thaRR%, = «(Qo). Thus, by the definition of
(Equation 1) for everyp € RY, there must be a stateand an interpretationy € Xy
such thabp = (@), ,, - By the first property of an inductive predicate and by Pritjms
7.1, we havey) = (y*), ., = true.

op

Now suppose thaty)),, = true for all op € RY,. Consider an elemenp € R'". If
7» € RY, then our induction hypothesis shows tf(lﬁzl)rp = true. Otherwise, by (12),
and the definitions ofy (Equation 1), the transition relatia¥¢, and~y (Equation 5), there
must be concrete statesandt satisfying:

(1) 7 € «(t). Thatis,p = (¢),
(2) t € Ne(s).
(3) s € y(RY). Thatis, for alloy € Sy, if op = (@)

for somery € Yy.

“Tx

thenop € R,.

sox!

By Proposition 7.1 we hav&)*)_, = (¢),, = true, and therefor&/Xy*(s) holds.
By the second property of an inductive predicat&;«)*(¢) must also hold. Applying
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Proposition 7.1 once again, we therefore hayg, = (¢*), . = true. This completes
our induction. O

This lemma simply shows that if we present our predicaterabiivpn engine with a fully
formed induction hypothesis, then it will be able to perfdime induction proof. But, it
has important consequences.

For a formulayy € E(P) and a predicate set, the propertyvX'y)* is said tohave an
induction proof overp when there is some formula € E(P), such thaty = « and
VX x* is inductive. That s, there is some way to strengtitaénto a formulay that can be
used to prove the property by induction.

THEOREM 7.8. Aformulay € E(P) is a property of the abstract system if and only if
the concrete property X1)* has an induction proof over the predicate set

PROOF Suppose there is a formujasuch thatvX’x* is inductive. Then by Lemma
7.7, we know thajy holds in the abstract system, and wher= ¢, we can infer that)
holds in the abstract system.

On the other hand, suppose thatholds in the abstract system. Then the formula
(characterizing the set of all reachable abstract statd®fissps = 3 andVXp? is
inductive. Henc& X'¢)* has an induction proof over. O

This theorem precisely characterizes the capability ofounulation of predicate abstrac-
tion — it can prove any property that can be strengthenedantinduction hypothesis
using some combination of the predicates. Thus, if we faildafy a system using this
form of predicate abstraction, we can conclude that eithtrelsystem does not satisfy the
property, or 2) we did not provide an adequate set of preelsoatit of which the predicate
abstraction engine could construct a universally quaditifiduction hypothesis.

COROLLARY 7.9. The property/ X' p? is the strongest inductive invariant for the con-
crete system of the formMYx*, wherex € E(P). Alternately, for any other inductive
propertyvV X x*, wherey € E(P), VX p¥ = VX x*.

PROOF The proof follows easily from Theorem 7.8, the fact that= x whenevery
is a property of the abstract state space, Proposition d®ewposition 4.2. [J

Remark7.10. To fully automate the process of generating invasiane need to fur-
ther discover the predicates automatically. Other prediahstraction tools [Ball et al.
2001; Henzinger et al. 2002; Chaki et al. 2003; Das and DilZ®enerate new pred-
icates based on ruling out spurious counterexample traoesthe abstract model. This
approach cannot be used directly in our context, since airati system cannot be viewed
as a state transition system, and so there is no way to chéesca counterexample by a
single state sequence. In this paper, we do not addresstrea$ discovering the indexed
predicates: we provide a syntactic heuristic based on tla&gt precondition transformer
in a separate work [Lahiri and Bryant 2004].
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8. QUANTIFIER INSTANTIATION

For many subsets of first-order logic, there is no completthotefor handling the uni-
versal quantifier introduced in function(Equation 5). For example, in a logic with un-
interpreted functions and equality, determining whethen&ersally quantified formula
is satisfiable is undecidable [Borger et al. 1997]. Instemel concretize abstract states
by considering some limited subset of the interpretatidnthe index symbols, each of
which is defined by a substitution for the symbolsih Our tool automatically gener-
ates candidate substitutions based on the subexpreskairepipear in the predicate and
next-state expressions. Details of the quantifier insatioti heuristic can be found in an
earlier work [Lahiri et al. 2002]. These subexpressionsaartain symbols iV, X, and
Z. These instantiated versions of the formulas enable théereio detect specific cases
where the predicates can be applied.

More precisely, letr be a substitution assigning an expressigne E(V U X U Z) for
eachx € X. Theng, [x/X] will be a Boolean expression over symbdlsX’, andZ that
represents some instantiation of predicgge

For a set of substitutionH and interpretationsy € Yy andor € Yz, we define the
concretization functiony as:

m(Sa,ox,0r) = {s¥mell: (p[m/X]),, ., €Sa} 17)

PROPOSITION 8.1. For any abstract state sef4 and interpretationsry € Yy and
or € X1

(1) v(Sa) € yn(Sa,ox,or) for any set of substitutioris.
(2) Y(Sa,0x,0r) C v (Sa, ox, or) for any pair of substitution sefd andII’ satisfy-
ingII D IT'.

(3) For any abstract state séfa, if Sa C Ta, theny(Sa,ox,0r) € yu(Ta, ox,01),
for any set of substitutiorig.

These properties follow directly from the definitionsrodnd~; and Proposition 2.1.

PROPOSITION 8.2. For any concrete state sél, set of substitutionH, and interpre-
tationsoy € Xy andoz € X7:

Sc € m(a(Sc),ox,01). (18)

This property follows directly from Theorem 4.3 and Propiosi 8.1. It shows that for
a given interpretatiomy and oz, the functions(a, yr1) satisfy one of the properties of
a Galois connection (Equation 8), but they need not satlsfyather (Equation 9). For
example, wherll = (, the quantified condition of (17) becomes vacuous, and hence

Y (Sa,ox,0r) = Ly.
We can usey; as an approximation t9 in defining the behavior of the abstract system.
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That is, defineVy; over sets of abstract states as:
NH(SA) = {<¢ [6/V]>S»UX»UI |UX €Xy,0r € 21,8 € VH(SA,C’?K,UI)} (19)
U U U {@/Meoror} (20)
ox €Xx 01E€XT s€EY(Sa,0x,07)

Observe in this equation thaj, [0/V] is an expression describing the evaluation of predi-
categ, in the next state.

It can be seen thaV;(S4) O Na(S4) for any set of abstract statés,. As long asll
is nonempty (required to guarantee tif is null-preserving), it can be shown that the
system defined by is an abstract interpretation of the concrete system:

(1) Np(0) = @, if IT is nonempty.
(2) Nr is monotonic: This follows from the definition @¥y; in (20) and Proposition 8.1.

() a(Ne(Se)) € Nu(a(Se)): This follows from the fact that( N (S¢)) € Na(a(Sc))
andNa(Sa) € Nu(Sa).

We can therefore perform reachability analysis:

Ry = QY (21)
R = Ry U Nu(Ryp) (22)

These iterations will converge to a def;.
PrROPOSITION 8.3.

(1) Ra C Ry for any set of substitutiond.
(2) R C Ry for any pair of substitution sefd andIl’ satisfyingIl D II'.

To see the first property, consider the following way of espieg the equation foRZ+1
(12) using the alternative equation fer(4), and rearranging the order of the union opera-
tions:

Ri'=rRy,u | U U {@6/V)oro )
ox€Xx o0r€¥z sevy(RY)

The property then follows by Proposition 8.1, using indoicton. The second property
also follows by Proposition 8.1 using induction oin

THEOREM 8.4. For a formulay € E(P), if (), = true for everyop € Ry, then
propertyvX«* holds for the concrete system.

PROOF. Since(y),,, = true for everyop € Ry andR4 C Rn (by Proposition 8.3),
<¢>a7: = true for everyop € R4. Hence by Theorem 7.4, the propevtyty* holds for
the concrete system.

O
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This demonstrates that using quantifier instantiationrdureachability analysis yields a
sound verification technique. However, when the tool falsérify a property, it could
mean, in addition to the two possibilities listed earlibgtt3) it used an inadequate set of
instantiations, or 4) that the property cannot be provediytemunded quantifier instanti-
ation.

9. SYMBOLIC FORMULATION OF REACHABILITY ANALYSIS

We are now ready to express the reachability computatiorbslioally, where each step
involves finding the set of satisfying solutions to a quaedfCLU formula. We will then
see how this can be converted into a problem of finding satigfgolutions to a Boolean
formula.

On each step, we generate a Boolean formiglathat characterizeR;;. Thatis(pi;) =
RY. The formulas directly encode the approximate reachglmbmputations of (21) and
(22).

Observe that by composing the predicate expressions wathnitial state expressions,
) [qO/V], we get a set of predicates over the initial state sympbisdicating the con-
ditions under which the predicates hold in the initial stai®e can therefore start the
reachability analysis by finding solutions to the formula

ph(P) = 3x37 N\ pe o [d°/V] (23)
peP

PROPOSITION 9.1. (pf) = Q%

Let us understand the expressigh by showing why it represent®’,. Expanding the
definition of Q% we get:

Q= U U {@om} (24)

ox€Xx s€Q%

Again, Q% = Uajezj {<q0>w } Using Proposition 2.1, we can rewrite (24) as:

A= U U {CM)yan 25)

ox€Xx 0o7€EXy

To generate a formula for the next-state computation, we diemerate a formula for
Y= (R, ox,0r) by forming a conjunction over each substitutionlin where we com-
pose the current-state formula with the predicate expassind with each substitution

Nrent (i1 [¢/P]) [7/X].
The formula for the next-state computation combines therrédite definition ofvVy (20)
and the formula foty;; above:

Pt (P) = ph(P) v

avaxaz(/\ (pit[0/P) [x/X] A N\ pedp [5/V])- (26)

mell peEP
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To understand the quantified term in this equation, notettieteft-hand term is the for-
mula foryr (p, ox, oz), while the right-hand term expresses the conditions undéctw
each abstract state varialfewill match the value of the corresponding predicate in the
next state.

PROPOSITION 9.2. {pii*) = Rif!

Let us see how this symbolic formulation would perform resiility analysis for our ex-
ample system. Recall that our system has two prediggteés F(x) > 0 and¢gq = x > 0.
In the initial stateF is the functiom\ v, and therefore, [qO/V} simply becomesg > 0.
Equation (23) then becomés [(p < x > 0) A (q & x > 0)], which reduces tp < q.

Now let us perform the first iteration. For our instantiaiome require two substitutions
mandn’ with 7, = x andr, = i+1. Forp}(p,q) = p & q, the left-hand term of
(26) instantiates t¢F(x) > 0 < x > 0) A (F(i+1) > 0 & i+1 > 0). Substituting
AuATE(u = i, F(i+1), F(u)) forFin ¢, gives(x=1iAF(i+1) > 0)V(x#1iAF(x) > 0).

The quantified portion of (26) fos{; (p, q) then becomes:

Fx) >0 x>0 A Fi+1)>0&i+1>0
AF,x,i: | Ap&e [(x=1iAF(i+1)>0)V (x#£1AF(x)>0)] (27)
ANg&e& x>0

The only values op andq where this formula cannot be satisfied is wieis false andy
is true.

As shown in [Lahiri et al. 2003], we can generate the set afittmis to (23) and (26)
by first transforming the formulas into equivalent Booleamfulas and then performing
guantifier elimination to remove all Boolean variables othan those irP. This quantifier
elimination is similar to the relational product operatiged in symbolic model checking
and can be solved using either BDD or SAT-based methods.

10. USING A SAT SOLVER TO PERFORM REACHABILITY ANALYSIS

Observe that (26) has a general foyniP) = x(P) V3A0(A, P), wheref is a quantifier-
free CLU formula,A contains Boolean, integer, function, and predicate symtmidP
contains only Boolean symbols. Several methods (incluttinge in [Bryant et al. 2002b;
Strichman et al. 2002; Bryant et al. 2002a]) have been dpeelto transform a quantifier-
free CLU formulad(A, P) into a Boolean formul@(A, P), where A is now a set of
Boolean variables, in a way that preserves satisfiability.

By taking care [Lahiri et al. 2003], this transformation dam performed in a way that
preserves the set of satisfying solutions for the symboR.iithat is:

{op|F0a: (0),,.,, = true} = {op|Foy: <9> — true} (28)
UA~U7:
Based on such a transformation, we can generate a Booleanltofor y’ by repeatedly
calling a Boolean SAT solver, yielding one solution with le&all. In this presentation, we
consider an interpretatiof> to represent a Boolean formula consisting of a conjunction
of literals: p whenop (p) = true and—p whenop (p) = false. Starting withy’ = x, and
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6" = 6 A —y, we perform iterations:

ou,0p — SATSolve(0')
X'« X' Vop
0 é//\ﬁUfp

until 6’ is unsatisfiable.

To illustrate this process, let us solve (27) to perform tigt fieration of reachability
analysis on our example system. We can translate the raytd-term into Boolean form
by introducing Boolean variables b, c, d ande encoding the predicat€$x) > 0, x > 0,
F(i+1) > 0,i+1 > 0, andx = i, respectively.

The portion of (27) within square brackets then becomes
aebAcedA(pelenc)V(meAna)])A(qeDb).

To this, let us add the consistency constraiath b = d (encoding the property that
x=iAx >0 = i+1 > 0). Although the translation schemes will add a lot more
constraints (e.g., those involving uninterpreted functtgmbol), the above constraint is
sufficient to preserve the property described in (28). Fapéicity, we will not describe
the other constraints that would be added by the algorithnjsahiri et al. 2003]. Finally,

all the symbols apart from andq are existentially quantified out.

It is easy to verify that the equation above with the conaisteconstraint is unsatisfiable
only for the assignment whenis false andy is true.

11. AXIOMS

As a special class of predicates, we may have some that areldaahall times. For
example, we could have an axiaihix) > 0 to indicate that functiod is always positive,
orf(y,z) = £(z,y) to indicate thaf is commutative. Typically, we want these predicates
to be individually quantified, but we can ensure this by daefiréach of them over a unique
set of index symbols, as we have done in the above examples.

We can add this feature to our analysis by identifying a su@s# the predicate symbof8

to be axioms. We then want to restrict the analysis to stabesathe axiomatic predicates
hold. Let LetZ% denote the set of abstract statgswhereop (p) = true for everyp € Q.
Then we can apply this restriction by redefinin@s) (Equation 1) for concrete stateto
be:

a(s) = {{d),.4 lox € Zx} NEZ (29)

and then using this definition in the extensioroaio sets (Equation 3), the formulation of
the reachability analysis (Equations 10 and 12), and theosppate reachability analysis
(Equations 21 and 22).
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The symbolic formulation of the approximate reachabilinalysis then becomes:

pu(P) =3x37 | A\ peold®/V] A N ¢[d/V]

pEP—-Q peEQ
o H(P) = p(P) v

W3XIZ| A (o [6/P) [x/X] A N\ pedld/V] AN b18/V]

mell peEP—-Q peQ

12. APPLICATIONS

We have integrated the method described in this paper intblDBryant et al. 2002b],

a tool for modeling and verifying infinite-state systems. kéwe used our predicate ab-
straction tool to verify safety properties of a variety ofaets and protocols. Some of the
more interesting ones include:

(1) A microprocessor out-of-order execution unit with arbaanded retirement buffer.
Prior verification of this unit required manually genergtit8 invariants [Lahiri et al.
2002]. The verification did not require any auxiliary imaarts from the user and the
proof script (which consists of the 13 simple predicateshgge compact than other
verification efforts of similar models based on compostilonodel checking [McMil-
lan 1998] or theorem proving methods [Arons and Pnueli 18@&abettu et al. 1999].

(2) A directory-based cache protocol with unbounded chinidevised by Steven Ger-
man of IBM [German ], as discussed below.

(3) Versions of Lamport’s bakery algorithm [Lamport 1978t allow arbitrary number
of processes to be active at each step or allow non-atonds iead writes.

(4) Selection sort algorithm for sorting an arbitrary lasgeay. We prove the property that
upon termination, the algorithm produces an ordered array.

(5) Amodel of the Ad-hoc On-demand Distance Vector (AOD\Wting protocol [C.Perkins
etal. 2002]. This model was obtained from an earlier workgBad Dill 2002], where
the protocol was verified using quantified predicates.

(6) A crucial invariant (similar to the one proved in [Aronsad. 2001]) for proving the
mutual exclusion for the Peterson’s [Peterson 1981] mugxelusion algorithm.

12.1 Directory-based Cache Coherence Protocol

For the directory-based German’s cache-coherence piptascunbounded number of
clients cache), communicate with a centrdlomeprocess to gairexclusiveor shared
access to a memory line. The state of eaebhe can be{invalid, shared exclusivé.
The home maintains explicit representations of two listsliehts: those sharing the cache
line (sharer_list) and those for which the home has sent an invalidation redug¢$ias
not received an acknowledgmenh{alidate_1ist) — this prevents sending duplicate
invalidation messages.

The client places reques{seg.shared, regexclusivé on a channeth_1 and the home
grants{grantshared, grankxclusivé on channelch 2. The home also sends invali-
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dation messagemvalidate along ch_2. The home grants exclusive access to a client
only when there are no clients sharing a line, . : sharer_1ist(i) = false. The
home maintains variables for the current clienifrent_client) and the current request
(current_command). It also maintains a biéxclusive _granted to indicate that some
client has exclusive access. The cache lines acknowleggkdation requests with -
validateackalong another channeh_3. At each step an inputid is generated to denote
the process that is chosen at that step. Details of the prodperation with single-entry
channels can be found in many previous works including [Retial. 2001]. We will refer

to this version agerman-cache

Since the modeling language of UCLID does not permit exiptjciantifiers in the sys-
tem, we model the check for the absence of any shaferssharer_1ist(i) = false
alternately. We maintain a Boolean state variadalpty hs1, which assumes an arbitrary
value at each step of operation. We then add an axiom to thensysmpty hsl < Vi :
sharer 1ist(i) = false 1. The quantified testi : sharer list(i) = false in the
model is replaced bympty hsl.

In our version of the protocol, eaclache communicates to the home process through three
directed unbounded FIFO channels, namely the charhelsch_2, ch_3. Thus, there are

an unbounded number of unbounded channels, three for daalf clt can be shown that

a client can generate an unbounded number of requests lyefibireg a response from the
home. We refer to this version of the protocolggsman-cache-fifo

Proving Cache Coherence We first consider the versiagerman-cachevhich has been
widely used in many previous works [Pnueli et al. 2001; Emerand Kahlon 2003;
Baukus et al. 2002] among others and then consider the eedesystengerman-cache-
fifo. In both cases, the cache coherence property to provie js: cache(:) = exclusive

Ai # j = cache(yj) =invalid. All the experiments are performed on an 2.1GHz Pentium
machine running Linux with 1GB of RAM.

12.1.1 Invariant Generation for german-caché&or this version, we derived two induc-
tive invariants, one which involves a single process indard other which involves two
process indicesandj.

For single index invariant, we needed to add an auxiliaryatde last_granted which
tracks the last variable which has been granted exclusivesadPnueli et al. 2001]. The
inductive invariant which implies the cache coherence prgpwvas constructed using the
following set of predicates:

P = { empty_hsl, exclusive_granted, current_command = req_shared current_command =
regexclusivei = last_granted, invalidate 1ist(i), sharer_1ist(i), cache(i) =
exclusivecache(:) = invalid, ch_2(i) = grantexclusivech_2(i) = grantshared ch_2(i) =
invalidate ch_3(i) = invalidateack }.

These predicates naturally appear in the system deserifiicst, the predicatesipty hsl

andexclusive granted are Boolean state variables. Next, for each enumerates stat
variablex, with range{es, ..., e,,}, we add the predicates= ey, ..., x = e,,—1, leav-

LOur current implementation only handles one direction efdkiom,Vi : empty_hsl = sharer_list(i) =
false, which is sufficient to ensure the safety property.
2The extension was suggested by Steven German himself
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ing the redundant predicate= ¢,,. This explainscurrent_command = reg.sharedand
current_command = reg.exclusive Next, we consider the values of the function and
predicate state variables at a particular indein this example, such state variables are
the sharer_list, invalidate_list, cache, ch_1, ch_.2 andch_3. We did not need to
add any predicate for then_1 since the content of this channel does not affect the correct
ness condition. Finally, the predicate- 1ast_granted was added for the auxiliary state
variablelast_granted.

With this set of 13 indexed predicates, the abstract realifyattomputation converged
after 9 iterations in 14 seconds. Most of the time (about 81sés) was spent in eliminating
guantifiers from the formula in (23) and (26) using the SA&dzhquantifier elimination
method.

For the dual index invariant, addition of the second indesialde j makes the process
computationally more expensive. However, the verificatloas not require any auxiliary
variable to prove the correctness. The set of predicatekiase

P = { cache(i) = exclusive cache(j) = invalid, i = j, ch2(i) = grantexclusive
ch2(i) = grantshared ch2(i) = invalidate ch3(i) = empty ch2(j) = grantexclusive
ch2(j) = grantshared ch2(j) = invalidate ch3(j) = empty invalidate list(s),
current_command = req.exclusivecurrent_command = reg.sharedexclusive_granted,
sharer 1ist(i), }.

The inductive invariant which implies the cache-coheremayg constructed using these 16
predicates in 41 seconds using 12 steps of abstract redighaltie portion of time spent
on eliminating quantifiers was around 15 seconds.

12.1.2 Invariant Generation for german-cache-fiféor this version, each of the chan-
nels, namelyhi, ch2 and ch3 are modeled as unbounded FIFO buffers. Each channel
has a head (e.gch1_hd), which is the position of the earliest element in the queuta
tail pointer (e.g.ch1_t1), which is the position of the firdtee entry for the queue, where
the next element is inserted. These pointers are modelethe8dn state variables, which
maps process to the value of the head or tail pointer of a channel for thatpss. For
instancech2 hd(i) denotes the position of the head pointer for the prote3$e channel
itself is modeled as a two-dimensional array, whetie(i, j) denotes the content of the
channel at indey for the process. We aim to derive an invariant over a single process
indexi and an indey for an arbitrary element of the channels. Hence we add thiiayx
variablelast_granted. The set of predicates required for this model is:

P = { cache(i) = exclusivecache(i) =invalid, i = last_granted, current_command =
reg shared current_command = reg exclusiveexclusive granted, invalidate list(i),
sharer 1ist(i), j = ch2hd(i), j = ch3-hd(i), j < ch2hd(i), j < ch2_t1(i),

j < ch3hd(7), j < ch3.t1(3),j = ch2.t1(i)—1, ch1 hd(i) < ch1 t1l(i), chl hd(i) =
ch1_t1(%), ch2-hd (i) < ch2-t1(7), ch2-hd(i) = ch2_t1(3), ch2(4, j) = grantexclusive
ch2(i, j) = grantshared ch2(s, j) = invalidate ch3_hd(i) < ch3_t1(i), ch3hd(i) =
ch3_t1(i), ch3_t1(i) = ch3_hd(i)+1, ch3(i, j) = invalidateack}.

Apart from the predicates required fgerman-cachgwe require predicates involving en-
tries in the various channels for a particular cache entripredicates likeeh1 hd(i) <
ch1 t1(i) andchl hd(i) = ch1 tl(i) are used to determine if the particular channel is
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non-empty. To reason abaattiveentries in a FIFO, i.e., those lying between the head (in-
clusive) and the tail, we need predicates ljkg ch2 hd(i) andj < ch2_t1(¢). The con-
tent of the channel at a locatigns given by the predicates liken2(7, j) = grantexclusive
andch3(i, j) = invalidateack Finally, a couple of predicates likéh3_t1(i) = ch3_hd(iH
landj = ch2_t1(i)—1 are added by looking at failures to prove the cache cohegoge
erty.

Our tool constructs an inductive invariant with these 2&iprates which implies the cache
coherence property. The abstract reachability took 1atitms to converge in 1435 sec-
onds. The quantifier elimination process took 1227 seconds.
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