
ar
X

iv
:c

s/
04

09
01

9v
2

 [c
s.

A
I]

 1
3

O
ct

 2
00

5

Outlier Detection by Logic Programming

Fabrizio Angiulli1, Gianluigi Greco2, and Luigi Palopoli3

1 ICAR-CNR, Via Pietro Bucci 41C, 87030 Rende (CS), Italy
angiulli@icar.cnr.it

2 Dipartimento di Matematica - Università della Calabria, Via Pietro Bucci 30B, 87030 Rende (CS), Italy
ggreco@mat.unical.it

3 DEIS - Università della Calabria, Via P. Bucci 41C, 87030 Rende (CS), Italy
palopoli@deis.unical.it

Abstract. The development of effective knowledge discovery techniques has become a very active research area
in recent years due to the important impact it has had in several relevant application domains. One interesting task
therein is that of singling out anomalous individuals from agiven population, e.g., to detect rare events in time-
series analysis settings, or to identify objects whose behavior is deviant w.r.t. a codified standard set of rules. Such
exceptional individuals are usually referred to asoutliers in the literature.
In this paper, the concept of outlier is formally stated in the context of knowledge-based systems, by generalizing
that originally proposed in [7] in the context of default theories. The chosen formal framework here is that of
logic programming, wherein potential applications of techniques for outlier detection are thoroughly discussed.
The proposed formalization is a novel one and helps to shed light on the nature of outliers occurring in logic bases.
Also the exploitation of minimality criteria in outlier detection is illustrated.
The computational complexity of outlier detection problems arising in this novel setting is also thoroughly investi-
gated and accounted for in the paper. Finally, rewriting algorithms are proposed that transform any outlier detection
problem into an equivalent inference problem under stable model semantics, thereby making outlier computation
effective and realizable on top of any stable model solver.

Keywords: outlier detection, logic programming, knowledge representation, nonmonotonic reasoning, com-
putational complexity.

http://arxiv.org/abs/cs/0409019v2

1 Introduction

1.1 Statement of the Problem

The development of effective knowledge discovery techniques has become a very active research area in
recent yeas due to the important impact it has had in several relevant application areas. Knowledge discovery
comprises quite diverse tasks and associated methods. One interesting task therein is that of singling out
anomalous individuals from a given population, e.g., to detect rare events in time-series analysis settings, or
to identify objects whose behavior is deviant w.r.t. a codified standard set of “social” rules. Such exceptional
individuals are usually referred to asoutliers in the literature.

Outlier detectionhas important applications in bioinformatics [1], fraud detection [33, 34], and intru-
sion detection [32, 48], just to cite a few. As a consequence,several approaches have been already devel-
oped to realize outlier detection, mainly by means of data mining techniques including clustering-based and
proximity-based methods as well as domain density analysis(see, e.g., [11, 3, 16, 55, 8, 12]). Usually, these
approaches model the “normal” behavior of individuals by performing some statistical kind of computation
on the given data set (various methods basically differ on the basis of the way such computation is carried
out) and, then, single out those individuals whose behavioror characteristics “significantly” deviate from
the normal ones.

As a first, quite simple, example of outlier detection, consider the following short story:Nino is a young
soccer player from Southern Italy. He has black hair and brown eyes. Where Nino lives, all people have
black hair and brown eyes. Nino has only one big passion, thatis, playing soccer and he does not know
much about the world outside his home town. One day the boss ofa team from Finland happens to see
Nino playing and likes him so much that he decides to propose acontract for Nino to play with his team in
Finland. A good wage is proposed, so Nino accepts, being alsoamazed by the strange appearance of this
guy coming from Finland. He has blonde hair and blue eyes, indeed: ‘He must really be a strange man’,
Nino must have thought. The day then arrives for Nino to move to Finland. His new boss welcomes him at
the airport in Helsinki and, together, they go to the football ground. In a large hall, the boss introduces Nino
to his colleagues and to other people working for the team. Tohis great surprise Nino notices that among
so many people in the hall there is just one person with black hair and brown eyes: that is, Nino himself !

The above example clarifies some simple and yet important concepts. At the beginning,Ninoconsidered
the team boss from Finland an outlier, on the basis of the statistical evidence that all the people he had
ever seen had a different complexion. But at the end of the story, on the basis of the new observations he
has acquired in the hall, the team boss no longer appears toNino as a strange individual. Thus, the story
firstly illustrates that outliers may be singled out precisely because there is a second set of data determining
their abnormality, which below will be calledoutlier witness. Hence, there is no outlier without a witness.
Moreover, the fact that at the endNino himself appears to be an outlier with respect to his new colleagues
sheds some light on another aspect of outlier detection. Indeed, the story also indicates that an individual
might well be an outlier in one context, i.e., with respect toa given set of observations, while not being so
in a different one. It follows that while looking for outliers in general no assumption can be made on the
existence of properties characterizing outliers “per se”.Rather, outliers are to be detected only on the basis
of observations to hand, by eventually singling out some properties standing out for their abnormality.

In the short story, abnormality is just the result of a kind ofimplicitly computed statistic, which is
precisely what is commonly assumed by most of the approachesin the literature making use of “quantitative”
aspects of the observations only. However, while looking ata set of observations to discover outliers, it often
happens that there are some “qualitative” descriptions of the domain of interest, encoding, e.g., what an
expected normal behavior should be. As an example of such a description, which will be calledbackground

1

knowledgein the following, there might be a rule stating that people from Southern Italy have black hair and
brown eyes, thereby precisely encodingNino’s observations about people from his place. This description
might be, for instance, derived by an expert and might be formalized by means of a suitable language for
knowledge representation, as shown in the following example, where logic programs under the stable model
semantics are considered.

Example 1.Suppose that during a visit to Australia you notice amammal, sayDonald, that you classify as
a platypusbecause of its graceful, yet comical appearance. However, it seems to you thatDonald is giving
birth to a young, but this is very strange given that you know that a platypus is a peculiar mammal that
lays eggs. Formalizing this scenario as an outlier detection problem is simple. Indeed, observations can be
encoded as the facts{Mammal(Donald), GiveBirth(Donald), Platypus(Donald)} and the additional
knowledge by means of the following logical rule:

Platypus(X)← Mammal(X), not GiveBirth(X).

It is worthwhile noting that if you had not observed thatDonald was a platypus, you would not have
inferred such a conclusion, given your background knowledge and the factGiveBirth(Donald). However,
if for some reason you have doubted the fact thatDonaldwas giving birth to its young, then it would come
as no surprise thatDonaldwas a platypus. Therefore, the factGiveBirth(Donald) is precisely recognized
to represent an outlier, whose anomaly is indeed witnessed by the factPlatypus(Donald). ⊳

Though still very simple, the example above conveys some of the relevant features occurring in the ex-
ploitation of a background knowledge for detecting outliers in a given set of observations. First, the example
evidences once again that abnormality of outliers is not defined in “absolute” terms, i.e., there is no explicit
encoding for the exceptions in the theory. In particular, outliers show up as kinds of anomalous individuals
that do not necessarily lead to a (logical) conflict, so that their isolation cannot be carried out in general by
exploiting inconsistencies between observations and the knowledge at hand. For instance, with the encoding
of the background knowledge in Example 1, there is no problemin assuming that all the three observations
hold: the logical rule is not inconsistent with the observations, and a model in fact exists. In this respect,
there is no explicit need to revise the knowledge and/or the observations.

Indeed, in outlier detection, the fact that an individual isan outlier has to be witnessed by a suitable as-
sociated set of observations, the outlier witness, which shows why the individual “deviates” from normality.
While in traditional (data-mining) approaches an individual to deviate is formalized on the basis of some
sort of statistics on the data, making use of qualitative descriptions about the domain of interest allows us to
exploit a rich, logic-based framework.

Specifically, the choice here is to assume that outlier witnesses are sets of facts that are “normally”
(that is in the absence of the outliers) explained by the domain knowledge which, in turns, entails precisely
the opposite of the witnesses whenever outliers are not singled out. In this way, witnesses are meant to
precisely characterize the abnormality of outliers with respect to both the theory and the other data at hand.
For instance, in Example 1,Platypus(Donald) is a witness for the outlierGiveBirth(Donald), since
Platypus(Donald) cannot be predicted by the theory given that one trusts in thefactGiveBirth(Donald),
but is immediately entailed as soon asGiveBirth(Donald) is thrown out.

It is worthwhile noting that from this perspective, outlierdetection may be abstractly seen as a form
of diagnostic reasoning where diagnosis of anomalies has tobe identified on the basis of some kind of
disagreement with the background knowledge and must be supported by some further evidence in the data
(such evidences being encoded in witness sets) — connections with this form of reasoning will be further
clarified in the following with some examples (cf. Example 3)and discussions.

2

Clearly enough, detecting outliers by exploiting a logicalcharacterization of the domain of interest is
generally more complex than it appears from Example 1. Therefore, in the presence of complex and richer
background knowledge, some automatic mechanisms for outlier identification via logic theories is defini-
tively needed. Formalizing these kinds of mechanism, discussing their complexity and providing computa-
tion algorithms is, in a nutshell, the contribution of this paper. In particular, the formalization here is carried
out by exploiting logic programs under the stable model semantics. This means that the background knowl-
edge, that is, what is known in general about the world (also called in the followingrule component), and
the observations, that is, what is currently perceived about (possibly, a portion of) the world (also called in
the followingobservation component), are respectively encoded in the form of a logic program anda set of
facts under the stable models semantics.

In order to make the framework clearer, before detailing themajor contributions of this paper, more
examples of outlier detection are provided and relationships with some related reasoning mechanisms are
discussed next.

1.2 Examples of Outlier Detection

Considering outlier detection problems in the presence of background knowledge may have several use-
ful applications. For instance, the concept of the outlier in database applications might be quite natural in
encoding such important tasks as maintaining database integrity through updates as discussed below.

While designing relational database applications, relations are often equipped with some kind of in-
tegrity constraints in order to enhance their expressiveness. In normal operative conditions databases are
assumed to beconsistent, i.e., to satisfy all the integrity constraints. However, it may happen that this is
not the case, especially when data is the result of the integration of several autonomous sources such as
in datawarehouse and data integration contexts. In fact, the problem of identifying and handling inconsis-
tencies in databases has recently received a lot of attention (cf. [65, 14, 38, 62, 20]). Actually, most of the
proposed approaches define constraints using suitable fragments of first order logics, and mainly focus on
very simple constraints on data, such as functional dependencies and inclusion dependencies (see, e.g., [2]).
In those cases, constraint violations may be identified by means of simple queries over the database at hand.
However, more sophisticated forms of constraints modelling specific knowledge of the application domain
are left generally unexpressed. These kinds of constraint may encode, e.g., organizational rules or routinely
applied praxis, which should be formalized in order to construct a more precise modelling of the domain. In
these cases, the problem is that there is no obvious way for checking database integrity.

Outlier detection can in fact be used to examine database integrity by allowing for more sophisticated,
application-oriented forms of constraints. If an abnormalproperty is discovered in a database, i.e., a violation
of some constraint, the data source which reported this observation would have to be double-checked. An
example follows.

Example 2.Consider a bankB. The bank approves loan requests put forward by customers onthe basis of
certain policies. As an example, assume that loan approval policies prescribe that loans for amounts greater
than 50K Euro have to come along with an endorsement providedas a guarantee by a third party. Information
about approved loan requests is stored in a number of relational tables, that are:

– REQLOAN(LOAN ID, CUSTOMER, AMOUNT), that records loan requests;
– ENDORSEMENT(LOAN ID, PARTY), that records the guaranteeing parties for loan requests for more

than 50K Euro;
– APPROVED(LOAN ID), that records approved loan requests.

3

REQLOAN:

l1 c1 57.000

l2 c3 27.000

l3 c2 88.000

l4 c3 80.000

ENDORSEMENT:
l1 p1

l3 p2
l4 p4

APPROVED:
l1

l2
l4

UNRELIABLE :
p1

p2

Fig. 1. Example instance of the bank database.

Moreover, the bank stores information about unreliable customers in the table UNRELIABLE(CUSTOMER)
collecting data from an external data source, such as, for example, consulting agencies providing information
about the financial records of individuals and companies. InFigure 1, an instance of the bank database is
reported.

With this knowledge to hand, the bank policy concerning loanapprovals can be easily encoded using a
logical rule like the following:

Approved(L)← ReqLoan(L, C, A), A > 50.000, Endorsement(L, P), not Unreliable(P).

According to this knowledge, and by using the straightforward and well-known correspondence be-
tween relational tuples and logical facts (e.g., the tuple〈l1〉 in relation APPROVEDcorresponds to the fact
Approved(l1)), it might be noticed that there is something strange with the loanl1 in Figure 1. In fact, since
the loan has been approved, the partyp1 is supposed to be reliable. However, this is not the case, as emerges
by looking at the database provided by the consulting agency(see table UNRELIABLE).

Notice that if the factApproved(l1) were dropped, the exact opposite would have been concluded,
namely that the loanl1 is not in the relation APPROVED, i.e., according to the normal behavior of the bank,
the loanl1 is not to be approved. Furthermore, if both the factsUnreliable(p1) andApproved(l1) were
dropped, again it would be concluded thatl1 might be approved. This implies that the loan requestl1 not
being approved is a consequence of the fact thatp1 is not reliable, and henceUnreliable(p1) is an outlier
witnessed byApproved(l1). This entails that, in the above scenario, the bank has not trusted the consulting
agency since the bank has actually decided thatp1 is to be considered indeed reliable. ⊳

Further potential applications of the logic-based framework for outlier detection comes in the context
of enhancing the reasoning capabilities of autonomous agents. Indeed, recall that computational logics have
been successfully exploited recently in the context of agent systems applications, since it is quite an effective
and powerful way for both modelling and prototypically implementing several forms of reasoning schemes
in such systems [45, 85, 83]. For instance, abductive logic programming approaches have been fruitfully
used to allow an agent to make hypotheses about the outer world and causes of observable events (e.g,
[21]), modal logic operators have been exploited to describe and realize agent behavior and to put it into
relationship with other agents in an agent society (e.g., [74]), and inductive techniques have been proposed
to enable an agent to “learn” from experience (e.g, [15]).

While exploiting different syntaxes and specific characteristics of the domains of interest, most of these
proposals share the same basic structural vision of the agent, which is often assumed to have its own,
trustable backgroundknowledge about the world that is encoded in the form of a suitable theory. Then, after
someobservationshave been obtained describing the actual status of the outerenvironment, the agent might
try to achieve its application goals by performing some suitable reasoning tasks on the basis of both its
background knowledge and the observations. In usual agent operative conditions, one may assume that the
background knowledge and the observations logically harmonize. However, situations may occur for which
this is not the case. In such circumstances, it is desirable that the agent that has noticed some mismatch is

4

r1 : down(X)← computer(X), not predecessorUp(X).
r2 : predecessorUp(X) ← wired(Y, X), up(Y).
r3 : up(X)← computer(X), not down(X).
r4 : computer(s). computer(a). · · · computer(t).
r5 : wired(s, a). · · · wired(g, t).
r6 : up(s).

Fig. 2. Computer network example.

also able to revise its background knowledge by incorporating the new evidence of the world. In particular,
in some cases the background knowledge and observations mismatch might be caused because there is
something “wrong” or “anomalous” with the observations themselves. This might happen, for instance, as
a consequence of noise occurring while sensing the outer environment or even because of the existence of
malicious agents supplying wrong information, and outlierdetection may be fruitfully exploited to identify
such situations.

Clearly, the isolation of such anomalous observations offers a potentially useful source of additional
knowledge that might be exploited to better support the interaction among agents or simply to optimize the
way an agent pursues its goals. Indeed, outliers might be of agreat interest, for they put into evidence the
presence of some situations possibly requiring an alert or aquick reaction by the agent. A detailed example
follows.

Example 3.Consider an agentA that is in charge of monitoring the connectivity status of the computer
networkN shown on the right of Figure 2. The agent’s background knowledge is modelled by a logic
programP rls

N , which is used byA for assessing whether the computers is connected tot. ProgramP rls
N (rule

component) consists of the rules shown on the left of Figure 2. InP rls
N , each computer, sayX, is represented

by an atomcomputer(X), and connections among computers are denoted by means of thebinary relation
wired. Moreover, for each computerX, the factdown(X) (resp.up(X)) encodes thatX is offline (resp. online).

The topology of the network is encoded into the facts inr4 andr5. The meaning of the other rules in
P rls
N is as follows. Ruler1 defines the unary predicatedown in a way thatdown(X) is true if there exists

no predecessor of the computerX (in the network) which is up; having a predecessor that is up is encoded
in the unary predicatepredecessorUp defined in ruler2 that tells that a computerY is a predecessor ofX
in the casewired(Y, X) holds, and thereforePredecessorUp(X) is true if there is a computerY such that
wired(Y, X) is true and such thatY is up. Ruler3 says that a computer is up if it is not down. Finally, the
fact in r6 states that the sources is known to beup.

In order to monitor the net,A observes the actual status ofeachcomputerX in the net. Hence, the agent
A has such an evidence modelled in theobservation componentby means of a set of facts, sayP obs

N , over
the predicatesdown andup.

It is important to note that programP rls
N encodes the normal behavior of the network and does not

explicitly account for possible anomalies. Its intended meaning is that, in usual operative conditions, a
computerX is down if and only if there is no path inN connectings to X only going through computers
that are up. Thus, it is sufficient that any such path exists tohaveX be supposedly observed up. Armed with
this knowledge, the agent is interested in singling out the observations that are anomalous according to the
“normal” behavior of the system, modelled byP rls

N .

5

Assume now that, for instance,P obs
N comprises the facts{down(a), up(b), down(c), up(d),

up(e), up(f), up(g), up(h), up(t)}— in the figure, the computers observed to be down are marked inbold.
It is important to note that the program on the left of Figure 2is stratified and, therefore, a stable model
[42] always exists no matter what observations are added to it. Thus, no conflict (in the sense of classical
inconsistency) may arise for the programP rls

N and the observations inP obs
N . However, two strange things

indeed come into play with the observations.
First, down(a) comes true inP obs

N , which is not predicted byP rls
N . This observation may be clearly

viewed as “unexpected” according to the background knowledge, even though it formally does not lead to an
inconsistency. However, we do not have any argument for classifying it as a wrong observation. Indeed, this
kind of disagreement may actually have happened for severalreasons, for instance, because the background
knowledge just encodes a partial description of the world and the observations involve some aspects which
are not dealt with therein. E.g., the background knowledge may not encode the fact that a computer may be
down also if some internal failure occurred, which does not depend on connectivity in the network.

In addition, there is a second strange aspect in the observations, which is the fact ofc also being down.
In this second case, however, the abnormality of this circumstance is also witnessed by some other observa-
tions. Specifically, ifA did not observe that computersd, e, f, g, andt are up, it would have inferred exactly
the opposite conclusions (that are thatd, e, f, g, andt are down) by exploiting its background knowledge,
since the failure ofc suffices for breaking thes-t connectivity. Thus, in this second case, there is some
further evidence that the observationdown(c) is wrong. It follows that without any additional knowledge
about the system, by reasoning this way and given the supportof the observations on computersd, e, f, g,
andt, a quite reliable diagnosis can be made.

In the framework that follows, the computerc being down is precisely recognized to represent an outlier,
while the setW is an outlier witness, i.e., a set of facts which can be indeedexplained by the rule component
if and only if the outliers are not trusted in the observations. ⊳

1.3 Comparison with Other Reasoning Tasks

In the light of the informal discussion and of the examples presented so far, one may wonder what kinds of
connection outlier detection has with other well-known reasoning tasks. In particular, it should be evident
that outlier detection shares some features with some well-known and studied problems in AI literature, such
asbelief revisionanddiagnosis. Outlier detection can be indeed abstractly seen as a form ofrevision since
its ultimate goal is to logically harmonize the background theory with the observations to hand. Moreover,
it can be also perceived as a form of diagnosis, because the main interest is in individuals that do not behave
as predicted from the background knowledge.

Next the relationships with both belief revision and diagnosis are discussed. Specifically, given that
diagnosis cames in different forms in the literature, two ofthe main approaches pursued in the AI community
(cf. [72]) will be focused on, that areconsistency-basedandabductivediagnosis.

(Consistency-Based) Diagnosis.Diagnosis can be defined as the problem of finding what is wrongwith
some possibly malfunctioning systems based on knowledge about the design of that system and observations
about its actual behavior (cf. [72, 71]).

In the consistency-based approach to diagnosis, there is noknowledge as to how malfunctioning occurs
and manifests itself, and only the “normal” behavior is axiomatized [43, 26, 76]. Therefore, diagnosis con-
sists in isolating components that are not consistent with all other components acting normally. Formally,
there is a setH of hypothesis(which in most of the formalizations comes in the form of abnormality-
defining predicates), a background theoryT , and a setO of observations; then, the problem is to single out a

6

set∆ ⊆ H so thatT ∪O ∪∆ is consistent in the classical sense. For instance, in [76],a hypothesis¬ab(C)
is introduced for each componentC that can possibly be faulty, and what follows from the assumptions of
normality is cast into rules.

It appears that consistency-based diagnosis has a relationship with outlier detection as long as in both
forms of reasoning one is interested in singling out “abnormality” in the knowledge at hand. However, the
framework of outlier detection does not actually fit the diagnosis framework. First, there is an important
difference in the encoding, in that, in outlier detection the background theory is not required to explicitly
account for abnormal predicates and, more importantly, outliers are not required to be conflicting (in a
logical sense) with the background theory, as evidenced in the previous examples.

Actually, one may be interested in assessing some more structural differences between these forms of
reasoning, by assuming that these syntactic issues can be faced by means of some suitable rewriting. For
instance, one can assume that the background knowledge at hand may be revised in order to explicitly
model the occurrence of anomalous observations, e.g., by means of integrity constraints. Even though there
are no immediate translation mechanisms between the two frameworks in general — the translation in fact
depends on the semantics of the application — this may be particularly simple in some situations, such as
in our network example, where the encoding of the knowledge (that currently preventsup(X) anddown(X)
from being both true) might be changed by adding a constraint← up(X), down(X).

Then, it can be assumed that all the observations constitutethe hypothesis for the problem, so that by
consistency-based diagnosis bunches of observations conflicting with the theory can be singled out. How-
ever, at this point, the differences between the two frameworks emerge more clearly; indeed, the problem of
outlier detection is not yet reduced to finding such observations that somehow “contradict” the background
knowledge, because there are observations that, though different from what prescribed by the background
theory, are not outliers. This has been made evident in Example 3 above. Indeed, after a proper encoding
stating that whenever reachable, a computer must be up, one could derive that the observationsdown(a) and
down(c) are both faulty. However, it has already been noticed thatdown(a) cannot indeed be considered
an outlier because there are no other observations supporting this claim. Conversely,down(c) is an outlier,
given that there are five observations (namely,up(d), up(e), up(f), up(g), andup(t)) that support the fact
thatc is up.

From this perspective, outliers might abstractly be seen asfaulty observations in some kinds of diagnosis
whose reliability is further evidenced by the witness set, which would also have been considered faulty in
the case where outliers are not thrown out. This extra criterion is responsible for greater reliability of such
diagnosis, since the anomalies are not just inferred from the background knowledge (which can be in fact
incomplete and lead to misclassifications, as it would be fordown(a)), but are further evidenced by the data
in itself.

Abduction and Diagnosis.In the abductive approach to diagnosis [58, 59, 18] there is adescription of the
system to be diagnosed, observations (symptoms), and possible reasons (faults) for the observations. The
aim is to single out faults that may be the actual cause for thesymptoms to hand. Formally, again the setsH,
T andO are given, and a subset∆ ⊆ H is sought that combined withT entailsO. Intuitively, observations
in O are assumed to be trustable, while the hypothesis may be revised.

Abduction was studied by Pierce [69]. Since then, it has beenwidely recognized as an important prin-
ciple for common-sense reasoning, a powerful mechanisms for hypothetical reasoning in the presence of
incomplete information, and a solid framework for modelling practical applications. Abduction has been
also investigated in logic programming (see, e.g., [27] andthe references therein). In this context, the most
influential definition is due to Kakas and Mancarella [52], but several other approaches have been also pro-

7

posed both from proof and model-theoretic perspectives (e.g, [64, 22, 53, 28, 31]). Moreover, extensions to
settings where preferences are exploited while finding explanation (abduction with penalization) have been
studied for both classical logics [30] and logic programming [70].

While trying to encode outlier detection in terms of abduction, the main problem is that in the former
setting there is no explicit distinction between trustableobservations and revisable hypothesis. Specifically,
all the observations are revisable, i.e., they may be faulty, and it is not known in advance which of them
should be granted, i.e., the setO is generally unknown. Therefore, the translations appear to be even less
immediate than for consistency-based approaches.

One possibility to build the translation might be to exploitthe fact that in outlier detection it is known
that singling out an outlier has the effect of justifying thewitness set, which can be eventually seen as the set
of trustable observations. Therefore, if this witness set,sayW, was known in advance, the problem might
be encoded in a standard abduction framework by assuming allthe observations butW to be revisable; then,
explanations forW are in fact outliers. However, sinceW is in general not known, some efforts must be
dedicated to discover it.

Again, the activity of identifying the witness sets constitutes the main source of computational complex-
ity in outlier detection problems as well as their main distinguishing characteristics with respect to abductive
problems.

Belief Revision.In such scenarios where an agent background theory mismatches with a set of observations,
it is important to revise the background knowledge, sayT , by incorporating that new evidenceO gained
about the world. This process is generally known asbelief changein the literature, and represents an active
area of research in both Philosophy and Artificial Intelligence.

One of the best known theories of rational belief change is the AGM theory of belief revisionoriginated
by Alchourrón, Gäerdenfors, and Makinson [4] and furtherdeveloped by Gäerdenfors [39] and Alchourrón
and Makinson [5, 6]. WheneverO is consistent withT , therevisionof T according toO, denoted byT ∗O,
is the set of all the logical consequences ofT ∪{O}, denoted byT +O. Otherwise, i.e., ifO is not consistent
with T , T ∗O is defined as(T−¬O)+O, whereT −¬O is thecontractionof T according to¬O, that is the
set of all maximal subsets ofT not entailing¬O. This approach is the core of AGM theory, which eventually
exploits a set of postulates whose aim is to characterize theintuition of minimal change. A number of authors
have favored the postulation approach, and subsequent works concerned extensions and refinements of the
basic paradigm, namely the distinction betweenbelief revisionandbelief update, work on iteratedbelief
revision, and the use ofepistemic states[54, 36, 37, 25].

A criticism raised about the basic paradigm concerns thesuccess postulate, i.e., the assertion that the
agent believes the most recent thing he learns. Specifically, [13] noticed that this postulate is undesirable
in the case when an agent observation may be itself impreciseor noisy (which is precisely the case we are
interested in studying in the outlier detection framework), and proposed a model of belief revision under
no obligation to incorporate observed propositions into the current belief set. Contextually, different mod-
els of non-prioritizedbelief change have been proposed in which no absolute priority is assigned to the
new information due to its novelty [47]. These approaches can be grouped into three main categories: de-
cision+revision, integrated choice, and expansion+consolidation. Decision+revisionapproaches first decide
whether to accept or reject inputO, and if the input is accepted, some of the beliefs inT are given up in
order to incorporateO while retaining consistency. For example,screened revision[66] introduces a setA of
core beliefsthat are kept immune from revision, and the belief set is revised only ifO is consistent with the
setA ∩ T . Integrated choiceapproaches perform the two above-mentioned steps simultaneously. This can
be achieved by means of such choice mechanisms asepistemic entrenchment[39] or spheres-based revision

8

[44]. Finally, expansion+consolidationapproaches addO to the belief setT , and then make the belief state
consistent by deleting either (part of)O or some original beliefs [46].

Clearly, the problem of outlier detection is related with such approaches to belief revision, given that
its ultimate aim is to remove some kind of disagreement between the rule component and the observations.
Specifically, since in the outlier detection setting observations are to be doubted, while taking the background
knowledge for granted, two policies might be adopted in order to obtain outlier detection by revision: either
a model of non-prioritized belief change might be directly exploited, or the roles of background knowledge
and observations in the revision can be supposedly inverted, so that observations constitute the “initial”
knowledge base and the background knowledge is used to revise it; then, the success postulate guarantees
that the background theory remains unchanged and only observations are possibly given up.

However, both the above solutions strongly rely on the fact that a revision has to be made as soon as
merging observations with the theory to hand leads to inconsistencies, which is in fact the starting point
of any kind of belief revision. But this is not the case for outlier detection problems, where the notion
of inconsistency (in the classical sense) plays no role and where the mismatch is given by a rather subtle
form of disagreement between some observations and the other data at hand. Therefore, as in the case of
consistency-based diagnosis, a preliminary step for carrying out outlier detection via revision is to encode
the rule component in a way that explicitly accounts for the isolation of conflicts; but, this is not going to be
obvious in all the circumstances.

However, the most important difficulty in the encoding lies again in the additional requirement for an
outlier to be witnessed by some other set of observations. Inthis respect, outlier detection might be accom-
modated in a framework for computing some kinds ofpreferredrevision, in order to avoid the revision of
observations that are not outliers, as it would occur in Example 3 with the observationdown(a). To this aim,
if a witness setW had been known in advance, one would have been able to define anencoding leading to
an inconsistency wheneverW would not be entailed by the theory, so that the role of the revision would
have been precisely to single out outliers havingW as a witness set. Therefore, again, isolating the witness
sets appears to be a distinguishing characteristic of outlier detection problems.

1.4 Contribution and Plan of the Paper

It is worth pointing out thatoutlier detectionproblems come in several different guises within settings that
have been mainly investigated in the area of Knowledge Discovery in Databases and, recently, they have
also emerged as a knowledge representation and reasoning problems, in the context of default logic [7] —
refer to Section 7 for a thorough analysis of related literature.

In this paper, the definition provided in [7] is basically followed for identifying anomalies in observa-
tions, but the concept of outliers is formally stated in the context of logic programming under the stable
model semantics for several reasons. Firstly, logic programs have been, in fact, proved to be a powerful
tool for modelling reasoning capabilities in multi-agent systems [45, 85, 83]. Secondly, outlier detection
problems formalized using the logic programming paradigm have a natural translation into standard logic
inference problems, thus making the framework presented here quite easily implemented on top of any ef-
ficient inference engine (such as GnT [49], DLV [61],Smodels[67], and ASSAT [63]). Thirdly, the new
formalization of outlier detection presented here is better suited as the basis for generalizing the outlier
detection problems formalized in [7]. In more detail, the contributions of this paper are summarized below.

✄ The notion of outlier in the context of logic programming-based Knowledge systems is formally defined.
In particular, the definition introduced in [7] is generalized by allowing an outlier to consist of a set

9

brave / cautious EXISTENCE WITNESS−CHECKING OUTLIER−CHECKING OW−CHECKING COMPUTATION

General Logic Program ΣP
2 -complete ΣP

2 / DP -complete ΣP
2 -complete DP -complete FΣP

2 -complete
Stratified Logic Program NP-complete NP-complete NP-complete P-complete FNP-complete

Fig. 3. Basic Results for outlier detection problems.

brave≡ cautious EXISTENCE[k] WITNESS−CHECKING[k] OW−CHECKING[min] COMPUTATION[min]

General Logic Program ΣP
2 -complete DP -complete ΠP

2 -complete F∆P
3 [O(log n)]

Stratified Logic Program NP-complete P-complete co-NP-complete FNP//OptP[O(logn)]-complete

Fig. 4. Complexity of Minimum-size Outlier Detection Problems.

of observations (modelled as ground facts) rather than of a single observation. This generalization is
significant because there are actual situations where only non-singleton outliers can be detected.

✄ Outlier detection problems are investigated in the contextof skeptical semantics (the only one considered
in [7]) as well as in the context of brave semantics. It shouldbe noted that this does not simply add some
formal details to the framework, since from the semantical viewpoint, referring to brave or skeptical
reasoning in detection problems significantly changes the role that is played by outliers.

✄ The computational complexity of some natural decision outlier detection problems is thoroughly investi-
gated for the case ofpropositionallogic programs. The results of this study (both for brave andcautious
reasoning) are summarized in Figure 3. It can be noted that the complexity figures range from P toΣP

2

depending on the specific detection problem considered. It is also worth pointing out that, differently
from what happens with most logic-based reasoning frameworks, in most of cases considered brave and
cautious semantics induce thesamecomplexity. Furthermore, the complexity ofcomputingoutliers is
analyzed.

✄ Thedata complexityof some basic outlier detection problems is investigated. This analysis is particu-
larly useful in the context of outlier detection in databaseapplications, where one is usually interested
in understanding how the complexity of a problem varies as a function of the database size, and the
rule component is assumed to held fixed, or anyway less frequently varied, as it usually encodes a set
of constraints on the database schema. Hence, in the data complexity scenario, other than continuing
investigating propositional programs, alsonon-groundlogic programs are considered.

✄ Several cost-based generalizations of outlier detection problems are formalized, accounting for a num-
ber of interesting situations in which the computation of just any outlier is not what is really sought.
Moreover, how this generalization influences the complexity of outlier detection is also studied — see
Figure 4.

✄ The basic outlier detection framework assumes that observations (and, hence, outliers) come into play
as sets of facts encoding some aspects of the current status of the world. However, there are situations
where it would be desirable to have observations encoded as alogical theory (this might be required, for
instance, for agents to be able to reconstruct an internal and possibly complex description of the outer
environment by learning logical rules and then reasoning onthe basis of them, e.g., about the behaviors
of other agents). To this aim the concept of outlier is extended to be denoted, in general, by a set of
logical rules and facts. The computational complexity of the problems arising in this extended setting is
also accounted for in the paper.

✄ In order to ease fast prototyping of outlier-based reasoning frameworks, sound and complete algorithms
for transforming any outlier problem into an equivalent inference problem under stable model semantics
are presented. The transformations can thus be used for effectively implementing outlier detection on
top of any available stable model solver (e.g., [49, 61, 67, 63]).

10

The rest of the paper is organized as follows. Section 2 contains some preliminaries on logic programs
and on the main complexity classes dealt with in the paper. The basic definition of outliers under both
brave and cautious semantics is introduced in Section 3, where the complexity of some outlier detection
problems is also investigated. Section 4 proposes a generalization of the basic framework in which minimum
size-outliers are sought, and studies how this additional requirement influences the basic difficulty of the
detection problems. A different kind of extension, that is,the possibility of having observations encoded
as logic theories is discussed in Section 5. Then, Section 6 illustrates a sound and complete rewriting for
implementing outlier detection on top of stable model engines. Finally, Section 7 discusses some related
work and, in Section 8, conclusions are drawn.

2 Preliminaries

2.1 Logic Programs

A term is a constant or a variable. Anatomis of the formp(t1, ..., tk) wherep is ak-ary predicate symbol
andt1, ..., tk are terms; in the casek = 0, the atom is calledpropositional letterand parenthesis are omitted.
A literal is an atoma or its negationnot a.

A rule r is a syntactic clause of the form:a ← b1, · · · , bk, not c1, · · · , not cn., wherek, n ≥ 0, and
a, b1, · · · , bk, c1, · · · , cn are atoms. The atoma, also denoted byh(r), is theheadof r, while the conjunction
b1, . . . , bk, not c1, · · · , not cn, also denoted byb(r), is thebodyof r. A rule withn = 0 is calledpositive.
A rule with an empty body (i.e.n = k = 0) is called afact (← is omitted).

A logic program(short: LP)P is a finite set of rules.P is positive if all the rules are positive.P is
stratified, if there is an assignments(·) of integers to the predicate symbols inP such that for each ruler
in P the following holds: ifp is the atom in the head ofr andq (resp.not q) occurs inr, thens(p) ≥ s(q)
(resp.s(p) > s(q)). Moreover,P is propositionalif all the atoms in it are propositional letters.

TheHerbrand UniverseUP of a programP is the set of all constants appearing inP , and itsHerbrand
BaseBP is the set of all ground atoms constructed from the predicates appearing inP and the constants
from UP . A ground term (resp. an atom, a literal, a rule or a program) is a term (resp. an atom, a literal, a
rule or a program) where no variables occur. A ruler′ is aground instanceof a ruler, if r′ can be obtained
from r by consistently replacing variables occurring inr with constants inUP . By ground(P) the set of all
ground instances of the rules inP is denoted.

In the following, background knowledge bases encoded by means of ground programs, or, equivalently,
by means of propositional logic programs4 are (mainly) considered. While this is a rather natural setting
most often adopted in the literature for introducing and discussing the complexity of various basic reasoning
tasks, it is relevant to note that the proposed outlier detection framework is general enough to cope with rule
components encoded also by means of non-ground programs (the reader may check that no modification
at all is required in the basic definitions). This is, for instance, the case of our running examples, where
the use of variables has been pursued to keep the encoding compact and to help the reader’s intuition in
understanding the main features of outlier detection problems. Clearly, in these cases, as far as complexity
studies are concerned, given a logic programP with variables, the input to our reasoning tasks is to be
understood as its ground versionground(P). Notably, the semantics of a programP is in fact precisely
defined in terms of its ground version, as discussed below.

4 Indeed, any ground programP may be equivalently seen as a propositional one, by replacing each atom of the formp(t1, ..., tk)
where eachti (1 ≤ i ≤ k) is a constant, with the propositional letterp

t1,...,tk .

11

An interpretation ofP is any subset ofBP . The truth value of a ground atomL w.r.t. an interpretationI,
denotedvalueI(L), is 1 (true) if L ∈ I and 0 (false) otherwise. The value of a ground negated literalnot L

is 1 − valueI(L). The truth value of a conjunction of ground literalsC = L1, . . . , Ln is the minimum over
the values of theLi, i.e.valueI(C) = min({valueI(Li) | 1 ≤ i ≤ n}). If n = 0, thenvalueI(C) = true.
A ground ruler is satisfiedby I if valueI(h(r)) ≥ valueI(b(r)). Thus, a ruler with empty body is
satisfied byI if valueI(h(r)) = true. An interpretationM for P is a model ofP if M satisfies all rules in
ground(P).

Theminimal model semanticsassigns to a positive programP its uniqueminimal modelMM(P). A
modelM for P is minimal if no proper subset ofM is a model forP . For a general programP , thestable
model semantics[41] assigns toP the setSM(P) of its stable modelsdefined as follows. LetP be a logic
program and letI be an interpretation forP . Then, the reduct ofP w.r.t I, denoted byP I , is the ground
positive program derived fromground(P) by (1) removing all rules that contain a negative literalnot a in
the body anda ∈ I, and (2) removing all negative literals from the remaining rules. An interpretationM is a
stable model forP if and only ifM =MM(PM). It is well known that stable models are minimal models
and that stratified logic programs have a unique stable model(see, e.g., [24]).

LetW be a set of facts. Then, programP bravely entailsW (resp.¬W), denoted byP |=b W (resp.
P |=b ¬W), if there existsM ∈ SM(P) such that each fact inW is evaluated true (resp. false) inM .
Conversely,P cautiously entailsW (resp.¬W), denoted byP |=c W (resp.P |=c ¬W), if for eachmodel
M ∈ SM(P), each fact inW is true (resp. false) inM . Clearly, for a positive or stratified programP ,
P |=c W iff P |=b W.

2.2 Computational Complexity

Some basic definitions about complexity theory are recallednext. The reader is referred to [68, 50] for more
on this.

Decisionproblems are maps from strings (encoding the input instanceover a suitable alphabet) to the
set{“yes”, “no”}. A (possibly nondeterministic) Turing machineM answers a decision problem if on a
given inputx, (i) a branch ofM halts in an accepting state iffx is a “yes” instance, and (ii) all the branches
of M halt in some rejecting state iffx is a “no”instance.

The class P is the set of decision problems that can be answered by a deterministic Turing machine
in polynomial time. The classesΣP

k andΠP
k , forming thepolynomial hierarchy, are defined as follows:

ΣP
0 = ΠP

0 = P and for allk ≥ 1, ΣP
k = NPΣP

k−1, ∆P
k = PΣP

k−1, andΠP
k = co-ΣP

k where co-ΣP
k

denotes the class of problems whose complementary version is solvable inΣP
k , and whereΣP

k (resp.∆P
k)

models computability by a nondeterministic (resp. deterministic) polynomial-time Turing machine which
may use an oracle that is, loosely speaking, a subprogram, that can be run with no computational cost, for
solving a problem inΣP

k−1. The classΣP
1 of decision problems that can be solved by a nondeterministic

Turing machine in polynomial time is also denoted by NP, while the classΠP
1 of decision problems whose

complementary problem is in NP, is denoted by co-NP. The class DP
k , k ≥ 1, is the class of problems

defined as a conjunction of two independent problems, one from ΣP
k and one fromΠP

k , respectively. Note
that, for allk ≥ 1, ΣP

k ⊆ DP
k ⊆ ΣP

k+1.
Functions(alsocomputation problems) are (partial) maps from strings to strings, which can be computed

by suitable Turing machines, calledtransducers, that have an output tape. In particular, a transducerT

computes a stringy on inputx, if some branch of the computation ofT onx halts in an accepting state and,
in that state,y is on the output tape ofT . Thus, a functionf is computed byT , if (i) T computesy on input
x iff f(x) = y, and (ii) all the branches ofT halt in some rejecting state ifff(x) is undefined.

12

In this paper, some classes of computation problems will be referred to which are illustrated next (see,
also, [57, 79]). The classFP is the set of all the polynomial time computable functions, which are functions
computed by polynomial-time bounded deterministic transducers. More generally, for each class of decision
problems, sayC, FC denotes its functional version; for instance,FNP denotes the class of functions com-
puted by nondeterministic transducers in polynomial time,FΣP

2 denotes the class of functions computed in
polynomial time by nondeterministic transducers which usean NP oracle, andF∆P

2 denotes the functions
computed, in polynomial time, by a deterministic transducer which uses an NP oracle. In the following some
further classes will also be referred to, which will be defined when needed.

In conclusion, the notion of reduction for decision and computation problems should be recalled. A
decision problemA1 is polynomially reducibleto a decision problemA2 if there is a polynomial time
computable functionh such that for everyx, h(x) is defined andA1 output “yes” on inputx iff A2 outputs
“yes” on inputh(x). A decision problemA is completefor the classC of the polynomial hierarchy iffA
belongs toC and every problem inC is polynomially reducible toA. Moreover, a functionf1 is reducibleto
a functionf2 if there is a pair of polynomial-time computable functionsh1, h2 such that, for everyx, h1(x)
is defined, andf1(x) = h2(x,w) wherew = f2(h1(x)). A functionf is hard for a class of functionsFC, if
everyf ′ ∈ F is polynomially reducible tof , and is complete forFC, if it is hard forFC and belongs toFC.

3 Defining Outliers

In this section, the notions and the basic definitions involved in our framework are introduced and the main
problems studied in the paper are described and formalized.

3.1 Formal Framework

Let P rls be a logic program encoding general knowledge about the world, calledrule component, and let
P obs be a set of facts encoding someobservedaspects of the current status of the world, calledobservation
component. Then, the structureP = 〈P rls, P obs〉, relating the general knowledge encoded inP rls with the
evidence about the world encoded inP obs, is arule-observation pair, and it constitutes the input for outlier
detection problems.

Indeed, givenP, it is interesting to identify (if there is one) a setO of observations(facts inP obs)
that are “anomalous” according to the general theoryP rls and the other facts inP obs \ O. Quite roughly
speaking, the idea underlying the identification ofO is to discover awitness setW ⊆ P obs, that is, a set
of facts which would be explained in the theory if and only if all the facts inO were not observed. This
intuition is formalized in the following definition.

Definition 1 (Outlier). Let P = 〈P rls, P obs〉 be a rule-observation pair and letO ⊆ P obs be a set facts.
Then,O is anoutlier in P if there is a non-empty setW ⊆ P obs withW∩O = ∅, calledoutlier witnessfor
O in P, such that:

1. P (P)W |= ¬W, and
2. P (P)W ,O 6|= ¬W

whereP (P) = P rls ∪ P obs, P (P)W = P (P) \ W, P (P)W ,O = P (P)W \ O, and|= denotes entailment
under eithercautious semantics(|=c) or brave semantics(|=b). ✷

As an example application of the definition above, let us consider again the network of Example 3.

13

Example 4.Let us consider the rule-observation pairPN = 〈P rls
N , P obs

N 〉, where the programP rls
N

consists of the rules shown on the left of Figure 2, andP obs
N comprises the observed facts

{down(a), up(b), down(c), up(d), up(e), up(f), up(g), up(h), up(t)}.
LetW be the set{up(d), up(e), up(g), up(f), up(t)} andO = {down(c)}. Then, it is easy to see that

P (PN)W |=b ¬W andP (PN)W ,O 6|=b ¬W. Therefore,{down(c)} is an outlier inPN , andW is an outlier
witness forO in PN (under thebrave semantics). Actually, since the program is stratified and there is
exactly one stable model, it is the case that{down(c)} is an outlier andW its witness also undercautious
semantics. ⊳

Let us now take a closer look at Definition 1. First, it is worthwhile noting that the definition is a
generalization of the one proposed in [7], since an outlier is not constrained to be a literal, but it might
consists of several individual facts. Accordingly, it was explicitly required that outliers must not overlap
with their witness sets, in order to avoid situations where aset of facts supports by itself its anomaly.
As an example of such a situation, consider the rule-observation pairP0 = 〈P rls

0 , P obs
0 〉, whereP rls

0 =
{a← b. b← not c.} andP obs

0 = {a, b, c}. Consider also the setsO0 = {b, c} andW0 = {a, b}.
Clearly,O0 andW0 satisfy both conditions (1) and (2) in Definition 1, but they are not considered to be
an outlier and its associated witness, respectively, because they are not disjoint. The problem here is that
b appears to be an outlier only if this is witnessed byb itself — it is easy to check thatW ′0 = {a} is
not a witness forO0. Note that, situations such as the one described above cannot occur when outliers
are singleton sets (cf. [7]) for which disjointness betweenan outlier and its associated witness is trivially
guaranteed in order to satisfy condition (2) in Definition 1.

The second important feature accounted for in Definition 1 isthe possibility of dealing with the two
different semantics that are commonly adopted in the logic programming framework, which are, brave and
the cautious semantics. Indeed, the semantics is assumed tobe part of the input in the problem of outlier
detection, and it is therefore fixed after a suitable entailment operator|= in the set{|=b, |=c} is selected.
After this choice was made by the designer of the rule component, the process of singling out outliers will
be carried out consistently. Obviously, if the program has aunique stable model (for instance, in the case
it is positive or stratified as in Example 4), then brave and cautious semantics coincide. For this reason, in
the rest of the paper, for stratified or positive programs there is no distinction among the semantics - for
instance, it will be said simply thatP entails a setW.

However, next is shown that in some scenarios one notion of entailment appears to be more appropriate
with respect to the other, as discussed in the following two paragraphs.

Cautious Semantics.Let us consider again Example 2, and let us denote byP obs
DB the set of facts shown in

Figure 1, and byP rls
DB the rule component including just the following rule:

Approved(L)← ReqLoan(L, C, A), A > 50.000, Endorsement(L, P), not Unreliable(P).

LetPDB be the rule-observation pair= 〈P rls
DB , P

obs
DB〉, and observe that the set{Unreliable(p1)} is an

outlier inPDB whose witness is{Approved(l1)}.
Assume now that the database is updated with some new data that the Bank has collected by integrating

several distributed local databases into a unique datawharehouse, and let̄P obs
DB be such a modified database.

Data stored in different sources are not required to satisfyintegrity constraints issued on the Bank schema.
Therefore, after the integration is carried out, it might happen that some integrity constraints are violated.
Specifically, assume for instance that the first two attributes of REQLOAN are in fact akeyfor the relation,
and that the tuple REQLOAN(l1,c1,10.000) is added toP̄ obs

DB in the integration process, so that a conflict with
REQLOAN(l1,c1,57.000) occurs.

14

The standard approach in the literature for facing the presence of inconsistencies with respect to in-
tegrity constraints is to carry out some “repair” of the data[9], i.e., to identify a suitable (minimal) set
of deletion/addition of facts in the database that restore the system to a consistent state. For instance,
in our example, there are two possible ways for repairing thedatabase, that are either deleting the tuple
REQLOAN(l1,c1,10.000) or deleting the tuple REQLOAN(l1,c1,57.000) — let R1 andR2 be the two repairs
that are computed according to such modifications. Then, whenever a query is issued over the repaired
database, onlyconsistent answersare retrieved, i.e., answers that are evaluated true with respect to all the
possible repairs. In fact, several data integration systems supporting consistent query answering have already
been proposed in the literature [38, 62, 20], which exploit asuitable encoding in terms of logic programs that
ensures a one-to-one correspondence between stable modelsand repairs for the system.

As an example, the repair approach can be encoded by means of the programP̄ rls
DB defined as follows:

ReqLoan′(L, C, A)← ReqLoan(L, C, A), ReqLoan(L, C, A1), A 6= A1, not ReqLoan′(L, C, A1).

Approved(L)← ReqLoan′(L, C, A), A > 50.000, Endorsement(L, P), not Unreliable(P).

where the first rule takes care of the key onReqLoan (in particular, it ensures that the primed relation do not
violate the key on REQLOAN), and the second rule is the rewriting of the original rule-component.

Then, stable models for the program̄P rls
DB ∪ P̄ obs

DB are in one-to-one correspondence with repairs of
the data integration system, and therefore consistent query answering coincides with cautious reason-
ing over the encoding, which is more appropriate than brave reasoning for data integration tasks. Ac-
cordingly, lettingP̄DB = 〈P̄ rls

DB , P̄
obs
DB〉, we have thatP (P̄DB){Approved(l1)} |=c ¬Approved(l1), since

in both the repairsR1 and R2, Approved(l1) cannot be entailed becausep1 is unreliable. Moreover,
P (P̄DB){Approved(l1)},{Unreliable(p1)} does not cautiously entail¬Approved(l1). Indeed, at one hand,
according to repairR2, i.e., by deleting REQLOAN(l1,c1,57.000), there is no need at all for deriving
Approved(l1) since the loan does no longer require any approval. However,at the other hand, accord-
ing to repairR1, i.e., by deleting REQLOAN(l1,c1,10.000), Approved(l1) can be entailed given that
Unreliable(p1) is being doubted about. Thus, we cannot be completely sure that ¬Approved(l1) is
entailed by the programP (P̄DB){Approved(l1)},{Unreliable(p1)} and, therefore,{Unreliable(p1)} and
{Approved(l1)} represent an outlier and its associated witness under the cautious semantics.

Brave Semantics.Let us focus again on Example 3, and consider a slight modification of the encoding in
P rls
N , where the following rules have been added:

r7 : wired(c′, X)← wired(c, X).
r8 : wired(X, c′)← wired(X, c).
r9 : computer(c′).
r10 : down(c′)← internalFailure(c′).
r11 : internalFailure(c′)← computer(c′), not properlyWorking(c′).
r12 : properlyWorking(c′)← computer(c′), not internalFailure(c′).

encoding the fact that another computerc′ with the same connections asc is added to the network and that
c′ is an old piece of hardware that is known to be subject to possibly internal faults (rulesr10...r12).

Let P̄ rls
N be such a modified rule-component, and letP̄N = 〈P̄ rls

N , P obs
N 〉, i.e., assume that the same set

of observations of Example 3 has been obtained by agentA, which therefore has no knowledge about the
current status ofc′.

15

Clearly,P (P̄N) has two possible models, corresponding to the situation in whichc′ is either up or down.
In order to single out any possible anomalous situations brave semantics should be adopted, in this case. This
is also often assumed in most diagnostic approaches.

LetW be the set{up(d), up(e), up(g), up(f), up(t)} andO = {down(c)}. Then, it is easy to see that
P (P̄N)W |=b ¬W; indeed, in the casec′ is down, none ofd, e, f, g, andt can be up. Thus, condition (1) in
Definition 1 is satisfied. As for condition (2), it is easy to see thatP (P̄N)W ,O 6|=b ¬W. Indeed, ifdown(c)
is not trusted, then all the computers ind, e, f, g, andt will be entailed to be up, no matter what the status of
c′ is. Thus, under the brave semantics,down(c) remains an outlier in this modified scenario. It is worthwhile
noting that according to the cautious semantics, instead,¬W is not entailed byP (P̄N)W , given that there is
a model (wherec′ is up) in which nothing anomalous can be singled out in these observations inW.

Therefore, brave semantics appears to be quite useful in this kind of diagnostic scenario for it allows
the identification of all the situations which are possibly anomalous rather than focusing only on absolutely
reliable ones.

So, there are scenarios where one of the either forms of reasoning is suitably applied. It is therefore
natural to ask whether there are some particular relationships between the two notions. This section is
concluded by noting that this is not the case, as can be formally verified by exploiting the asymmetry of
Definition 1. Indeed, under cautious reasoning the definition is strict in requiring that for each stable model,
the witness setW is not entailed by the theory obtained by removingW itself (point 1), but then it just
requires the existence of a model explaining some facts inW after the removal of the outlierO (point 2).
Conversely, under brave semantics the definition is loose inthe first point, because it requires thatW is true
in at least one stable model, but, for point (2), it requires that each model ofP (P)W ,O entails some facts
inW.

It turns out that the two semantics are both of interest, since, intuitively, referring to brave or skeptical
reasoning in outlier detection problems significantly changes the role that, from a computational viewpoint,
is played by literals encoding outliers — this role will be further clarified in the following sections, while
discussing the complexity of outlier detection problems. Moreover, by looking at the example above, it
even seems that the brave semantics better captures the intuition behind outlier detection in some kinds of
diagnostic application; in this respect, extending the definition in [7] to encompass both the semantics (rather
than referring to the cautious one alone) allowed us to look at outlier detection problems from a different
perspective.

3.2 Basic Results

Now that the notion of outlier has been formalized, next the study of the most basic problems arising in this
setting is addressed. The first basic problem considered here is the problemEXISTENCE defined as follows.
Given in input a rule-observation pairP = 〈P rls, P obs〉, EXISTENCE is the problem of deciding the existence
of an outlier inP. Clearly, the complexity ofEXISTENCE strictly depends on what kind of logic program
P rls is. A very simple case is whereP rls is a positive logic program.

Theorem 1. LetP = 〈P rls, P obs〉 be a rule-observation pair such thatP rls is positive. Then, there are no
outliers inP.

Proof. By contradiction, assume that there is an outlierO ⊆ P obs with witnessW ⊆ P obs in P. Let P ′

denote the logic programP (P)W ,O. Notice thatP ′ has a unique model, sayM . From condition (2) in
Definition 1 it is known thatP ′ 6|= ¬W. Hence, it can be inferred that there isw ∈ W such thatw ∈M , i.e.

16

thatP ′ |= w. Thus, it also holds, for the monotonicity property, thatP ′ ∪ O |= w, i.e. thatP (P)W 6|= ¬W
and thusW is not a witness, since it would violate condition (1) in Definition 1. ✷

Let us now consider a more involved scenario, in whichP rls is stratified. Even though in logic program-
ming adding stratified negation does not increase the complexity of identifying the unique minimal model
with respect to the negation-free case, it is next shown thatnegation (even in the stratified form) does indeed
matter in the context of outlier detection. Indeed, theEXISTENCE problem becomes more difficult in this
case, and even unlikely to be solvable in polynomial time.

Before proving the results, some basic definitions are introduced that will be used in the proofs. LetL

be a set of literals. Then, it is denoted byL+ the set{p | p is a positive literal inL}, and byL− the set
{p | ¬p is a negative literal inL}. Let L be a consistent set of literals. ByσL the truth assignment on the
set of letters occurring inL is denoted such that, for each literalp ∈ L+, σL(p) = true, and for each
literal ¬p ∈ L−, σL(p) = false. Let σ be a truth assignment of the set{x1, . . . , xn} of boolean variables.
Then, it is denoted byLit(σ) the set of literals{ℓ1, . . . , ℓn}, such thatℓi is xi if σ(xi) = true and is¬xi
if σ(xi) = false, for i = 1, . . . , n. Let ℓ be a literal. Then, it is denoted byρ(ℓ) the expressionℓ, if ℓ is
positive, and the expressionnot ℓ′, if ℓ is negative andℓ = ¬ℓ′.

Theorem 2. LetP = 〈P rls, P obs〉 be a rule-observation pair such thatP rls is stratified. Then,EXISTENCE
is NP-complete.

Proof. (Membership) Given a rule-observation pairP = 〈P rls, P obs〉, it must be shown that there are two
setsW,O ⊆ P obs such thatP (P)W |= ¬W (queryq′) andP (P)W ,O 6|= ¬W (queryq′′). P (P) is stratified
and, hence, has a unique stable model. Moreover, both queryq′ and q′′ are P-complete (see, e.g., [24]).
Thus, a polynomial-time nondeterministic Turing machine can be built solvingEXISTENCE as follows: the
machine guesses both the setsW andO and then solves queriesq′ andq′′ in polynomial time.

(Hardness) Recall that deciding whether a Boolean formula in conjunctive normal formΦ = c1∧. . .∧cm
over the variablesx1, . . . , xn is satisfiable, i.e., deciding whether there are truth assignments to the variables
making each clausecj true, is an NP-hard problem, even if each clause contains at most three distinct
(positive or negated) variables, and each variable occurs in at most three clauses [40]. Without loss of
generality, assumeΦ contains at least one clause and one variable.

A rule-observation pairP(Φ) = 〈P rls(Φ), P obs(Φ)〉 is defined such that: (i)P obs(Φ) contains exactly
the factxi for each variablexi in Φ, and the factssat anddisabled; (ii) P rls(Φ) is

cj ← ρ(tj,1), not disabled.
cj ← ρ(tj,2), not disabled.
cj ← ρ(tj,3), not disabled.

∀1 ≤ j ≤ m, s.t.cj = tj,1 ∨ tj,2 ∨ tj,3

sat← c1, ..., cm.

Clearly,P(Φ) is stratified and can be built in polynomial time. Now it is shown thatΦ is satisfiable⇔
there is an outlier inP(Φ).

(⇒) Suppose thatΦ is satisfiable, and take one of its satisfying truth assignments, sayσe, for the vari-
ablesx1, . . . , xn. Let X be the setLit(σe)−, andX ′ be a generic subset ofX . It is shown that
O = {disabled} ∪ (X \ X ′) is an outlier with witnessW = {sat} ∪ X ′ in P(Φ).
Indeed, the unique stable model of the programP (P(Φ))W is such that each atomcj (associated to a
clause) is false sincedisabled is true, since it being not removed fromP obs(Φ). Hence,sat cannot be

17

entailed inP (P(Φ))W ; moreover, any atom inX ′ cannot be entailed inP (P(Φ))W also (because there
is no rule suitable for the entailment) and, therefore, condition (1) in Definition 1 is satisfied. Consider,
now, the setO = {disabled} ∪ (X \ X ′). It is easy to see that an atom associated with a variable, say
xi, is false inP (P(Φ))W ,O if and only if xi ∈ X . Thus,P (P(Φ))W ,O has the effect of evaluating the
truth value of the assignmentσe. Given thatσe is a satisfying assignment, the unique stable model of
P (P(Φ))W ,O containssat, thereby satisfying condition (2) in Definition 1. Hence,O is an outlier in
P(Φ), andW is a witness for it.

(⇐) Suppose that there is an outlierO in P(Φ), and letW be its associated witness set. Notice that in
order to satisfy condition (2) in Definition 1,W must contain at least a fact that can be eventually
entailed byP (Φ)W ,O. Clearly, the only fact satisfying this requirement among those inP obs(Φ) is
sat. Therefore, it must be the case thatP (Φ)W ,O |= sat and, consequently,disabled is inW ∪ O,
and hence it is false inP (Φ)W ,O. Then, given that wheneverdisabled is false the rule component
evaluates the truth value of formulaΦ, it is the case that there is a satisfying assignmentσe such that
(W ∪O) ∩ {x1, . . . , xn} = Lit(σe)−.

Before closing the proof, note that in the ‘⇒’-part above, the task of guessing a truth assignment is
“shared” by the two setsW andO. Moreover, the existence of an outlier implies (‘⇐’-part) thatΦ is
satisfiable and, eventually (from the ‘⇒’-part), that there is an outlierO having the form{disabled} ∪
(X \ X ′). Thus, the following stronger claim also holds:Φ is satisfiable⇔ there is an outlier inP(Φ) ⇔
O = {disabled} ∪ (X \ X ′) is an outlier with witnessW = {sat} ∪ X ′ in P(Φ), whereX = Lit(σe)−

with σe being a truth assignment for the variablesx1, . . . , xn that makesΦ true, andX ′ is a generic subset
of X . ✷

The complexity of theEXISTENCE problem in the most general setting is studied next. The following
theorem shows that, under thebravesemantics, the problem for general programs lies one level up in the
polynomial hierarchy w.r.t. the complexity associated with stratified programs.

Theorem 3. EXISTENCE under the brave semantics isΣP
2 -complete.

Proof. (Membership) Given a rule-observation pairP = 〈P rls, P obs〉, it must be shown that there are two
setsW,O ⊆ P obs such thatP (P)W |=b ¬W (queryq′) andP (P)W ,O 6|=b ¬W (queryq′′). Queryq′ is
NP-complete, while queryq′′ is co-NP-complete (see, e.g., [24]). Thus, a polynomial-time nondeterministic
Turing machine can be built with a NP oracle, solving queryEXISTENCE as follows: the machine guesses
both the setsW andO and then solves queriesq′ andq′′ by two calls to the oracle.

(Hardness) LetΦ = ∃X∀Yf be a quantified Boolean formula in disjunctive normal form, i.e.,f is a
Boolean formula of the formd1∨ . . .∨ dm, over the variablesX = x1, . . . xn, andY = y1, . . . yq. Deciding
the validity of these formulas is a well-knownΣP

2 -complete problem. Without loss of generality, assume that
each disjunctdj contains three literals at most. WithΦ the rule-observation pairP(Φ) = 〈P rls(Φ), P obs(Φ)〉
is associated such that: (i)P obs(Φ) contains exactly a factxi for each variablexi in Φ, and the factssat and
disabled; (ii) P rls(Φ) is

yi ← not bi. 1 ≤ i ≤ q

bi ← not yi. 1 ≤ i ≤ q

sat← ρ(tj,1), ρ(tj,2), ρ(tj,3), not disabled. 1 ≤ j ≤ m s.t.dj = tj,1 ∧ tj,2 ∧ tj,3

Clearly,P(Φ) can be built in polynomial time. Now it is shown thatΦ is valid⇔ there is an outlier inP(Φ).

18

(⇒) Suppose thatΦ is valid, and letσX be a truth value assignment for the existentially quantifiedvari-
ablesX that makesΦ valid. Next the setsW andO are built, by exploiting the ideas of the reduc-
tion in Theorem 2: LetX be the setLit(σX)

−
, andX ′ be a generic subset ofX . It is shown that

O = {disabled} ∪ (X \ X ′) is an outlier with witnessW = {sat} ∪ X ′ in P(Φ).
Note that, sincedisabled 6∈ W, the programP (P(Φ))W cannot entailsat (under any semantics);
moreover, any atom inX ′ cannot be entailed inP (P(Φ))W as well (because there is no rule suitable
for the entailment) and, therefore, condition (1) in Definition 1 is satisfied. As for condition (2) in
Definition 1, note that the stable models of the programP (P(Φ))W ,O are in one-to-one correspondence
with the truth assignmentsσY of the universally quantified variables. In particular, given thatσX makes
the formula valid, each stable model has the form{sat}∪Lit(σX)

+
∪Lit(σY)

+
∪{bi | yi ∈ Lit(σY)

−
}.

Hence, it holds thatP (P(Φ))W ,O 6|=b ¬sat.
(⇐) Suppose that there is an outlierO with witnessW in P(Φ). As sat is the unique fact inP obs(Φ) that

can be derived byP (P(Φ))W ,O, then in order to satisfy condition (2) of Definition 1, it is the case
thatW containssat. Furthermore, in order to satisfy condition (1) of Definition 1, sat must be not
entailed inP (P(Φ))W . To this aim, eitherdisabled is inW or, lettingX =W ∩ {x1, . . . , xn}, for any
truth-value assignmentσ({x1,...,xn}\X)∪¬X , there is no assignment for the universally quantified variables
satisfying the formula. Finally, in order to haveP (P(Φ))W ,O 6|=b ¬sat, the setO is such that, letting
X ′ =(O∪W)∩{x1, . . . , xn}, thenσ({x1,...,xn}\X ′)∪¬X ′ is a truth value assignment for the existentially
quantified variablesX that makesΦ valid. ✷

Note that even though outlier detection on general logic programs turned out to be “intrinsically” more
complex than detection on stratified logic programs, the sources of the difficulties remain unchanged under
brave semantics. In fact, the reduction in the above theorempoints out that the task of guessing a satisfying
truth assignment is still “shared” by the two setsW andO, in the same way as the reduction in Theorem 2.

Next cautioussemantics is considered. Whereas, for most reasoning tasks, switching from brave to
cautious reasoning usually implies the complexity to “switch” accordingly from a certain classC to the
complementary class co-C, this is not the case for ourEXISTENCE problem.

Theorem 4. EXISTENCE under the cautious semantics isΣP
2 -complete.

Proof. (Membership) Given a rule-observation pairP = 〈P rls, P obs〉, it must be shown that there are two
setsW,O ⊆ P obs such thatP (P)W |=c ¬W (queryq′) andP (P)W ,O 6|=c ¬W (queryq′′). Queryq′ is
co-NP-complete, while queryq′′ is NP-complete (see, e.g., [24]). Thus, a polynomial-time nondeterministic
Turing machine with a NP oracle can be built, solving queryEXISTENCE as follows: the machine guesses
both the setsW andO and then solves queriesq′ andq′′ by two calls to the oracle.

(Hardness) LetΦ = ∃X∀Yf be a quantified Boolean formula in disjunctive normal form, i.e., f is
a Boolean formula of the formD1 ∨ . . . ∨ Dm, over the variablesX = x1, . . . xn, andY = y1, . . . yq.
We associate withΦ the rule-observation pairP(Φ) = 〈P rls(Φ), P obs(Φ)〉 such that: (i)P obs(Φ) contains
exactly a factxi for each variablexi in Φ, and the factsunsat anddisabled; (ii) P rls(Φ) is

yi ← not bi. 1 ≤ i ≤ q

bi ← not yi. 1 ≤ i ≤ q

sat← ρ(tj,1), ρ(tj,2), ρ(tj,3). 1 ≤ j ≤ m s.t.Dj = tj,1 ∧ tj,2 ∧ tj,3
unsat← not sat.

unsat← not disabled.

Clearly,P(Φ) can be built in polynomial time. Now it is shown thatΦ is valid⇔ there is an outlier in
P(Φ).

19

(⇒) Suppose thatΦ is valid, and letσX be a truth value assignment for the existentially quantifiedvariables
X that makesΦ valid. Consider the setW composed by the factunsat plus all the facts associated to the
variables that are false inσX , that is the set{unsat}∪Lit(σX)

−
, and consider the setO composed only

by the factdisabled. Note that, the stable models of the programP (P(Φ))W are in one-to-one corre-
spondence with the truth assignmentsσY of the universally quantified variables. In particular, theunique
stable modelMY is given by the setLit(σX)

+
∪ Lit(σY)

+
∪ {bi | yi ∈ Lit(σY)

−
} ∪ {sat, disabled}.

Indeed, since the formula is satisfied byσX , for eachMY , sat ∈ MY andunsat 6∈ MY . Hence,
P (P(Φ))W |=c ¬W. Conversely, the programP (P(Φ))W ,O in whichdisabled is false, trivially derives
unsat. It can be concluded thatO is an outlier inP(Φ), andW is a witness for it.

(⇐) Suppose that there is an outlierO with witnessW in P(Φ). As unsat is the unique fact inP obs(Φ)
that can be derived byP (P(Φ))W ,O, then in order to satisfy condition (2) of Definition 1, it is the case
thatW containsunsat and thatP (P(Φ))W |=c ¬unsat. Furthermore, in order to satisfy condition (1)
of Definition 1,disabled does not belong toW. Thus,{unsat} ⊆ W ⊆ {unsat, x1, . . . , xn}. LetX
be the subsetW \ {unsat} and letσX be the truth value assignmentσ({x1,...,xn}\X)∪¬X to the set of
variablesX. Clearly,P (P(Φ))W |=c ({x1, . . . , xn} \ X) ∪ ¬X . As P (P(Φ))W |=c ¬unsat, then it
is the case that for each subsetY of Y, the stable modelMY of P (P(Φ))W associated withY , that is
the modelMY containingY and no other fact fromY, is such thatsat ∈ MY . That is, for each truth
value assignmentσY to the variables in the setY , there is at least a disjunct such thatσX ◦ σY makes
the formulaf true. As a consequence,Φ is valid. To conclude the proof, note thatO = {disabled} is
always an outlier having such a witness. ✷

It should be pointed out in conclusion that even though the complexity of theEXISTENCE problem turned
out to be the same for both brave and cautious semantics, the nature of the problems are still quite different.
In fact, the proof of the above theorem shows that under cautious semantics the witness is alone responsi-
ble for guessing the whole satisfying assignment. Conversely, it has already been noticed that under brave
semantics outlier detection requires the efforts of determining both the witness and the outliers that, in fact,
both contribute to the task of guessing the satisfying assignment - see proof of Theorem 3. Intuitively, the
reason for this behavior under cautious semantics lies in the fact that the condition (2) of Definition 1, i.e.,
P (P(Φ))W ,O 6|=c W, just amounts at identifying a model ofP (P(Φ))W ,O that does not entail an element
ofW. Hence, outliers act just as “switches” under cautious semantics, for they solely prevent the entailment
of any element ofW.

The consequences of this difference will become more evident in the next section, while discussing the
complexity of other outlier detection problems. Intuitively, expect that each time the witness set is given or
has its size fixed, then the outlier detection problem will have the same complexity as the general case under
brave semantics, but will become easier under cautious semantics.

3.3 Computational Complexity of Outlier Checking Problems

In this section the complexity of some further problems related to outlier identification is studied. Specifi-
cally, given a rule-observation pairP = 〈P rls, P obs〉, the following problems will be considered:

• OUTLIER−CHECKING: givenO ⊆ P obs, isO an outlier for some witness setW?
• WITNESS−CHECKING problem: givenW ⊆ P obs, isW a witness for some outlierO in P?
• OW−CHECKING: givenO,W ⊆ P obs, isO an outlier inP with witnessW?

The following theorem states the complexity of the first of the problems listed above.

20

Theorem 5. LetP = 〈P rls, P obs〉 be a rule-observation pair. Then,OUTLIER−CHECKING is

1. NP-complete, for stratified LPs, and
2. ΣP

2 -complete (under both brave and cautious semantics) for general LPs.

Proof.

1. As for the membership, givenO ⊆ P obs, let us guess a setW and verify that it is an outlier witness inP
forO. To this aim it must be verified that conditionsP (P)W |= ¬W andP (P)W ,O 6|= ¬W hold. These
tasks are feasible in polynomial time sinceP (P) is stratified and hence it has a unique stable model that
can be computed in polynomial time. As for the hardness, the same line of reasoning as the proof of
Theorem 2 is exploited, in which given a formulaΦ rule-observation pairP(Φ) = 〈P rls(Φ), P obs(Φ)〉
has been built. It follows immediately from the proof of Theorem 2 (by lettingX ′ = X) thatO =
{disabled} is an outlier⇔ the formulaΦ is satisfiable.

2. As for the membership, givenO ⊆ P obs, let us guess a setW and verify that it is an outlier witness in
P forO. These latter tasks amount to solving an NP and a co-NP problem, as seen in Theorems 3 and 4.
As for the hardness, the same reduction as Theorems 3 and 4 is exploited, in which given a formulaΦ a
rule-observation pairP(Φ) = 〈P rls(Φ), P obs(Φ)〉 has been built. It follows immediately from the proofs
of Theorems 3 and 4 thatO = {disabled} is an outlier⇔ the formulaΦ is satisfiable. Specifically, to
see why this is the case for the proof of Theorem 3, it is sufficient to letX ′ = X in the ‘⇒’-part. ✷

Next the complexity of the WITNESS−CHECKING problem is studied. Interestingly, since
WITNESS−CHECKING assumes the witness to be provided in the input, its complexity is affected by the
chosen semantics, as briefly outlined in the previous section.

Theorem 6. LetP = 〈P rls, P obs〉 be a rule-observation pair. Then,WITNESS−CHECKING is

1. NP-complete, for stratifiedP rls,
2. ΣP

2 -complete under brave semantics for generalP rls, and
3. DP -complete under cautious semantics for generalP rls.

Proof.

1. As for the membership, givenW ⊆ P obs, let us guess a setO and check that it is an outlier inP with
witnessW. To this aim it must be verified that conditionsP (P)W |= ¬W andP (P)W ,O 6|= ¬W hold.
SinceP (P) is stratified this check is feasible in polynomial time. The same reduction as Theorem 2 can
be exploited, in which given a formulaΦ a rule-observation pairP(Φ) = 〈P rls(Φ), P obs(Φ)〉 has been
built. It follows immediately from the proof of Theorem 2 (byletting X ′ = ∅) thatW = {sat} is a
witness for an outlier inP(Φ) if and only if the formulaΦ is satisfiable.

2. As for the membership, givenW ⊆ P obs, let us guess a setO and verify that it is an outlier inP with
witnessW. These latter tasks amount to solving an NP and a co-NP problem, as seen in Theorem 3.
As for the hardness,the same reduction of Theorem 3 can be exploited, in which given a formulaΦ a
rule-observation pairP(Φ) = 〈P rls(Φ), P obs(Φ)〉 has been built. It follows immediately from the proof
of Theorem 3 (by lettingX ′ = ∅) thatW = {sat} a witness for an outlier inP(Φ)⇔ the formulaΦ is
satisfiable.

3. Both conditionsP (P)W |=c ¬W andP (P)W ,O 6|=c ¬W have to hold for a setO. The former condition
can be checked in co-NP, whereas the latter amounts to guessing both an outlierO and a model for
P (P)W ,O, which is feasible in NP.

21

As for the hardness, letφ′ = c′1 ∧ . . . ∧ c′r be a boolean formula on the set of variablesx1, . . . , xn,
c′k = t′k,1 ∨ t′k,2 ∨ t′k,3 (1 ≤ k ≤ r), and letφ′′ = c′′1 ∧ . . . ∧ c′′s be a boolean formula on the set
of variablesy1, . . . , ym, c′′h = t′′h,1 ∨ t′′h,2 ∨ t′′h,3 (1 ≤ h ≤ s). Without loss of generality, assume that
the setsx1, . . . , xn andy1, . . . , ym have no variables in common. A rule-observation pairP(φ′, φ′′) =
〈P rls(φ′, φ′′), P obs(φ′, φ′′)〉 is defined such that (i) P (φ′, φ′′)obs is the set{sat, o}, and (ii) P (φ′, φ′′)rls

is
xi ← not ai, o. 1 ≤ i ≤ n

ai ← not xi, o. 1 ≤ i ≤ n

c′k ← ρ(t′k,1), o. 1 ≤ k ≤ r

c′k ← ρ(t′k,2), o. 1 ≤ k ≤ r

c′k ← ρ(t′k,3), o. 1 ≤ k ≤ r

yj ← not bj, not o. 1 ≤ j ≤ m

bj ← not yj, not o. 1 ≤ j ≤ m

c′′h ← ρ(t′′h,1), not o. 1 ≤ h ≤ s

c′′h ← ρ(t′′h,2), not o. 1 ≤ h ≤ s

c′′h ← ρ(t′′h,3), not o. 1 ≤ h ≤ s

sat← c′1, . . . , c
′
r.

sat← c′′1 , . . . , c
′′
s .

Now it is shown thatφ′ is unsatisfiable andφ′′ is satisfiable⇔ there exists an outlier inP (φ′, φ′′) with
witnessW = {sat}.

(⇒) Assume thatφ′ is unsatisfiable andφ′′ is satisfiable. It is shown that{o} is an outlier with witness
{sat}. Indeed, given thato is true inP(φ′, φ′′){sat} and given the encoding of this program, there
is no modelM ′ ∈ SM(P(φ′, φ′′){sat}) such thatsat ∈ M ′, becauseφ′ is not satisfiable. Thus,
P(φ′, φ′′){sat} |=c ¬ sat holds and condition (1) in Definition 1 is satisfied. Similarly, given that
o is false inP(φ′, φ′′){sat},{o} and given the encoding of the program, there is a modelM ′′ ∈
SM(P(φ′, φ′′){sat},{o}) such thatsat ∈M ′′, becauseφ′′ is satisfiable. Thus,P(φ′, φ′′){sat},{o} 6|=c

¬ sat holds, and condition (2) in Definition 1 is satisfied as well.
(⇒) Assume that there is an outlierO in P (φ′, φ′′) with witnessW = {sat}. It is shown thatφ′ is

unsatisfiable andφ′′ is satisfiable. Indeed, notice beforehand that the only set candidate to be an
outlier is{o}, becausesat ando are the only observations at hand. Then, because of Definition 1:
(1) there is no modelM ′ ∈ SM(P(φ′, φ′′){sat}) such thatsat ∈ M ′, and (2) there is a model
M ′′ ∈ SM(P(φ′, φ′′){sat},{o}) such thatsat ∈M ′′. Given the encoding of the programs above and
the fact thato is true inP(φ′, φ′′){sat} while it is false inP(φ′, φ′′){sat},{o}, we conclude from (1)
thatφ′ is not satisfiable, and from (2) thatφ′′ is satisfiable. ✷

Finally, the next theorem provides the complexity for theOW−CHECKING problem, in which it is simply
checked whether two given setsO andW are an outlier and a witness for it, respectively. Notice that problem
OW−CHECKING is relevant as it may constitute the basic operator to be implemented in a system of outlier
detection. Interestingly, in this case, the complexity does not depend on the semantics.

Theorem 7. LetP = 〈P rls, P obs〉 be a rule-observation pair. Then,OW−CHECKING is

1. P-complete, for stratifiedP rls, and
2. DP -complete (under both brave and cautious semantics) for general P rls.

Proof.

22

1. As for the membership, givenW,O ⊆ P obs, let us check in polynomial time thatP (P)W |= ¬W
and thatP (P)W ,O 6|= ¬W. As for the hardness, given a stratified logic programP and an atoma, the
P-complete problem of deciding whetherP |= ¬ a is reduced toOW−CHECKING. Consider the rule-
observation pairP with P rls = P ∪ {a ← not b} andP obs = {a, b}, whereb is a new propositional
letter not occurring inP . It is shown thatP |= ¬a⇔ {a} is an outlier witness for{b} in P.

(⇒) Assume thatP |= ¬a. Then,{a} is an outlier witness for{b} in P. Indeed, consider the program
P (P){a}, and notice thata cannot be entailed because of the assumption and of the fact that the
body of the rulea← not b is false becauseb is true inP (P){a}. Thus, condition (1) in Definition 1
holds. As for condition (2), consider the programP (P){a},{b} and notice that it entailsa, precisely
because of the rulea← not b.

(⇐) Assume that{a} is an outlier witness for{b} in P. To conclude thatP |= ¬a, it is sufficient to
consider condition (1) in Definition 1. Indeed, it must be thecase thatP (P){a} does not entaila.
Given that the rulea ← not b cannot be used for entailinga (becauseb is true inP (P){a}), it can
be concluded thata cannot be entailed byP .

2. As for the membership, givenW,O ⊆ P obs, conditionsP (P)W |= ¬W andP (P)W ,O 6|= ¬W can
be checked respectively in co-NP and NP under cautious semantics, and respectively in NP and co-NP
under brave semantics, hence in both cases the conjunction of a NP and a co-NP problem has to be
answered, that is aDP problem. As for the hardness the proof is analogous to Point3 of Theorem 6, by
lettingW = {sat} andO = {o}. ✷

Up to this point, attention has been focused on outlier decision problems. Turning to outlier computation
problems, the following result can be established by noticing that in the proofs of theEXISTENCE problem
(Theorems 2, 3 and 4), solving a satisfiability problem is reduced to computing an outlier.

Corollary 1. LetP = 〈P rls, P obs〉 be a rule-observation pair. Then, theCOMPUTATION problem, i.e., com-
puting an arbitrary outlier inP, is (i) FNP-complete, for stratified rule components, and (ii)FΣP

2 -complete,
for general rule components.

3.4 Data Complexity of Outlier Problems

In all the complexity results derived so far, a setting has been considered in which both the rule component
and the observation component are part of the outlier detection problem input. In order to have a more
complete picture, in this section thedatacomplexity of these problems is investigated. That is, a fixed rule
component is considered and a set of observations are, instead, provided as the input. Such a kind of analysis
may be useful in the context of database applications, whereone is usually interested in understanding how
the complexity of a problem varies as a function of the database size (cf. [84]). In this respect, the analysis
becomes more interesting if also non-ground programs are considered. Therefore, in the following, both the
ground and non-ground settings are considered.

Ground programs. Some further computational complexity notions are now recalled. LetC be a boolean
circuit. Thesizeof C is the total number of its gates. Thedepthof C is the number of gates in the longest
path from any input to any output inC. A family {Ci} of boolean circuits, whereCi accepts strings of size
i, is uniform if there exists a Turing machineT that, on inputi, produces the circuitCi. {Ci} is logspace
uniform if T carries out its task usingO(log i) space. Then,AC0 is the class of decision problems solved
by logspace uniform families of circuits of polynomial sizeand constant depth, with AND, OR, and NOT
gates of unbounded fan-in.

23

It is not difficult to see that, handling ground programs, allthe basic outlier detection problems have
their data complexity lying inAC0. Indeed, letA denote the set of propositional letters occurring in the rule
component. Under the data complexity measure, the rule component is fixed, while the input of the problem
consists of the observation component. Nonetheless, it canbe shown that the complexity of outlier detection
problems on ground programs is independent of the observation component out of letters inA. Indeed, being
the rule component fixed, ifO is an outlier with associated witnessW, thenO∩A is an outlier as well with
associated witnessW∩A. Thus, given a pairP = 〈P rls, P obs〉, it holds that there is an outlier inP iff there
is an outlier inPe = 〈P rls, P obs ∩A〉. Once the pairPe is available, conditions 1 and 2 of Definition 1 can
be tested using a constant amount of time as the number of outlier/witness pairs inPe is upper bounded by
22n and the number of models ofPe is upper bounded by2n, wheren denotes the number of letters in the
setA, which is a constant. Both the latter and the former tasks canbe solved inAC0. Thus, the following
theorem holds.

Theorem 8. LetP = 〈P rls, P obs〉 be a rule-observation pair such thatP rls is a fixed propositional logic
theory. Then,EXISTENCE, OUTLIER−CHECKING, WITNESS−CHECKING, andOW−CHECKING are inAC0.

As a consequence, outlier detection problems under the datacomplexity measure can be solved in poly-
nomial time and are highly-parallelizable.

Non-ground programs. The investigation of the data complexity for this setting can be carried out, by
preliminary putting into evidence the features it shares with the ground case when both rule and observation
components are part of the input. The basic idea is that the reductions used in proving complexity results for
outlier detection problems (carried out via encodings intothe rule component which is, therefore, required to
be part of the input) can be “simulated” by somefixednon-ground encoding. In particular, the instantiation
of such non-ground encodings can be made in such a way to simulate the encodings exploited in the case
of ground programs. Let us consider, for instance, the data complexity for problemEXISTENCE under the
cautious semantics.

Theorem 9. LetP = 〈P rls, P obs〉 be a rule-observation pair such thatP rls is a fixed general logic program.
ThenEXISTENCE under the cautious semantics isΣP

2 -complete.

Proof. (Membership) Given a fixed general logic programP rls and a set of ground factsP obs, it must
be shown that there are two disjoint setsW,O ⊆ P obs such thatP (P)W |= ¬W (query q′) and
P (P)W ,O 6|= ¬W (queryq′′). Recall that the complexity of the entailment problem for general proposi-
tional logic programs is co-NP-complete. Thus, a polynomial-time nondeterministic Turing machine with
an NP oracle can be built solvingEXISTENCE as follows: the machine guesses both the setsW andO, com-
putes the propositional logic programsground(P (P)W) andground(P (P)W ,O) – this task can be done in
polynomial time since the size of these programs is polynomially related to the size ofP obs, and then solves
queriesq′ andq′′ by two calls to the oracle.

(Hardness) LetΦ = ∃X∀Yf be a quantified Boolean formula in disjunctive normal form, i.e.,f is a
Boolean formula of the formd1 ∨ . . . ∨ dm, over the variablesX = x1, . . . xn, andY = y1, . . . yq. With Φ

the following set of factsP obs(Φ) is associated:

o1 : unsat.
o2 : disabled.
o3,k : variable∃(xk). 1 ≤ k ≤ n

o4,i : variable∀(yi, y(i+1) mod (q+1)). 1 ≤ i ≤ q

o5,j : disjunct(dj , d(j+1) mod (m+1), ℘(tj,1), ℓ(tj,1), ℘(tj,2), ℓ(tj,2), ℘(tj,3), ℓ(tj,3)). 1 ≤ j ≤ m

24

wheredj = tj,1 ∧ tj,2 ∧ tj,3, 1 ≤ j ≤ m, ℓ(t) denotes the atom occurring in the literalt, and℘(t) is the
constantpos, if t is a positive literal, and the constantneg, if t is a negative literal. Intuitively, the atoms
o3,k, o4,i, ando5,j together provide an encoding of the formulaΦ. Such an encoding will be exploited by
the subsequent rule part (see below) in order to evaluate thetruth value of the formulaΦ. In particular, each
atomo3,k is associated to a distinct existentially quantified variables, each atomo4,i is associated to a distinct
universally quantified variable, while each atomo5,j is associated to a distinct disjunctdj occurring in to the
formulaΦ. As for the atomsunsat anddisabled, they have the same role played in Theorem 4.

The rule part of the pair is composed by the following fixed general logic programP rls:

r0 : disjunctT rue← disjunct(, , pos,X1, pos,X2, pos,X3),
variable∃(X1), variable∃(X2), variable∃(X3).

r1 : disjunctT rue← disjunct(, , neg,X1, pos,X2, pos,X3),
not variable∃(X1), variable∃(X2), variable∃(X3).

...
r7 : disjunctT rue← disjunct(, , neg,X1, neg,X2, neg,X3),

not variable∃(X1), not variable∃(X2), not variable∃(X3).
r8 : disjunctT rue← disjunct(, , pos, Y1, pos,X2, pos,X3),

variable∀True(Y1), variable∃(X2), variable∃(X3).
...
r63 : disjunctT rue← disjunct(, , neg, Y1, neg, Y2, neg, Y3),

not variable∀True(Y1), not variable∀True(Y2), not variable∀True(Y3).

{

r64 : variable∀True(Y)← variable∀(Y,), not variable∀False(Y).
r65 : variable∀False(Y)← variable∀(Y,), not variable∀True(Y).

r66 : disjunct(d0, d1, pos, x0, pos, x0, pos, x0).
r67 : variable∃(x0).
r68 : variable∀(y0, y1).
r69 : unsound← disjunct(C1, C2, , , , , ,), not disjunctIN(C2).
r70 : disjunctIN(C2)← disjunct(C2, , , , , , ,).
r71 : unsound← variable∀(Y 1, Y 2), not variable∀IN(Y 2).
r72 : variable∀IN(Y 2)← variable∀IN(Y 2,).
r73 : sound← not unsound.

r74 : sat← sound, disjunctT rue.

r75 : unsat← not sat.

r76 : unsat← not disabled.

Next, some comments on the rules composing the programP rls are provided.
Rulesr0 . . . r63 are introduced in order to compute the truth value of the disjuncts composing the formula

Φ. Indeed, in the body of each of these rules, there is exactly one atomo5,j , encoding a generic disjunctdj in
Φ, and three atoms evaluating the truth value of the three literals occurring in to the disjunct. Notice that, 64
rules are needed in order to represent all the possible schemes of disjuncts occurring into aΦ formula, that
is, all the possible conjunctions of three boolean variables, either negated or positive, of two distinct types,
i.e., either existentially or universally quantified.

Rulesr64 andr65 serve the purpose to guess a possible truth value assignmentto the universally quanti-
fied variables inΦ. Intuitively, being the ground atomvariable∀True(yi) (variable∀False(yi) resp.) true
in a model of the overall program, means the corresponding universally quantified variableyi is intended to
be true (false resp.) in a suitable truth value assignment tothe variables ofΦ which is encoded by the model.

25

Rulesr69 . . . r73 prevent that the atomso4,i ando5,j of the observation part, associated respectively to the
universally quantified variablesyi and to the disjunctsdj of Φ, belong to some outlier or witness of the over-
all pair. Indeed, if some of these atoms is removed from the observation component, then the rule component
will not evaluateΦ correctly. To this aim, the ruler71 (r69 resp.) will imply the atomunsound whenever
an atomo4,i (o5,j resp.) is present in the model while the subsequent atomo4,i+1 (o5,j+1 resp.) is not. This
check can be accomplished since each atomo4,i (o5,j resp.) carry both the constantyi (dj resp.) associated
to the variableyi (the disjunctdj resp.) and the constantyi+1 (dj+1 resp.) associated to the subsequent vari-
ableyi+1 (disjunctdj+1 resp.). Thus, loosely speaking, universally quantified variables and disjuncts of the
formula are chained together so that either none of them or all together can be removed without entailing
unsound. In order to prevent the latter possibility, a dummy disjunct (see ruler66), which evaluates always
true since it contains the dummy existentially quantified variablex0 which is always assumed to be true in
its turn (see ruler67), and a dummy universally quantified variabley0 (see ruler68) are introduced in the
rule part, referring respectively to the first disjunctd1 and to the first universally quantified variabley1 of Φ.
Since bothr66 andr68 cannot be removed for sure from the overall pair, then they guarantee thatunsound
is true in a model of the overall program if and only if at leastan observationo4,i or o5,j is removed from
the observations.

Finally, rulesr74 . . . r76 have the same purpose of the corresponding rules in the reduction described
in Theorem 4, the only difference being now that in order to entail sat the ruler74 requires the formula is
syntactically sound other than evaluating true.

It is now clear that the rest of the theorem will follow a line of reasoning analogous to that of Theorem 4.
For completeness, we continue completing the formal proof.

Now it is shown thatΦ is valid⇔ there is an outlier inP(Φ) = 〈P rls, P obs〉.

(⇒) Suppose thatΦ is valid, and letσX be a truth value assignment for the existentially quantifiedvariables
X that satisfiesf . Consider the setW composed by the factunsat plus all the factsvariable∃(xi)
associated to the variables that are false inσX , that is the set{unsat}∪{variable∃(x) | x ∈ Lit(σX)

−
},

and consider the setO composed only by the factdisabled. Note that the stable modelsMY of the
programP (P(Φ))W are in one-to-one correspondence with the truth assignmentsσY of the universally
quantified variables (consider rulesr64 andr65). Now, since the formula is satisfied byσX , for eachMY ,
sat ∈ MY andunsat 6∈ MY . Hence,P (P(Φ))W |=c ¬W. Conversely, the programP (P(Φ))W ,O in
whichdisabled is false, trivially derivesunsat. It can be concluded thatO is an outlier inP(Φ), andW
is a witness for it.

(⇐) Suppose that there is an outlierO with witnessW in P(Φ). As unsat is the unique fact inP obs(Φ)
that can be derived byP (P(Φ))W ,O, then in order to satisfy condition (2) of Definition 1, it is the case
thatW containsunsat. Furthermore, in order to satisfy condition (1) of Definition 1,disabled does not
belong toW. Now, it is shown that{unsat} ⊆ W ⊆ {unsat, variable∃(x1), . . . , variable∃(xn)}.
Sinceunsat must be false inP (Φ)W , because of condition (1) in Definition 1, it can be observed that
P (Φ)W entailssat and, thus, by rulesr73 andr74, it does not entailunsound. Assume now, for the
sake of contradiction, that a facto4,i (o5,j resp.) belongs toW. Then, programP (Φ)W entailsunsound,
which is impossible — see the general comments about the reduction reported above.
Let X be the subset{variable∃(x) | x ∈ (W \ {unsat})} and let σX be the
truth value assignmentσ({x1,...,xn}\X)∪¬X to the set of variablesX. Clearly, P (P(Φ))W |=c

({variable∃(x1), . . . , variable∃(xn)} \ X) ∪ ¬X . Furthermore, asP (P(Φ))W |=c ¬unsat, then it
is the case that for each subsetY of Y, the stable modelMY of P (P(Φ))W associated withY , that
is the modelMY containing{variable∀True(y) | y ∈ Y } and no other fact of the same predicate, is
such thatsat ∈ MY . That is, for each truth value assignmentσY to the variables in the setY , there is at

26

least a disjunct such thatσX ◦ σY makes the formulaf true. As a consequence,Φ is valid. To conclude
the proof, note thatO = {disabled} is always an outlier having such a witness. ✷

Theorem 9 depicts a strategy to reformulate the reduction illustrated in previous Theorem 4 in terms of
a reduction exploiting a non-ground rule-observation pairwhose rule component is kept fixed. Notably,
this strategy can be also adopted for all the other reductions exploited in the proofs presented so far. For
instance, we leave to the careful reader to check that, by adapting the same line of reasoning to Theorems
2 and 3, the following results concerning outlier detectionproblems under the data complexity measure can
be eventually obtained.

Theorem 10. Let P = 〈P rls, P obs〉 be a rule-observation pair such thatP rls is a fixed stratified logic
program. ThenEXISTENCE is NP-complete.

Theorem 11. LetP = 〈P rls, P obs〉 be a rule-observation pair such thatP rls is a fixed general logic pro-
gram. ThenEXISTENCE under the brave semantics isΣP

2 -complete.

4 Minimum-size Outlier Detection

4.1 Extending the Framework

There are several practical situations in which the computation of justanyoutlier is not what is really sought.
Consider, for instance, the short story in the Introduction, and recall thatNino is considered to be an outlier
by his Finnish colleagues because he is theonly person with black hair and brown eyes among the other
people working for the team. This assumption appears quite reasonable, given our intuition of outliers being
individuals whose behavior is deviant w.r.t. the “normal” one. However, it is not the only possible one;
indeed, by changing the roles played byNinoand the other team members, it might be concluded that all the
team members butNinoare in fact outliers and thatNinohaving black hair and brown eyes is the associated
witness. If asked to assess the correctness of the latter conclusion, most of us would certain disagree with it,
because we implicitly associate the notion of normality with the characteristics embodied by the majority of
the observations at hand, and for we are inclined to label an individual as anomalous precisely because it is
rare in the observations.

Therefore, it is sometimes natural to constrain the basic notion of outliers, formally defined in Def-
inition 1, in order to account for some criteria aiming at singling out outliers ofminimum size. In this
section, the outlier detection problem will be studied withthe additional constraint of minimizing the out-
lier size. It is worthwhile noting that this setting differswith what is generally required by the principle
of minimal diagnosis [76], where minimality according to set inclusion rather that to cardinality is of-
ten considered. In fact, the inclusion based minimality criterion does not generally prevent the possibil-
ity of having outliers involving the majority of the observations at hand as, e.g., in the above reported
example. As a further (extreme) example, consider the rule-observation pairP1 = 〈P rls

1 , P obs
1 〉, where

P rls
1 = {a← not o1, ..., not on. b← not o.} andP obs

1 = {o1, ..., on, o}. Then, there are two minimal
outliers inP1: {o1, ..., on} whose associated witness is{a}, and{o} whose associated witness is{b}.
Clearly, singling out the former outlier may be undesirablein several situations, since it includes all but
one observation and therefore fails in conveying information about abnormality with respect to the observed
population; the latter outlier, instead, seems to better reflect the intuition beyond outlier detection problems.

A first natural problem that arises in this setting is to decide about the existence of outliers of bounded
size. For instance, it may be interesting to decide whether there are outliers consisting at most the 5% of

27

the observations or whether there are outliers consisting of one individual only. Actually, it is next shown
that bounding the size of the outliers we are looking for doesnot affect the complexity of theEXISTENCE
problem.

Theorem 12. Given in input a rule-observation pairP = 〈P rls, P obs〉, and a natural numberk, the
EXISTENCE[k] problem of deciding the existence of outlierO of size at mostk (|O| ≤ k) in P is

1. NP-complete, for stratifiedP rls, and
2. ΣP

2 , for generalP rls.

Proof. For the membership it is sufficient to observe that the membership parts in Theorems 2, 3 and 4 can
be modified by verifying that the guessed outlierO has size at mostk. Such a test is feasible in polynomial
time, and hence does not affect the complexity of the algorithms. As for the hardness it is sufficient to
observe that in the proof of the theorems above, if{disabled} is an outlier, then the formula is satisfied.✷

Similarly, an analogous version of the problemWITNESS−CHECKING can be formalized: givenW ⊆
P obs and a fixed natural numberk, isW a witness for any outlierO in P, such that|O| ≤ k? This problem
will be calledWITNESS−CHECKING[k].

Interestingly, this time bounding the size of outlier indeed influences the complexity associated with
the problem. In fact, for general LPs it becomes DP -complete even under brave semantics (rather thanΣP

2 -
complete), and for stratified LPs it becomes even feasible inpolynomial time. This is shown in the following
theorem.

Theorem 13. LetP = 〈P rls, P obs〉 be a rule-observation pair. Then,WITNESS−CHECKING[k] is

1. P-complete, for stratifiedP rls, and
2. DP -complete (under both brave and cautious semantics) for general P rls.

Proof. 1. As for the membership, givenW ⊆ P obs, it has to be verified that, there isO ⊆ (P obs \ W)
such that|O| ≤ k, bothP (P)W |= ¬W andP (P)W ,O hold. Since the number of such outliers is upper
bounded by|P obs|k, hence polynomially time bounded, and sinceP (P) is stratified, the overall check
is feasible in polynomial time. As for the hardness, a reduction is exploited to the P-complete problem
PROPOSITIONAL STRATIFIED LOGIC PROGRAMMING, i.e. the problem: given a propositional
stratified logic programP and an atoma, decide whetherP |= ¬a. Consider the rule-observation pair
P = 〈P rls, P obs〉, with P rls = P ∪ {a ← ¬b} andP obs = {a, b}, whereb is a propositional letter not
occurring inP . Clearly,P rls is stratified and there is an outlierO of size|O| ≤ 1 in P having witness
W = {a} iff P |= ¬a.

2. Firstly, let us consider brave semantics. LetW be a subset ofP obs, and letO1, . . . ,Om, m =
(|P obs\W|

1

)

+
(|P obs\W|

2

)

+ . . .+
(|P obs\W|

k

)

, be all the subsets ofP obs \W having size equal or less than
k. Notice that deciding checking whetherP (P)W |=b ¬W, i.e., whether condition (1) in Definition1
is satisfied, is feasible in NP since it amounts to guessing a model forP (P)W and at verifying that it
entails¬W.
Let us consider, instead, condition (2) subject to the size constraint, i.e., it must be decided the existence
of a setO, with |O| ≤ k, such thatP (P)W ,O 6|=b ¬W . Actually, the complementary condition can
be faced, denoted byC2, of deciding whether for each setO ∈ {O1, . . . ,Om}, there is a modelM of
P (P)W ,O such thatM entails¬W.
To this aim, letPi, 1 ≤ i ≤ m, denote the new logic program obtained fromP (P)W ,Oi

by replacing
each propositional letterp occurring there with a local copy ofp, saypi, and letWi denote the new

28

set obtained fromW by substituting to each propositional letterw there occurring, the local copywi

of w in Pi. Consider the logic programP ′ = P1 ∪ . . . ∪ Pm and the setW ′ = W1 ∪ . . . ∪ Wm. We
note that bothP ′ andW ′ can be built in polynomial time. Now, it is easy to see that, byconstruction,
P ′ |=b ¬W

′ if and only if C2 is satisfied. Thus, givenW ⊆ P obs, checking thatP (P)W |=b ¬W and
thatP (P)W ,O 6|=b ¬W amounts to solving an NP and a co-NP problem. As for the hardness, given two
boolean formulasφ andφ′, the problem of deciding whetherφ is satisfiable andφ′ is unsatisfiable can
be reduced toWITNESS−CHECKING[k] under brave semantics using a reduction similar to that shown in
Point 3 of the proof of Theorem 6.
Finally, the proof for cautious semantics follows the one ofPoint 3 of Theorem 6. ✷

4.2 Complexity of Computation Problems

As already done in the context of Section 3.2, next let us concentrate on computation problems. Specifically,
interest is in theCOMPUTATION[min] problem: computing an outlier whose size is the minimum overthe
sizes of all the outliers – bymin(P) the minimum size value is denoted. Notice that in the case of no
outlier,min(P) is undefined. To this aim, the computational complexity of a (still, decision) variant of the
OW−CHECKING problem is studied, denoted byOW−CHECKING[min], in which the attention is focused on
checking minimum-size outliers only: givenO,W ⊆ P obs, isO an outlier inP, with witnessW, such that
|O| = min(P)?

Theorem 14. LetP = 〈P rls, P obs〉 be a rule-observation pair. Then, the problemOW−CHECKING[min] is

1. co-NP-complete, for stratifiedP rls, and
2. ΠP

2 -complete (under both brave and cautious semantics), for generalP rls.

Proof.

1. (Membership) GivenO,W ⊆ P obs, let us consider the complementary problemOW−CHECKING[min] of
deciding whetherit is not truethatO is an outlier inP, with witnessW, such that|O| = min(P). This
problem can be solved by building a polynomial-time nondeterministic Turing machine that (i) verifies
in polynomial time thatO is an outlier with witnessW in P (if it is not the case then the machines stops
replying “yes”), (ii) guesses the sets setO′ andW ′, and verifies in polynomial time that (iii) O′ is an
outlier with witnessW ′ in P, and (iv) |O′| < |O| – notice that both (i) and (iv) have been observed
to be feasible in polynomial time in the membership part of Theorem 2. Then,OW−CHECKING[min] is
feasible in NP and, hence,OW−CHECKING[min] is in co-NP.
(Hardness) Recall that deciding whether a Boolean formulaΦ in conjunctive normal form is
not satisfiable, is an co-NP-complete problem. Consider again the rule-observation pairP(Φ) =
〈P rls(Φ), P obs(Φ)〉 built in the proof of Theorem 2. Then, we build in polynomial time the rule-
observation pairP∗(Φ) = 〈P ∗rls(Φ), P ∗obs(Φ)〉 such that: (i) P ∗obs(Φ) = P obs(Φ) ∪ P ′

obs, where
P ′

obs = {w, o1, o2}, and (ii) P ∗rls(Φ) = P rls(Φ) ∪ P ′
rls whereP ′rls is:

w ← not o1, not o2.

o1 ← o2.

o2 ← o1.

It is easy to see that the setO = {o1, o2} is an outlier inP∗(Φ) with witnessW = {w}. Moreover,
min(P∗(Φ)) = |O| ⇔ Φ is not satisfiable. Indeed, in Theorem 2 it was shown thatΦ is satisfiable⇔
O′ = {disabled} is an outlier inP(Φ). Hence, the result follows by observing thatO′ is such that
|O′| < |O|.

29

2. (Membership) The membership inΠP
2 derives from the fact that the complementary problem

OW−CHECKING[min] can be solved inΣP
2 under both brave and cautious semantics. Indeed, a

polynomial-time nondeterministic Turing machine with an NP oracle can be built that (i) verifies thatO
is an outlier with witnessW in P making two calls to the oracle (if it is not the case then the machines
stops replying “yes”), (ii) guesses the sets setO′ andW ′, and verifies (iii) thatO′ is an outlier with
witnessW ′ in P making two other calls to the oracle, and (iv) that|O′| < |O| – notice that both (i) and
(iv) have been observed to beDP -complete in Theorem 7. Then,OW−CHECKING[min] is feasible inΣP

2

and, hence,OW−CHECKING[min] is inΠP
2 .

(Hardness) LetΦ be a quantified Boolean formula in disjunctive normal form. Recall that deciding
whetherΦ is not valid is aΠP

2 -complete problem. The result follows immediately by exploiting the
reduction described in the Hardness part in the Point1 above, the only difference being that the rule-
observation pairsP(Φ) to be considered are respectively those described in Theorems 3 and 4. To this
aim it is sufficient to observe that in the proofs for the two theorems above, it was shown that the formula
Φ is satisfiable if and only if there is an outlier of the form{disabled}. ✷

By exploiting Theorem 14, it can be shown anFΣP
2 (FΣP

3 resp.) upper bound to the complexity of
the problem of computing an outlier having minimum size in stratified (resp., general) pairs. This can be
done by first guessing any outlier with an associated witnessand then verifying that it is indeed minimal.
But, actually better than this can be achieved by defining a more efficient computation method based on
identifying the actual value ofmin(P) and, then, guessing an outlier whose size equalsmin(P).

The case of stratified rule observation pairs is firstly considered, for which the problem turns out to be
F∆P

2 [O(log n)]-complete, wheren denotes the size of the rule-observation pair. The result can be derived
by establishing a one-to-one correspondence between outliers and cliques in a graph – computing the size
of the maximum clique was, in fact, shown to be F∆P

2 [O(log n)]-complete in [57]. Notice that, to this end,
the proof of Theorem 2 does not help because it exploits a construction from the satisfiability problem
and, more importantly, because the guess of the true variables in the assignment is shared by the outlier
and its associated witness, so that for any satisfying assignment there is an exponential number of associated
outliers. Therefore, the most relevant technical problem to be solved in order to prove the result is to establish
the cited one-to-one correspondence between outliers and graph cliques, by exploiting a more intricate
reduction5 than the one used in Theorem 2.

Theorem 15. Given a rule-observation pairP = 〈P rls, P obs〉, computing the valuemin(P) (if defined) is
F∆P

2 [O(log n)]-complete, for stratifiedP rls.

Proof. (Membership) Given the pairP, it is preliminary observed that the maximum value ofmin(P)
is max = |P obs| = O(|P|). Then, by a binary search on the range[0,max], the valuemin(P) can be
computed: at each step of the search, a threshold is given in the range[0,max], sayk, and it has to be
decided whether the problemEXISTENCE[k] has some solution. Afterlogmax steps at most the procedure
ends, and the value ofmin(P) can be returned, if this value is not zero. SinceEXISTENCE[k] is feasible in
NP, it follows that the procedure is feasible in FPNP[O(logn)] = F∆P

2 [O(log n)], wheren is |P|.
(Hardness) Given a graphG = 〈A,E〉, with A = {1, . . . , n} being a set of nodes andE ⊆ A × A

a set of edges, a cliqueC for G is a set of nodes such that∀i, j ∈ C, there is an edge(i, j) ∈ E. Recall
that computing the size of the maximum clique in a graph is F∆P

2 [O(log n)] [19]. A rule-observation pair
5 This reduction might indeed also be used to prove Theorem 2. However, its intricacies would have made understanding the

intrinsic complexity of the basic outlier detection problem much more difficult to grasp.

30

P(G) = 〈P rls(G), P obs(G)〉 is built such that: (i) P obs(G) contains the factsxini , xouti , andyi, for each
nodei in A, and the factyes; (ii) P rls(G) is

r1 : unsat← xini , xinj . 1 ≤ i, j ≤ n s.t.(i, j) 6∈ E

r2 : unsat← xini , xouti . 1 ≤ i ≤ n

r3 : oki ← xini . 1 ≤ i ≤ n

r4 : oki ← xouti . 1 ≤ i ≤ n

r5 : ok ← ok1, . . . , okn.

r6 : yes← not unsat, ok.

r7 : xini ← xinj , unsat, ok. 1 ≤ i, j ≤ n

r8 : xini ← xoutj , unsat, ok. 1 ≤ i, j ≤ n

r9 : xouti ← xinj , unsat, ok. 1 ≤ i, j ≤ n

r10 : x
out
i ← xoutj , unsat, ok. 1 ≤ i, j ≤ n

r11 : yi ← xini , ok. 1 ≤ i ≤ n

r12 : x
in
i ← yi, ok. 1 ≤ i ≤ n

Let C be a clique inG. Let us denote byOC the set{xℓ11 , . . . , xℓnn } ∪ {yi | ℓi = in}, where eachℓi is in

(resp.out) if and only if the nodei is not (resp. is) inC. Next it is shown that the above construction is such
that (i) for each cliqueC, the setOC is an outlier with witnessW = {yes} in P(G); and (ii) each outlier
O in P(G) is of the formO = OC , for some cliqueC.

(i) Let C be a clique inG. Consider the setW = {yes}. Then, each fact of the formxini , xouti , andyi is
true in the programP (P(G))W . Hence, due to the rulesunsat ← xini , xouti , unsat is true in turn, and
P (P(G))W |= ¬yes, i.e., condition (1) in Definition 1 is satisfied. Let us now consider the program
P (P(G))W ,O , for O = OC . It must be shown thatP (P(G))W ,O |= yes. To this aim, the unique
stable model ofP (P(G))W ,O is proven to beM = {yes} ∪ {ok, ok1, . . . , okn} ∪ {x

in
1 , . . . , xinn } ∪

{xout1 , . . . , xoutn } ∪ {y1, . . . , yn} \ O
C , i.e.,M is the unique minimal model ofP (P(G))MW ,O . Actually,

the structure ofP (P(G))MW ,O is the same as the one ofP (P(G))W ,O but for the ruler6 : yes ←
not unsat, ok replaced by the ruler′6 : yes ← ok., because of the fact thatunsat is false inM . Let us
first note thatM is in fact a model ofP (P(G))MW ,O , by exploiting the following arguments:

– Rulesr3, r4 andr5 are satisfied byM , asok and all the facts of the formoki are true inM .
– Ruler′6 is satisfied byM , becauseyes belongs toM .
– Rulesr7, r8, r9, andr10 are satisfied byM , becauseunsat does not belong toM .
– Rulesr11 andr12 are satisfied byM . Indeed, by construction of the setOC , yi 6∈ OC iff xouti ∈ OC

and, therefore,yi ∈M iff xini ∈M holds as well.
– Ruler2 is satisfied byM , because of the construction ofM andOC which prevents fromxini and

xouti being both true at the same time (a node is either in the cliqueor it is not).
– Rule r1 is satisfied byM . Indeed, it is preliminary noticed that the body of the rule accounts for

pairs of nodes that are not connected by means of an edge inE. Then, for each pair of predicates
xini andxinj being true inM , it is the case that they are connected by means of an edge inE; this
is becausexouti andxoutj are in fact inOC and, therefore, are nodes of the cliqueC. Thus,unsat
cannot be entailed by this rule.

To conclude the proof of (i), it is necessary now to show thatM is in fact the minimal
model of the programP (P(G))MW ,O . Let us preliminary notice that the atoms in{xin1 , . . . , xinn } ∪

{xout1 , . . . , xoutn } ∪ {y1, . . . , yn} \ O
C came as facts inP (P(G))MW ,O and, therefore, they must

31

be in any model ofP (P(G))MW ,O . Then, the result follows by noticing thatP (P(G))MW ,O entails
{yes}∪{ok, ok1, . . . , okn}. Indeed,OC contains by construction one element in the set{xini , xouti }, for
eachxi. Therefore, it is possible to entailoki, for each1 ≤ i ≤ n, andok in turn. Consequently{yes}
must occur in any model ofP (P(G))MW ,O .

(ii) Let O be an outlier forP(G). In order to prove the result, some properties of the encoding of G are
discussed.

Property P1: Any witnessW for O is such thatP (P(G))W |= ok and also thatP (P(G))W ,O |= ok.

Proof. For the sake of contradiction, assume thatok is not entailed inP (P(G))W . Then, due to
rules r3 andr4, it must be the case that there is a nodei such that bothxini andxouti are inW.
But, if this is the case, whatever the elements inO are, there is no chance of entailingxini or xouti

in P (P(G))W ,O . Indeed, although stratified logic programs are not monotonic, the monotonicity
property still holds for predicates in the first stratum and the result follows by noting that, except
for the predicateyes, all the other predicates lie in the first stratum of the stratified logic program
P (P(G)). It can be concluded thatP (P(G))W ,O |= ¬ok and, hence,P (P(G))W ,O cannot entail
any fact by means of rules whose body containsok. Given that these rules are those which may lead
to entail facts in the observation components, this is a violation of condition (2) in Definition 1.

Property P2: Any witnessW for O is such thatP (P(G))W |= unsat.

Proof. After P1 it can be assumed, without loss of generality, thatok is true inP (P(G))W . Before-
hand notice that ifxini is inW thenyi is inW too, otherwise,xini would be entailed by ruler12 in
P (P(G))W thereby violating condition (1) in Definition 1. Symmetrically, if yi is inW thenxini is
inW too, because of ruler11. This means that the body of the rulesr11 andr12 are always false in
the programP (P(G))W ,O . Now, assume for the sake of contradiction thatunsat is not entailed by
P (P(G))W . As unsat belongs to the first stratum ofP (P(G)), then it follows thatunsat is also
false in the programP (P(G))W ,O. Then, the only fact among those inP obs(G) that can be entailed
in P (P(G))W ,O is yes that, consequently, must belong toW. But this cannot be the case because if
unsat is false, alsoP (P(G))W |= yes. Hence,O is not an outlier.

Property P3: Any witnessW for O is composed exactly by the factyes.

Proof. Recall thatW is such thatok andunsat are true inP (P(G))W (propertyP1 andP2 above).
Then, assume that any fact of the formxini , xouti , or yi is inW. In order to satisfy condition (1) in
Definition 1, it must be the case that all the facts having thisform are inW, since any factxini , xouti ,
or yi will suffice for entailing all the others. However, in this caseok is false. Contradiction.

Armed with these properties, it can be concluded that the outlier O must be such thatyes is entailed in
the programP (P(G))W ,O , i.e. that both¬unsat andok are entailed in the same program. To this aim,
for each nodei, eitherxini or xouti is inO (but not together, because of ruler2), andxini is inO if and
only if yi is in O (because of rulesr11 andr12). Furthermore, in order to haveunsat not entailed, it
must be the case that the setC = {i | xini 6∈ O} corresponds to a clique, because of the ruler1 (unsat is
entailed as soon as two nodesxi andxj are markedin while being not connected by means of an edge).
The result follows by observing thatO with the properties stated above coincides withOC .

In order to conclude the proof, simply observe that given a cliqueC the corresponding outlierOC is such
that |OC | = n + |{yi | ℓi = in}| = n + n − |C|. Thus, the clique having maximum size is in one-to-one
correspondence with the outlier having minimum size, and computingmin(P) amounts to compute the size
of the maximum clique. ✷

32

One may ask what is the complexity to be paid to compute the valuemin(P) for general programs. The
following theorem partially answers the question, by providing an upper bound for it, while leaving it open
an exact characterization of its intrinsic complexity.

Theorem 16. Given a rule-observation pairP = 〈P rls, P obs〉, computing the valuemin(P) (if defined) is
in F∆P

3 [O(log n)] (under both brave and cautious semantics), for generalP rls.

Proof. The proof is the same as for the membership part in the Theorem15, except for the fact that
EXISTENCE[k] is feasible inΣP

2 for general logic programs. Then, the binary search can be implemented in
FPΣ

P
2 [O(logn] = F∆P

3 [O(log n)]. ✷

Using the result demonstrated above, it is not difficult to see that given a rule-observation pairP, an
outlier of minimum size can be computed in polynomial time using an NP (resp.ΣP

2) oracle for stratified
(resp. general) logic programs.

Theorem 17. Given a rule-observation pairP = 〈P rls, P obs〉, computing an arbitrary outlierO such that
min(P) = |O| (if defined) is

1. in F∆P
2 [O(log n)], for stratifiedP rls, and

2. in F∆P
3 [O(log n)] (under both brave and cautious semantics), for generalP rls.

Proof. The problem can be solved by (i) computing the valuemin(P) — it has been seen that this value can
be computed performingO(log |P|) calls to an NP (resp.ΣP

2) oracle, and then (ii) guessing an outlierO
having size|O| = min(P), together with its witnessW, and checking conditions (1) and (2) of Definition
1. Point (ii) above is feasible with an extra NP (resp.ΣP

2) oracle call for stratified (resp. general) logic
programs. Hence, the following result follows. ✷

One may wonder whether the computation problem is, in fact, complete for the above complexity
classes. Actually, for the case of stratified LPs, the simplemembership result can be sharpened by assessing
its precise complexity, which account for the possibility of having several outliers with sizemin(P). To this
end, it is necessary to recall some further complexity notions.

An NP metric Turing machineMT is a polynomial-time bounded nondeterministic Turing machine
that on every computation branch halts and outputs a binary number. The result computed byMT is the
maximum over all these numbers. The classOptP contains all integer functions that are computed by
an NP metric Turing machine, whereasOptP[O(log n)] is that subclass thereof containing all functions
f whose valuef(x) hasO(log n) bits, wheren = |x|. The class FNP//OptP[O(logn)] contains all (par-
tial) multi-valued functionsg for which a polynomially-bounded nondeterministic TuringmachineT and
a functionh ∈ OptP[O(log n)] exist such that, for everyx, T computes the valueg(x), provided that
bothx andh(x) are taken in input (see [19]). Notice that it is well-known that every multi-valued function
g ∈ FNP//OptP[O(logn)] has a refinement (single-valued) functionf ∈ F∆P

2 [O(log n)], i.e., for everyx it
holds thatg(x) is defined ifff(x) is defined andf(x) ∈ g(x). Moreover, a problem (with possibly multiple
solutions for a given instance) is solvable in FNP//OptP[O(log n)] iff any of such solutions is computable in
F∆P

2 [O(log n)].
In the light of this observation, the proof of Theorem 17 provides an algorithm for computing a refine-

ment ofCOMPUTATION[min]; the complexity ofCOMPUTATION[min] on its own is, instead, more naturally
defined in terms of the class FNP//OptP[O(logn)], wheren = |P| is the size of the rule-observation pair, as
shown next.

33

Theorem 18. Let P = 〈P rls, P obs〉 be a stratified rule-observation pair. Then,COMPUTATION[min] is
FNP//OptP[O(logn)]-complete.

Proof. (Membership) The valuemin(P) hasO(log n) many bits at most, wheren is the size of the input,
and it can be computed by an NP metric Turing machine. Then, let us guess two setsO andW and verify in
polynomial time that (i)O is an outlier with witnessW, and (ii) the size ofO ismin(P).

(Hardness) A reduction can be shown to theX-MAXIMAL MODEL problem: Given a formula
φ = c1 ∧ . . . ∧ cm in conjunctive normal form on the variablesY = {Y1, ..., Yh} and a subsetX ⊆ Y ,
compute a satisfying truth assignmentM for φ whoseX-part is maximal, i.e., for every other satisfying
assignmentM ′ there is a variable inX which is true inM and false inM ′. This problem was proved to
be FNP//OptP[O(logn)]-complete in [19] under the following notion of metric reduction: A problemΠ

reduces to a problemΠ ′, if there are polynomial-time computable functionsf(x) andg(x, y), such that: (i)
for any instanceI of Π, f(I) is an instance ofΠ ′, andf(I) has solution iffI has a solution, and (ii) for any
arbitrary solutionS of f(I), g(I, S) is a solution ofI.

A rule-observation pairP(φ) = 〈P rls(φ), P obs(φ)〉 is built such that: (i)P obs(φ) contains the two facts
xini , xouti for each variableYi in Y , the factyi for each variableYi in X, and the factyes; (ii) P rls(Φ) consists
of the rulesr2, . . . , r12 of the encoding in the proof of Theorem 15, plus the followingrule:

r′1 : unsat← ν(tj,1), ν(tj,2), ν(tj,3). 1 ≤ j ≤ m s.t.cj = tj,1 ∨ tj,2 ∨ tj,3

whereν is the following mapping:

ν(t) =

{

xouti , if t = Yi

xini , if t = ¬Yi

Let σ be an assignment forφ. Let us denote byOσ the set{xℓ11 , . . . , xℓnn } ∪ {yi | ℓi = in ∧ Yi ∈ X},
where eachℓi is in (resp.out) if and only if the variableYi is not (resp. is) true inσ.

Let us comment the only difference with the encoding used in Theorem 15, i.e., the substitution of rule
r1 with rule r′1. Actually, ruler1 was used to evaluate whether the set of facts of the formxini form a clique:
if the clique is not correctly formed, thenunsat is entailed by the program. The behavior of ruler′1 is
symmetric, because the rule checks whether the assignment at hand satisfies the formula: if the assignment
is not satisfying, thenunsat is entailed by the program. Provided this modification only,with the same
arguments as in the proof of Theorem 15, it can be seen that (i) for each satisfying assignmentσ, the setOσ

is an outlier with witnessW = {yes} in P(φ); and, (ii) each outlierO in P(φ) is of the formO = Oσ, for
some satisfying assignmentσ.

Observe now that given an assignmentσ, the corresponding outlierOσ is such that|Oσ| = n + |{yi |
ℓi = in ∧ Yi ∈ X}|, and recall thatℓi = in means that the variable is false inσ. Hence, the reduction
establishes a one-to-one correspondence not only between outliers and truth assignments forX, but also
between minimum size outliers and the satisfying assignments forφ with a maximum number ofX variables
made true. Clearly, each of such assignments is also anX-MAXIMAL MODEL of φ. The result follows by
observing that the construction can be done in polynomial time. ✷

It is worth pointing out that the reduction presented above is parsimonious[40]. In fact, by lettingY be
the set of all the variables in the formulaφ, the theorem above establishes a one-to-one correspondence be-
tween outliers and satisfying assignments. Then, as a side result, the cost of counting the number of outliers
turns out to be the same as the cost of computing the number of satisfying assignments, the archetypical
complete problem for the class#P [82].

34

Corollary 2. LetP = 〈P rls, P obs〉 be a rule-observation pair such thatP rls is a stratified. Then, counting
the number of outliers inP is #P-complete.

As with minimal diagnosis applications, an interesting problem is that of singling out an outlier “core”,
that is, those facts that belong to all minimum-size outliers. This apparently difficult problem turns out to be
not more difficult than computing the value ofmin(P), as shown in the following theorem.

Theorem 19. Given a stratified rule-observation pairP = 〈P rls, P obs〉 and a factf , deciding whether, for
each outlierO having minimum size inP, it holds thatf ∈ O is∆P

2 [O(log n)]-complete.

Proof. (Membership) The problem can be solved in polynomial time with O(log n) many NP oracle calls.
The valuemin(P) can be firstly computed by exploiting the algorithm presented in Theorem 15. Then, with
an additional NP oracle it can be checked if there is an outlierO such that (i)|O| = min(P), and (ii)f 6∈ O.

(Hardness) Given a formulaφ in conjunctive normal form on the variablesY = {Y1, ..., Yn}, a subset
X ⊆ Y , and a variableYi, deciding whetherYi is true in all theX-MAXIMUM models is ∆P

2 [O(log n)]-
complete, where a model is maximum if it has the largestX-part. The result trivially follows by exploiting
the construction in Theorem 18 that, in fact, relies on a one-to-one correspondence betweenX-MAXIMUM
models and outliers of minimum size. ✷

5 Observing Rules

The outlier detection framework depicted so far relies on agents’ observations coming as facts that encode
some aspects of the current status of the world. To this aim, it suffices that agents have some “sensing”
capability for monitoring the external environment. However, it would be desirable to have agents that,
besides sensing, would also be able to interact with the environment in a more elaborate way.

For instance, in several multi-agent applications, agentsmay be involved in dialogues with other agents.
Dialogues may start from the need to achieve an explicit goal, such as to persuade another party, or to find an
information, or to verify an assumption (cf. [86]). Other form of dialogues may occur during a negotiation
[56], i.e., when agents operate in an environment with limited resource availability and their goal is to obtain
a resource (see, e.g., [87, 78]). In this contexts, agents might (maliciously) export knowledge for taking
advantage of its competitor agents and, therefore, it is relevant to have agents equipped with the capability
of having a set of facts andrules to encode their own “observations”, i.e., the knowledge exchanged with
other agents while communicating.

Then, outlier detection techniques can be profitably used for singling out the pieces of knowledge (de-
fined as sets of rules and facts and acquired by communicatingwith other agents or generally by learning
from the environment) that look anomalous w.r.t. the trustable internal agent view of the world.

Example 5.Consider again the agentAN that is in charge of monitoring the status of the networkN .
Assume thatAN has no a-priori knowledge about the connectivity, i.e., therule componentPN is empty.
Then,AN might have been informed by another agent of a property aboutN , which is encoded in the rule
o : up(c)← up(h).

Armed with this rule, the agent monitors the status of the netand observes thath is up but, surprisingly,
c is not. Clearly, there is something strange about these observations. However, in this case the agent might
doubt the fact thath is actually up, but also about the ruleo, which has been observed, but is not part of its
trustable knowledge. ⊳

35

In order to study this extended framework, it is necessary tointroduce some changes in the basic def-
inition. Let P rls be a logic program encoding general knowledge about the world, and letP e−obs be a
set of facts and rules encoding someobservedaspects of the current status of the world, calledextended
observation component. Then, the structureP = 〈P rls, P e−obs〉 is anextended rule-observation pair.

It is worth noting that, in this novel context, the type of thelogic programP (P) is determined by the
rule programtogetherwith the extended observation set.

It is easy to see that the complexity of the outlier detectionproblems studied so far remains unchanged
for extended rule-observation pairs whereP (P) is a stratified or a general logic program. Indeed, all the
hardness proofs refer toP obs including facts only (and hence hold in the extended framework) and all the
membership results can easily accommodate rules in the observations (belonging to the same class of logic
programs to which Prls belongs to) without additional costs.

However, it is interesting to study what happens in the case of positive rule components, for which
Theorem 1 showed that no outlier exists if observations are restricted to be facts. To analyze this scenario,
it is first made clear that a ruler is entailed by a positive programP if r is satisfied by the unique minimal
modelM of P .

Surprisingly, Theorem 1 does not hold for the case of extended rule-observation pairs. For instance, one
can consider the extended rule-observation pairP = 〈P rls, P e−obs〉 with P rls = ∅ andP e−obs = {a ←
b, b}. Thenb is an outlier with witnessa ← b. IndeedP (P){b},{a←b} 6|= ¬(a ← b), while P (P){a←b} |=
¬(a← b).

Thus, in the following, the computational complexity of theEXISTENCE problem is stated when ex-
tended rule-observation pairs are considered. This resulthelps in understanding the characteristics of de-
tecting outliers over extended pairs — complexity figures for the other problems introduced in the paper
(such asOUTLIER−CHECKING, WITNESS−CHECKING andOW−CHECKING) can be then obtained by simple
adaptations of analogous proofs shown for the standard case, and are, therefore, omitted.

Theorem 20. LetP = 〈P rls, P e−obs〉 be an extended rule-observation pair. ThenEXISTENCE is

1. NP-complete, for positive and stratifiedP (P),6 and
2. ΣP

2 -complete (under both brave and cautious semantics), for generalP (P).

Proof.

1. Membership can be proven with the same line of reasoning asthe proof of Theorem 2. Therefore,
let us focus on the hardness which shall be proved for positive P (P). Consider a Boolean formula in
conjunctive normal formΦ = c1∧ . . .∧ cm over the variablesx1, . . . , xn, such that each clause contains
at most three distinct (positive or negated) variables.
An extended rule-observation pairP(Φ) = 〈P rls(Φ), P e−obs(Φ)〉 is defined such that: (i)P e−obs(Φ)
contains exactly the factxTi andxFi for each variablexi in Φ, plus the ruleok ← sat; (ii) P rls(Φ) is

cj ← π(tj,1).
cj ← π(tj,2).
cj ← π(tj,3).

∀1 ≤ j ≤ m, s.t.cj = tj,1 ∨ tj,2 ∨ tj,3

sat← c1, ..., cm.

ok ← xTi , x
F
i . ∀1 ≤ i ≤ n

6 We thank one of the anonymous referees for having suggested this result and its proof.

36

whereπ is the mapping:

π(t) =

{

xTi , if t = xi, 1 ≤ i ≤ n

xFi , if t = ¬xi, 1 ≤ i ≤ n

Clearly,P (Φ) is positive and can be built in polynomial time. Now it is shown thatΦ is satisfiable⇔
there is an outlier inP(Φ).

(⇒) Suppose thatΦ is satisfiable, and take one of its satisfying truth assignments, sayσ, for the variables
x1, . . . , xn. Consider the setsWσ = {ok ← sat} ∪ {xTi | xi is false inσ} ∪ {xFi | xi is true inσ}
andOσ = P e−obs\Wσ . It is now shown thatOσ is an outlier with witnessWσ. Indeed, the program
P (P(Φ))Wσ does not entailok, because for each variablexi eitherxTi or xFi is evaluated true.
Moreover, it entailssat, because of the construction ofWσ and of the fact that the encoding evaluates
the truth values of the assignmentσ, which is satisfying. Thus,P (P(Φ))Wσ |= ¬(ok ← sat), and
condition (1) in Definition 1 is satisfied. As for condition (2) in Definition 1, it is sufficient to observe
thatP (P(Φ))Wσ ,Oσ coincides withP (P(Φ))P e−obs(Φ); therefore, the program contains no fact and
bothsat andok are evaluated false. Thus,P (P(Φ))Wσ ,Oσ |= (ok ← sat).

(⇐) Assume that there is an outlierO with witnessW in P(Φ). It is shown thatΦ is satisfiable. To this
aim, notice that the rule(ok ← sat) must be part ofW, becauseok andsat are the only facts that
can be entailed in the encoding. Then, because of condition (1) in Definition 1, it must be the case
thatP (P(Φ))W |= ¬(ok ← sat), i.e.,P (P(Φ))W must entailsat and notok. By the fact thatok is
not entailed, it can be concluded that for each variablexi, at least one element in the set{xTi , x

F
i }

is inW. Therefore,W assigns a truth value to some of the variables ofΦ and may leave undefined
some other variables (those variables whose correspondingfacts have been both inW). Formally,
a (partial) assignmentσ for the variables inΦ can be defined such that ifxFi (resp.xTi) is inW,
thenxi is true (resp. false) inσ. Then, by the fact thatsat is entailed, it must be the case thatσ is
satisfying.

2. The proof is similar to that of Theorems 3 and 4. ✷

6 Implementing Outliers Detection Problems

Now that the framework for outlier detection has been illustrated and its complexity has been investigated,
attention can be focused on the problem of devising effective strategies for its implementation. Specifically,
sound and complete algorithms are exhibited that transformany rule-observation pairP into a suitable logic
programL(P) such that its stable models are in a one-to-one correspondence with outliers inP.

The most interesting aspect of this transformation is that,since stable models represent the solution
of the outlier problems, it is possible to implement a prototype tool for finding outliers with the support
of efficient stable models engines such as GnT [49], DLV [61] and Smodels[67]. In fact, reformulations
in terms of logic programs under stable model semantics havebeen already exploited in the literature for
prototypically implementing other reasoning tasks such asabduction (see, e.g., [51, 35]), planning (see, e.g.,
[81, 80]), and diagnosis (see, e.g., [23, 29]).

6.1 Stratified Pairs

In this section, the case of a pairP = 〈P rls, P obs〉 is considered such thatP rls is a stratified logic program.
The rewriting algorithmOutlierDetectionToStableModelsis shown in Figure 5. It takes in input the pairP,
and outputs a logic programL(P), which is built according to the following ideas.

37

Input: A stratified rule-observation pairP = 〈P rls, P obs〉, whereP obs = {obs1, ...,obsn};
Output: A logic programL(P);
Method: Perform the following steps:

1. L(P) := ∅;
2. /*———- Rule part rewriting ———-*/

for each rule r ∈ P rls of the forma← b1, · · · , bk, not c1, · · · , not cn, insert into L(P) the rules
(a) aC1 ← bC11 , · · · , bC1k , not cC11 , · · · , not cC1n .

(b) aC2 ← bC21 , · · · , bC2k , not cC21 , · · · , not cC2n .

3. /*———- Outlier and witness guessing ———-*/
for eachobsi ∈ P obs, insert into L(P) the rules
(a) oi ← not oi. oi ← not oi.

(b) wi ← not wi. wi ← not wi.

4. /*———- Observations definition ———-*/
for eachobsi ∈ P obs, insert into L(P) the rules
(a) obsC2i ← not oi, not wi.

(b) obsC1i ← not wi.

5. /*———- Outlier and witness checking ———-*/
for eachobsi ∈ P obs, insert into L(P) the rules
(a) badC1← wi, obs

C1
i .

(b) satC2← wi, obs
C2
i .

6. /*———- Constraints ———-*/
(a) for eachobsi ∈ P obs, insert into L(P) the rules1 ← oi, wi, not s1.

(b) insert into L(P) the rules2 ← not satC2, not s2.

(c) if P rls is stratifiedthen insert into L(P) the rules3 ← badC1, not s3.

Fig. 5.Algorithm OutlierDetectionToStableModels.

First of all, a suitable rewriting ofP rls is inserted intoL(P). Let us denote byS[L] the rewriting of
a setS of rules obtained by substituting each atomp occurring inS with the new atompL. Then, the
algorithm inserts in the Step 2 the programsP rls[C1] andP rls[C2]. Intuitively, P rls[C1] is used for checking
condition (1) in Definition 1, whileP rls[C2] is used for checking condition (2) in the same definition.

Rules inserted in Step 3 serve the purpose to guess an outlierand its associated witness. Each factobsi

in P obs is associated with two new factsoi andwi, where, intuitively,oi (resp.wi) being true in a model
means thatobsi belongs to an outlier (resp. witness) inP. In other words, truth values of factsoi andwi in
any model forL(P) univocally define an outlier and a witness set for it, respectively.

Rules inserted in Step 4 serve the purpose of introducing in the programL(P) the rewritingP obs
W [C1] and

P obs
O,W [C2], in order to simulate the removal of the outlier and the witness from the setP obs which is needed

for verifying whether both conditions in Definition 1 are satisfied. For each atomp in the set of observations
P obs, two rules are introduced. In particular, rule 4.(a) guarantees thatobsC2i is true in the program if it is
neither an outlier nor a witness. Similarly, 4.(b) guarantees thatobsC1i is true ifwi is not.

Rules inserted in Step 5 evaluate conditions (1) and (2) in Definition 1. Indeed, the atomsatC2 is
evaluated true if a factobsC2i is true even if assumed to belong to a witness (wi true), i.e., if condition (2) in
Definition 1 is satisfied in the model. SimilarlybadC1 is true if obsC1i is true butobsi belongs to a witness
(wi true), i.e., if condition (1) is not satisfied in the model.

Summarizing, the subprogram ofL(P) built in Steps1-5 is such that it guesses the values for eachoi

andwi and verifies that both conditions in Definition 1 are satisfied.
In order to finalize the transformation, it is necessary to add some constraints (Step 6). The rules inserted

in Step6 have the formsj ← a, not sj. As sj does not appear in any other rule of the programL(P), then
it must be false in any stable model ofL(P). Thus, these rules act as constraints imposing thata must be
false in all the models. Therefore, rules inserted in step 6.(a) impose that anyobsi cannot be an outlier and
witness at the same time, the rule added in step 6.(b) imposesthat interest is only in stable models in which

38

satC2 is true, and, finally, the rule added in step 6.(c) imposes that interest is only in stable models in stable
models in whichbadC1 is false.

The correctness of the algorithm is proved in the following theorem.

Theorem 21. Let P = 〈P rls, P obs〉 be a stratified rule-observation pair, and letL(P) be the rewriting
obtained by the algorithm in Figure 5. Then,

1. for each outlierO with witnessW in P, there is a stable modelM of L(P) such that{obsi | oi ∈
M} = O and{obsi | wi ∈M} =W, and

2. for each stable modelM of L(P), there is an outlierO with witnessW in P, such that{obsi | oi ∈
M} = O and{obsi | wi ∈M} =W.

Proof.

1. LetO be an outlier with witnessW in P. Let M1 denote the stable model of the programP (P)W ,
andM2 denote the stable model of the programP (P)W ,O. Consider the interpretationsIC1 = {aC1 |
a ∈ M1}, IC2 = {aC2 | a ∈ M2}, Iguess = {oi | obsi ∈ O} ∪ {oi | obsi 6∈ O} ∪ {wi | obsi ∈
W} ∪ {wi | obsi 6∈ W}, andIobs = {obsC1i | obsi 6∈ W} ∪ {obs

C2
i | obsi 6∈ (O ∪ W)}, and let

M = IC1 ∪ IC2 ∪ Iguess ∪ Iobs ∪ {satC2} be an interpretation ofL(P).
Now, it is shown thatM is a stable model ofL(P) such that{obsi | oi ∈ M} = O and{obsi | wi ∈
M} =W. To this aim, notice that by construction:

– {obsi | oi ∈M} = O, becauseoi is in M if and only if obsi is inO; and
– {obsi | wi ∈M} =W, becausewi is inM if and only if obsi is inW.

Therefore, it remains to show thatM is a stable model ofL(P), i.e., that it is the minimal model of the
positive programL(P)M . To this aim, letP i denote the program consisting of the rules added in thei-th
step of the algorithm, and observe preliminary thatL(P)M is the program(P rls[C1] ∪ {obsC1i | obsi 6∈
W})M∪ (P rls[C2] ∪ {obsC2i | obsi 6∈ (O ∪W)})M∪ (P 3)M ∪ (P 5)M ∪ (P 6)M , where (by applying
the definition of reduct):

A : (P rls[C1] ∪ {obsC1i | obsi 6∈ W})
M = (P (P)W [C1])I

C1
.

Indeed, by definition,P (P)W [C1] is the programP rls[C1] ∪ {obsC1i | obsi 6∈ W}. Moreover,
all the predicates in such a program have the formpC1, wherep is a predicate symbol inP (P).
Therefore,(P (P)W [C1])M = (P (P)W [C1])I

C1∪{obsC1i |obsi 6∈W}, and the result follows because
{obsC1i | obsi 6∈ W} is a subset ofIC1. To see why the last containment holds, recall thatIC1

is a renaming of the modelM1 which must contain all the observations that are not inW, by con-
struction.

B : (P rls[C2] ∪ {obsC2i | obsi 6∈ (W ∪O)})M = (P (P)W ,O[C2])
IC2

.
Indeed, it can be applied the same line of reasoning of pointA above.

C : (P 3)M = {p. | p is an atom inIguess}.
D : (P 5)M = {badC1← wi, obs

C1
i . | obsi ∈ P obs} ∪ {satC2← wi, obs

C2
i .}.

E : (P 6)M = {s1 ← oi, wi. | obsi ∈ P obs} ∪ {s3 ← badC1.}.

Then, the result follows because of the following two properties:

Property P1: M is model ofL(P)M .

Proof. All the rules inL(P)M (see pointsA− E above) are satisfied byM :

39

– Rules inA are satisfied byM . Indeed, programP (P)W [C1] coincides withP (P)W modulo a
renaming of the predicate symbols, andIC1 is in fact a renaming of the unique stable model
M1 of P (P)W , by construction. Then, the result follows sinceM1 is, by definition, the minimal
model of the positive programP (P)M1

W .
– Rules inB are satisfied byM . Indeed, programP (P)W ,O[C2] coincides withP (P)W ,O modulo

a renaming of the predicate symbols, andIC2 is in fact a renaming of the unique stable modelM2

of P (P)W ,O, by construction. Then, the result follows sinceM2 is, by definition, the minimal
model of the positive programP (P)M2

W ,O.
– Rules inC are satisfied byM sinceIguess is a subset ofM .
– Rules inD are satisfied byM . Indeed, as for rules of the form{badC1← wi, obs

C1
i . | obsi ∈

P obs}, notice that, by construction ofIguess, wi is in M if and only if obsi ∈ W. Moreover, it
is claimed thatobsC1i is in M if and only if obsi 6∈ W, thereby having that the body of all such
rules is always evaluated false byM . To see why the claim holds, observe that ifobsi 6∈ W
thenobsC1i is in M by construction. Let us now assume that there is a factobsi inW and, for
the sake of contradiction, thatobsC1i is in M as well. It follows thatobsC1i is in IC1 and, hence,
thatobsi belongs toM1 by construction of the setIC1. But this is impossible becauseW is an
outlier and, therefore, is such that all the facts in the witness set do not occur in the unique stable
modelM1 of P (P)W .
Moreover, as for the rules of the form{satC2← wi, obs

C2
i .}, they are satisfied byM because

satC2 is in M .
– Rules inE are satisfied byM . Indeed, rules in the set{s1 ← oi, wi. | obsi ∈ P obs} are satisfied

by construction of the setIguess, which is in fact such thatwi is in M if and only if obsi ∈ W,
and such thatoi is inM if and only if obsi ∈ O. Then, given that by definitionW∩O = ∅, the
body of such rules is always evaluated false inM . To conclude, rules3 ← badC1. is satisfied
by M becausebadC1 is not inM .

Property P2: There is no modelM ′ of L(P)M such thatM ′ ⊂M .

Proof. Recall that programL(P)M has the form shown in pointsA− E above and assume, for the
sake of contradiction, that there exists a modelM ′ ⊂M forL(P)M . First, observe thatIguess ⊆M ′

(see pointC). Moreover, because of the fact that{obsC1i | obsi 6∈ W} is a subset ofIC1 and that
{obsC2i | obsi 6∈ (W ∪ O)} is a subset ofIC2 (pointsA andB, respectively), it can be observed
thatM has in fact the formIC1 ∪ IC2 ∪ Iguess ∪ {satC2}. Thus, the following scenarios can be
distinguished:
(a) Assume thatIC1 ∩M ′ ⊂ IC1. Then,IC1 ∩M ′ is a model for(P rls[C1] ∪ {obsC1i | obsi 6∈

W})I
C1

, i.e., for (P (P)W [C1])I
C1

. It follows that the setM ′1 = {a | aC1 ∈ (IC1 ∩M ′)} is
a model forP (P)M1

W as well (notice that(P (P)W [C1])I
C1

coincides withP (P)M1
W modulo the

renaming of predicate symbols). However,M ′1 is also a subset ofM1, and this is impossible
becauseM1 is the stable model ofP (P)W and, therefore, the minimal model ofP (P)M1

W .
(b) Assume thatIC2 ∩M ′ ⊂ IC2. Then,IC2 ∩M ′ is a model for(P rls[C2] ∪ {obsC2i | obsi 6∈

(O∪W)})I
C2

, i.e., for(P (P)W ,O[C2])
IC2

. It follows that the setM ′2 = {a | a
C2 ∈ (IC2∩M ′)}

is also a model forP (P)M2
W ,O (notice that(P (P)W ,O[C2])

IC2
coincides withP (P)M2

W ,O modulo
the renaming of predicate symbols). However,M ′2 is also a subset ofM2, and this is impossible
becauseM2 is the stable model ofP (P)W ,O and, therefore, the minimal model ofP (P)M2

W ,O.

(c) Assume thatsatC2 is not inM ′. Then, after (a) and (b) above, it is the case thatM ′ = IC1 ∪
IC2 ∪ Iguess. Then, sincesatC2 is not inM ′, because of the rules added in Step 5.(b), it holds

40

that for eachwi in M ′, obsC2i is not inM ′. Hence, by construction ofIguess, it follows that
for eachobsi inW, it is the case thatobsC2i is not in IC2. However,IC2 is a renaming of the
modelM2 of P (P)W ,O. Therefore, the modelM2 does not entail any fact inW. But this is a
contradiction with condition (2) in Definition 1.

2. LetM be a stable model ofL(P). First of all, note that by rules inserted intoL(P) in Step6 of algorithm,
M is such that (i) for each letterobsi in P obs, oi andwi cannot belong simultaneously toM , (ii)
satC2 ∈M , and (iii) badC1 6∈ M . Furthermore, by rules inserted intoL(P) in Steps 3.(a) and 3.(b) it
is the case that, for each letterobsi in P rls, eitheroi or oi and eitherwi or wi belong toM .
Consider, now, the disjoint setsO = {obsi | oi ∈M} andW = {obsi | wi ∈M}. It has to be shown
that both conditions in Definition 1 are satisfied. To this aimconsider the interpretationIguess = {oi |
obsi ∈ O} ∪ {oi | obsi 6∈ O} ∪ {wi | obsi ∈ W} ∪ {wi | obsi 6∈ W}, and notice thatM can be
written asIC1 ∪ IC2 ∪ Iguess ∪ {satC2}, whereIC1 andIC2 are the subsets ofM containing all the
predicates of the formpC1 andpC2, respectively. At this point, the reader may check that rules inL(P)M

have again the form illustrated in pointsA− E above.
Given thatM is a minimal model ofL(P)M , it follows that IC1 is a minimal model of(P rls[C1] ∪

{obsC1i | obsi 6∈ W})
M = (P (P)W [C1])I

C1
, andIC2 is a minimal model of(P rls[C2] ∪ {obsC2i |

obsi 6∈ (W ∪O)})M = (P (P)W ,O[C2])
IC2

. Then,M1 = {a | a
C1 ∈ IC1} is a minimal model ofPM1

W

andM2 = {a | a
C2 ∈ IC2} is a minimal model ofPM2

W ,O. Therefore,M1 (resp.,M2) is the stable model
of PW (resp.,PW ,O).
To conclude, the following properties can be shown:
• P (P)W |= ¬W.

Proof. Assume, for the sake of contradiction, that there is a factobsi in W such thatP (P)W |=
obsi. Then,obsi must belong to the unique stable modelM1, andobsC1i must belong toIC1.
However,wi belongs toM by construction, and therefore by rule 5.(a)badC1 is in M , which is
impossible.

• P (P)W ,O 6|= ¬W.

Proof. Assume, for the sake of contradiction, that for each factobsi in W, P (P)W ,O |= ¬obsi.
Then, the unique stable modelM2 does not contain any fact inW, and symmetricallyIC2 does not
contain any fact of the formobsC2i , with obsi inW. Then,satC2 is not inM because of the rule
5.(b), which is impossible. ✷

Minimum-size Outliers In order to translate detection problems aiming at singlingout minimum-size
outliers into a suitable logic program, an approach will be exploited which was used, for instance, in the
DLV system and relying on extending classic logic programming by introducingweak constraints.

Weak constraints, taking the form of rules such as:∼ b1, · · · , bk, not bk+1, · · · , not bk+m, express a
set of desired conditions that may be however violated; their informal semantics is to minimize the number
of violated instances. In fact, in [17] it is proved that the introduction of weak constraints allows the solu-
tion of optimization problems since each weak constraint can be regarded as an “objective function” of an
optimization problem.

Given a programP ∪W whereP is a set of rules andW a set of weak constraints, an interpretationM

is a stable model forP ∪W if M is a stable model forP . The stable models ofP ∪W are ordered w.r.t.
the number of weak constraints that are not satisfied:best stable modelsare those which minimize such a
number [17].

41

Example 6.Given a graphG = 〈V,E〉, denoted by the unary predicatenode and the binary predicateedge,
we can model theMAX CLIQUE problem, asking for the clique ofG having maximum size, by means of the
following program:

c(X)← not nc(X), node(X).
nc(X)← not c(X), node(X).
p← c(X), c(Y), X 6= Y, not edge(X, Y), not p.
:∼ nc(X).

where the first two rules are used for creating all the possible partitions of nodes intoc andnc, the third one
is used for ensuring that nodes inc forms a clique, i.e., each pair of nodes inc is connected by an edge, while
the weak constraint minimizes the number of vertices that are not in the clique, or equivalently it maximizes
the size of the clique. Then, the best stable models are in one-to-one correspondence with maximum-size
cliques inG. ⊳

Thus, the algorithm in Figure 5 can be modified by inserting the constraint:∼ oi. into L(P), for each
obsi ∈ P obs. Then, lettingL∼(P) be the transformed program resulting from applying the modified algo-
rithm, we have that minimum-size outliers inP are in one-to-one correspondence with best stable models
of L∼(P).

Theorem 22. LetP = 〈Prls,Pobs〉 be a stratified rule-observation pair. Then,

1. for each minimum-size outlierO with witnessW in P, there is a best stable modelM of L∼(P) such
that{obsi | oi ∈M} = O and{obsi | wi ∈M} =W, and

2. for each best stable modelM of L∼(P), there is an outlierO with witnessW in P, such that{obsi |
oi ∈M} = O and{obsi | wi ∈M} =W.

Proof. Given a rule-observation pairP, L∼(P) = L(P) ∪ {:∼ oi. | obsi ∈ P obs}, where the stable
models of the programL(P) are in one-to-one correspondence with outliers inP (Theorem 5).

By definition, each modelM in SM(L(P)) is also a model ofL∼(P). Moreover,M is a best model
if it minimizes the number of violated constraints, i.e., ifthere is no other modelM ′ containing a fewer
number of atoms of the formoi. The result follows by noticing that this number is, in fact,the size of the
outlierO constructed in the proof of Theorem 5. ✷

6.2 General Pairs

Next let us consider the case of general rule-observation pairs. In this case, it should be pointed out the con-
straint imposed by rule 6.(c) would not suffice for ensuring the satisfaction of condition (1) in Definition 1.
Indeed, the outlier detection problems turned out to be complete for the second level of the polynomial hi-
erarchy for general rule-observation pairs, while any polynomial time transformation into a logic program
under stable model semantics may encode problems complete for the first level only.

In order to deal with this problem, a more powerful logic formalism must be exploited, while keeping the
size of the encoding polynomially-bounded in the size of therule-observation pair. Specifically, the solution
relies on a rewriting into adisjunctivelogic program accounting for outliers under the cautious semantics.
Actually, a similar rewriting for brave semantics can be obtained as well.

Recall that disjunctive programs allow clauses to have bothdisjunction (denoted by∨) in their heads
and negation in their bodies. In more detail, adisjunctive ruler is a clause of the form:a1 ∨ · · · ∨ am ←
b1, · · · , bk, not c1, · · · , not cn wheren, k,m ≥ 0, n + k + m > 0 anda1, · · · , am, b1, · · · , bk, c1, · · · , cn

42

are atoms. The disjunctiona1 ∨ · · · ∨ am, also denoted byh(r), is theheadof r, while the conjunction
b1, . . . , bk, not c1, · · · , not cn, also denoted byb(r), is thebodyof r.

Given an interpretationI for a disjunctive programP , the value of the disjunctionD = a1 ∨ · · · ∨ am
w.r.t.I is valueI(D) = max({valueI(ai) | 1 ≤ i ≤ n}). Similarly to the case of non-disjunctive programs,
a ground ruler is satisfiedby I if valueI(h(r)) ≥ valueI(b(r)) and models ofP are defined to be the
interpretations that satisfy all the ground rules ofP . Then, the model-theoretic semantics of disjunctive
programs is defined as follows.

For apositivedisjunctive programP (i.e., rules inP do not contain negation in the body), the semantics
is given in terms of the set its minimal models, denoted byMM(P)7. Moreover, for a general disjunctive
programP , the stable model semantics [42] assigns toP the setSM(P) of its stable modelsdefined as
suitable extension of stable models for disjunction-free programs. In particular, letP be a disjunctive logic
program and letI be an interpretation forP . Then,P I denotes the ground positive program derived from
ground(P) by (1) removing all rules that contain a negative literalnot a in the body anda ∈ I, and
(2) removing all negative literals from the remaining rules. An interpretationM is a stable model forP if
and only ifM ∈ MM(PM). Under this semantics, disjunctive programs allow to solveproblems that are
complete for the complexity classΣP

2 (see, e.g., [24]).
The algorithmOutlierDetectionToDisjunctiveStableModelsis shown in Figure 6. To illustrate, step 2

inserts two suitable rewriting ofP rls into L∨(P). One of the two rewriting consists of a renaming of the
original programP rls, call it P rls[C2] (see rules 2.(b)). Analogously to the rewriting shown for stratified
pairs,P rls[C2] serves the purpose of checking condition (2) of Definition 1.

Instead, the task of checking condition (1) is demanded to rules inserted in Steps 2.(a), 4.(b), 7, 8, and 9
— recall that, under the cautious form of entailing, this check consists in verifying that each stable model of
P (P)W does not contain some atom inW. Intuitively this is carried out as follows. First, in orderto encode
the stable models of the programP (P)W , for each atomp occurring inP (P), the atomspC1 andpC1 are
used: the atompC1 (resp.pC1) being true in an interpretation ofL∨(P) means that the atomp is true (resp.
false) in a stable model ofP (P)W . Then, the atomsatC1 is used to check whether the truth values for
the atoms of the formpC1 andpC1 correctly encode a stable model forP (P)W and satisfy condition (1) in
Definition 1. Specifically, by rule 2.(a),satC1 is entailed by the rewriting as soon as the atoms of the form
pC1 andpC1 do not satisfy some rule inP (P)W . Clearly, this is only a necessary condition for these atoms
encoding a stable model forP (P)W , and details on the encoding of some further conditions are provided
below.

Steps 3 and 4 of algorithmOutlierDetectionToDisjunctiveStableModelsare similar to Steps 3 and 4 of
algorithmOutlierDetectionToStableModelsdescribed above. Specifically, rule 4.(b) entailssatC1 whenever
an atom of the formobsC1i comes true in the stable model ofP (P)W while not being part of the witness
set. Therefore, this rule guarantees that the truth values for the atoms of the formpC1 andpC1 consistently
encode the observations that do not belong to the witness set.

Rules inserted in subsequent Step 5 evaluate the conditionsof Definition 1. Indeed, the atomsatC2 is
true if a factobsC2i is true even if assumed to belong to a witness (wi true), i.e. if condition (2) in Definition 1
is satisfied in the model, while the atomsatC1 is true if, for each factobsi ∈ P obs, either (step 5.(a))obsi
is not assumed to belong to a witness (wi true) or (step 5.(b))obsi is assumed to belong to a witness (wi

true) andobsC1i is true, i.e. if the witness set is not entailed in the model (cf. condition (1) in Definition 1).
7 Differently from disjunction-free positive programs, positive disjunctive programs have more than one minimal model. Hence,

for simplicity and by a little abuse of notation, in the followingMM(P) will denote a set of minimal models rather than a
single minimal model.

43

Input: A rule-observation pairP = 〈P rls, P obs〉, whereP obs = {obs1, ...,obsn};
Output: A disjunctive logic programL∨(P);
Method: Perform the following steps:

1. L(P) := ∅;
2. /*———- Rule part rewriting ———-*/

for each rule r ∈ P rls of the forma← b1, · · · , bk, not c1, · · · , not cm, insert into L∨(P) the rule
(a) satC1← aC1, bC11 , · · · , bC1k , cC11 , · · · , cC1m .

(b) aC2 ← bC21 , · · · , bC2k , not cC21 , · · · , not cC2m .

3. /*———- Outlier and witness guessing ———-*/
for eachobsi ∈ P obs, insert into L∨(P) the rules
(a) oi ← not oi. oi ← not oi.

(b) wi ← not wi. wi ← not wi.

4. /*———- Observations definition ———-*/
for eachobsi ∈ P obs, insert into L∨(P) the rules
(a) obsC2i ← not oi, not wi.

(b) satC1← obs
C1
i , wi.

5. /*———- Outlier and witness checking ———-*/
for eachobsi ∈ P obs, insert into L∨(P) the rules
(a) satC1i ← wi.

(b) satC1i ← wi, obs
C1
i .

(c) satC2← wi, obs
C2
i .

insert into L∨(P) the rulesatC1← satC11, . . . , satC1n.

6. /*———- Constraints ———-*/
(a) insert into L∨(P) the rulesatC1 ← not satC1.

(b) insert into L∨(P) the rulesatC2 ← not satC2.

(c) for eachobsi ∈ P obs, insert into L∨(P) the rules← oi, wi, not s.

7. /*———- Checking Condition (1): guessing an interpretation, mappingφ and rule assignment ———-*/
for each atomp ∈ P rls ∪ P obs, insert into L∨(P) the rules
(a) pC1 ∨ pC1.

(b) pφ1 ∨ ... ∨ pφs ← pC1. (wheres is the number of predicate symbols inLit(P rls) ∪ P obs)
(c) pr1 ∨ ... ∨ prℓ ← pC1. (wherer1, ..., rℓ are the rules inP rls ∪ P obs in whichp occurs in the head)

8. /*———- Checking Condition (1): constraints ———-*/
for each atomp in P rls ∪ P obs insert into L∨(P) the rules
(a) satC1← pC1, pC1.

(b) satC1← pφi, pφj, pC1. (for eachi, j ∈ {1, ...,s}, with i 6= j)
(c) satC1← pri, prj, pC1. (for eachi, j ∈ {1, ..., ℓ}, with i 6= j)
(d) satC1← pri, wj, p

C1. (if ri is a fact inP obs asserting the atomobsj = p)
(e) satC1← pri, cC1, pC1. (for each atomc occurring negatively in the body ofri)
(f) satC1← pri, b

C1
, pC1. (for each atomb occurring positively in the body ofri)

(g) satC1← pri, pφh, qφk, pC1. (for each atomq occurring positively in the body ofri, and for eachh ≤ k)
9. /*———- Checking Condition (1): saturation ———-*/

for each atomp in P rls ∪ P obs insert into L∨(P) the rules
(a) pC1 ← satC1.

(b) pC1 ← satC1.

(c) pφi ← satC1. (for eachi ∈ {1, ...,s})
(d) pri ← satC1. (for each ruleri in whichp occurs in the head)
insert into L∨(P) the rule
(e) satC1i ← satC1. (for each atom of the formsatC1i)

Fig. 6. Algorithm OutlierDetectionToDisjunctiveStableModels.

44

Step 6 add rules which are similar to the constraints of the algorithm in Figure 5. In fact, these rules
impose that the interest is in stable models in which bothsatC1 andsatC2 are true, and thatobsi cannot
belong to an outlier and a witness at the same time.

The main differences w.r.t. the case of stratified rule-observation pairs are in steps 7, 8 and 9. Indeed,
unlike stratified logic programs, general logic programs may have more than one stable model and, hence,
under cautious semantics, rules inserted in Step 5 do not suffice to check condition (1) in Definition 1.

Specifically, rules inserted in Step 9 are such that if a stable modelM of L∨(P) containssatC1, then it
must also contain all the atoms of the formpC1 andpC1 — actually, these rules infer also other atoms, namely
satC1i, pφi andpri, whose necessity will be clear in a while. Intuitively, since by rule 6.(a)satC1 must
belong to any model of the programL∨(P), a necessary condition forM to be a minimal model ofL∨(P)M

is that, for each subsetM ′ of M being a model ofL∨(P)M , M ′ entailssatC1 in its turn. Due to the rules
inserted in step 7.(a) and 8.(a), each modelM ′ ⊂ M contains a guess of a model ofP (P)W . Hence, by
looking at rule 2.(a) and rules in Step 5, it would be concluded that the minimality ofM guarantees that
there is no model ofP (P)W that does not satisfy condition (1).

However, the check that the models ofP (P)W do not satisfy condition (1) must be restricted to its stable
models only (ignoring models that are not stable and that do not satisfy condition (1)). This is precisely the
purpose of the rules in Step 7 and 8. Specifically, the intended meaning of the rules 7.(b), 7.(c) and the rules
inserted in Step 8 is to check for the minimality ofM ′ (w.r.t.L∨(P)M) so thatsatC1 is entailed whenever
M ′ is not minimal. To this aim, a well-known characterization of minimal models for positive programs is
exploited (indeed, the reduct ofP (P)W w.r.t. an interpretation is a positive program), which is formalized
below for the reader’s convenience.

Lemma 1. (cf. [88], Theorem 2.7) LetP be a (non-disjunctive) positive propositional logic program, and
let M be a model for it. Then,M is minimal if and only if there is a functionφ assigning a natural number
to each atom occurring inP , and a functionr assigning a rule ofP to each element inM such that:

1. b(r(p)) ⊆M ,
2. h(r(p)) = p, and
3. φ(q) < φ(p), for eachq ∈ b(r(p)).

Accordingly, to assess the minimality of the model at hand, rules 7.(b) and 7.(c) guess for each atomp,
an assignment to a natural number (p is assigned toi iff pφi is true in the model), and a rule (exactly a rule
rj havingp occurring in its head is assigned top iff prj is true in the model), while rules added in Step 8
checks whether the assignments are correct, i.e., whether they satisfy all the conditions in Lemma 1.

The following theorem accounts for the correctness of the algorithm.

Theorem 23. LetP = 〈Prls,Pobs〉 be a rule-observation pair, and letL∨(P) be the rewriting obtained by
the algorithm in Figure 6. Then,

1. for each outlierO with witnessW in P, there is a stable modelM of L∨(P) such that{obsi | oi ∈
M} = O and{obsi | wi ∈M} =W, and

2. for each stable modelM of L∨(P), there is an outlierO with witnessW in P, such that{obsi | oi ∈
M} = O and{obsi | wi ∈M} =W.

Proof.

1. LetO be an outlier with witnessW in P. Let M2 denote the stable model of the programP (P)W ,O

which entails an element inW (notice that such a model exists in order to satisfy condition (2) in

45

Definition 1). Consider the interpretationsIC1 = {aC1, aC1 | a is an atom inP rls ∪ P obs}, IC2 =
{aC2 | a ∈ M2}, Iguess = {oi | obsi ∈ O} ∪ {oi | obsi 6∈ O} ∪ {wi | obsi ∈ W} ∪
{wi | obsi 6∈ W}, Iobs = {obsC2i | obsi 6∈ (O ∪ W)}, Iφ = {pφi | p is an atom inP rls ∪
P obs, 1 ≤ i ≤ s} (wheres denotes the number of distinct predicates inP rls ∪ P obs), andIr = {prj |
rj is a rule inP rls ∪ P obs such thath(rj) = p}, and letM = IC1 ∪ IC2 ∪ Iguess ∪ Iobs ∪ Iφ ∪ Ir ∪
{satC2, satC1, satC1i, ..., satC1n} be an interpretation ofL∨(P).
Now, it is shown thatM is a stable model ofL∨(P) such that{obsi | oi ∈M} = O and{obsi | wi ∈
M} =W. To this aim, notice that by construction:

– {obsi | oi ∈M} = O, becauseoi is in M if and only if obsi is inO; and
– {obsi | wi ∈M} =W, becausewi is inM if and only if obsi is inW.

Therefore, it remains to show thatM is a stable model ofL∨(P), i.e., that it is the minimal model of
the positive programL∨(P)M . To this aim, letPC1 denote the program composed by rules added in
steps 2.(a) and 4.(b) of the algorithm, and letP i denote the program consisting of the rules added in the
i-th step of the algorithm, and observe preliminary thatL∨(P)M is the program(PC1)M∪ (P rls[C2] ∪
{obsC2i | obsi 6∈ (O ∪ W)})M∪ (P 3)M ∪ (P 5)M ∪ (P 6)M ∪ (P 7)M ∪ (P 8)M ∪ (P 9)M , where (by
applying the definition of reduct):
A : (PC1)M = PC1.

Indeed, by definitionPC1 is a positive program, and therefore coincides with its reduct.
B : (P rls[C2] ∪ {obsC2i | obsi 6∈ (W ∪O)})M = (P (P)W ,O[C2])

IC2
.

Indeed, by definition,P (P)W ,O[C2] is the programP rls[C2] ∪ {obsC2i | obsi 6∈ (W ∪ O)}. More-
over, all the predicates in this program have the formpC2, wherep is a predicate symbol inP (P).
Therefore,(P (P)W ,O[C2])

M = (P (P)W ,O[C2])
IC2∪{obsC2i |obsi 6∈(W∪O)}, and the result follows be-

cause{obsC2i | obsi 6∈ (W ∪ O)} is a subset ofIC2. To see why the last containment hold, recall
that IC2 is a renaming of the modelM2, which must contain all the observations that are not in
(W ∪O), by construction.

C : (P 3)M = {p. | p is an atom inIguess}.
D : (P 5)M = P 5.
E : (P 6)M = {s← oi, wi. | obsi ∈ P obs}.
F : (P 7)M = P 7.
G : (P 8)M = P 8.
H : (P 9)M = P 9.

Then, the result follows because of the following two properties:
Property P1: M is a model ofL∨(P)M .

Proof. All the rules inL∨(P)M (see pointsA−H above) are satisfied byM :
– Rules inA are satisfied byM , assatC1 is in M .
– Rules inB are satisfied byM . Indeed, programP (P)W ,O[C2] coincides withP (P)W ,O modulo

a renaming of the predicate symbols, andIC2 is in fact a renaming of the unique stable modelM2

of P (P)W ,O, by construction. Then, the result follows sinceM2 is, by definition, the minimal
model of the positive programP (P)M2

W ,O.
– Rules inC are satisfied byM sinceIguess is a subset ofM .
– Rules inD are satisfied byM sincesatC2, satC1, satC11, ..., satC1n are inM .
– Rules inE are satisfied byM . Indeed, the setIguess is such thatwi is in M if and only if
obsi ∈ W, and such thatoi is in M if and only if obsi 6∈ O. Then, given that by definition
W ∩O = ∅, the body of such rules is always evaluated false inM .

46

– Rules inF are satisfied byM since the head of each of these rules belongs toIC1 ∪ Iφ ∪ Ir, by
construction.

– Rules inG are satisfied byM sincesatC1 is in M .
– Rules inH are satisfied byM since the head of each of these rules belongs toIC1 ∪ Iφ ∪ Ir ∪
{satC11, ..., satC1n}, by construction.

Property P2: There is no modelM ′ of L∨(P)M such thatM ′ ⊂M .

Proof. Recall that programL∨(P)M has the form shown in pointsA−H above and assume, for the
sake of contradiction, that there is a modelM ′ ⊂ M for L∨(P)M . First, observe thatIguess ⊆ M ′

(see pointC). Moreover, because of the fact that{obsC2i | obsi 6∈ (W ∪ O)} is a subset ofIC2

(pointB, above), it can be observed thatM has in fact the formM = IC1 ∪ IC2 ∪ Iguess ∪ Iφ ∪
Ir ∪ {satC2, satC1, satC1i, ..., satC1n}.
Assume now thatIC2 ∩M ′ ⊂ IC2. Then,IC2 ∩M ′ is a model for(P rls[C2] ∪ {obsC2i | obsi 6∈

(O ∪W)})I
C2

, i.e., for (P (P)W ,O[C2])
IC2

. It follows that the setM ′2 = {a | aC2 ∈ (IC2 ∩M ′)}

is also a model forP (P)M2
W ,O (notice that(P (P)W ,O[C2])

IC2
coincides withP (P)M2

W ,O modulo the
renaming of predicate symbols). However,M ′2 is also a subset ofM2, and this is impossible because
M2 is the stable model ofP (P)W ,O and, therefore, the minimal model ofP (P)M2

W ,O.

Therefore,IC2 ⊆ M ′. Consequently,M ′ ⊂ M implies by construction of the programL∨(P)
(rules in Step 9) thatsatC1 is not inM ′. Then, by carefully looking at rules in Step 8, the following
conclusion is reached:
(a) IC1 ∩M ′ does not contain a pair of atoms of the formpC1 andpC1 (rules 8.(a)) and each atomp

occurring inP rls ∪ P obs contains at least a fact in{pC1, pC1} (rules 7.(a)). In the following, let
M1 denote the set{a | aC1 ∈ (IC1 ∩M ′)}.

(b) For each atomp in M1, exactly one atom of the formpφi is inM ′ (rules 8.(b)). Thus, a mapping
φ can be defined from atoms inM1 to natural numbers such thatφ(p) = i iff both pC1 andpφi

are inM ′.
(c) For each atomp in M1, exactly one atom of the formprj among those havingp in their head

is in M ′ (rules 8.(c)). Thus, an assignmentr can be defined from atoms inM1 to the rules of
P rls ∪ P obs such thatr(p) = rj iff both pC1 andprj are inM ′ andp occurs in the head ofrj.

(d) For each atomp in M1, the assignmentr defined in point (c) above is such that:
i. r(p) is not a fact inP obs belonging toW (rules 8.(d)), i.e.p cannot be entailed by exploiting

a fact removed byP obs since it is part of the witnessW;
ii. r(p) is a rule which does not contain an atomc in the body, wherec is in M1 (rules 8.(e)),

i.e.p cannot be entailed by exploiting a rule which is not in the reduct (P rls)M1 since there
is a negated atomc in its body which is true inM1; combined with point (i) above, these two
constraints impose thatr is an assignment of atoms to rules inP (P)M1

W .
iii. b(r(p)) ⊆M1 (rules 8.(f));
iv. φ(q) < φ(p), for eachq occurring positively inb(r(p)) (rules 8.(g)).

Armed with the properties above, it can be concluded thatM ′ defines a mappingφ fromM1 to rules
in P (P)M1

W (with an associated mappingr for the atoms to the rules) such that all the conditions
in Lemma 1 are satisfied. Furthermore, by rules 2.(a) and 4.(b), M1 is a model for the program
P (P)W , otherwisesatC1 would be entailed. Thus,M1 is trivially a model forP (P)M1

W and, by
virtue of Lemma 1, it is in fact a stable model forP (P)W . However, such a stable model witnesses
that condition (1) in Definition 1 is violated, because of therules in Step 5 and the fact thatsatC1

47

is false inM ′, which entails the existence of an observation in the witness setW which is inM1.
Contradiction.

2. LetM be a stable model ofL∨(P). First of all, note that by rules inserted intoL∨(P) in Step6 of the
algorithm,M is such that (i) for each letterobsi in P obs, oi andwi cannot belong simultaneously to
M , (ii) satC2 ∈ M , and (iii) satC1 ∈ M . Furthermore, by rules inserted intoL∨(P) in Steps 3.(a)
and 3.(b) it is the case that, for each letterobsi in P rls, eitheroi or oi and eitherwi or wi belong toM .
Consider, now, the disjoint setsO = {obsi | oi ∈ M} andW = {obsi | wi ∈ M}. It will be shown
that both conditions in Definition 1 are satisfied. To this aimconsider the interpretationsIC1, Iguess,
andIr defined in point (1) of this proof, and notice thatM can be written asIC1 ∪ IC2 ∪ Iguess ∪ Iφ ∪
Ir ∪ {satC2, satC1, satC1i, ..., satC1n}, whereIC2 is the subset ofM containing all the predicates
in M of the formpC2 andpC2. Indeed, sincesatC1 is in M , the model must contain also the elements
in IC1 ∪ Iφ ∪ Ir ∪ {satC2, satC1i, ..., satC1n}. At this point the reader may check that the rules in
L∨(P)M have again the form illustrated in pointsA−H above.
To conclude, the following properties can be shown:

• P (P)W ,O 6|=c ¬W.

Proof. Given thatM is a minimal model ofL∨(P)M , it can be concluded thatIC2 is a min-
imal model of (P rls[C2] ∪ {obsC2i | obsi 6∈ (W ∪ O)})M = (P (P)W ,O[C2])

IC2
. Then,

M2 = {a | aC2 ∈ IC2} is a minimal model of(P (P)W ,O)
M2 . Now, it can be shown that

P (P)W ,O 6|=c ¬W. Indeed, assume, for the sake of contradiction, thatP (P)W ,O |=c ¬W. Then,
the stable modelM2 does not contain any fact inW, and symmetricallyIC2 does not contain any
fact of the formobsC2i , with obsi inW. Then,satC2 cannot be entailed byM , which is impossible.

• P (P)W |=c ¬W.

Proof. To this aim, observe thatM is a minimal model ofL∨(P)M and assume, for the sake of
contradiction, that there is a factobsi inW and a stable modelM1 for P (P)W such thatobsi is in
M1. Then, given̄IC1 = {aC1 | a ∈ M1}∪{a

C1 | a 6∈M1}, the setM ′ = ĪC1∪IC2∪Iguess∪ Īφ∪ Īr

is also a model forL∨(P)M , whereĪφ and Īr encode the assignmentsφ andr in Lemma 1. Since
M ′ ⊂M , there is a contradiction withM being a stable model ofL∨(P) ✷

This section concludes by observing that minimum-size outlier detection problems can be modelled
for general rule-observation pairs by exploiting the same approach used for the stratified pairs, i.e., by
introducingweak constraintsin the program built by the algorithm in Figure 6. Specifically, given a pair
P, the algorithm can be modified by inserting intoL∨(P) a constraint:∼ oi. for eachobsi ∈ P obs.
Then, lettingL∨,∼(P) be the transformed program, the same arguments as Theorem 22with respect to the
construction of Theorem 23 can be used for showing that minimum-size outliers inP are in one-to-one
correspondence with best stable models ofL∨,∼(P).

Theorem 24. LetP = 〈Prls,Pobs〉 be a rule-observation pair. Then,

1. for each minimum-size outlierO with witnessW in P, there is a best stable modelM ofL∨,∼(P) such
that{obsi | oi ∈M} = O and{obsi | wi ∈ M} =W, and

2. for each best stable modelM ofL∨,∼(P), there is an outlierO with witnessW in P, such that{obsi |
oi ∈M} = O and{obsi | wi ∈ M} =W.

48

7 Related Work

In this section, the most relevant related work is discussed. Research work related to that presented in this
paper can be roughly divided into two groups: (i) work done on outlier detection from logic theories, which
is very relevant to our own, and (ii) work done on outlier detection from data, which is, on the contrary, less
related to concepts discussed in this paper.

7.1 Outlier detection from data

Outlier detection problems come in several different varieties within different settings, mainly investigated
in the area of statistics, machine learning and knowledge discovery in databases. In almost all cases the
presented approaches deal with data organized in a single relational table, often with all the attributes being
numerical, while a metrics relating each pair of rows in the table is required.

The approaches to outlier detection can be classified assupervised-learning based methods, where each
example must be labelled as exceptional or not [60, 77], and the unsupervised-learning based ones, where
such labels are not required. The latter methods are obviously more general than the former ones. As the
technique proposed in this work is unsupervised, the sequelof this section shall refer only to unsupervised
methods. In their turn, unsupervised-learning based methods for outlier detection can be categorized in
several groups.

The first group is that ofstatistical-basedmethods that assume that the given data set has a distribu-
tion model. Outliers are those objects that satisfy a discordancy test, i.e., which are significantly larger (or
smaller) in relation to the hypothesized distribution [11].

Deviation-basedtechniques identify outliers by inspecting the typical characteristics of objects and con-
sider an object that deviates from these features an outlier[10].

A completely different approach that finds outliers by observing low dimensional projectionsof the
search space is presented in [3]. Here, a point is consideredan outlier if it deviates from the other data in
some subspace.

Further groups consists ofdensity-basedtechniques [16], using a notion oflocal outlier that measures
the plausibility for an object to be an outlier with respect to the density of the local neighborhood.

Distance-basedoutlier detection was introduced by Knorr and Ng [55] to overcome the limitations of
statistical methods. Adistance-basedoutlier is defined as follows: A point p in a data set is an outlier with
respect to parametersk andδ if at leastk points in the data set lie at a distance greater thanδ from p. This
definition generalizes the definition of outlier in statistics and is well suited when the data set does not fit
any standard distribution. Ramaswamy et al. [73] modified the above definition of outlier, since that does
not provide any ranking for outliers that are singled out. The new definition is based on the distance of the
k-th nearest neighbor of a pointp, denoted withDk(p), and it is as follows: Givenk andn, a pointp is an
outlier if no more thann− 1 other pointsq in the data set have a higher value forDk(q) thanp. This means
that the pointsq having then greatestDk(q) values are considered outliers. In [8] a new definition of outlier
that considers for each point the sum of the distances from itsk nearest neighbors is proposed. The authors
presented an algorithm using the Hilbert space-filling curve that exhibits scaling results close to linear. An
analogous definition of outlier based on thek-nearest neighbors has been used in [32] for unsupervised
anomaly detection in intrusion detection applications. In[12] a near-linear time algorithm for the detection
of distance-based outliers exploiting randomization is presented.

The general differences and analogies between the approaches described above and our own should be
clearly understood. In fact, those approaches deal with “knowledge”, as encoded within one single relational

49

table that is, in a sense, flat, i.e. such that there is no explicit relationship linking the objects (tuples) of the
data set under examination. Vice versa, the technique proposed in this work deals with complex knowl-
edge bases, which may well comprise relational-like information, but generally also include semantically
richer forms of knowledge, such as logical rules: in this latter case several complex relations relating ob-
jects (atoms) of the underlying theory might be explicitly available. As a consequence, even if the intuitive
and general sense of computing outliers in the two contexts is analogous, the conceptual and technical de-
velopments are quite different in the two contexts, just as the formal properties of computed outliers are
different.

7.2 Outlier detection using logic

Recently, outlier detection has emerged as an interesting knowledge representation and reasoning problem,
in the context of default logic [7].

In particular, [7] originally introduced and investigatedthe concept of outlier detection in the context
of default logics. In that context, we have a propositional default theory∆ = (D,W), whereD is a set
of defaults andW is a set of propositional formulas. An outlier is then definedas a literal inW which is
not justified in∆ with respect to a witnessS ⊆ W . In that paper, the complexity of singling out outliers
was studied for several fragments of Reiter’s propositional default logics [75], that is, general propositional
theories, disjunction-free theories, normal mixed unary theories, unary and dual unary theories, and acyclic
unary and acyclic dual unary theories. The complexity results range fromP to ΣP

3 . In their analysis, the
authors investigated only the cautious form of reasoning and defined an outlier as a singleton set, thus the
concept of minimality has no meaning in that setting.

In this paper, the paradigm of [7] has been extended and generalized in several respects by (i) adapt-
ing the notion of outlier to the paradigm of logic programming in such a way that outliers are no longer
constrained to denote single individuals, (ii) investigating the complexity of the corresponding detection
problems, (iii) considering also the brave form of reasoning, (iv) defining significant minimization-based
outlier detection problems and studying their complexity,(v) extending the framework to have observations
encoded as a logic theory, and, finally, (vi) providing rewriting techniques for effective outlier detection
implementation.

In conclusion, let us observe that the class of default theories studied in [7] most related to general
logic programs is that of disjunction-free theories (DF). Indeed, it is well-known [42] that a general logic
programP can be translated into an equivalent DF default theory∆(P). However, the complexity results
in [7] cannot be straightforwardly translated to the case oftheories expressed as logic programs, even in the
restricted framework of cautious reasoning for detecting outliers as individual elements.

Indeed, the hardness results in [7] for DF default theories rely onnormal theories, whose relationships
with logic programs has been not studied in the literature sofar. And, in fact, there seems to be not much
sense in translating a logic program into a normal default theory. Even a simple program likeα ← not β

cannot be translated into normal defaults because some formof β is needed in the justifications. A form that
would properly translate into normal isα ← β, not ¬α, and this requires classical negation. Nevertheless,
if one has a program with no negation of any form, one can translate it to normal:α ← β can be translated
to β:α

α
. Since there is no negation, the extension one obtains will be equivalent to the stable model.

Furthermore, since normal default theories satisfy the semi-monotonicity property, it is not clear how
to design a polynomial-time translation from a logic program P under stable model semantics to a default
theory∆(P) ensuring a bijection between stable models ofP and extensions of∆(P).

50

8 Conclusion

In several knowledge-based applications, the scenario is significant where a rational agent equipped with
his own trustable knowledge about the world has some information coming from the outside in the form of
a set of observations denoting the status or facts about the external environment. Then, it is useful to let the
agent be capable of discovering those observations (if any)whose truth clashes to some extent with some
of the agent trustable beliefs. Such observations, called outliers, do indeed embody some abnormal status of
things which is interesting, at least, to be singled out and checked.

Differently from what is most often done in the literature, outliers have been defined in the paper on
the basis of some logical properties, rather than being determined by statistical characteristics. In particular,
by extending the work presented in [7], the concept of outlier has been formalized in the framework of
logic-programming based knowledge systems under both cautious and brave stable model semantics.

It has been shown that for a fact being an outlier depends on the given observation context: a fact may
well be an outlier within a given observation set, while being normal in some other one. In words, it has
been illustrated that outliers can be detected on the basis of observations to hand, by eventually singling out
some properties standing out for their abnormality. In the proposed setting, it is in fact necessary to single
out a supporting set, called the witness set, for the outlierto be singled out in turn.

The aim of the paper has been that of formalizing several variants of outlier detection problems, of
showing their complexity and providing algorithms for outlier detection via rewriting.

The outlier detection framework introduced here resemblessuch important notions in AI such as diagno-
sis and abductive reasoning and belief revision. Still, several important differences are there that confirm the
usefulness of such novel formalization: belief revision, abduction and other reasoning task related to outlier
detection have been comparatively discussed in the paper, where such differences have been highlighted.

Complexity figures obtained for outlier detection problemsare summarized in Figure 3 and 4 referring,
respectively, to the basic and the min-cost variant of the problems. The complexity results show that outlier
detection can be sometimes easy but it is intractable in mostcases.

An interesting scenario, which has been analyzed as well in the paper, occurs when one focuses on the
complexity of the problem where only the observation component is assumed to vary (that is, to denote the
problem input), whereas the rule component is assumed to be fixed. This is the complexity measure known
asdata complexity, and is relevant whenever the size of the evidence data is large as compared to the size of
the knowledge base formalizing his expected properties.

Moreover, the case where the observations are encoded as a logical theory, rather than “simple” sets of
facts, has been considered. The concept of outlier has been properly generalized to arrange this idea, and the
computational complexity of the problems arising in this extended setting has been also accounted for in the
paper.

Finally, sound and complete translations of outlier problems have been provided into equivalent infer-
ence problems under stable model semantics. These translations can be taken advantage of in order for
effectively implementing outlier detection on top of any available stable model solver (e.g., [49, 61, 67, 63]).

Several research questions are left often by the paper. As far as the basic definition of outliers (and
associated witness) is concerned, it might be investigatedwhether there are some alternative notions that
appear convenient for modelling abnormality in the observations to hand in some specific kinds of applica-
tion. As an example, one may study a notion where condition (1) in Definition 1 is provided according to
the brave (resp., cautious) semantics, while condition (2)is provided according to the cautious (resp., brave)
semantics, and investigate how this notion compare with theone proposed in the paper.

51

As far as the complexity studies are concerned, it is believed to be relevant to have the picture proposed
in the paper completed by investigating thecombinedcomplexity of detection problems for first-order pro-
grams, i.e., to study a setting where both the rule and the observation component are considered part of the
input problem.

Finally, from the application side, it would be interestingto study whether logic-based outlier detection
may have some fruitful applications in the database context, e.g., whether it can support the handling of
sophisticated kinds of constraint or whether it can be even practicable as a data mining technique. Indeed,
even though outlier detection problems appear to be intractable in most cases (unless P= NP), it might be
still the case that suitable algorithms, approximations and heuristics can be defined to cope with them in an
efficient way.

Acknowledgments

Thanks to Rachel Ben-Eliyahu-Zohary for fruitful discussion on the subjects of this paper and for having
originally set up the outlier detection scenario.

References

1. S. Lonardi A. Apostolico, M.E. Bock and X. Xu. Efficient detection of unusual words.Journal of Computational Biology,
7(1/2):71–94, 2000.

2. Serge Abiteboul, Richard Hull, and Victor Vianu.Foundations of Databases. Addison Wesley Publ. Co., Reading, Massachus-
setts, 1995.

3. C. C. Aggarwal and P.S. Yu. Outlier detection for high dimensional data. InProc. of the 2001 ACM International Conference
on Management of Data (SIGMOD), pages 37–46, Santa Barbara, California, USA, 2001.

4. C.E. Alchourrón, P. Gärdenfors, and D.Makinson. On thelogic of theory change: Partial meet contraction and revision func-
tions. Journal of Symbolic Logic, 50(2):510–530, 1985.

5. C.E. Alchourrón and D. Makinson. The logic of theory change: Contraction functions and their associated revision functions.
Theoria, 48:14–37, 1982.

6. C.E. Alchourrón and D. Makinson. On the logic of theory change: Safe contraction.Studia Logica, 44:405–422, 1985.
7. F. Angiulli, R. Ben-Eliyahu-Zohary, and L. Palopoli. Outlier detection using default logic. InProc. of the 18th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 833–838, Acapulco, Mexico, 2003. Extended technical report
available for download athttp://dns2.icar.cnr.it/angiulli/papers/ijcai2003full.pdf.

8. F. Angiulli and C. Pizzuti. Outlier mining in large high dimensional data sets.IEEE Transactions on Knowledge and Data
Engineering, 17(2):203–215, 2005.

9. Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in inconsistent databases. InProc. of the
18th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), pages 68–79, 1999.

10. A. Arning, C. Aggarwal, and P. Raghavan. A linear method for deviation detection in large databases. InProc. of 2th ACM
International Conference on Knowledge Discovery and Data Mining (KDD), pages 164–169, Portland, Oregon, USA, 1996.

11. V. Barnett and T. Lewis.Outliers in Statistical Data. John Wiley & Sons, New York, 1994.
12. S.D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning

rule. In Proc. of the 9th ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages 29–38,
Washington, DC, USA, 2003.

13. C. Boutilier, N. Friedman, and Joseph Y. Halpern. Beliefrevision with unreliable observations. InProc. of the 15th National
Conference on Artificial Intelligence and 10th Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI), pages
127–134, Madison, Wisconsin, USA, 1998.

14. Loreto Bravo and Leopoldo Bertossi. Logic programming for consistently querying data integration systems. InProc. of the
18th Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 10–15, 2003.

15. P. Brazdil, M. Gams, S. Sian, L.Torgo, and W. van de Velde.Learning in distributed systems and multi-agent environments.
In Proc. of European Conference on Machine Learning - EWSL91, European Working Session on Learning, pages 412–423,
Heidelberg, Germany, 1991.

16. M. M. Breunig, H. Kriegel, R.T. Ng, and J. Sander. LOF: Identifying density-based local outliers. InProc. of the 2000 ACM
SIGMOD International Conference on Managment of Data (SIGMOD), pages 93–104, Dallas, Texas, USA, 2000.

52

17. F. Buccafurri, N. Leone, and P. Rullo. Enhancing disjunctive datalog by constraints.IEEE Transactions on Knowledge and
Data Engineering, 12(5):845–860, 2000.

18. K. Eshghi C. Preist and B. Bertolino. Consistency-basedand abductive diagnoses as generalized stable models.Annals of
Mathematics and Artificial Intelligence, 11(1-4):51–74, 1994.

19. Z. Chen and S. Toda. The complexity of selecting maximal solutions. Information and Computation, 119(2):231–239, 1995.
20. Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Computing consistent query answers using conflict hypergraphs.

In Proc. of the 13th ACM Conference on Information and Knowledge Management (CIKM), pages 417–426. ACM Press, 2004.
21. A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni. Cooperation and competition in alias: a logic framework for agents

that negotiate.Annals of Mathematics and Artificial Intelligence, 37(1-2):65–91, 2003.
22. Luca Console, Daniele Theseider Dupre, and Pietro Torasso. On the relationship between abduction and deduction.Journal

of Logic and Computation, 1(5):661–690, 1991.
23. C. Damasio, L. M. Pereira, and M. Schroeder. Revise: Logic programming and diagnosis. InProc. of the 4th International

Conference on Logic Programming and Non-monotonic Reasoning (LPNMR), pages 354–363, Dagstuhl, Germany, 1997.
24. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic programming.ACM Computing

Survey, 33(3):374–425, 2001.
25. A. Darwiche and J. Pearl. On the logic of iterated belief revision.Artificial Intelligence, 89:1–29, 1997.
26. J. de Kleer and B.C. Williams. Diagnosing multiple faults. Artificial Intelligence, 32(1):97–130, 1984.
27. Marc Denecker and Antonis C. Kakas. Abduction in logic programming. Computational Logic: Logic Programming and

Beyond, pages 402–436, 2002.
28. P. M. Dung. Negation as hypotheses: An abductive foundation for logic programming. InProc. of of the 8th International

Conference on Logic Programming (ICLP), pages 3–17, 1991.
29. T. Eiter, W. Faber, N. Leone, and G.Pfeifer. The diagnosis frontend of the dlv system.AI Communications, 12(1-2):99–111,

1999.
30. Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction.Journal of the ACM, 42(1):3–42, 1995.
31. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The ciff proof procedure for abductive logic programming with

constraints. InProc. of the 9th European Conference on Logics in Artificial Intelligence (JELIA), pages 31–43, 2004.
32. E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo.Applications of Data Mining in Computer Security, chapter A

geometric framework for unsupervised anomaly detection. Kluwer, 2002.
33. Tom F. and F. Provost. Adaptive fraud detection.Data Mining and Knowledge Discovery, 1(3):291–316, 1997.
34. G. Mainetto F. Bonchi, F. Giannotti and D. Pedreschi. A classification-based methodology for planning audit strategies in

fraud detection. InProc. of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pages 15–18, San Diego, California, USA, 1999.

35. F.Lin and J.H. You. Abduction in logic programming: A newdefinition and an abductive procedure based on rewriting.
Artificial Intelligence, 140(1-2):175–205, 2002.

36. N. Friedman and J.Y. Halpern. Belief revision: A critique. InPrinciples od Knowledge Representation and Reasoning, pages
421–431, 1996.

37. N. Friedman and J.Y. Halpern. Modeling beliefs in dynamic systems. part i: Foundations.Artificial Intelligence, 95:257–316,
1997.

38. Ariel Fuxman, Elham Fazli, and Renée J. Miller. Efficient management of inconsistent databases. InProc. of the 2005 ACM
International Conference on Management of Data (SIGMOD), 2005.

39. P. Gärdenfors.Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, 1988.
40. M.R. Garey and D.S.Johnson.Computers and Intractability. A Guide to the Theory ofNP-completeness. Freeman and Comp.,

NY, USA, 1979.
41. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. InProc. of the 5th International Conference

on Logic Programming (ICLP), pages 1070–1080, Seattle, 1988.
42. M. Gelfond and V. Lifschitz. Classical negation in logicprograms and disjunctive databases.New Generation Computing,

9:365–385, 1991.
43. M.R. Genesereth. The use of design descriptions in automated diagnosis.Artificial Intelligence, 24:411–436, 1984.
44. A. Grove. Two modellings for theory change.Journal of Philosophical Logic, 17:157–170, 1988.
45. W. van der Hoek H. Aldewereld and J.-J. Ch. Meyer. Rational teams: Logical aspects of multi-agent systems.Fundamenta

Informaticae, 63(2-3):159–183, 2004.
46. S.O. Hansson. Semi-revision.Journal of Applied Non-Classical Logic, 7:151–175, 1997.
47. S.O. Hansson. A survey of non-prioritized belief revision. Erkenntnis, 50(2-3):413–427, 1999.
48. L. Mé J. Kuri and G. Navarro. Fast multipattern search algorithms for intrusion detection.Fundamenta Informaticae, 56(1-

2):23–49, 2003.

53

49. T. Janhunen, I. Niemelä, P. Simons, and J.-H. You. Unfolding partiality and disjunctions in stable model semantics. In
Proc. of the 7th International Conference on Principles of Knowledge Representation and Reasoning (KR), pages 411–419,
Breckenridge, Colorado, USA, 2000.

50. D. S. Johnson.Handbook of Theoretical Computer Science,Volume A: Algorithms and Complexity, chapter A catalog of
complexity classes, pages 67–161. Elsevier and The MIT Press (co-publishers), 1990.

51. A.C. Kakas and P.Mancarella. Database updates through abduction. InProc of. the 16th International Conference on Very
Large Data Bases (VLDB), pages 650–661, Brisbane, Queensland, Australia, 1990.

52. Antonis C. Kakas and Paolo Mancarella. Generalized stable models: A semantics for abduction. InProc. of the 9th European
Conference on Artificial Intelligence (ECAI), pages 385–391, 1990.

53. Antonis C. Kakas, Bert Van Nuffelen, and Marc Denecker. A-system: Problem solving through abduction. InProc. of the 17th
International Joint Conference on Artificial Intelligence(IJCAI), pages 591–596, 2001.

54. H. Katsuno and O. Mendelzon. On the difference between updating a knowledge base and revising it. InPrinciples of
Knowledge Representation and Reasoning, pages 387–394, 1991.

55. E. Knorr, R. Ng, and V. Tucakov. Distance-based outlier:algorithms and applications.VLDB Journal, 8(3-4):237–253, 2000.
56. S. Kraus. Negotiation and cooperation in multi-agent environments.Artificial Intelligence, 94(1-2):79–98, 1997.
57. M.W. Krentel. The complexity of optimization problems.Journal of Computer and System Sciences, 36(3):490–509, 1988.
58. D.T. Dupré L. Console and P. Torasso. A theory of diagnosis for incomplete causal models. InProc. of the 10th International

Joint Conference on Artificial Intelligence (IJCAI), pages 1311–1317, Detroit, Michigan, USA, 1989.
59. D.T. Dupré L. Console and P. Torasso. On the relationship between abduction and deduction.Journal of Logic and Computa-

tion, 1(5):661–690, 1991.
60. W. Lee, S.J. Stolfo, and K.W. Mok. Mining audit data to build intrusion detection models. InProc. of the 4th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD), pages 66–72, New York, USA, 1998.
61. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv system for knowledge representation

and reasoning.ACM Transactions on Computational Logic, To appear.
62. Nicola Leone, Thomas Eiter, Wolfgang Faber, Michael Fink, Georg Gottlob, Gianluigi Greco, Giovambattista Ianni, Edyta

Kalka, Domenico Lembo, Maurizio Lenzerini, Vincenzino Lio, Bartosz Nowicki, Riccardo Rosati, Marco Ruzzi, Witold
Staniszkis, and Giorgio Terracina. The INFOMIX system for advanced integration of incomplete and inconsistent data. In
Proc. of the 2005 International Conference on Management ofData (SIGMOD). ACM, 2005. Demo paper.

63. F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logicprogram by SAT solvers. InProc. of the 8th National Conference
on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI-02), pages
112–118, Menlo Parc, CA, USA, 2002.

64. Fangzhen Lin and Jia-Huai You. Abduction in logic programming: A new definition and an abductive procedure based on
rewriting. InProc. of the 17th International Joint Conference on Artificial Intelligence (IJCAI), pages 655–666, 2001.

65. Jinxin Lin and Alberto O. Mendelzon. Merging databases under constraints.International Journal of Cooperative Information
Systems, 7(1):55–76, 1998.

66. D. Makinson. Screened revision.Theoria, 63:14–23, 1997.
67. I. Niemelä and P. Simons. Smodels: An implementation ofthe stable model and well-founded semantics for normal LP. In

Proc. of the 4th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 420–429,
Berlin, 1997.

68. C. H. Papadimitriou.Computational Complexity. Addison-Wesley, Reading, Mass., 1994.
69. C. S. Peirce. Abduction and induction.In Philosophical Writings of Peirce, pages 150–156, 1955.
70. Simona Perri, Francesco Scarcello, and Nicola Leone. Abductive logic programs with penalization: Semantics, complexity

and implementation.Theory and Practice of Logic Programming, 5((1-2)):123–159, 2005.
71. D. Poole. Representing knowledge for logic-based diagnosis. InInternational Conference on Fifth Generation Computing

Systems, pages 1282–1290, 1988.
72. David Poole. Normality and faults in logic-based diagnosis. InProc. of the 11th International Joint Conference on Artificial

Intelligence (IJCAI), pages 1304–1310, 1989.
73. S. Ramaswamy, R. Rastogi, , and K. Shim. Efficient algorithms for mining outliers from large data sets. InProc. of the 2000

ACM SIGMOD International Conference on Management of Data, pages 427–438, Dallas, Texas, 2000.
74. A. Rao and M. Georgeff. An abstract architecture for rational agents. InProc. of 3rd International Conference on Principles

of Knowledge Representation and Reasoning (KR), pages 439–449, Cambridge, Massachusetts, USA, 1992.
75. R. Reiter. A logic for default reasoning.Artificial Intelligence, 13(1-2):81–132, 1980.
76. R. Reiter. A theory of diagnosis from first principles.Artificial Intelligence, 32(1):57–96, 1987.
77. S. Rosset, U. Murad, E. Neumann, Y. Idan, and G. Pinkas. Discovery of fraud rules for telecommunications-challengesand

solutions. InProc. of the 5th ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages 409–
413, San Diego, California, USA, 1999.

54

78. Fariba Sadri, Francesca Toni, and Paolo Torroni. Dialogues for negotiation: agent varieties and dialogue sequences. In John-
Jules Meyer and Milind Tambe, editors,Proc. of the 8th International Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL), pages 69–84, 2001.

79. A.L. Selman. A taxonomy of complexity classes of functions. Journal of Computer and System Sciences, 48(2):357–381,
1994.

80. T.C.Son, P.H.Tu, and C.Baral. Planning with sensing actions and incomplete information using logic programming. In Proc.
of the 7th International conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 261–274, Fort
Lauderdale, FL, USA, 2004.

81. T.Eiter, W.Faber, N.Leone, G.Pfeifer, and A.Polleres.A logic programming approach to knowledge-state planning:Semantics
and complexity.ACM Transaction on Computational Logic, 5(2):206–263, 2004.

82. L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–201, 1979.
83. W. van der Hoek and M. Wooldridge. On the logic of cooperation and propositional control.Artificial Intelligence, 164(1-

2):81–119, 2005.
84. M.Y. Vardi. The complexity of relational query languages. In Proc. of the 14th Annual ACM Symposium on Theory of

Computing (STOC), pages 137–146, 1982.
85. W.W. Vasconcelos, D.S. Robertson, C. Sierra, M. Esteva,J. Sabater, and M. Wooldridge. Rapid prototyping of large multi-agent

systems through logic programming.Annals of Mathematics and Artificial Intelligence, 41(2-4):135–169, 2004.
86. D. N. Walton and E. C. W. Krabbe.Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. 1995.
87. M. J. Wooldridge and S. Parsons. Languages for negotiation. InProc. of the 14th European Conference on Artificial Intelligence

(ECAI), pages 393–400, 2000.
88. R. Ben-Eliyahu Zohary and R. Dechter. Propositional semantics for disjunctive logic programs.Annals of Mathematics and

Artificial Intelligence, 12(1-2):53–87, 1994.

55

