
Efficient Broadcast Disks Program Construction in
Asymmetric Communication Environments

Eleftherios Tiakas, Stefanos Ougiaroglou, Petros Nikopolitidis
Department of Informatics, Aristotle University of Thessaloniki

Box 888, 54124, Thessaloniki, Greece

tiakas@csd.auth.gr, stefanos.ougiaroglou@gmail.com, petros@csd.auth.gr

ABSTRACT
A well-known technique for broadcast program construction is the
Broadcast Disks. However, in this approach there are some
important disadvantages, as for example that the broadcast
program construction procedure leaves some parts of the
broadcast program empty (without information data). This paper
proposes a new approach for the construction of the broadcast
program. Specifically, it presents three new algorithms, which
face the problems of the Broadcast Disk Technique. According to
our approach, the broadcast program is constructed with the
minimum possible length, respecting the selected disk relative
frequencies and keeps the average delays of retrieving data-items
low. The constructed broadcast programs have no empty parts and
retain their desired properties in any combination of disk relative
frequencies. We implemented all methods in a simulator to make
several experiments. Experimental results show that this approach
is more efficient than Broadcast Disks in all cases.

Keywords
Broadcast disks, asymmetric communication environments, data
broadcasting.

1. INTRODUCTION AND BACKGROUND
In over a decade broadcasting data methods have been chosen to
handle asymmetric environment communication systems. Some of
today’s applications that use broadcasting methods are: (i) tele-
text and radio-text systems, (ii) weather, advanced traffic, stock
prices and hospital information systems, (iii) public safety
applications, (iv) wireless classrooms, (v) cable and satellite
broadcast television networks, etc. In all these applications, a
server broadcasts data to clients. So, the broadcast channel
becomes a “spinning disk” from which clients can retrieve data as
it goes by. One of the most well known such methods is the
Broadcast Disks Technique [3.

A major advantage of broadcasting methods is that the system
performance does not depend on the number of connected users
that are listening. Many research works focus on how to improve
the efficiency of the broadcasting systems. Interesting research

has been made in both sides of the problem: server side and client
side, where special automation methods and caching strategies
have been presented. In this paper, we will concentrate in the
server side and specifically in structuring the broadcast program.

2. MOTIVATIONS
In this section, we present some interesting properties and bounds,
and depict the drawbacks and restrictions of the broadcast disks
method [3,8]. Then we will present the motivations for our
approach. Table 1 depicts basic notations that will be used in all
the following sections for reasons of simplicity. We also refer to
the broadcast disks method as BD.

Table 1. Notations used in the following sections.

N The selected number of different broadcast disks
M The total number of data-items that will be broadcasted
fi The relative frequency of disk di, (i = 1,…, N)
LCM The least common multiple of all frequencies fi
nci The number of chunks of disks di
ndi The number of data-items assigned to each disk di
PR The length of a broadcast program period in slots
ES The number of slots that remain empty in a period
deli The expected delays of data-items of disks di

In BD the identities:
i

i f
LCMnc = , also hold, and

the following properties and bounds can be proved:

Mnd
N

i
i =∑

=1

(1) ∑
=

⎥
⎥

⎤
⎢
⎢

⎡
=

N

i i

i

nc
ndLCMPR

1

(2) ∑∑∑
===

⋅−⎥
⎥

⎤
⎢
⎢

⎡
=⋅−=

N

i
ii

N

i i

i
N

i
ii ndf

nc
ndLCMndfPRES

111

(3) BD produces no empty slots Nindnc ii ,...,1, =∀⇔

(4) ()1−⋅≤ LCMNES
(5) LCMNPR ⋅≥

Some problems using Broadcast Disks Method:
Property 5, tells us that the number of disks N and the LCM of all
relative frequencies must be kept small, otherwise the program
period will increase significantly making bigger average delays
on all data-items. The number of disks is easy to be kept small,
but the LCM factor can be kept small if a lot of divisibility
conditions between relative frequencies hold.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSWiM’07, October 22–26, 2007, Chania, Crete Island, Greece.

Property 3 shows that the BD has a very uncomfortable condition
for not producing empty slots. It is very difficult to choose
relative frequencies because they must satisfy several divisibility Copyright 2007 ACM 978-1-59593-851-0/07/0010…$5.00.

conditions for keeping the LCM as low as possible and at the
same time they must satisfy other divisibility conditions for
keeping the number of items divisible with the number of chunks.
Property 4, defines an upper bound of total empty slots in a
broadcast program period that again is depended by N and LCM
parameters. Thus, all the above difficulties affect also the number
of empty slots.
The most effective selection to solve the above problems is to
choose for relative frequencies numbers that are small powers of
the same small prime numbers but this is very restrictive.
Other Motivations:
System developers that use existing broadcasting methods cannot
success in all conditions and restrictions that methods provide, so
they cannot select wisely their parameters.
In most applications, the data-items are categorized and have
extra priorities that are application dependent, so their allocation
to the disks can be more complicated. For example, we cannot
allocate into the same disk multimedia content and text
information.
Even worst, if the broadcast systems have to redesign their
programs due to large data-item movements (insertions, deletions,
updates etc.) very often, the developers have to reconsider the
previous subjects and this is not always possible, especially if the
available redesign time is crucial for the system’s services.

3. THE PROPOSED METHOD
We propose a method for broadcast program creation that
improves the efficiency of the broadcast disks based methods and
solves the above problems. The method’s motives were:
1. Producing program periods with the shortest length possible.
2. Respecting the number of disks and all relative frequencies.
3. Keeping as low as possible the average delays of data-items.
4. Not using chunks or any other splitting policy to the disks.
5. Not having any empty slots into the program period.
6. Not having any restrictions in the selection of parameters.
7. Not having the mentioned problems.
8. Can be applied in all type of distributions of data-items.

3.1 Basic Definitions and Methodology
The proposed method uses multiple disks (di) of different sizes
(ndi) and speeds (fi) as in the broadcast disks technique. The total

number of the broadcasted data-items is: . But now,

there are not any restrictions. The system designer can select
freely all parameters respecting only the conditions:

 and . With this freedom on
parameters selection, we accomplished easy the motives (2), (6).
In addition, we can easily calibrate any desired distribution of
data-items, so motive (8) is also accomplished.

Mnd
N

i
i =∑

=1

1...1 =>> Nff Nndnd << ...1

In order to have the minimum possible program length, every
data-item that belongs to disk di must appear in the broadcast
program period exactly fi times, and there must not be any empty
slots. This happens in our method, so we have always a broadcast

program period with the shortest length: . Thus,

motives (1), (5) are accomplished. Our method, does not produce

empty slots because does not make use of LCM, chunks or any
other splitting policy on the disks. By avoiding their use, we avoid
all mentioned divisibility and bounding problems of Section 2, so
motives (4), (7) are also accomplished.

i

N

i
i ndfPR ⋅= ∑

=1

The most critical motive is (3), which is completely related with
how we must put the data-items and their copies into the
broadcast program period. In order to keep low the average
delays, we must keep their inter-arrival times constant

Main Strategy: The Broadcast Disks method always keeps
constant the inter-arrival times by sacrificing the period length,
which can be much larger than the minimum. But then, as the
program period increases, all data-items will have longer average
delays. Our strategy is exactly the opposite one: we keep constant
the period length (to the minimum possible) and we try to define
the inter-arrival times to have the lowest possible variance.
The most effective way to put a data-item of disk di to the
broadcast program period is to repeat the data-item fi times in
equally spaced distances, covering the period length. Then the
data-item will have the ideal average delay. But, often the relative
frequencies do not divide exactly the program period. Therefore,

we repeat the data-item into the program every ⎥
⎦

⎥
⎢
⎣

⎢
=

i
i f

PRdel

slots, using the floor function. But, it is not easy. During the
allocation procedure with these calculations, several data-items
may be colliding to the same position, so we must define what to
do with the collisions and how to minimize them. The following
sections present 3 algorithms that construct broadcast programs
and deal with the collisions. These algorithms produce the desired
program periods which are stored into the array x[1…PR].

3.2 The “Next Position” Algorithm
The first proposed algorithm, which we call “Next Position
Algorithm”, has the following simple strategy: “It tries to allocate
every data-item and its copies into the ideal spaces and if there is
a collision it just moves the allocation pointer to the next
available position”. Figure 1 depicts its operation.

Algorithm NextPosition()
pos = 0
for i = 1 to N
 for j = 1 to ndi

 { pos++
 for k = 1 to fi

 { fpos = pos + (k-1) * deli

 while x[fpos] ≠ ∅ do fpos++
 x[fpos] = data-item j of disk i } }

Figure 1. First proposed algorithm for program creation
Now, let us see a construction example using the “Next Position
Algorithm”: Suppose that we have N = 5 Disks with relative
frequencies fi = {5, 4, 3, 2, 1} and data-items ndi = {1, 3, 5, 12,
25}. Then, with the above calculations we will have a program
length PR = 81 and expected delays deli = {16, 20, 27, 40, 81}.
Figure 2 depicts some instances of the construction procedure
using the Next Position algorithm. The notation Di,j refers to the
j-th data-item of disk di. The gray slots express the single
collisions that happen. The dark gray slots express double and
triple collisions (collisions that happen into the same slot 2 or 3
times). There are totally 47 collisions in allocation procedure.

D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D1,1
 D2,1 D2,2 D2,3 D3,1 D1,1 D3,2
 D2,1 D2,2 D2,3 D1,1 D3,1 D3,2
 D2,1 D2,2 D2,3 D1,1

(a) Allocation of data-items of disks d1, d2, d3 till a collision happens
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D3,3 D3,4 D3,5 D1,1

 D2,1 D2,2 D2,3 D3,1 D1,1 D3,2 D3,3 D3,4 D3,5
 D2,1 D2,2 D2,3 D1,1 D3,1 D3,2

D3,3 D2,1 D2,2 D2,3 D1,1 D3,4 D3,5

(b) Continuing allocation of data-items of disk d3 where new collisions happens
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D3,3 D3,4 D3,5 D4,1 D4,2 D4,3 D4,4 D4,5 D4,6 D4,7 D1,1 D4,8 D4,9 D4,10

D4,11 D2,1 D2,2 D2,3 D4,12 D3,1 D1,1 D3,2 D3,3 D3,4 D3,5
 D2,1 D2,2 D2,3 D1,1 D4,1 D4,2 D4,3 D4,4 D4,5 D4,6 D4,7 D4,8 D4,9 D3,1 D3,2

D3,3 D2,1 D2,2 D2,3 D1,1 D3,4 D3,5 D4,10 D4,11 D4,12

(c) Allocation of data-items of disk d4 with their copies
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D3,3 D3,4 D3,5 D4,1 D4,2 D4,3 D4,4 D4,5 D4,6 D4,7 D1,1 D4,8 D4,9 D4,10

D4,11 D2,1 D2,2 D2,3 D4,12 D5,1 D5,2 D5,3 D5,4 D5,5 D5,6 D3,1 D1,1 D3,2 D3,3 D3,4 D3,5 D5,7 D5,8 D5,9
D5,10 D2,1 D2,2 D2,3 D5,11 D5,12 D5,13 D5,14 D1,1 D4,1 D4,2 D4,3 D4,4 D4,5 D4,6 D4,7 D4,8 D4,9 D3,1 D3,2
D3,3 D2,1 D2,2 D2,3 D1,1 D3,4 D3,5 D4,10 D4,11 D4,12 D5,15 D5,16 D5,17 D5,18 D5,19 D5,20 D5,21 D5,22 D5,23 D5,24 D5,25

(d) Final constructed broadcast program period

Figure 2. Construction using “Next Position” Algorithm

3.3 The “Padding” Algorithm
The second algorithm, called “Padding Algorithm”, has the same
strategy plus: “When allocates the data-items of the same disk and
their copies, remembers the number of collisions that locally
happened (pad variable) and uses it to the next allocations”. This
expansion avoids the repeated collisions that may happen to the
same position. Figure 3 depicts its operation.

Algorithm Padding()
pos = 0
for i = 1 to N
 { pad = 0
 for j = 1 to ndi

 { pos++
 for k = 1 to fi

 { fpos = pos + (k-1) * deli + pad
 while x[fpos] ≠ ∅ do
 { fpos++
 if fpos > PR then fpos = fpos – PR
 pad++ }
 x[fpos] = data-item j of disk i } } }

Figure 3. Second proposed algorithm for program creation
Figure 4 depicts some instances of the construction procedure
using the Padding algorithm on the previous example. There are
totally 21 collisions in allocation procedure.
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D1,1

 D2,1 D2,2 D2,3 D3,1 D1,1 D3,2
 D2,1 D2,2 D2,3 D1,1 D3,1

D3,2 D2,1 D2,2 D2,3 D1,1

(a) Allocation of data-items of disk d3 till a collision happens
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D3,3 D3,4 D3,5 D1,1

 D2,1 D2,2 D2,3 D3,1 D1,1 D3,2 D3,3 D3,4
D3,5 D2,1 D2,2 D2,3 D1,1 D3,1
D3,2 D2,1 D2,2 D2,3 D1,1 D3,4 D3,5

(b) Continuing allocation of data-items of disk d3 where fewer collisions
happens

D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D3,3 D4,1 D4,2 D4,3 D3,4 D3,5 D4,4 D4,5 D1,1 D4,6 D4,7
D4,8 D2,1 D2,2 D2,3 D4,9 D4,10 D3,1 D1,1 D3,2 D3,3 D4,11 D4,12 D3,4
D3,5 D2,1 D2,2 D2,3 D1,1 D4,1 D4,2 D4,3 D4,4 D4,5 D4,6 D3,1 D4,7
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5 D4,8 D4,9 D4,10 D4,11 D4,12

(c) Allocation of data-items of disk d4 with their copies
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D5,23 D3,3 D5,24 D4,1 D4,2 D4,3 D3,4 D3,5 D4,4 D4,5 D1,1 D4,6 D4,7 D5,25
D4,8 D2,1 D2,2 D2,3 D5,1 D5,2 D5,3 D5,4 D5,5 D4,9 D4,10 D3,1 D1,1 D3,2 D3,3 D4,11 D4,12 D5,6 D5,7 D3,4
D3,5 D2,1 D2,2 D2,3 D5,8 D5,9 D5,10 D5,11 D1,1 D4,1 D4,2 D4,3 D5,12 D5,13 D4,4 D4,5 D5,14 D4,6 D3,1 D4,7
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5 D4,8 D4,9 D4,10 D5,15 D5,16 D5,17 D5,18 D4,11 D4,12 D5,19 D5,20 D5,21 D5,22

(d) Final constructed broadcast program period

Figure 4. Construction using “Padding” Algorithm

3.4 The “Minimize Collisions” Algorithm
The third algorithm, called “Minimize Collisions Algorithm”, has
a different strategy: “Before every allocation of a data-item and
its copies to the program period, a function scans all possible
positions of the whole structure (data-item and its copies in
equally spaced distances deli) and counts the total collisions

happened. Then, it returns the position with the minimum number
of collisions (w variable). This position is used to the allocation
procedure”. This strategy minimizes the collision number and in
most experimental cases this number becomes 0 making the
program’s efficiency ideal. Figure 5 depicts its operation.

Algorithm MinimizeCollisions()
for i = 1 to N
 for j = 1 to ndi

 { w = ReturnPositionWithMinimumCollisions(i)
 for k = 1 to fi

 { fpos = w + (k-1) * deli

 while x[fpos] ≠ ∅ do fpos++
 x[fpos] = data-item j of disk i } }
Function ReturnPositionWithMinimumCollisions(disk i)
mincol = ∝ , minw = 1
for w = 1 to (deli + 1)
 { col = 0 , overflow = false
 for k = 1 to fi

 { fpos = w + (k-1) * deli

 if fpos > PR then overflow = true
 while x[fpos] ≠ ∅ and overflow = false do
 { col++ , fpos++
 if fpos > PR then overflow = true } }
 if overflow = false and mincol > col then
 { mincol = col , minw = w } }
return(minw)

Figure 5. Third proposed algorithm for program creation
Figure 6 depicts instances of the construction procedure using the
Minimize Collisions algorithm on the previous example. All
collisions now are avoided.
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D1,1

 D2,1 D2,2 D2,3 D3,1 D1,1 D3,2
 D2,1 D2,2 D2,3 D1,1 D3,1

D3,2 D2,1 D2,2 D2,3 D1,1

(a) Allocation of data-items of disk d3 avoiding the collision
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D3,3 D3,4 D3,5 D1,1

 D2,1 D2,2 D2,3 D3,1 D1,1 D3,2 D3,3 D3,4
D3,5 D2,1 D2,2 D2,3 D1,1 D3,1
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5

(b) Continuing allocation of data-items of disk d3 avoiding all collisions
D1,1 D2,1 D2,2 D2,3 D3,1 D4,1 D3,2 D4,2 D4,3 D4,4 D3,3 D3,4 D3,5 D4,5 D4,6 D1,1 D4,7 D4,8

 D2,1 D2,2 D2,3 D4,9 D4,10 D4,11 D3,1 D1,1 D3,2 D4,12 D3,3 D3,4
D3,5 D2,1 D2,2 D2,3 D4,1 D4,2 D1,1 D4,3 D4,4 D4,5 D4,6 D4,7 D3,1 D4,8
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5 D4,9 D4,10 D4,11 D4,12

(c) Allocation of data-items of disk d4 with their copies
D1,1 D2,1 D2,2 D2,3 D3,1 D4,1 D3,2 D4,2 D5,1 D4,3 D4,4 D3,3 D3,4 D3,5 D4,5 D4,6 D1,1 D4,7 D5,2 D4,8
D5,3 D2,1 D2,2 D2,3 D5,4 D5,5 D5,6 D5,7 D4,9 D4,10 D4,11 D3,1 D1,1 D3,2 D4,12 D5,8 D5,9 D5,10 D3,3 D3,4
D3,5 D2,1 D2,2 D2,3 D5,11 D4,1 D5,12 D4,2 D1,1 D4,3 D4,4 D5,13 D5,14 D5,15 D4,5 D4,6 D5,16 D4,7 D3,1 D4,8
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5 D4,9 D4,10 D4,11 D5,17 D5,18 D5,19 D4,12 D5,20 D5,21 D5,22 D5,23 D5,24 D5,25

(d) Final constructed broadcast program period

Figure 6. Construction using “Minimize Collisions” Algorithm

3.5 Properties of the Proposed Algorithms
The following properties and bounds of the proposed method and
algorithms, can be proved:

(1) Ninddel ii ,...,1, =∀> (2) Ninddel ii ,...,2,1 =∀> −

(3) Nideldel ii ,...,2,1 =∀≥ − (4) PRdelN =
(5) Total collisions number (col) satisfies the inequalities:

 (a) Next-Position: ()∑ ∑
−

=

−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅−<

1

2

1

1

1
N

i

i

j
jii ndndfcol

 (b) Padding: col ()∑ ∑
−

=

−

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅−<

1

2

1

1
11

N

i

i

j
jii ndndf

 (c) Minimize Collisions: col ∑ ∑
−

=

−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅<

1

2

1

1

N

i

i

j
ji ndf

From these bounds we derive that Padding is more efficient from
Next-Position and Minimize Collisions is the most efficient.
Practically, in most experiment cases the total number of
collisions is much less than these bounds (actually 0). They can
be reached only when the relative frequencies (fi) are too close
and the same holds for the number of data-items (ndi).
It is also important to note that using any of the 3 proposed
algorithms, an allocation of all data-items and their copies always
can be found. Therefore, the algorithms always find a solution.
Finally, it can be proved that their worst complexities are: (a)
Next-Position: ⎟

⎠
⎞

⎜
⎝
⎛ ⋅ 2

2
1 PRO , (b) Padding: ()2PRO , (c) Minimize

Collisions: ⎟
⎠
⎞

⎜
⎝
⎛ ⋅ 3

4
PRMO . We can conclude that the most

efficient algorithm we use, the most computations are required.

4. PERFORMANCE EVALUATION
In this section we present experimental results about the
efficiency and the performance of the proposed algorithms in
comparison to the BD. To have a fair comparison, we built a
simulation environment similar to the model suggested by the
authors of the BD in [8]. We extended this model to support our
method. Then, we make several experiments using parameter
values as in real-world cases. Experiments made using both auto-
created data-items that follow specific demand probability
distributions and data-items that imported to the simulator from
disk files.
During experiments, we vary the parameters values. In order to
have a fair comparison of the proposed algorithms with the BD,
we selected similar parameter values that used in papers of
broadcasting methods. The average response times (average
delays) measured in broadcast units (time steps), which define the
final performance. The average values were taken after
broadcasting 100 times the program period and till client requests
were satisfied. We chose the distribution of data-item demand
probabilities as Zipf. This distribution has a basic parameter θ,
which takes values into [0,1]. For θ=0 reduces to a uniform
distribution of demand for all data-items. For large values of θ,
produces increasingly skewed demand patterns. Also, we
calculate the Disk relative frequencies as in Delta method [3, 8-
10], where di {i=1,…,N} is computed relative to the frequency of
the slowest disk by the formula:

1*)(
)(_
)(_

+Δ−= iN
dfreqrel
dfreqrel

N

i . The frequency of the slowest

disk is selected rel_freq(dN)=1.
Varying Theta (θ) Parameter
In this experiment group we chose the following parameter
values: M=5000, N=5, Δ=2, θ=0.25-0.95.
The results gave a total number of collisions 0 in all cases except
at θ=0.25, where “Next-Position” reports 8090 collisions,
“Padding” reports 42 and “Minimize Collisions” reports 0. That
happens because when θ=0.25 or below, the ndi values are close
enough to each other, increasing the number of possible
collisions. Figure 7 presents the average response times of all

methods. The response times in BD are always longer when
compared to proposed algorithms. In addition, proposed
algorithms have almost the same average response times and that
is why their lines in the graph cannot be distinguished. Similar
results are reported if we choose different Δ, or different N.

Figure 7. Experimental results varying theta (θ)

Varying Delta (Δ) Parameter
In this experiment group we chose M=5000, N=3, θ=0.95, Δ=1-7.

Figure 8. Experimental results varying delta (Δ)

In this experiment we observed that the proposed algorithms, as
expected, did not give any collisions. This happened because we
had few disks and high theta value, so there was enough space in
allocations. Figure 8 presents the final average response times.
The response times in BD are always longer when compared to
our algorithms. An interesting observation is that BD starts to
increase its response times after Δ=4, but the proposed algorithms
keep them low. This proves that our method is efficient in any
relative frequency values. Similar results will be reported if we
choose different θ, or different N.
Varying the number of Disks (N) parameter
In this experiment group we chose: M=5000,Δ=1, θ=0.95, N=1-9.

Figure 9. Experimental results varying number of disks (N)

The proposed algorithms, as we expected, did not give collisions
again. Figure 9 presents the final average response times using all
methods. The response times in BD are longer for N>4 than the
response times of the proposed algorithms and are increasing
significantly for N>6. In opposition, the proposed algorithms keep
the response time low. This proves that our method is efficient in
any number of disks. Similar results reported when we chose
different θ, or different Δ.
Varying the number of Data-Items (M) parameter
Here we chose N=5, Δ=2, θ=0.55, M=50-10000.
Figure 10a shows an interesting phenomenon: When we have a
small database, the collisions are increased. In addition, we
observe an evaluation of the collisions bounds order of the
proposed algorithms (see properties of sub-section 3.5). Figure
10b presents the final average response times. The response times
in BD are always longer than the proposed algorithms.

Figure 10. Experimental results varying data-items (M)

It is important to note that in experiment groups with noise
existence (10% to 75% deviations in client demand probabilities),

proposed algorithms reported similar results. Thus, our method is
efficient enough in noise existence.

5. CONCLUSIONS
In this paper we presented the problems and drawbacks of the
well-known technique of Broadcast Disks. We gave motivations
for better broadcasting programs and how important is to
construct efficient program periods. To successfully support the
demanding nowadays-broadcasting applications, we developed a
new method followed by 3 different and simple algorithms, which
construct improved and efficient broadcast programs. We
presented analytical construction examples in each algorithm and
their properties and bounds. We tested the proposed algorithms in
simulation environments similar to the suggested by the authors
of BD, which we extended to support and test our method.
Simulation results show that the proposed algorithms have
significant performance gains over the broadcast disks method in
all parameters set-ups and situations. In all experiments our
method results shorter program period, lower average delays, and
is not affected from the use of prime numbers, numbers with no
common divisors or any other for frequencies and data-item
allocations. The big advantage of the proposed algorithms is that
they can easily be applied in automation systems in broadcast
servers, they can be easily integrated in hardware components and
they can be executed very fast, supporting automatic creation of
program periods in the servers, even if the set of data-items is
modified rapidly and continuously on time, or even if there are
large amounts of insertions, deletions and updates on the data-
items set. Also, our method can be successfully applied in multi-
broadcasting networks and sensor systems and as a future work
we will modify the proposed algorithms to test them in such
environments.

REFERENCES
[1] N.H.Vaidya, S.Hameed, Scheduling Data Broadcast In

Asymmetric Communication Environments, ACM/Baltzer
Wireless Networks, vol. 5, pp. 171-182, August 1999.

[2] N.H.Vaidya, S.Hameed, Data Broadcast in Asymmetric
Wireless Environments, in Proceedings of WOSBIS,
November, 1996.

[3] S.Acharya, M.Franklin, S.Zdonik, Dissemination-based Data
Delivery Using Broadcast Disks, IEEE Personal
Communications, vol. 2, no. 6, pp. 50-60, December 1995.

[4] P.Nicopolitidis, G.I.Papadimitriou and A.S.Pomportsis,
Using Learning Automata for Adaptive Push-Based Data
Broadcasting in Asymmetric Wireless Environments, IEEE
Transactions on Vehicular Technology, vol.51, no.6,
November 2002, pp. 1652-1660.

[5] P.Nicopolitidis, G.I.Papadimitriou and A.S.Pomportsis,
Exploiting Locality of Demand to Improve the Performance
of Wireless Data Broadcasting, IEEE Transactions on
Vehicular Technology, May 2006 issue.

[6] P.Nicopolitidis, G.I.Papadimitriou, M.S.Obaidat and
A.S.Pomportsis, Performance Optimization of an Adaptive
Wireless Push System in Environments with Locality of
Demand, Computer Communications, Elsevier, 2005.

[7] T. Bowen, et al, The Datacycle Architecture,
Communications of the ACM, vol.35, no. 12, pp. 71-81,
December 1992.

[8] S.Acharya, R. Alonso, M.Franklin, S.Zdonik, Broadcast
Disks: Data Management for Asymmetric Communication
Environments, Technical Report CS-94-43, 1994.

[9] S.Acharya, M.Franklin, S.Zdonik, Disseminating Updates on
Broadcast Disks, in Proceedings of 2nd VLDB Conference,
September, 1996, pp. 354-365.

[10] S.Acharya, M.Franklin, S.Zdonik, Balancing Push and Pull
for Data Broadcast, in Proceedings of ACM SIGMOD, May,
1997, pp. 183-194.

	1. INTRODUCTION AND BACKGROUND
	2. MOTIVATIONS
	N
	3. THE PROPOSED METHOD
	3.1 Basic Definitions and Methodology
	3.2 The “Next Position” Algorithm
	3.3 The “Padding” Algorithm
	3.4 The “Minimize Collisions” Algorithm
	3.5 Properties of the Proposed Algorithms

	4. PERFORMANCE EVALUATION
	5. CONCLUSIONS
	REFERENCES

