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ABSTRACT 
A well-known technique for broadcast program construction is the 
Broadcast Disks. However, in this approach there are some 
important disadvantages, as for example that the broadcast 
program construction procedure leaves some parts of the 
broadcast program empty (without information data). This paper 
proposes a new approach for the construction of the broadcast 
program. Specifically, it presents three new algorithms, which 
face the problems of the Broadcast Disk Technique. According to 
our approach, the broadcast program is constructed with the 
minimum possible length, respecting the selected disk relative 
frequencies and keeps the average delays of retrieving data-items 
low. The constructed broadcast programs have no empty parts and 
retain their desired properties in any combination of disk relative 
frequencies. We implemented all methods in a simulator to make 
several experiments. Experimental results show that this approach 
is more efficient than Broadcast Disks in all cases. 

Keywords 
Broadcast disks, asymmetric communication environments, data 
broadcasting. 

1. INTRODUCTION AND BACKGROUND 
In over a decade broadcasting data methods have been chosen to 
handle asymmetric environment communication systems. Some of 
today’s applications that use broadcasting methods are: (i) tele-
text and radio-text systems, (ii) weather, advanced traffic, stock 
prices and hospital information systems, (iii) public safety 
applications, (iv) wireless classrooms, (v) cable and satellite 
broadcast television networks, etc. In all these applications, a 
server broadcasts data to clients. So, the broadcast channel 
becomes a “spinning disk” from which clients can retrieve data as 
it goes by. One of the most well known such methods is the 
Broadcast Disks Technique [3.  

A major advantage of broadcasting methods is that the system 
performance does not depend on the number of connected users 
that are listening. Many research works focus on how to improve 
the efficiency of the broadcasting systems. Interesting research 

has been made in both sides of the problem: server side and client 
side, where special automation methods and caching strategies 
have been presented. In this paper, we will concentrate in the 
server side and specifically in structuring the broadcast program. 

2. MOTIVATIONS 
In this section, we present some interesting properties and bounds, 
and depict the drawbacks and restrictions of the broadcast disks 
method [3,8]. Then we will present the motivations for our 
approach. Table 1 depicts basic notations that will be used in all 
the following sections for reasons of simplicity. We also refer to 
the broadcast disks method as BD. 

Table 1. Notations used in the following sections. 

N The selected number of different broadcast disks 
M The total number of data-items that will be broadcasted 
fi The relative frequency of disk di, (i = 1,…, N) 
LCM The least common multiple of all frequencies fi
nci  The number of chunks of disks di
ndi The number of data-items assigned to each disk di
PR The length of a broadcast program period in slots 
ES The number of slots that remain empty in a period 
deli The expected delays of data-items of disks di

In BD the identities: 
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(3) BD produces no empty slots Nindnc ii ,...,1, =∀⇔  

(4) ( )1−⋅≤ LCMNES  
(5) LCMNPR ⋅≥  

Some problems using Broadcast Disks Method: 
Property 5, tells us that the number of disks N and the LCM of all 
relative frequencies must be kept small, otherwise the program 
period will increase significantly making bigger average delays 
on all data-items. The number of disks is easy to be kept small, 
but the LCM factor can be kept small if a lot of divisibility 
conditions between relative frequencies hold. 
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Property 3 shows that the BD has a very uncomfortable condition 
for not producing empty slots. It is very difficult to choose 
relative frequencies because they must satisfy several divisibility Copyright 2007 ACM 978-1-59593-851-0/07/0010…$5.00. 

 



conditions for keeping the LCM as low as possible and at the 
same time they must satisfy other divisibility conditions for 
keeping the number of items divisible with the number of chunks.  
Property 4, defines an upper bound of total empty slots in a 
broadcast program period that again is depended by N and LCM 
parameters. Thus, all the above difficulties affect also the number 
of empty slots. 
The most effective selection to solve the above problems is to 
choose for relative frequencies numbers that are small powers of 
the same small prime numbers but this is very restrictive. 
Other Motivations: 
System developers that use existing broadcasting methods cannot 
success in all conditions and restrictions that methods provide, so 
they cannot select wisely their parameters. 
In most applications, the data-items are categorized and have 
extra priorities that are application dependent, so their allocation 
to the disks can be more complicated. For example, we cannot 
allocate into the same disk multimedia content and text 
information. 
Even worst, if the broadcast systems have to redesign their 
programs due to large data-item movements (insertions, deletions, 
updates etc.) very often, the developers have to reconsider the 
previous subjects and this is not always possible, especially if the 
available redesign time is crucial for the system’s services. 

3. THE PROPOSED METHOD 
We propose a method for broadcast program creation that 
improves the efficiency of the broadcast disks based methods and 
solves the above problems. The method’s motives were: 
1. Producing program periods with the shortest length possible. 
2. Respecting the number of disks and all relative frequencies. 
3. Keeping as low as possible the average delays of data-items. 
4. Not using chunks or any other splitting policy to the disks. 
5. Not having any empty slots into the program period. 
6. Not having any restrictions in the selection of parameters. 
7. Not having the mentioned problems. 
8. Can be applied in all type of distributions of data-items. 

3.1 Basic Definitions and Methodology 
The proposed method uses multiple disks (di) of different sizes 
(ndi) and speeds (fi) as in the broadcast disks technique. The total 

number of the broadcasted data-items is: . But now, 

there are not any restrictions. The system designer can select 
freely all parameters respecting only the conditions: 

 and . With this freedom on 
parameters selection, we accomplished easy the motives (2), (6). 
In addition, we can easily calibrate any desired distribution of 
data-items, so motive (8) is also accomplished. 
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In order to have the minimum possible program length, every 
data-item that belongs to disk di must appear in the broadcast 
program period exactly fi times, and there must not be any empty 
slots. This happens in our method, so we have always a broadcast 

program period with the shortest length: . Thus, 

motives (1), (5) are accomplished. Our method, does not produce 

empty slots because does not make use of LCM, chunks or any 
other splitting policy on the disks. By avoiding their use, we avoid 
all mentioned divisibility and bounding problems of Section 2, so 
motives (4), (7) are also accomplished. 

i

N

i
i ndfPR ⋅= ∑

=1

The most critical motive is (3), which is completely related with 
how we must put the data-items and their copies into the 
broadcast program period. In order to keep low the average 
delays, we must keep their inter-arrival times constant 

Main Strategy: The Broadcast Disks method always keeps 
constant the inter-arrival times by sacrificing the period length, 
which can be much larger than the minimum. But then, as the 
program period increases, all data-items will have longer average 
delays. Our strategy is exactly the opposite one: we keep constant 
the period length (to the minimum possible) and we try to define 
the inter-arrival times to have the lowest possible variance. 
The most effective way to put a data-item of disk di to the 
broadcast program period is to repeat the data-item fi times in 
equally spaced distances, covering the period length. Then the 
data-item will have the ideal average delay. But, often the relative 
frequencies do not divide exactly the program period. Therefore, 
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slots, using the floor function. But, it is not easy. During the 
allocation procedure with these calculations, several data-items 
may be colliding to the same position, so we must define what to 
do with the collisions and how to minimize them. The following 
sections present 3 algorithms that construct broadcast programs 
and deal with the collisions. These algorithms produce the desired 
program periods which are stored into the array x[1…PR]. 

3.2 The “Next Position” Algorithm 
The first proposed algorithm, which we call “Next Position 
Algorithm”, has the following simple strategy: “It tries to allocate 
every data-item and its copies into the ideal spaces and if there is 
a collision it just moves the allocation pointer to the next 
available position”. Figure 1 depicts its operation. 

Algorithm NextPosition() 
pos = 0 
for i = 1 to N 
       for j = 1 to ndi

              { pos++ 
                 for k = 1 to fi

                        { fpos = pos + (k-1) * deli

                          while x[fpos] ≠ ∅ do fpos++ 
                           x[fpos] = data-item j of disk i   }   } 

Figure 1. First proposed algorithm for program creation 
Now, let us see a construction example using the “Next Position 
Algorithm”: Suppose that we have N = 5 Disks with relative 
frequencies fi = {5, 4, 3, 2, 1} and data-items ndi = {1, 3, 5, 12, 
25}. Then, with the above calculations we will have a program 
length PR = 81 and expected delays deli = {16, 20, 27, 40, 81}. 
Figure 2 depicts some instances of the construction procedure 
using the Next Position algorithm. The notation Di,j refers to the 
j-th data-item of disk di. The gray slots express the single 
collisions that happen. The dark gray slots express double and 
triple collisions (collisions that happen into the same slot 2 or 3 
times). There are totally 47 collisions in allocation procedure. 



D1,1 D2,1 D2,2 D2,3 D3,1 D3,2           D1,1    
 D2,1 D2,2 D2,3        D3,1 D1,1 D3,2       
 D2,1 D2,2 D2,3     D1,1          D3,1 D3,2
 D2,1 D2,2 D2,3 D1,1                 

(a) Allocation of data-items of disks d1, d2, d3 till a collision happens 
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D3,3 D3,4 D3,5        D1,1    

 D2,1 D2,2 D2,3        D3,1 D1,1 D3,2 D3,3 D3,4 D3,5    
 D2,1 D2,2 D2,3     D1,1          D3,1 D3,2

D3,3 D2,1 D2,2 D2,3 D1,1 D3,4 D3,5               

(b) Continuing allocation of data-items of disk d3 where new collisions happens 
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D3,3 D3,4 D3,5 D4,1 D4,2 D4,3 D4,4 D4,5 D4,6 D4,7 D1,1 D4,8 D4,9 D4,10

D4,11 D2,1 D2,2 D2,3 D4,12       D3,1 D1,1 D3,2 D3,3 D3,4 D3,5    
 D2,1 D2,2 D2,3     D1,1 D4,1 D4,2 D4,3 D4,4 D4,5 D4,6 D4,7 D4,8 D4,9 D3,1 D3,2

D3,3 D2,1 D2,2 D2,3 D1,1 D3,4 D3,5 D4,10 D4,11 D4,12            

(c) Allocation of data-items of disk d4 with their copies 
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D3,3 D3,4 D3,5 D4,1 D4,2 D4,3 D4,4 D4,5 D4,6 D4,7 D1,1 D4,8 D4,9 D4,10

D4,11 D2,1 D2,2 D2,3 D4,12 D5,1 D5,2 D5,3 D5,4 D5,5 D5,6 D3,1 D1,1 D3,2 D3,3 D3,4 D3,5 D5,7 D5,8 D5,9
D5,10 D2,1 D2,2 D2,3 D5,11 D5,12 D5,13 D5,14 D1,1 D4,1 D4,2 D4,3 D4,4 D4,5 D4,6 D4,7 D4,8 D4,9 D3,1 D3,2
D3,3 D2,1 D2,2 D2,3 D1,1 D3,4 D3,5 D4,10 D4,11 D4,12 D5,15 D5,16 D5,17 D5,18 D5,19 D5,20 D5,21 D5,22 D5,23 D5,24 D5,25 

(d) Final constructed broadcast program period 

Figure 2. Construction using “Next Position” Algorithm 

3.3 The “Padding” Algorithm 
The second algorithm, called “Padding Algorithm”, has the same 
strategy plus: “When allocates the data-items of the same disk and 
their copies, remembers the number of collisions that locally 
happened (pad variable) and uses it to the next allocations”. This 
expansion avoids the repeated collisions that may happen to the 
same position. Figure 3 depicts its operation. 

Algorithm Padding() 
pos = 0 
for i = 1 to N 
     { pad = 0 
       for j = 1 to ndi

            { pos++ 
               for k = 1 to fi

                    { fpos = pos + (k-1) * deli + pad 
                      while x[fpos] ≠ ∅ do 
                               { fpos++ 
                                  if fpos > PR then fpos = fpos – PR 
                                  pad++  } 
                      x[fpos] = data-item j of disk i   }   }   } 

Figure 3. Second proposed algorithm for program creation 
Figure 4 depicts some instances of the construction procedure 
using the Padding algorithm on the previous example. There are 
totally 21 collisions in allocation procedure. 
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2           D1,1    

 D2,1 D2,2 D2,3        D3,1 D1,1 D3,2       
 D2,1 D2,2 D2,3     D1,1          D3,1  

D3,2 D2,1 D2,2 D2,3 D1,1                 

(a) Allocation of data-items of disk d3 till a collision happens 
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2  D3,3     D3,4 D3,5   D1,1    

 D2,1 D2,2 D2,3        D3,1 D1,1 D3,2 D3,3     D3,4
D3,5 D2,1 D2,2 D2,3     D1,1          D3,1  
D3,2 D2,1 D2,2 D2,3 D1,1 D3,4 D3,5               

(b) Continuing allocation of data-items of disk d3 where fewer collisions 
happens 

D1,1 D2,1 D2,2 D2,3 D3,1 D3,2  D3,3  D4,1 D4,2 D4,3 D3,4 D3,5 D4,4 D4,5 D1,1 D4,6 D4,7  
D4,8 D2,1 D2,2 D2,3      D4,9 D4,10 D3,1 D1,1 D3,2 D3,3 D4,11 D4,12   D3,4
D3,5 D2,1 D2,2 D2,3     D1,1 D4,1 D4,2 D4,3   D4,4 D4,5  D4,6 D3,1 D4,7
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5 D4,8 D4,9 D4,10     D4,11 D4,12     

(c) Allocation of data-items of disk d4 with their copies 
D1,1 D2,1 D2,2 D2,3 D3,1 D3,2 D5,23 D3,3 D5,24 D4,1 D4,2 D4,3 D3,4 D3,5 D4,4 D4,5 D1,1 D4,6 D4,7 D5,25
D4,8 D2,1 D2,2 D2,3 D5,1 D5,2 D5,3 D5,4 D5,5 D4,9 D4,10 D3,1 D1,1 D3,2 D3,3 D4,11 D4,12 D5,6 D5,7 D3,4
D3,5 D2,1 D2,2 D2,3 D5,8 D5,9 D5,10 D5,11 D1,1 D4,1 D4,2 D4,3 D5,12 D5,13 D4,4 D4,5 D5,14 D4,6 D3,1 D4,7
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5 D4,8 D4,9 D4,10 D5,15 D5,16 D5,17 D5,18 D4,11 D4,12 D5,19 D5,20 D5,21 D5,22 

(d) Final constructed broadcast program period 

Figure 4. Construction using “Padding” Algorithm 

3.4 The “Minimize Collisions” Algorithm 
The third algorithm, called “Minimize Collisions Algorithm”, has 
a different strategy: “Before every allocation of a data-item and 
its copies to the program period, a function scans all possible 
positions of the whole structure (data-item and its copies in 
equally spaced distances deli) and counts the total collisions 

happened. Then, it returns the position with the minimum number 
of collisions (w variable). This position is used to the allocation 
procedure”. This strategy minimizes the collision number and in 
most experimental cases this number becomes 0 making the 
program’s efficiency ideal. Figure 5 depicts its operation. 

Algorithm MinimizeCollisions() 
for i = 1 to N 
       for j = 1 to ndi

            { w = ReturnPositionWithMinimumCollisions(i) 
               for k = 1 to fi

                    { fpos = w + (k-1) * deli

                      while x[fpos] ≠ ∅ do  fpos++ 
                       x[fpos] = data-item j of disk i   }   } 
Function ReturnPositionWithMinimumCollisions(disk i) 
mincol = ∝  ,  minw = 1 
for w = 1 to (deli + 1) 
     {  col = 0  ,  overflow = false 
         for k = 1 to fi

             { fpos = w + (k-1) * deli

                if fpos > PR then overflow = true 
                while x[fpos] ≠ ∅ and overflow = false do 
                         { col++  ,   fpos++ 
                            if fpos > PR then overflow = true   }   } 
         if overflow = false and mincol > col then 
            {  mincol = col  ,  minw = w  }   } 
return(minw) 

Figure 5. Third proposed algorithm for program creation 
Figure 6 depicts instances of the construction procedure using the 
Minimize Collisions algorithm on the previous example. All 
collisions now are avoided. 
D1,1 D2,1 D2,2 D2,3 D3,1  D3,2          D1,1    

 D2,1 D2,2 D2,3        D3,1 D1,1 D3,2       
 D2,1 D2,2 D2,3     D1,1          D3,1  

D3,2 D2,1 D2,2 D2,3 D1,1                 

(a) Allocation of data-items of disk d3 avoiding the collision 
D1,1 D2,1 D2,2 D2,3 D3,1  D3,2     D3,3 D3,4 D3,5   D1,1    

 D2,1 D2,2 D2,3        D3,1 D1,1 D3,2     D3,3 D3,4
D3,5 D2,1 D2,2 D2,3     D1,1          D3,1  
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5              

(b) Continuing allocation of data-items of disk d3 avoiding all collisions 
D1,1 D2,1 D2,2 D2,3 D3,1 D4,1 D3,2 D4,2  D4,3 D4,4 D3,3 D3,4 D3,5 D4,5 D4,6 D1,1 D4,7  D4,8

 D2,1 D2,2 D2,3     D4,9 D4,10 D4,11 D3,1 D1,1 D3,2 D4,12    D3,3 D3,4
D3,5 D2,1 D2,2 D2,3  D4,1  D4,2 D1,1 D4,3 D4,4    D4,5 D4,6  D4,7 D3,1 D4,8
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5 D4,9 D4,10 D4,11    D4,12       

(c) Allocation of data-items of disk d4 with their copies 
D1,1 D2,1 D2,2 D2,3 D3,1 D4,1 D3,2 D4,2 D5,1 D4,3 D4,4 D3,3 D3,4 D3,5 D4,5 D4,6 D1,1 D4,7 D5,2 D4,8
D5,3 D2,1 D2,2 D2,3 D5,4 D5,5 D5,6 D5,7 D4,9 D4,10 D4,11 D3,1 D1,1 D3,2 D4,12 D5,8 D5,9 D5,10 D3,3 D3,4
D3,5 D2,1 D2,2 D2,3 D5,11 D4,1 D5,12 D4,2 D1,1 D4,3 D4,4 D5,13 D5,14 D5,15 D4,5 D4,6 D5,16 D4,7 D3,1 D4,8
D3,2 D2,1 D2,2 D2,3 D1,1 D3,3 D3,4 D3,5 D4,9 D4,10 D4,11 D5,17 D5,18 D5,19 D4,12 D5,20 D5,21 D5,22 D5,23 D5,24 D5,25 

(d) Final constructed broadcast program period 

Figure 6. Construction using “Minimize Collisions” Algorithm 

3.5 Properties of the Proposed Algorithms 
The following properties and bounds of the proposed method and 
algorithms, can be proved: 

(1) Ninddel ii ,...,1, =∀>        (2) Ninddel ii ,...,2,1 =∀> −  

(3) Nideldel ii ,...,2,1 =∀≥ −     (4)  PRdelN =
(5) Total collisions number (col) satisfies the inequalities: 
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From these bounds we derive that Padding is more efficient from 
Next-Position and Minimize Collisions is the most efficient. 
Practically, in most experiment cases the total number of 
collisions is much less than these bounds (actually 0). They can 
be reached only when the relative frequencies (fi) are too close 
and the same holds for the number of data-items (ndi).  
It is also important to note that using any of the 3 proposed 
algorithms, an allocation of all data-items and their copies always 
can be found. Therefore, the algorithms always find a solution. 
Finally, it can be proved that their worst complexities are: (a) 
Next-Position: ⎟

⎠
⎞

⎜
⎝
⎛ ⋅ 2

2
1 PRO , (b) Padding: ( )2PRO , (c) Minimize 

Collisions: ⎟
⎠
⎞

⎜
⎝
⎛ ⋅ 3

4
PRMO .  We can conclude that the most 

efficient algorithm we use, the most computations are required. 

4. PERFORMANCE EVALUATION 
In this section we present experimental results about the 
efficiency and the performance of the proposed algorithms in 
comparison to the BD. To have a fair comparison, we built a 
simulation environment similar to the model suggested by the 
authors of the BD in [8]. We extended this model to support our 
method. Then, we make several experiments using parameter 
values as in real-world cases. Experiments made using both auto-
created data-items that follow specific demand probability 
distributions and data-items that imported to the simulator from 
disk files.  
During experiments, we vary the parameters values. In order to 
have a fair comparison of the proposed algorithms with the BD, 
we selected similar parameter values that used in papers of 
broadcasting methods. The average response times (average 
delays) measured in broadcast units (time steps), which define the 
final performance. The average values were taken after 
broadcasting 100 times the program period and till client requests 
were satisfied. We chose the distribution of data-item demand 
probabilities as Zipf. This distribution has a basic parameter θ, 
which takes values into [0,1]. For θ=0 reduces to a uniform 
distribution of demand for all data-items. For large values of θ, 
produces increasingly skewed demand patterns. Also, we 
calculate the Disk relative frequencies as in Delta method [3, 8-
10], where di {i=1,…,N} is computed relative to the frequency of 
the slowest disk by the formula: 

1*)(
)(_
)(_

+Δ−= iN
dfreqrel
dfreqrel

N

i . The frequency of the slowest 

disk is selected rel_freq(dN)=1. 
Varying Theta (θ) Parameter 
In this experiment group we chose the following parameter 
values: M=5000, N=5, Δ=2, θ=0.25-0.95.  
The results gave a total number of collisions 0 in all cases except 
at θ=0.25, where “Next-Position” reports 8090 collisions, 
“Padding” reports 42 and “Minimize Collisions” reports 0. That 
happens because when θ=0.25 or below, the ndi values are close 
enough to each other, increasing the number of possible 
collisions. Figure 7 presents the average response times of all 

methods. The response times in BD are always longer when 
compared to proposed algorithms. In addition, proposed 
algorithms have almost the same average response times and that 
is why their lines in the graph cannot be distinguished. Similar 
results are reported if we choose different Δ, or different N. 

 
Figure 7. Experimental results varying theta (θ) 

Varying Delta (Δ) Parameter 
In this experiment group we chose M=5000, N=3, θ=0.95, Δ=1-7. 

 
Figure 8. Experimental results varying delta (Δ) 

In this experiment we observed that the proposed algorithms, as 
expected, did not give any collisions. This happened because we 
had few disks and high theta value, so there was enough space in 
allocations. Figure 8 presents the final average response times. 
The response times in BD are always longer when compared to 
our algorithms. An interesting observation is that BD starts to 
increase its response times after Δ=4, but the proposed algorithms 
keep them low. This proves that our method is efficient in any 
relative frequency values. Similar results will be reported if we 
choose different θ, or different N. 
Varying the number of Disks (N) parameter 
In this experiment group we chose: M=5000,Δ=1, θ=0.95, N=1-9. 



 
Figure 9. Experimental results varying number of disks (N) 

The proposed algorithms, as we expected, did not give collisions 
again. Figure 9 presents the final average response times using all 
methods. The response times in BD are longer for N>4 than the 
response times of the proposed algorithms and are increasing 
significantly for N>6. In opposition, the proposed algorithms keep 
the response time low. This proves that our method is efficient in 
any number of disks. Similar results reported when we chose 
different θ, or different Δ. 
Varying the number of Data-Items (M) parameter 
Here we chose N=5, Δ=2, θ=0.55, M=50-10000. 
Figure 10a shows an interesting phenomenon: When we have a 
small database, the collisions are increased. In addition, we 
observe an evaluation of the collisions bounds order of the 
proposed algorithms (see properties of sub-section 3.5). Figure 
10b presents the final average response times. The response times 
in BD are always longer than the proposed algorithms. 

 

 
Figure 10. Experimental results varying data-items (M) 

It is important to note that in experiment groups with noise 
existence (10% to 75% deviations in client demand probabilities), 

proposed algorithms reported similar results. Thus, our method is 
efficient enough in noise existence. 

5. CONCLUSIONS 
In this paper we presented the problems and drawbacks of the 
well-known technique of Broadcast Disks. We gave motivations 
for better broadcasting programs and how important is to 
construct efficient program periods. To successfully support the 
demanding nowadays-broadcasting applications, we developed a 
new method followed by 3 different and simple algorithms, which 
construct improved and efficient broadcast programs. We 
presented analytical construction examples in each algorithm and 
their properties and bounds. We tested the proposed algorithms in 
simulation environments similar to the suggested by the authors 
of BD, which we extended to support and test our method. 
Simulation results show that the proposed algorithms have 
significant performance gains over the broadcast disks method in 
all parameters set-ups and situations. In all experiments our 
method results shorter program period, lower average delays, and 
is not affected from the use of prime numbers, numbers with no 
common divisors or any other for frequencies and data-item 
allocations. The big advantage of the proposed algorithms is that 
they can easily be applied in automation systems in broadcast 
servers, they can be easily integrated in hardware components and 
they can be executed very fast, supporting automatic creation of 
program periods in the servers, even if the set of data-items is 
modified rapidly and continuously on time, or even if there are 
large amounts of insertions, deletions and updates on the data-
items set. Also, our method can be successfully applied in multi-
broadcasting networks and sensor systems and as a future work 
we will modify the proposed algorithms to test them in such 
environments. 
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