
Capturing and Answering Questions
Posed to a Knowledge-Based System

Peter Clark1, Shaw-Yi Chaw2, Ken Barker2, Vinay Chaudhri5, Phil Harrison1, James
Fan3, Bonnie John6, Bruce Porter2, Aaron Spaulding5, John Thompson1, Peter Z. Yeh4

1Boeing Phantom Works, Seattle, WA 98124
2Dept of Computer Sciences, University of Texas at Austin, Austin, TX 78712
3Dept of Computer Sciences, UT Austin (current address: TJ Watson Research Lab, IBM, NY)
4Dept of Computer Sciences, UT Austin (current address: Accenture Technology Labs, CA)

5SRI International, Menlo Park, CA 94025
6HCI Institute, Carnegie-Mellon University, Pittsburgh, PA 15213

ABSTRACT
As part of the ongoing project, Project Halo, our goal is to
build a system capable of answering questions posed by
novice users to a formal knowledge base. In our current
context, the knowledge base covers selected topics in phys-
ics, chemistry, and biology, and our question set consists of
AP (advanced high-school) level examination questions.
The task is challenging because the questions are linguisti-
cally complex and are often incomplete (assume unstated
knowledge), and because the users do not have prior
knowledge of the system’s contents. Our solution involves
two parts: a controlled language interface, in which users
reformulate the original natural language questions in a
simplified version of English, and a novel problem solver
that can elaborate initially inadequate logical interpreta-
tions of a question by selecting relevant pieces of knowl-
edge in the knowledge base. An evaluation of the work in
2006 showed that this approach is feasible and that com-
plex, multisentence questions can be posed and answered,
thus illustrating novel ways of dealing with the knowledge
capture impedance between users and a formal knowledge
base, while also revealing challenges that still remain.

Categories and Subject Descriptors:
I.2.7 Natural Language Processing; I.2.8 Problem Solving
General Terms: Algorithms, Human Factors
Keywords: Controlled language, problem solving, ques-
tion answering, knowledge-based systems
INTRODUCTION
A key problem in capturing knowledge from people, in the
context of knowledge-based systems, is bridging the gap
between human language and formal (inference-
supporting) knowledge. Human language is complex,

broad, ambiguous, and often leaves information unstated
(assumed); a formal knowledge base, on the other hand,
requires precise and complete input. These differences cre-
ate a profound gap between humans and machines, posing
a major challenge for knowledge capture, and given that it
is generally difficult for users to directly author formal rep-
resentations, other approaches are needed to allow users to
extend and query formal knowledge bases.
We have been exploring this challenge in the context of
posing complex questions to a formal knowledge base
(KB), and our question set consists of AP (advanced high-
school) level examination questions. Our solution involves
two parts: a controlled language (CL) interface, in which
users reformulate the original questions in a simplified ver-
sion of English, and a novel problem solver that can elabo-
rate initially inadequate logical interpretations of a question
by selecting relevant pieces of knowledge in the knowledge
base. Our goal with the CL is to find a “sweet spot” of lan-
guage restriction that is both usable by people and under-
standable by machines. Our goal with the problem solver is
to systematically elaborate logical question interpretations
that reflect the original question but are still inadequate for
question answering because of missing information, before
passing them on to a deductive engine to solve. In this pa-
per, we present this approach and describe the results of an
extensive evaluation performed in 2006. The evaluation
illustrates that the approach is viable, and thus that we have
made some inroads into addressing these challenges, while
also revealing some major challenges that still remain.

USING A CONTROLLED LANGUAGE FOR
POSING QUESTIONS
While there has been considerable recent progress in cor-
pus-based question-answering, in which an answer is lo-
cated in a text corpus (e.g., the TREC competitions), our
context is somewhat different, namely posing questions to
a formal KB, in which a logical representation of the ques-
tion is needed for the reasoner to compute an answer. In
this context, typically the designer is caught between using
“fill in the blank” question templates (e.g., [1]), which se-
verely restricts the scope of questions that can be posed, or
attempting full natural language processing on questions,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
K-CAP’07, October 28–31, 2007, Whistler, British Columbia, Canada.
Copyright 2007 ACM.

which remains a challenging task. In our work, we have
aimed for a sweet spot between these two extremes, using a
controlled language (a simplified version of English) called
CPL (Computer-Processable Language) for posing ques-
tions, and feedback mechanisms to allow end users to con-
firm or modify their queries.
While there has been a substantial amount of prior work on
CL processing, much of it has been devoted to making text
easier for people to understand (e.g., [2,3]), rather than, as
is our goal here, for computers to understand. Despite this,
several ongoing projects with computer-processable lan-
guages have demonstrated their utility (e.g., ACE [4],
PENG [5]), GINO [6]), and the commercial success of
some CLs (e.g., AECMA simplified English [7]) suggests
people can indeed learn to work with restricted English.

Design of the Controlled Language
Figure 1 shows two typical AP questions in the physics
domain, and valid reformulations of them in our controlled
language CPL. As can be seen in the second example, the
onus is still on the user to spell out implicit commonsense
knowledge (e.g., the person is riding the bicycle; if the per-
son is traveling at 17 m/s then so is the bike; stopping the
bike means stopping the bike+person “object”) as well as
simplifying the grammar, and even then the reformulation
may be incomplete (in this case, the necessary knowledge
to determine the force required to stop the bike+person is
not specified); the subsequent section on the problem
solver describes how such incompleteness is handled.

Example 1 : Original Question:
An object is thrown with a horizontal velocity of 20
m/s from a cliff that is 125 m above level ground. If
air resistance is negligible, the time that it takes the
object to fall to the ground from the cliff is most
nearly (a) 3 s (b) 5 s (c) 6 s (d) 10 s (e) 15 s

Reformulation in CPL:
An object is thrown from the top of a cliff.
The initial horizontal velocity of the object is 20 m/s.
The initial vertical velocity of the object is 0 m/s.
The height of the cliff is 125 m.
The object falls from the top of the cliff to the
ground.
What is the duration of the fall?

Example 2 : Original Question:
A cyclist must stop her bike in 10 m. She is traveling
at a velocity of 17 m/s. The combined mass of the cy-
clist and bicycle is 80 kg. What is the force required
to stop the bike in this distance?

Reformulation in CPL:
An object moves.
The mass of the object is 80 kg.
The initial velocity of the object is 17 m/s.
The final velocity of the object is 0 m/s.
The distance of the move is 10 m.
What is the force on the object?

Figure 1: Two example questions reformulated in CPL.

The language of science questions involves a variety of
linguistic phenomena that need to be either handled auto-
matically in CPL or easily reformulated by the user into
CPL through training or advice. To identify these, we con-
ducted an analysis of AP science questions (105 sentences
from 36 questions), identifying 29 phenomena and their
frequency of occurrence, shown in Figure 2. This provides
a basis for some of the language features and reformulation
advice that the system offers. The original version of CPL,
prior to this project, already handled nominalizations, pas-
sives, plurals, prepositional phrases, relative clauses, direct
anaphora, and a limited form of conjunction. It has been
extended to also handle chemical equations (through a spe-
cial chemical equation parser), interrogatives, indirect
anaphora (described shortly), comparatives, variables, and
physical quantities. For the remaining phenomena, if they
are used, then CPL offers reformulation advice to the user
on how to rephrase the sentence so it can be understood
(described shortly).

Figure 2: Occurrence (percent of AP question sen-
tences) of different linguistic phenomena.

Computer-Processable Language (CPL)
A basic CPL sentence has the form

subject + verb + complements + adjuncts
where complements are obligatory elements required to
complete the sentence, and adjuncts are optional modifiers.
Users follow a set of guidelines while writing CPL. Some
guidelines are stylistic recommendations to reduce ambigu-
ity (and hence misinterpretation), while others are firm
constraints on vocabulary and grammar. Some examples
are:
• Keep sentences as short and simple as possible.
• Use just one clause per sentence.

• Assume the computer has no common sense. State the
obvious in the question.

• Identify and describe the objects, events, and their prop-
erties involved in the question.

• Use “a” to introduce an item, & “the” to refer back to it.
• Use “first” and “second” to distinguish two of the same

kind of items.
• Use “There is a …” if needed to introduce an object.
• Do not mix groups and group members in a scenario.
• Avoid using pronouns, instead refer using a name (“the

block”, “the table”).
• Begin a question with the words “What is”, “What are”,

“How many”, “How much”, or “Is it true that”.
• Restate a multiple-choice question as a set of simple

questions.
• Ask for just one value in a single question.
• Set up a question by talking about one specific object.
• Use a question or statement in place of a command (im-

perative).
• Always include a unit of measure after a numerical

value, or the word “units”.
The full list of guidelines along with examples is given in
the CPL user’s guide [8].
In addition, there are some grammatical and vocabulary
restrictions, similarly designed to reduce ambiguity and
guide the user away from difficult-to-interpret structures.
For example, words of uncertainty (e.g., “probably”,
“mostly”) are not allowed, not because they cannot be
parsed but because their representation is outside the scope
of the final logical language. In all these cases, when a vio-
lation occurs, CPL’s advice system (described shortly) re-
ports the error and offers extensive rewriting suggestions
with examples to help the user rephrase sentences.
For example, instead of writing

Assume you are told that the best estimate of the mass of
Planet X is 400 kg.

a valid reformulation would be (short sentences, no impera-
tives)
 The mass of Planet X is 400 kg.
Similarly, instead of writing

A block starting from rest…
a valid reformulation would be (identify the objects and
their properties)

The initial velocity of the block is 0 m/s.
The choice of these restrictions is not based just on the
difficulty of processing, but also on how easy it is for the
user to work with them. For example, although many NLP
systems perform pronoun resolution moderately well, it is
easy for a user to simply refer by name and thus avoid pos-
sible resolution errors in the interpretation. The same is true
for other phenomena, e.g., imperatives, disjunctions.

CPL Interpreter
We now briefly describe the CPL interpreter itself; further
details are provided in [9]. Parsing is performed using

SAPIR, a mature, bottom-up, broad coverage chart parser
[10]. During parsing, the system also generates a “logical
form” (LF). The LF is a simplified and normalized tree
structure with logic-type elements, generated by rules par-
allel to the grammar rules, that contains variables for noun
phrases and additional expressions for other sentence con-
stituents. Some disambiguation decisions are performed at
this stage (e.g., structural, part of speech), while others are
deferred (e.g., word senses, semantic roles), and there is no
explicit quantifier scoping. An example LF is as follows,
where DECL, S, VAR, and PP stand for Declarative, Sen-
tence, Variable, and Prepositional Phrase:

;;; LF for “A ball falls to the ground.”
(DECL ((VAR _X1 “a” “ball”)
 (VAR _X2 “the” “ground”))
 (S (PRESENT) _X1 “fall” (PP “to” _X2)))

The LF is then used to generate ground logical assertions
containing existentially quantified variables. First, a set of
simple, syntactic rewrite rules is applied recursively to the
LF to transform it into a set of ground, binary clauses of the
form r(x,y), where each syntactic relation and preposition
becomes a binary predicate:

syntactic-object(?f,?b)
“to”(?f,?g)
word-for(?b, [“ball”,noun])
word-for(?g, [“ground”,noun])
word-for(?f, [“fall”,verb])

Next, word sense disambiguation and semantic role as-
signment is performed. Because we are working in a re-
stricted domain, word sense disambiguation is considerably
easier than with a broad coverage application, as the choice
of senses is constrained to the concepts in the KB. In addi-
tion, WordNet [11] is used to help expand the vocabulary
of words recognized by CPL. To disambiguate a word, first
its WordNet senses are found, and then CPL looks to see if
any are mapped directly to a KB concept (each concept in
the KB has a list of associated WordNet synsets). If one or
more are found, the most likely sense is selected based on
corpus frequency statistics. If not, CPL searches up Word-
Net’s hypernym (generalization) tree until a synset that is
mapped to a KB concept is found. In this way, specific
words like “bicycle” or “cliff” can be used by the user,
although they are not explicitly in the KB, as they are
mapped through this process to more abstract KB concepts
(e.g., VEHICLE and PHYSICAL-OBJECT, respectively). Then,
semantic roles are identified using a small rule base, e.g.,
for “of”(x,y), if x is an OBJECT and y is a MATERIAL, then
“of”(x,y) maps to made-of(x,y). Here, the result is

;;; Logic for “A ball falls to the ground”
isa(?b,HOLLOW-BALL)
isa(?g,PHYSICAL-OBJECT)
isa(?f,FALL)
object(?f,?b)
destination(?f,?g)

Finally, other structural reorganizations are performed,
including coreference resolution and for coordination.

In addition, two modules for recognizing and correcting
some semantic errors in the interpretation are applied, es-
sentially correcting some types of “loose speak” (e.g., me-
tonymy) by the user. These modules essentially look for
constraint violations in the interpretation, e.g., on type con-
straints on a predicate’s arguments, and if found search for
a minimal edit that will remove the violation using the KB
for guidance [12,13]. This helped reduce, but not eliminate,
the impedance between the question-asking module’s out-
put and the problem solver. The query itself is represented
as variables to find values for, or a special directive to the
problem solver indicating specific question types, e.g., de-
termining the similarities or differences between entities
mentioned in the question.

Interactive Question-Asking Process

Figure 3: Overall process of using CPL.

While having a controlled language makes interpretation
more reliable, it also introduces the challenge of having the
users learn to use it. To facilitate this, the CPL interpreter is
integrated with two other components, namely, an advice
system that detects CPL errors and provides reformulation
advice, and an interpretation display system that presents
the system’s understanding of the question (both as English
paraphrases and graphically) so the user can check that the

system understood correctly. Figure 3 illustrates the overall
process of using CPL in this environment. First, the user
reformulates the original question in CPL. If there are CPL
errors, the system pinpoints them and offers rewriting ad-
vice, and the user fixes the mistakes. If the user’s reformu-
lation is valid CPL, the system creates a logical interpreta-
tion, and presents that back to the user both as an English
paraphrase and as a conceptual graph containing terms and
relations. The user can then inspect the system’s under-
standing to make sure that it is correct, and if so, invokes
the problem solver to attempt answering it.

Advice System
The advice system currently contains 106 advice messages,
triggered when the user violates a CPL guideline. Gram-
matical violations are detected when grammar rules outside
the scope of CPL, but within the scope of full English, are
used in the formulation, and thus targeted rewriting advice
can be given. In addition, vocabulary can indicate errors,
e.g., using a banned word. For example, if the user forgets
a unit of measure (e.g., the user enters “The initial velocity
of the object is 17”) the system responds

Always specify a unit for numbers (e.g., “10 m”, not
“10”). Use the word “units” for dimensionless units.
e.g., Instead of writing: “The velocity is 0.”
 write “The velocity is 0 m/s..”

Note that the examples in the advice messages are canned
text, not an automatic rewrite of the user’s actual input
(otherwise CPL could simply do the rewrite itself). In gen-
eral, automatic rewording would be very challenging, espe-
cially with longer, more complex sentences.

Interpretation Display System
When the system generates a logical interpretation of the
user’s question, it shows its understanding back to the user
in two ways:
1. As a set of English paraphrases of the logic, i.e., the

question is “round-tripped” from the user’s CPL, to
logic, to a machine-generated English paraphrase.

Figure 4: The initial question
interpretation (left side) does
not contain enough informa-
tion to solve the problem
(missing information about
how the object accelerates). To
address this, the problem solver
searches for models that can
answer the question, including
by making assumptions, and
elaborates the question scenario
so those models can be applied.
In this case a model that as-
sumes constant acceleration is
found to be able to answer the
question, and so is used.

2. As a graph, where nodes represent objects or events in
the question scenario (individuals), and edges represent
relationships (binary predicates). If errors are apparent
here, the user has the option of editing the graph (lim-
ited to renaming nodes or edges), or reformulating the
original sentences. The left side of Figure 4 shows the
graph produced for the second example in Figure 1.

The goal of the interpretation display system is to allow the
user to validate if the system has understood the question
correctly. Both the graph and paraphrases are intuitive
visualizations allowing users to identify interpretation er-
rors without becoming familiar with the content of the
knowledge base. In debriefs after the evaluation, users re-
ported that the graphical presentation was the most useful.

PROBLEM SOLVER
While the CPL interface helps produce a valid, logical in-
terpretation of the user’s question, this is often not enough
to produce an answer. Fundamentally, answering science
questions requires not just “doing computation”, but work-
ing out how facts in a question can be mapped onto an ab-
stract model capable of deriving an answer. It is this ability,
more than any other, that characterizes a good scientist. For
example, in physics one may have learned models (a sys-
tem of objects, parameters, relationships, and equations)
about falling from rest, or two-object collision, or move-
ment with friction. Then, given a new problem about a spe-
cific object moving in a specific way, the challenge is to
map this problem onto the appropriate model such that an
answer can be derived. In some cases, the question will
provide exactly the right information so that the appropriate
model can be applied through standard deductive reasoning
(e.g., inheritance). However, this is rarely the case, and as a
result a search is needed to find potentially applicable
models, some making assumptions unstated in the question,
to see if they can be used to answer the question. The prob-
lem solver aims to do exactly this, matching the formalized
question against models in the KB (i.e., axioms encoding
minitheories, such as (in physics) FALL-FROM-REST with
equations relating the time, distance, and acceleration of
the falling object), and thus enable questions whose initial
interpretation could not be solved directly to be answered.

Example
To illustrate how this works, consider the second question
shown earlier in Figure 1, whose logical interpretation is
sketched in the left side of Figure 4, asking how much
force is required to stop a moving object. The logical inter-
pretation, the input to the problem solver, consists of two
parts. First, the scenario contains the setup of the question,
represented with instances of EXERT-FORCE, PHYSICAL-
OBJECT, and MOVE. Second, the query identifies the vari-
able of interest – in this case, the net-force of the EXERT-
FORCE event – shown as the node with a question mark.
Solving this question requires applying relevant equations
to determine the acceleration of the MOVE and the net-force

exerted to cause it. Axioms about the general concepts
(e.g., MOVE) in the scenario on the left in Figure 4 do not
contain the necessary information (e.g., equations) for cal-
culating the net-force required to move the object. As a
result, the reasoner is unable to compute an answer to the
query. In fact, these equations are found in the axioms
about two other concepts (models) in the knowledge base
not mentioned in the scenario, namely, MOTION-WITH-
CONSTANT-ACCELERATION and MOTION-UNDER-FORCE.
Figure 4 shows the differences between the inadequate
scenario returned by question interpretation and the sce-
nario necessary for answering the question. We thus would
like the problem solver to search for such models in the KB
to elaborate the inadequate scenario so that an answer can
be deduced.

State-Space Search
The problem solver systematically explores the search
space (building a graph of the space) until it finds an elabo-
rated scenario that can be used by the reasoner to return a
solution for the question. Figure 5 shows the search graph
created in solving the example question.

States
Each state in the state space graph represents a scenario.
The initial state represents the original scenario returned by
question interpretation. All other scenarios in other states
are elaborations of the original scenario, i.e., the scenario
with additional axioms applied to it. In Figure 5, State 1,
which is the initial state, contains the original interpretation
of the example question and all other states in the graph are
elaborations of it.

Figure 5: Problem solving search graph example.

Operators
Operators elaborate one scenario (a state) to produce an-
other one. Every scenario can be elaborated by potentially
many concepts in the knowledge base. Operators are cre-
ated from the set of concepts that can be applied to elabo-
rate the scenario. The set of applicable concepts is selected
from the knowledge base using a flexible semantic matcher
[12]. The matcher works by comparing the facts in the sce-
nario with the axioms about each concept to find the “big-
gest overlap”; formally, both the scenario facts and concept
axioms are internally represented as graphs (similar to con-
ceptual graphs). The matcher uses knowledge (about how

their concepts and relations subsume each other) to find the
largest connected subgraph in one representation that is
isomorphic to a subgraph in the other. This matcher then
uses a library of about 200 generic transformation rules to
shift the representations to improve the match. This im-
provement might enable other subgraphs to match isomor-
phically, which in turn might enable more transformation
rules to apply until the match improves no further.
A successor state containing an elaborated scenario is cre-
ated when an operator is applied to a state. This elaborated
scenario includes new knowledge introduced by axioms
about the concept from which the operator was created. In
Figure 6, the scenario graph for state 2 in Figure 5 is cre-
ated when Operator A is applied to State 1.
Control Strategy
The search graph is expanded in a breadth-first manner.
The application of operators is based on the degree of
match between the scenario in the state and the selected
concept. In Figure 5, Operator A has a higher priority than
Operator B because the concept MOTION-WITH-CONSTANT-
ACCELERATION has a higher degree of match to the sce-
nario in State 1 than the concept MOTION-UNDER-FORCE.

Goal Test and the Goal State
The goal test determines if the scenario of a state is capable
of returning a solution. In Figure 6, State 2 fails the goal
test because it does not answer the question – its scenario
does not return a value for the net-force of the EXERT-
FORCE event. The scenario in State 5 satisfies the goal test
as its scenario returns a numeric value, i.e., -1156 Newtons,
as the solution.

Result
In this way, the problem solver helps bridge the gap be-
tween the initial formalization of the user’s question, and
the internal science models (axioms) encoded in the KB,
arguably the biggest challenge to overcome for the whole
question capture and answering process. In the next sec-
tion, we evaluate the effectiveness of the full question ask-
ing and answering pipeline.

EVALUATION
Methodology
The question-answering system, along with a separate
knowledge acquisition system used to build KBs (not de-
scribed here, see [14]), was extensively evaluated during
May and June 2006. Experts first built KBs about physics,
chemistry, and biology (outside the scope of this paper).
Then, of interest here, a different set of users attempted to
pose AP-level questions using CPL to the KBs and re-
ceived answers. For this task, there were two users in each
domain (physics, chemistry, biology), four being under-
graduates and two being graduate students. They each re-
ceived 6 hours of training in using CPL, followed by a
week (each) using the question-asking system.

Overall Accuracy
Table 1 shows the accuracy measures obtained for the
overall system’s question-answering performance. Note
that a correct answer requires not only a good interpretation
of the user’s question and good reasoning, but also that the
user had given enough information to solve the problem in
the first place (e.g., making commonsense facts explicit),
and that the KB itself had the knowledge to answer the

Figure 6: Scenario graph examples showing states 1, 2, and 5 from the search graph of Figure 5. State 1 is the initial
state containing the original scenario graph for the question. State 2 is the scenario graph that results from elaborating the
scenario graph in State 1 using the MOTION-WITH-CONSTANT-ACCELERATION concept in the knowledge base being queried.
This elaboration introduced an equation that calculates the acceleration of the MOVE event to be 14.45 m/s2.

question. Thus these figures only represent a lower bound
on the performance of the QA system.
The most important conclusion from this result is that this
approach to question asking is viable; in particular, many
of the questions (especially in physics) were multiple sen-
tences, involving a scenario description and a query posed
to that scenario. The fact that a controlled language ap-
proach was able to interpret at least some questions of this
complexity, and the problem solver able to map them onto
appropriate science models, is a significant achievement.
However, there were also many cases where questions
were not answered, as we now discuss.
Table 1: Overall correctness scores for question an-
swering. 6 users (2 in each science) each posed questions
to 6 KBs (2 in each science, each built independently).

Percentage correct
Domain

of
questions User1 User2 Average

Biology 146 52% 24% 38%
Chemistry 86 42% 33% 37.5%

Physics 131 16% 22% 19%

Credit and Blame Analysis
To examine which failures were due to the question-
answering system itself, and which were due to other
causes, we performed a blame assignment study by exam-
ining the CPL, system’s reasoning, and KBs in detail for a
random sample of cases where the system produced an
incorrect (or no) answer. We found that
• In about one-third of the cases, the knowledge required

to answer the question was simply missing in the KB,
i.e., the question was inherently unanswerable.

• In about one-third of the cases, while the CPL question
had been interpreted correctly, the user had omitted
some essential information (e.g., not made a common-
sense fact explicit) in the original formulation, so that
again the question was inherently unanswerable given
that the KB did not contain that knowledge.

• In about one-third of the cases, the CPL interpreter had
misinterpreted the CPL English (and the misinterpreta-
tion not been recognized and corrected by the user) or
the problem solver had failed to generate a solution.

Thus, at least from this sample, about 1/3 of the failures in
the overall scores were due to failure of the question-
answering machinery itself. The full analysis is provided in
[15]. This shows that, while successful, there is still con-
siderable room for improvement. In particular, it shows the
need for further improving reformulation advice, and fur-
ther improving the interpretation display so that it is more
obvious to the user when the system has made a mistake.

Reformulation Actions by the User
Although users were able to create a correct CPL formula-
tion of the questions in many cases, they rarely “got it
right” the first time. A metric we have found useful is
“mean tries to completion” (MTC), namely, the number of
attempts a user had at formulating a question before either

getting a satisfactory answer from the computer (during the
subsequent question-answering step) or giving up. Table 2
shows this statistic computed from a random sample of
questions in each science. This table shows that typically
users took about six attempts to get an answer (or give up)
in physics and chemistry. In biology, the MTC was a lot
less, primarily because questions were typically about defi-
nitions and properties (e.g., “What is an X?”), in sharp con-
trast to the often complex “story” questions posed in phys-
ics, and the algebraic questions posed in chemistry.
Table 2: Users typically made two to six attempts to
reformulate a question before success or giving up.

 Mean tries per question
Physics 6.3
Chemistry 6.6
Biology 1.5

Again care needs to be taken to interpret this data, as some
of the reformulation attempts were not due to failure of the
CPL interpreter itself but of the subsequent question-
answering process (e.g., missing knowledge). To explore
this further, we identified 13 types of reformulation actions
that users performed when re-attempting a question. Figure
7 summarizes the frequency of these actions, as seen on a
random sample of questions. From this analysis, and from
the traces, the users appeared to have little trouble working
within CPL’s grammar restrictions (only a few actions
were in response to a CPL violation). Rather, the major
challenge the users had was finding the right wording that
enabled the system to answer the question. In general, there
are only certain wordings that translate to logical forms that
trigger the right problem-solving process. In many cases
the users appeared to be performing trial-and-error guess-
ing until they hit a wording that worked, or they gave up.
For example, chemistry question E6 asks whether a com-
pound is insoluble. The users tried multiple ways of talking
about solubility (“soluble”, “dissolve”, “solution”, “insolu-
ble”) until finally hitting on “solubility” as a property for

Figure 7: Frequency of users’ reformulation actions.

which the system was able to give a value. While these
earlier attempts all translate into valid logical expressions,
typically the KB was not able to answer either because of
missing knowledge (e.g., the relation between a dissolve
action and solubility) or limitations of the problem solver.

The Problem Solver
The goal of the problem solver is to match the interpreted
question with a solution method (model) capable of an-
swering it, including cases where there may be unstated
assumptions in the question, thus performing elaboration
(but not correction) of the interpreted question. To evaluate
whether the problem solver is helping, we performed a
separate study on the two physics KBs (KB #1 and KB #2)
created for the evaluation, plus a third physics KB created
by a trained knowledge engineer (KE). To test them, we
used the question formulations from the earlier evaluation
(combining the two users’ sets), using those formulations
that produced a correct answer on at least one of these three
KBs (67 formulations). We investigated whether switching
off the elaboration mechanism in the problem solver re-
duced the correctness score on this set. The results are
shown in Table 3, and they demonstrate the problem
solver’s usefulness in broadening the range of questions
that can be answered by the system. Chaw et al. [16] pro-
vides a detailed description of the problem solver.
Table 3: Percentage accuracy without and with the heu-
ristic elaborations performed by the problem solver, on
questions that at least one of the three KBs can answer.

 KB #1 KB #2 KE
Without elaboration 9.0% 17.9% 0%

With elaboration 61.2% 56.7% 61.2%

CONCLUSIONS
Capturing and answering questions posed to a knowledge
base, a special case of formal knowledge capture from peo-
ple, is challenging because it requires bridging the chasm
between human language and formal knowledge. In this
work we have developed a solution using a controlled lan-
guage embedded in an interactive interface, coupled with a
problem solver capable of aligning formalized questions
with solution methods, even when the formalized question
is itself incomplete (e.g., missing assumptions). In our ex-
periments, users were able to successfully pose and get
correct answers to a large number of questions, including
complex, multisentence questions beyond the scope of pre-
vious approaches. This result is significant as it demon-
strates our approach to be viable, and thus may have appli-
cations beyond question answering to other knowledge
capture environments (e.g., the Semantic web). However,
our evaluation also shows several challenges. In particular,
it still requires several attempts and some cognitive effort
on the user’s part to pose questions successfully. In cases
where the system is unable to answer, the user is often left
guessing about how to reformulate the question for another
attempt. Despite this, our evaluation reveals that the ap-

proach is workable, and we are thus optimistic and believe
that a combination of controlled language and flexible rea-
soning has a role to play for human-machine interfaces of
the future.

ACKNOWLEDGMENTS
We are grateful to Vulcan Inc, which funded this work as
part of Project Halo.

REFERENCES
[1] Clark, P., Chaudhri, V. et al. (2003). Enabling Domain

Experts to Convey Questions to a Machine: A Modi-
fied, Template-Based Approach. In KCap’03.

[2] Hoard, J., Wojcik, R., Holzhauser, K. (1992). An
Automated Grammar and Style Checker for Writers of
Simplified English. In Computers and Writing.

[3] Mitamura, T., Baker, K., Nyberg, E., Svoboda, D.
(2003). Diagnostics for Interactive Controlled Lan-
guage Checking. In Proc. CLAW’03.

[4] Fuchs, N. E., Schwertel, U., Schwitter, R. (1998). At-
tempto Controlled English. In Proc. LOPSTR’98.

[5] Schwitter, R., Tilbrook, M. (2004). PENG: Proc-
essable ENGlish. Technical report, Macquarie Univer-
sity, Australia.

[6] Bernstein, A., Kaufmann, E. (2006). GINO – A
Guided Input Natural Language Ontology Editor. In
ISWC’06.

[7] Aerospace and Defence Industries Association of
Europe (2005). ASD Simplified Technical English.
Specification ASD-STE100.

[8] Thompson, J., Clark, P. (2006). Guide for CPL Users,
Version 7.5. Technical Report, The Boeing Company.

[9] Clark, P., Harrison, P., Jenkins, T., Thompson, T.,
Wojcik, R. (2005). Acquiring and Using World
Knowledge Using a Restricted Subset of English. In
Proc FLAIRS’05.

[10] Harrison, P., Maxwell, M. (1986). A New Implementa-
tion of GPSG. In Proc. 6th Canadian Conf on AI.

[11] Miller, G., Fellbaum, C. (1998). WordNet: An Elec-
tronic Lexical Database. The MIT Press.

[12] Yeh, P., Porter B., Barker K. (2006). A Unified
Knowledge Based Approach for Sense Disambigua-
tion and Semantic Role Labeling.. In Proc.AAAI’06

[13] Fan, J., Porter, B. (2004) Interpreting Loosely Encoded
Questions. In AAAI’04.

[14] Chaudhri, V., John, B., Mishra, S., Pacheco, J., Porter,
B., and Spaulding, A. Enabling Experts to Build
Knowledge Bases from Science Textbooks. In Proc.
KCap’07.

[15] Chaudhri, V. et al. (2006). AURA: Automated User-
Centered Reasoning and Acquisition System. Techni-
cal Report, SRI International.

[16] Chaw, S. Y., Porter, P., Barker, K., Yeh, P. (2007).
Towards an Ontology-Independent Problem-Solver.
Technical Report, AI Lab, Univ. Texas at Austin.

	ABSTRACT
	INTRODUCTION
	USING A CONTROLLED LANGUAGE FOR POSING QUESTIONS
	Design of the Controlled Language
	Computer-Processable Language (CPL)
	CPL Interpreter
	Interactive Question-Asking Process
	
	Advice System
	Interpretation Display System

	PROBLEM SOLVER
	Example
	State-Space Search
	States
	Operators
	Control Strategy
	Goal Test and the Goal State
	Result

	EVALUATION
	Methodology
	Overall Accuracy
	Credit and Blame Analysis
	Reformulation Actions by the User
	The Problem Solver

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

