
~ A S E

A S e l f - A s s e s s m e n t

b Y g n h e _ S o f t _ w a r e
g l n e e r l n g

m u n i t y

is increasingly identified
as a critical constraint in the realization of all types of industrial and commer-
cial systems. The findings of the last International Workshop on Computer-
Aided Software Engineering (IWCASE), summarized here with a fair degree
of editorial license, represent a cross section of opinions and perspectives from
over 200 experts in software development technology from the academic, sup-
plier and user communities. In effect, it constitutes one self-assessment of
how well our profession is meeting the challenge of building a respectable engi-
neering discipline, and the design automation tools required to support it.

IWCASE defines CASE in the
broadest terms, namely tools and
methods to support an engineering
approach to software development
at all stages o f the process. By "en-
gineering approach" we mean a
well-defined, coordinated and re-
peatable activity with widely ac-
cepted representations, design
rules and standards o f quality.
Tools that support such a software-
engineering discipline are, by our
definition, CASE tools, regardless
of the specific phase, task or nota-
tion.

CASE has been successful

in focusing attention on the need to
establish software development as
an engineering discipline. By auto-
mating many of the more routine
software development tasks and
performing automatic transforma-
tions between representations,
CASE has (under the right circum-
stances) demonstrated an ability to
boost productivity and prevent de-
fects. Advanced tools are making it

more feasible to introduce semifor-
mal and formal methods to the de-
velopment process by removing
clerical overhead, enforcing rigor-
ous design rule checking and ex-
ploiting expert systems technology
to guide the specification process.
Some CASE tools can enhance team
efforts through coordination tech-
nology, project-wide consistency
checking and shared design data.
In some domains CASE Tools help
unlinearize the software develop-
ment process, making it more inter-
active and consistent with the way
people really think and work.

2 8 April 1992/V~1.35, No.4/COMMUNICATIONS OFTHE ACM

http://crossmark.crossref.org/dialog/?doi=10.1145%2F129852.129854&domain=pdf&date_stamp=1992-04-01

C A S E

But CASE is no panacea. We
have only jus t embarked on a quest
for excellence in software develop-
ment. Many problems remain and
debates still rage over which ap-
proaches are the most effective. In
this context, the IWCASE findings
on CASE become one yardstick by
which we can gauge our present
status as a profession, and a base-
line for evaluating future progress.

Among the greatest challenges
ahead is the need for t ighter inte-
gration among tools in a manner
that supports openness to a variety
of methods, notations, processes,
tools, and platforms. Unders tand-
ing the software development pro-
cess and getting developers to use
software-engineering techniques
correctly and consistently will re-
main a problem, especially in the
face of evolving technology. A
more disciplined approach to soft-
ware process engineer ing is needed
employing metrics, feedback and
continuous improvements. Man-
agement will have to take a long-
range economic perspective, mod-
ify objectives and incentives, and
incorporate principles of Total
Quality Management to ensure the
ultimate success of CASE.

Underlying Themes
Threaded throughout many of the
conference results were the themes
of software quality, software devel-
opment process, and management
of expectations.

Quality is often cited as a pri-
mary objective for the pursui t of
CASE. An essential concept behind
the search for software quality is
the replacement of defect detection
and elimination (the tradit ional
approach) with defect prevention.
Prevention begins with better ways
to capture, represent and validate
the objectives and requirements of
systems we are trying to build, and
continues with verifiable transfor-
mations and ref inements on the
way to physical realization.

While CASE has already
achieved substantial success in de-
fect prevention, we are reaching a
plateau due to the limits of our

knowledge about the software de-
velopment process. We need fur-
ther research, as well as better met-
rics and metric collection facilities,
to guide us toward cont inued im-
provement in the future.

But continuous improvement is
based on the premise of a well-
def ined software development pro-
cess. There is still much work to be
done in def ining generic processes,
and domain-specific variants, un-
ders tanding how they relate to
product quality, and discovering
how and why they break down in
actual practice. Areas that are par-
ticularly weak in process definit ion
are requirements elicitation, soft-
ware maintenance, reengineering,
and object-oriented techniques.

Management attitudes and ex-
pectations with respect to software
development must change to match
the reality. Software development is
becoming a more complex and cap-
ital-intensive business. Informat ion
and the software that manipulates it
are key strategic resources. To re-
main competitive, managers must
acknowledge that software activity
requires a major long-term com-
mitment to technology insertion,
human resource development and
organizational change, with a com-
mensurate allocation of capital.

Existing Systems
There is general agreement that
tools are not effective without a
suppor t ing method to guide their
use. Currently, CASE for software
maintenance and reengineer ing is
being hampered by the lack of a
def ined process. It is not surpris-
ing, therefore, that available tools
address only a port ion of the main-
tenance activity and are not well
integrated with tools for new devel-
opment .

All indications are that the de-
sign recovery process will involve
incremental p rogram unders tand-
ing for the foreseeable future. Re-
verse engineer ing tools must be
highly interactive and facilitate the
capture of information with storage
in a shared database or CASE re-
pository. Where software is being

salvaged for reuse, we need better
ways to capture explicit informa-
tion about business rules and poli-
cies; technology models; applica-
tion form, fit, and function; and
design intentions, history and ra-
tionale.

A class of suppor t that has been
largely overlooked is decision sup-
por t tools for software portfolio
analysis, build/buy analysis, main-
tain/rebuild analysis, and reuse/
start-from-scratch analysis. The
generally accepted economic mod-
els associated with software main-
tenance and evolution may have to
be replaced with new models that
recognize the longevity of applica-
tions, the inevitability of externally
driven application modifications,
the value of reusable assets, the true
cost of new development , the op-
portuni ty costs related to time-to-
market, and the impact of CASE
technology.

Technology Transfer
A key challenge for CASE contin-
ues to be the management of tech-
nology insertion. Success with
CASE depends critically on plan-
ning, managing expectations and
early experiences with the technol-
ogy. While there is no way to guar-
antee the initial success of CASE,
exper ienced users cite adequate
planning, preparat ion, training,
capitalization, and executive in-
volvement as factors that greatly
increase the probability of an ac-
ceptable outcome. Common causes
of failure include a short- term,
"silver-bullet" at t i tude on the part
of management , inadequate infra-
structure (including planning pro-
cess, t raining and tools), under-
capitalization, inability to share a
vision at all levels of the organiza-
tion, and failure to match methods
and tools to the organization's cur-
rent level of maturity. Success with
CASE depends partly on manage-
ment's willingness to accept a long
time horizon to evaluate payback,
and a global (strategic and com-
pany-wide) perspective on CASE
benefits. Early "failures" must be
viewed as learning experiences

COMMUNICATIONSOFTHEACM/Apr;] 1992/Vol.35, No.4 29

C A S E

rather than a condemnation of the
technology or individuals. In gen-
eral, economic models need to be
revised so they lead to correct in-
vestment conclusions, especially in
the areas of software maintenance,
reengineering and reuse.

Technology insertion could be
aided by CASE tools that are scal-
able in their functionality and com-
plexity (as well as cost), with a
smooth transition path to more
sophisticated usage. The potential
for tools to aid in the implementa-
tion of CASE itself has not yet been
adequately explored.

Technology transfer from re-
search to commercial enterprise
could be improved by developing
explicit transition process models,
realistic expectations, and better
role definitions for those involved.
A cooperative model appears to be
more appropriate and more effec-
tive than one-way transition mod-
els. Better documentation of both
technology insertion and technol-
ogy transfer are needed to refine
process and economic models and
to support claims of long-term pay-
back.

Effective widespread deploy-
ment of CASE will require greater
emphasis on software engineering
in university and commercial train-
ing curricula. This means focusing
on generalized problem-solving
skills, as well as software-specific
formal and informal methods, re-
quirements elicitation, architectural
(i.e., system-level) design principles,
team coordination and manage-
ment, process engineering, and
quality management techniques.
Instructors should encourage the
recognition of, and adherence to,
engineering standards and disci-
plines, and strive to shift predilec-
tions toward reuse and system-level
design. In general, commercial
training should set more realistic
expectations for CASE and provide
a better balance between potential
benefits and pitfalls.

Group and Process
Management
A major dimension of the software

challenge is scaling up for very
large projects requiring many soft-
ware engineers. To significantly
improve coordination and over-
come the overhead costs associated
with interpersonal communication,
we need better specification lan-
guages, better understanding of
processes, and advanced coordina-
tion technology--or so-called
groupware. Further research is
needed on how to capture and for-
malize requirements and specifica-
tions. We also need research on
how to organize and describe the
development process, its own inter-
nal information requirements, in-
teractions and products.

We have little agreement on basic
definitions of quality and produc-
tivity or metrics that could indicate
progress in these areas. Automatic
collection of metrics on software
artifacts as well as developer behav-
iors and interactions could provide
raw data useful for gaining a better
understanding of software devel-
opment.

Coordination technology re-
quires an underlying capability in-
cluding fast, reliable multimedia
communication over heteroge-
neous networks, and broadcast
messaging. Beyond the current
email tools, we need comprehensive
task, defect and change manage-
ment, multimedia electronic con-
ferencing, and learning support for
new team members.

Enabling Technologies
It is becoming apparent that a sin-
gle design method will not ade-
quately address all application
domains, or be effective for mainte-
nance and reengineering as well as
new development. Also, differences
in skill levels, styles, attitudes, cul-
tures, goals, and constraints de-
mand highly tailorable CASE tools.
The goal is a technology that can
accommodate many methods, nota-
tions, styles, and levels of sophis-
tication, while supporting a rigor-
ous software-engineering process.
Both the techniques for describing
and analyzing various software de-
sign methods, and the tool technol-

ogy to accommodate multiple
methods, are subjects of growing
interest. Collectively referred to as
metaCASE, the study and support
of tailorable methods promises to
improve the acceptance and effec-
tiveness of CASE in the future by
"meeting developers where they
are" and by enabling more special-
ized approaches for specific appli-
cation domains. MetaCASE capa-
bilities can be achieved through
modifiable metamodels to describe
methods and drive tool behavior.
Tools should also be flexible on a
personal level--customizable to
user style preferences and scalable
in functionality to match the user's
current level o f expertise.

Another enabling technology on
the horizon is tool integration facili-
ties. For the most part, mainte-
nance, testing, domain-specific
modeling, project management and
quality assurance tools are not well
integrated with generic analysis,
design and construction tools. Tool
framework and repository defini-
tions should be expanded to incor-
porate these functions in a seamless
manner. Potential CASE users are
looking for open environments
spanning life cycle stages, develop-
ment roles, distributed networks,
and multivendor tools and comput-
ing platforms. Realizing the full
power of second-generation tools
will require data integration facili-
ties (repositories) supporting high-
volume management of small-grain
objects with subsecond response in
a distributed architecture. CASE
repositories should support unlim-
ited relationships among objects
with full version and configuration
management.

Lack of industry standards is
inhibiting progress in CASE inte-
gration. Industry participants, es-
pecially computer systems manu-
facturers, could improve the
situation by supporting full time,
fully committed personnel on stan-
dards committees, by prototyping
proposed standards before adop-
tion, by adhering to standards in
commercial products, and by
agreeing on a common" reference

3 0 April 1992/%1.35, No,4/COMMUNICATIONS OF THE ACM

C A S E

model for future proposals and
evaluations. Nevertheless, it is ac-
knowledged that CASE integra-
tion standards are not mature and
will continue to evolve in the fu-
ture. Operational experience with a
small number of alternative
metamodels would bring us closer
to realization of standard integra-
tion frameworks. CASE integration
standards should be defined, in
light of developments in related
disciplines (such as electrical and
mechanical engineering, electronic
data interchange, multimedia, and
imaging) to ensure appropriate in-
teroperability, or at least the possi-
bility of future extensions in those
directions.

Anticipated challenges, beyond
technical integration, include de-
fining responsibility for mainte-
nance and support in a multiven-
dot environment. Also, a fully
integrated CASE environment will
result in a database of information
that could be intellectually over-
whelming. We will require effective
strategies for complexity manage-
ment to permit efficient control of
scoping, viewability, navigation,
data-sharing and security.

A third emergent area of tech-
nology is software reuse. Realizing
the potential of software reuse re-
quires more creative, comprehen-
sive and sophisticated approaches
than those employed to date. Effec-
tive software reuse depends on an
overall reuse strategy that ad-
dresses software process standards,
design techniques, tools, incentives,
culture and economic models. The
reuse concept is being extended
beyond code modules to include
object classes, programming cli-
ch6s, design specifications, archi-
tectural blueprints, user interface
templates, domain-specific rule
bases, design histories, test suites,
and so on. Reuse that spans proj-
ects, departments and even compa-
nies appears to be on the horizon.
To encourage and enable reuse, we
must find ways to record design al-
ternatives and rationale, and to de-
fine more explicit specifications of
form, fit and function. Reuse strat-

egies must be supported by ad-
vanced reusable component man-
agement facilities at all conceptual
levels.

Methods and Tools
We have a large arsenal of CASE
tools to assist in many tasks associ-
ated with software development. It
is certainly possible to increase the
effectiveness of any development
team with a judicious selection of
point tools. Nevertheless, there is
still room for considerable im-
provement. Our suite of tools needs
to be expanded in breadth of cover-
age, particularly for requirements
elicitation and design recovery.
There is a shortage of support tools
to aid in evaluating trade-offs asso-
ciated with decisions to build or
buy, maintain or reengineer, and
reuse or start from scratch. We also
need better tools for metrics collec-
tion and analysis, process modeling,
and reuse management (e.g., li-
brary management for code,
classes, templates and subsystems).

By and large, first-generation
CASE tools, which deal mainly with
the static aspects of software, have
reached maturity. We are now look-
ing forward to a more dynamic sec-
ond generation of tools. Examples
of these include collaborative re-
quirements capture tools, simula-
tors capable of executing system
specifications, dynamic code ana-
lyzers, on-line design "advisors"
and help systems, rapid prototyp-
ing environments, and interactive
program understanding (i.e., re-
verse engineering) environments.

To continue the quest for defect-
free software, we need to continue
the pursuit of formal specification
languages. By providing tools to
transition between formal and
semiformal representations, and to
execute formal specifications, we
can make formal techniques more
acceptable and useful to the aver-
age software developer. More rigor
will make possible the creation of
tools for automatic test generation
and code verification, and eventu-
ally, tools for software reliability
and safety analysis.

Tools, and the environments in
which they operate, should be scal-
able in terms of project complexity
and size. They should be priced in a
manner consistent with the enabled
functionality, starting at a basic
level and tracking the user's capac-
ity to derive real value as his/her
sophistication increases.

Trends and Priorities
The next IWCASE Workshop, to
be held July 6 -10 in Montreal,
promises to bring greater clarity to
these earlier findings. We will now
offer a few personal observations
about industry developments since
the last workshop.

In the area of tool integration,
Motif has become a de facto stan-
dard for CASE tool user interfaces
in the Unix environment, while
Presentation Manager and Win-
dows 3.0 each seem to be holding
their ground on PCs for the mo-
ment. With the adoption o f PCTE
in Europe as ECMA Standard 149,
there has been some progress on
data integration standards. Several
groups in North America, includ-
ing a PCTE User Group, NIST,
PCIS and STARS, are looking at
the feasibility of adoption in the
U.S. Two European vendors, SFGL
and Syseca, have announced Inte-
grated Project Support Environ-
ments based on Emeraude's PCTE
implementation.

Hewlett Packard's SoftBench has
enjoyed good acceptance as a con-
trol integration facility in the U.S.,
and HP and IBM are working with
several other vendors to further
standardize it. A version of Soft-
Bench integrated with PCTE is also
expected. IBM has extended the
definition of its AD/Cycle Informa-
tion Model, and a few CASE ven-
dors are beginning to actively use
its facilities. DEC delivered its
CDD/Repository, and a group of
third-party tool vendors an-
nounced support for it. For the
time being, the holy grail of an in-
dustry-wide tool integration stan-
dard continues to elude us, but
there is more convergence in con-
cept, and even implementation,

COMMUNICATIONS OF THE ACM/April 1992/Vol.35, No.4 31

C A S E

than is apparent from the suppliers'
marketing strategies.

In the on-line business systems
domain, the class of integrated tool-
sets that offer design-to-code capa-
bility remains small; most depend
on the underlying capabilities of a
database management system.
Cross development is now sup-
ported by several of these inte-
grated CASE products, freeing the
developer from the target com-
puter and allowing him/her to ex-
ploit the full capabilities and per-
formance of engineering work-
stations (and high-end PCs), even
for commercial development. Thus
Unix- or OS/2-based tools will soon
be able to target virtually any com-
mercial computing system. The
ability to generate client-server
applications with multitargeted
graphical user interfaces (Motif,
Open Look, PM, Windows, Macin-
tosh) is also being incorporated in
these tools.

LAN-based team development is
rapidly replacing timeshare config-
urations, although a central host
may act as a corporate repository
for shared design information. In
general, the most advanced tools
now provide more rigorous design
rule checking and integrate their
multiple design representations, or
views, through a single cannonical
form stored in a shared repository
which may be centralized or distrib-
uted over a network.

Several commercial tools are now
available that support metaCASE
capability (i.e., the ability to com-
pletely redefine the method used,
including visual representations,
design rules, and target code gen-
eration optimization). These can
adapt to vertical markets or unique
in-house methods.

Reverse engineering tools now
support database physical-to-logical
derivations with analysis of live
data, and interactive program un-
derstanding based on static and
dynamic code analysis. Several tools
support software "decomposition"
(i.e., extracting all code from an
application related to a specified
function so it can be replaced, re-

engineered or encapsulated and
shared in a library).

Research in software quality pro-
cesses and metrics continues, with
announcement of some commer-
cially available tools expected in
1992. Unfortunately, the state-of-
the-practice in most organizations is
still woefully lacking in this area.
The related class of coordination
technology, or "groupware," tools is
also expanding with a growing
number of network-based confer-
encing, planning, time manage-
ment, and project management
tools. In the future we expect effec-
tive tools for team engineering over
wide geographical distances incor-
porating multimedia technology in
the form of hypertext, graphics,
images, animation, and verbal an-
notation.

Interest in reuse has increased,
coincident with a growing realiza-
tion that there may be no silver bul-
let, such as object orientation, that
makes it easy. In general, effective
reuse appears to require both ex-
tensive domain knowledge and a
strategic commitment and plan on
the part of the development orga-
nization. We are still exploring how
design automation technology
might assist in this process. How-
ever, large-scale reuse in the form
of application templates seems to be
emerging as a viable business, as
companies begin to reuse and share
their CASE design models.

Programming workbenches are
becoming much more interactive
and now provide more feedback on
the dynamic behavior of code. New
representations exploiting graphics
and color are helping programmers
in the traditionally difficult areas o f
complex dynamic data structures
(e.g., array pointer dereferencing),
proper memory allocation and
deallocation, performance optimi-
zation, event-driven programming,
muhiprogramming, quality assur-
ance testing, defect tracking, and
configuration management.

Graphic user interface (GUI)
tools are making it unnecessary for
programmers to learn the intrica-
cies of X-Windows, Motif, Open

Look, PM or Windows. In many
cases, the tools provide client-server
database access and networking
support, in addition to a direct
manipulation facility for GUI crea-
tion and prototyping.

In the control systems area,
CASE tools support systems-level
prototyping and simulation. Some
tools provide reusable components
(encapsulated functions) accessed
as objects in the form of iconic sym-
bols. Systems can be built by assem-
bling and connecting components
and automatically generating exe-
cutable code.

With the introduction of so much
new technology, the biggest prob-
lems with CASE continue to be the
fragmented nature of the tools and
methods, and the need for more
mature organizational frameworks
in which to apply it. CASE '92 will
have a strong focus in these areas in
an effort to discover ways to re-
move the barriers and exploit the
possibilities of CASE more effec-
tively. []
About the Guest Editors:
GENE FORTE is president of CASE
Consulting Group, and executive editor
of the CASE OUTLOOK ® international
report on computer-aided systems engi-
neering. As a researcher and analyst,
Forte specializes in the latest tools and
techniques for commercial and real-
time systems planning, development,
management and quality control. He is
currently program cochair for CASE
'92. Author's Present Address: CASE
Consulting Group, 11830 Kerr Park-
way, Suite 315, Lake Oswego, OR
97035, g. forte@compmail.com.
RONALD J. NORMAN is an associate
professor of information and decision
systems at San Diego State University,
where he teaches courses in information
system management, systems analysis
and design, and information as an orga-
nizational resource. Norman served as
general chair for CASE '90. His re-
search interests include CASE technol-
ogy, technology transfer and organiza-
tional change issues, and
object-oriented systems analysis and
design. Author's Present Address: Col-
lege of Business Administration, San
Diego State University, San Diego, CA
92182-0127, rnorman@sciences.sdsu.
e d u .

© ACM 0002-0782/92/0400-028 $1.50

32 April 1992/Vol.35, No.4/COMMUNICATIONS OF'rilE A C M

