
G e n e r i c
: l u t i o n t o

Bala R.

~iiii~., ¸ _ ~.

~ i ~ i i .) . ~ . ! ¸ .;

)..D!,II

f:}~: • .. i.iO!~ I

http://crossmark.crossref.org/dialog/?doi=10.1145%2F129902.129906&domain=pdf&date_stamp=1992-07-01

lipping is an essential part of
image synthesis. Traditionally,
polygon clipping has been used
to clip out the portions of a
polygon that lie outside the win-
dow of the output device to pre-

vent undesirable effects. In the recent past polygon
clipping is used to render 3D images through hid-
den surface removal [9, 11] and to produce high-
quality surface details using techniques such as
Beam tracing [3]. Polygon dipping is also used in
distributing the objects of a scene to appropriate
processors in multiprocessor raytracing systems to
improve rendering speeds [1]. C l ipp ing an
arbitrary polygon against an arbitrary polygon has
been a complex task. The existing solutions for
polygon clipping are either limited to certain types
of polygons or tend to be very complex and time
consuming. II

The reentrant polygon clipping
by Sutherland and Hodgeman is
limited to convex clip polygons [2,
9, 11]. This also produces degener-
ate edges in certain concave/self in-
tersecting polygons that need to be
removed as a special extension to
the main algorithm. Another ap-
proach for polygon clipping devel-
oped by Liang and Barsky assumes
that the clip polygon is always rec-
tangular with sides parallel to the
coordinate axes [6]. More general
clipping algorithms, presented in
[8, 10, 12], are capable of clipping a
concave polygon with holes to the
borders of a concave polygon with
holes. These algorithms may not
permit self-intersecting polygons.
Montani and Re presented a solu-
tion that divides polygons into par-
allel-connected horizontal stripes of
a constant height to remove the
hidden portions o f the polygons in
which the selected height deter-
mines the output resolution [8]. A

more efficient polygon division was
made based on the complexity of
the polygons [10].

One of the main reasons for clip-
ping a polygon is to fill it correctly.
Therefore, filling a polygon seems
to be a natural step after clipping.
Some output devices may be capa-
ble of rendering complete polygons
or trapezoids while the others can
render only a line segment at a
time. Output in the form of trape-
zoids is particularly useful for scan-
line-based rendering algorithms
and it is quite suitable for hardware
implementations [13]. A few algo-
rithms are available to decompose a
polygon into trapezoids [5, 4, 7].
The clipping algorithm presented
in this article lends itself to produc-
ing the output in the form of trape-
zoids directly if required.

General Description
A polygon may be a single polygon
or a polygon set. Each individual

polygon in a polygon set may be
convex, concave or self-intersect-
ing. Figure 1 shows a polygon with
its interior areas shaded. The algo-
rithm described in this article clips a
polygon (referred to as the subject
polygon) against a polygon (re-
ferred to as the clip polygon). Clip-
ping is defined as interaction of the
subject and the clip polygons. The
algorithm is also suitable for 2D
Boolean operations union and dif-
ference.

A polygon is perceived as being
formed by a set of left and a set of
right bounds. Each bound starts at
a local minimum and ends at a local
maximum. All the edges on the left
bound are called left edges and
those on the right are called right
edges. The left and right sides a r e

defined with respect to the interi-
or(s) of the polygon. The edges of
the polygon may cross, in which
case the algorithm converts the
polygon to a nonintersecting poly-
gon by inserting the points o f inter-
sections as the clipping is being per-
formed.

The subject and the clip poly-
gons are traversed once, and all the
bounds are formed. Each edge of a
bound is assigned a flag indicating
the type (clip/subject) of the edge.

The polygons are scanned from
bottom to top using scanbeams. Each
scanbeam is the horizontal sweep
area between two successive events
as described in [10]. In other words,
a scanbeam is defined as the a r e a

between two successive horizontal
lines from a set of horizontal lines
drawn through all the vertices. An
Active Edge Table (AET) is main-
tained to indicate the list of all t h e

edges that are intersected by the
current scanbeam. The edges in t h e

AET are sorted in the ascending
order of the x coordinates at the
bottom of the current scanbeam.
The x coordinate values are up-
dated as the scanning proceeds
from one scanbeam to the next.

The first vertex of each bound

COMMUNICATIONS OF THE ACM/July 1992/Vol.35, No.7 S 7

corresponds to a local min imum
and the last vertex to a local maxi-
mum. The remainder of the verti-
ces are called in termediate vertices.
The in termediate vertices on the
left bounds are re fe r red to as the
left in termediate vertices and those
on the r ight bounds as the r ight in-
termediate vertices. Processing of
horizontal edges is explained in the
'Extensions' section of this article.

The edge intersections are com-
puted as the polygons are scanned.
Each intersection is classified simi-
lar to the vertex classification. This
classification is made based on some
rules which are, in turn, based on
the definit ion of the cl ipping oper-
ation. This classification is ex-
plained in detail in a later section.

When the first edges o f a pair of
bounds become active at a local
minimum, one edge is assigned as

Figure 1. Example of a clip/subject
polygon

the left edge and the o ther is as-
signed as the r ight edge. This as-
s ignment is based on the even/odd
pari ty of the edge with respect to
the rest of the edges o f the same
type in the AET. The local mini-
mum is considered as a contribut-
ing or noncontr ibut ing vortex,
based on the position with respect
to the o ther types of edges. I f it is
contributing, then a polygon node
is created and is assigned to both
the edges, and these edges are con-
s idered as contr ibut ing edges. I f
not, a null pointer is assigned, indi-
cating that the edges are noncon-
tributing. A contr ibut ing edge
means the edge is current ly in the
process of contr ibut ing to the out-
put. When the scanning reaches the

l l , , , c ll,,~g: I1,, ,~ lll, , ,c l l , , Ig l l , , , c l ~ , , c l l , , , c S , , , c l ~ , , c ll,,,,~ I1,, ,~ l ~ c I~,,,~ ~ , ~ : D , , c II1,,~: ~ ~ ~

top of an edge, the edge is replaced
by its successor edge and the poly-
gon pointer and the left-right flag
are passed to the successor edge.
Thus the successor edge assumes
the proper t ies of the edge it re-
places.

The polygon pointer indicates
whether or not there should be out-
put at a given vertex of a given
edge. The vertex may be an end
point of the edge or a point of in-
tersection. The class of a vertex
indicates how the ou tput should be
generated, which results in closed
contour(s) at the end of clipping.

Vertices have to be extracted as
an o rde red list as efficiently as pos-
sible. When we reach the u p p e r
vertex of a contr ibut ing edge we
need to de te rmine the class of the
vertex in o rde r to p roduce the out-
put. Simple checks will de te rmine
the class of a given vertex. I f the
edge has no successor edge (null
pointer), then it is considered a
local maximum, otherwise it is an
in termediate vertex. Processing at
each vertex depends on the class of
a given vertex as follows:
1. Local minimum: create a poly-
gon node and assign the local mini-
mum to the vertex list o f the poly-
gon. As ment ioned earlier,
addit ional local minima may be
formed through unlike edge inter-
sections. These local minima should
be t reated as contr ibut ing local
minima. Edges connected to a con-
t r ibut ing local minima become con-
t r ibut ing edges th rough the assign-
ment of ou tput polygons to these
edges.
2. Left and r ight intermediate:
When an in termediate vertex is
found, the vertex need be added
only to the left end or to the r ight
end of the vertex list of the polygon
assigned to the edge, depend ing on
whether the edge side is left or
right.
3. Local maximum: At a local max-
imum a pair of bounds meet. Both
may belong to the same polygon in
which case we have a closed contour
for the polygon. I f they belong to
di f ferent polygons, one is ap-
pended to the other polygon. For a

given polygon node, there would be
two edges contr ibut ing to it at any
time: one edge contributes to the
left end and the other to the right
end of the vertex list of the polygon
node. When polygon P is appended
to polygon Q at a local maximum,
there would be four contr ibut ing
edges, two for each polygon, say
Ep l , Ep2 and Eql , Eq2. After we
append P to Q, the middle two
edges Ep2 and Eql become non-
contr ibut ing and the edge E p l will
be contr ibut ing to Q. There fo re the
polygon pointer o f Ep l should be
set to Q. Note that Ep 1 and Ep2 are
adjacent edges in the AET, thus
there is no need to search for Ep l .

At each unlike edge (edges of
d i f ferent types) intersection of a
contr ibut ing edge becomes a non-
contr ibut ing edge and noncontr ib-
ut ing edge becomes a contr ibut ing
edge by exchanging output point-
ers. At each like edge intersection, a
left edge becomes a r ight edge and
a r ight edge becomes a left edge.
Both the intersecting edges are
swapped at the intersection to
maintain x sort in the AET.

Thus the polygon contour can be
formed very naturally without sort-
ing, searching or complex data
structures. At the end o f the scan-
ning we will have a set of closed
contours def ining the ou tput poly-
gons. Processing time varies line-
arly with the total number o f edges
in the subject and clip polygons. In
a later section, on t rapezoid genera-
tion, we will explain how trapezoids
can be ou tput instead of polygons.

I n te rsec t ion Classif icat ion
The edge intersections can be clas-
sified into two types: intersections
formed between like edges and
those formed between unlike
edges. A like edge intersection
should be considered only if both
the edges are contributing. Note
that if one edge is contributing, so is
the o ther edge of a pair of like in-
tersecting edges. An intersection
between like edges must be t reated
as both left and right in termediate
vertices. In the case of unlike edge
intersections, all the intersections

S 8 J u l y 1992/Vo1.35, No.7/COMMUNICATIONSOFTHE ACM

I1.,~: Ik.,,~ I P . ~ ~ ID,,,I~ I P ~ : I k . , c Ik . .~ I k - , c ID,.~:

must be considered. The resulting
vertex classification depends on the
types (clip/subject), on the sides
(left/right) and on their relative
position in AET.

We can now define a set of rules
to classify intersections. The follow-
ing convention is used to formalize
the rules: An edge is identif ied by a
two-letter word. The first letter
indicates whether the edge is
left (L) or r ight (R) edge, and the
second letter indicates whether the
edge belongs to subject(S) or
clip (C) polygon. An edge intersec-
tion is indicated by X. The vertex
formed at the intersection is as-
signed one of the four vertex classi-
fications: Local min imum (MN),
local maximum (MX), left interme-
diate (LI) and right intermediate
(RI). The symbol 1' is used to mean
' o r ' .

Rules to classify intersections
between unlike edges are:
Rule 1: LC x LS[LS x LC = LI
Rule 2: RC x RS]RS z RC = RI
Rule 3: LS × RC]LC x RS = MX
Rule 4: RS x LCIRC × LS = MN
Rules to classify intersections
between like edges are:
Rule 5: LC x RC]RC × LC =
LI and RI
Rule 6: LS x RS]RS × LS =
LI and RI

Figure 2 shows the vertex classifica-
tions formed by these rules for in-
tersection operation. Rule 1 can be
stated as follows: Intersection of
left clip edge followed by left sub-
ject edge OR intersection of left
subject edge followed by left clip
edge produces left in termediate
vertex. We will define the rules to
produce union and difference op-
erations in later sections.

I m p l e m e n t a t i o n
The following data structure is de-
fined to represent an edge.

Local Minima Table (LMT): This is
a l inked list of nodes sorted in as-
cending o rde r ofy coordinate. Each
node points to a list of bounds that
start at the y coordinate. Thus each
node corresponds to the y coordi-
nate of one or more local minima.

I p , c l l . , c I p . ~ I1..,~ I1,.,~ Ik-4c l l , - ,~ I1,,.~ Ik . ,~ S . . ,~ I I , . ,~ ll , .qg Ik, , Ic 11,,,~ I1,.,~ Ik, ' ,~ II ," ,c lk '~c I k " ~ I 1 " ~

The LMT is built at the time of
forming the bounds, pr ior to clip-
ping. Figure 3 shows a polygon with
its edges assigned to the LMT.
Scanbeam Table (SBT): This is
built as the polygons are scanned to
keep the length of the list to a mini-
mum. The uppe r end of the cur-
rent scanbeam is de te rmined by the
smaller of the min imum 'ytop' of all
the edges in the AET and the next
LMT entry. This is the next entry
in the SBT.
Let us define the following opera-
tions to simplify the algori thm pre-
sented later:

MarkSBT(y)
Insert a node represent ing 'y' in
sorted o rde r in SBT, if it does not
exist.

AddLocalMin(edge,p)
Create a polygon node and set
right(R) and left(L) pointers to
point to 'p'.
Assign the polygon(P) to the edge
and its next edge as the output
polygon.

AddLeft(edge,p)
Add vertex(p) to the left end(L) of
the vertex list of the polygon
assigned to the edge.
Update L to point 'p '

AddRight(edge,p)
Add vertex(p) to the right end(R)
of the vertex list of the polygon
assigned to the edge.
Update R to point to 'p'.

AddEdges(LMTnode)
For each pair of edges (edgel ,

edge2) of LMTnode do;

Add edge l , edge2 to the AET in
sorted order .

Assign the side (left/right) of
edge l and edge2.
(note that edge l and edge2
start f rom a local min imum 'p')

I f it is a contr ibut ing local
min imum then
AddLocalMin(edge 1 ,p);

MarkSBT(edge 1->ytop);
MarkSBT(edge2->ytop) ;
end;

AppendPolygon(edgel,edge2)
Set P = e d g e l - > p o l y and

Q = edge2->poly;
Assign vertex list of P to the left or

r ight end of vertex list of Q
depend ing on the side of edge l ;

Set (e d g e l - > p r e v) - > p o l y = Q;

AddLoealMax(edge,p)
If the edge is left edge

AddLeft(edge,p) ;
Else AddRight(edge,p) ;
I f the edge and its next edge have
the same output polygon return;
AppendPolygon(edge 1 ,edge2);

E d g e I n t e r s e c t i o n s
All the intersections in the current

Rule 1

Rule 3 Rule 4

F igure I . Intersection classification

T a b l e 1.
Edge da ta s t ruc ture

Field

xbot
ytop
delx
type
side
poly
next
prey
succ

Description

lower x coordinate
upper y coordinate
change in x for a unit increase in y
clip/subject edge flag
left/right flag
output polygon pointer
next edge In the AET
previous edge in the AET
successor edge (edge connected to the upper end)

COMMUNICATIONSOFTHE ACM/Ju]y 1992/Vol .35, No.7 S 9

scanbeam must be processed before
we move on to the next scanbeam.
We know that all the edges in the
AET are already in sorted order.
When the scanning reaches the top
of the current scanbeam (bottom of
the next scanbeam) we need to
update 'xbot' values of all the edges.
I f edges intersect in the current
scanbeam, the updated 'xbot' values
(xtop values) will not be in sorted
order. The number of jumps an
edge must make to find its sorted
location will give us the exact inter-
sections of the edge with the re-
maining edges. We create tempo-
rary Sorted Edge Table (ST) and
Intersection Table (IT) to identify and
store all the intersections in the cur-
rent scanbeam. Each node of the
ST stores the pointer to an edge
and its xtop value. The IT is a
linked list of intersection nodes
sorted in y coordinates of the inter-
sections. Each node contains the
pointers of both the intersecting
edges and the intersection. The al-
gorithm to find the intersecting
edge pairs is as follows:

Set Dy to the height of the current
scanbeam.

Initialize the first node (right end)
of ST using the first edge
of AET.

Set STedge to the first ST node.

- - - I

Plgure 3. Local minima table

IPlOure 4. Processing local minimum

For each AETedge of the
remaining edges in AET do;
xtop - AETedge->xbot +

AETedge->delx*Dy;
While (Xtop < STedge->xtop)do;

Compute intersection between
STedge and AETedge;

Insert the intersection and
both the edge pointers in IT.

Set STedge to its left STedge;
End;

Insert AETedge to the right of
STedge;

End;

Clipping A l g o r i t h m
The clipping algorithm can
stated as follows:

be

Build LMT;
Set AET to null;
For each scanbeam do;

Set yb and yt to bottom and top
of the scanbeam.

I f LMT node corresponding to
yb exists AddEdges(LMTnode);

Build Intersection Table (IT) for
the current scanbeam;

For each node in IT;
Set edgel and edge2 from the

IT node; /* edgel precedes
edge2 in AET */

Classify the point of
intersection 'p';

Switch (class of p) do;
Case(LI KE__EDGE_INT):

J

E

I f edge 1 is contributing
then
AddLeft(edge 1,p);
AddRight(edge2,p);
Exchange edge 1->side

and edge2->side;
Case(LOCAL_MAX):

AddLocalMax(edge 1 ,p);
Case(LEFT_INT):

AddLeft(edge2,p);
Case(RIGHT_INT):

AddRight(edge I ,p);
Case(LOCAL_MIN):

AddLocalMin(edge 1,p);
End; /* switch */

Swap edge1 and edge2
positions in the AET;

Exchange edgel->poly and
edge2->poly;

End; /* IT loop */
For each AETedge do;

I f AETedge is terminating at yt
do;
Classify the upper end vertex

'p' of AETedge;
Switch (class of p)

Case(LOCAL_MAX):
AddLocalMax(AET

edge,p);
Delete AETedge and

AETedge->next from
the AET;

Case(LEFT_INT):
AddLeft(edge2,p);
Replace AETedge by

AETedge-> succ;
Case(RIGHT_INT):

AddRight(edge 1 ,p);
Replace AETedge by

AETedge->succ;
End; /* switch */

End; /* if */
End; /* AET loop */

End; /* SBT loop */

\

Trapezo id G e n e r a t i o n
Trapezoids can be generated as
output with a few modifications to
the preceding algorithm. A local
minimum starts a trapezoid strip or
breaks an existing trapezoid strip
into two, depending on whether the
local minimum is formed by a left-
right or a right-left edge pair. At
each contributing local minimum
we create a trapezoid node, similar
to polygon node. Each node re-
quires to store only bottom x c o o r -

Polygon node Vertex added
R = Right pointer L = Left pointer

I,,q~ I . , Ic ; I - , t I , , ,~ ~ . c ll,,,c II..~ ll,.,c I . , ~ I . , c

dinates and the corresponding y
coordinate. Whenever a local maxi-
mum, left intermediate or right in-
termediate vertex is encountered, a
trapezoid should be output. A local
minimum formed by a right-left
pair should also output the trape-
zoid it splits and the trapezoid
pointers for the participating edges
should be reassigned appropriately.

Trapezoids can be output in the
form (Xleft,Xright,Ybot,DXle ft,
DXright,Ytop) and these can be
scan-converted very easily in a sim-
ple loop as follows:

For Y = Ybot to Ytop do;
DrawLine(Xleftyright,Y);
Xleft = Xleft + DXleft;
Xright = Xright + DXright;
End loop;

Example
Let us denote an output polygon
node with P[R:L](pl,p2,...,pn),
where P is the polygon pointer, R is
right end vertex pointer, L is left
end vertex pointer and the list
pl,p2,...pn are the vertices of the
polygon. Figure 8 shows subject
polygon S(sl,s2 s8) and clip poly-
gon C(cl,c2 c9). The edge inter-
sections are denoted by i1,i2 i8.
The following table describes only
those events at which output is gen-
erated.

Results
The algorithm was implemented in
C and executed on a MIPS proces-
sor R2000 under a Unix TM operat-
ing system. Trapezoids were gener-
ated as output of the clipping and
these were filled as described ear-
lier. Actual machine cycles were
obtained for several cases and the
averagetimings were computed for
each case and listed under
Method 1. Similar timings were
obtained for the Reentrant Polygon
Clipping [9] and scanline fill algo-
rithms and listed under Method 2.
Since the reentrant polygon clip-
ping algorithm does not permit
concave clip polygons, only convex
clip polygons and concave subject
polygons were used for the test
cases. The sizes of clip and subject

polygons are selected such that they
fit in a 1,280 x 1,024 resolution.

Improvement factors were com-
puted for each case by dividing per-
formance values obtained for the
Method 2 by those in Method 1.
The averages of such improvement
factors are listed under ' Improve-
ment ' columns. Table 3 shows the
results of clipping subject polygons
with a varying number of edges
using the same clip polygon.

The total timings of clip and fill
indicate that there is always consid-
erable performance improvement
over SH clip followed by scanline
fill operations. This table also indi-
cates that both clipping and filling
can be done faster than the scanline
fill algorithm alone. Further, we
can see that the relative clipping
performance improved as the num-
ber o f edges increased.

case for this algorithm. The deter-
mination of vertex classifications
should be made based on the as-
sumption that the horizontal edge
is absent. Since horizontal edge in-
tersections are available at the top
and bottom of scanbeams, horizon-
tal edges can be processed effi-
ciently as a special case. The algo-
rithm can be optimized for
rectangular clip bounds, which is a
typical usage of clipping. The algo-
rithm can also be optimized for
clipping several subject polygons

MliUNI | . Processing left Intermedi-
ate

Extensions
Union and difference operations:
The discussions presented assumed
the clipping is the intersection o f
two polygons. I f we want to output
polygon as the union of two poly-
gons, the output rules should be
modified as follows:

1. LC × LSILS X LC = LI
2. RC x RSIRS x RC = RI
3. LS x RCILC × RS = MN
4. RS × LCIRC x LS = MX

All local minima of subject polygon
which lie outside clip polygon and
all local minima of clip polygon
which lie outside subject polygon
should be treated as contributing
local minima.
For difference operation (subject
polygon minus clip polygon), the
rules should be as follows:

1. RC × LSILS x RC = LI
2. RS × LCILC x RS = RI
3. RS x RCILC × LS = MN
4. RC x RSILS x LC = MX

All local minima of subject polygon
which lie outside clip polygon
should be treated as contributing
local minima.
Horizontal edges: Processing of
horizontal edges becomes a special

Iqlluee Ii. Processing right intermedi-
ate

Plgueo 7a. Appending polygons (be-
fore)

Plguro 7b. Appending polygons
(after)

COMMUNIOATIONI OF THE ACM/July 1992/Vol.35, No.7 61

T a b l e 2.
POlygon clipping example

Event Output Generated Description

Sl
S7
I1
12
13
14
C4
15
i6
i7
S6
i8
S3
S5
S4

P[Sl:Sl](Sl)
PISl:S7I(S7,Sl)
P[il:s7l(s7,Sl,il)
P[il :I2](12,S7,S1,11)
Q[13:13](13)
Q(13:14](14,13)
Q[C4:1,4](14,13,c4)
Q[15:15](i5,14,13,c4,15)
Q[15:i6](i6,15,14,i3,c4,i5)
Q[17:iE;](16,15,i4,13,C4,15,17)
Q[17:S6](S6,16,15,14,i3,c4,15,17)
Q[18:ie](18,s6,16,15,14,i3,c4,iS,i7 ,18)
Q[18:s3](s3,i8,s6,16,i5,14,13,c4,15,17 ,i8)
Q[S5:S3](S3,18,S6,16,15,14,13,c4,15,17 ,18,S5)
O[s5:s4](s4,s3,i8,s6,16,15,i4,13,c4,i5,i7 ,18,s5)

Contributing local minimum
Left intermediate
Intersection Rule 2
Intersection Rule 3. Polygon P closed.
Intersection Rule 4. Polygon Q created.
Intersection Rule 1
Right intermediate
Like edge intersection
Intersection Rule 1
Intersection RUle 2
Left Intermediate
Like edge intersection
Left Intermediate
Right intermediate
Local maximum

Table 3.
Results Of the clipping and filling operations

Me~hodl Method2 Improvement

Edges Clip Fill Total Clip Fill Total

4
10
20
40

100
200

1.20
3.06
5.35
9.73

23.76
45.77

1.97
6.17

11.41
21.60
52.65

104.39

3.17
9.22

16.77
31.34
76.41

150.15

1.88
4.89
9.10

18.16
47.85

100.99

24.37
57.55
98.92

181.71
430.11
844.15

26.26
62.44

108.03
199.86
477.96
945.15

Clip Fill Total

1.62 12.40 8.33
1.67 9.39 6.27
1.83 8.19 5.59
2.05 7.45 5.20
2.18 6.23 4.86
2.44 5.62 4.81

c7

c s

~ 1 6 17 s2

c2

cl

against a constant clip polygon by
preassigning the edges of the clip
polygon to the LMT.

C o n c l u s i o n
A general and efficient polygon-
clipping algorithm is presented.
The term 'clipping' is also defined
in a more general sense which may
mean intersection, union or differ-
ence. The output of the algorithm
can be polygons or trapezoids. The
results indicated significant perfor-
mance improvements over tradi-
tional polygon-clipping and filling
operations.

Acknowledgments
The author would like to thank
David Bailey for his support and
Tyler Brown and George Schaeffer
for their suggestions, all of which
made this paper more readable. []

FigUre 8. Polygon clipping example

62 July 1992/%1.35, No.7/COMMUNICATION$ OF THE ACM

References
1. Cleary G.J., Wyvill B., Birtwistle

G.M. and Vatti R. Multiprocessor
raytracing. Tech. Rep. 83/128/17,
Department of Computer Science,
The University of Calgary, Oct.
1983.

2. Foley J. and Vandam A. Fundamen-
tals of Computer Graphics. Addison-
Wesley, Reading, Mass., 1984.

3. Heckbert P.S., and Hanrahan P.
Beam tracing polygonal objects.
Comput. Graph. 18, 3 (July 1984),
119-127.

4. Jackson, J.H. Dynamic scan-
converted images with a frame
buffer display device, Comput.
Graph. 14, 3 (July, 1980), 163-169.

5. Lee, D.T. Shading regions on vector
display devises, Comput. Graph. 15, 3
(1981).

6. Liang Y. and Barsky B.A. An analy-
sis and algorithm for polygon clip-
ping. Commun. ACM 11, 26 (Nov.
1983), 868-877.

7. Little W.D. and Heuft R. An area
shading graphics display system.
IEEE Trans. Comput. c-28, 7 (July
1978), 528-530.

8. Montani C. and Re M. Vector and
raster hidden surface removal using
parallel connected stripes. IEEE
Comput. Graph. Appl. 7, 7 (July
1987), 14-23.

9. Newman W.M. and Sproull R.F.
Principles of Interactive Computer
Graphics. Second ed., Mcgraw-Hill,
N.Y.

10. Sechrest S. and Greenberg D. A vis-
ible polygon reconstruction algo-
rithm. Comput. Graph. 15, 3 (1981),
17-26.

11. Sutherland E.E. and Hodgeman
G.W. Reentrant polygon clipping.
Commun. ACM 17, 1 (Jan. 1974),
32-42.

12. Weiler K. and Atherton P. Hidden
surface removal using polygon area
sorting. In Proceedings of SIG-
GRAPH 11, 2 (Summer, 1977), pp.
214-222.

13. Winberg R. Parallel processing
image synthesis and anti-aliasing.
Comput. Graph. 15, 3 (Aug. 1981),
55-61.

geometric algorithms, languages, and systems
General Terms: Algorithms, perfor-

mance
Additional Keywords and phrases:

connectivity coherence, contributing
edge, contributing local minimum, dif-
ference, hidden surface, intersection,
polygon clipping, scanbeam, spatial
coherence, successor edge, trapezoids,
union, vertex classification

About the Author:
BALA R. VATTI is a principal software
engineer at Lockheed Commercial Elec-
tronics Company (LCEC) in Hudson,
N.H. His research interests include
high-performance graphics systems for
CAD/CAM applications. Author's Pres-

ent Address: LCEC, 65 River Road,
Hudson, N.H. 03051. email: vatti@
waynar.lcec.lockheed.

Unix is a registered trademark of Unix Sys-
tem Laboratories Inc.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/92/0700-056 $1.50

CARE plants the
most wonderful
seeds on earth.

Seeds of self-sufficiency that help
starving people become healthy,

productive people. And we
do it village by village by village.
Please help us turn cries for help

into the laughter of hope.

CR Categories and Subject Descrip-
tors: E.2 [Data]: Data Storage Repre-
sentations-linked representations; 1.3.3
[Computer Graphics]: Picture/Image
Generation--display algorithms; 1.3.5
[Computer Graphics]: Computational
Geometry and Object Modeling--

COMMUNICATIONS OF THE ACM/July 1992/Voi.35, No.7 63

