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lipping is an essential part of 
image synthesis. Traditionally, 
polygon clipping has been used 
to clip out the portions of a 
polygon that lie outside the win- 
dow of the output device to pre- 

vent undesirable effects. In the recent past polygon 
clipping is used to render 3D images through hid- 
den surface removal [9, 11] and to produce high- 
quality surface details using techniques such as 
Beam tracing [3]. Polygon dipping is also used in 
distributing the objects of a scene to appropriate 
processors in multiprocessor raytracing systems to 
improve rendering speeds [1]. C l ipp ing  an 
arbitrary polygon against an arbitrary polygon has 
been a complex task. The existing solutions for 
polygon clipping are either limited to certain types 
of polygons or tend to be very complex and time 
consuming. II 

The reentrant polygon clipping 
by Sutherland and Hodgeman is 
limited to convex clip polygons [2, 
9, 11]. This also produces degener- 
ate edges in certain concave/self in- 
tersecting polygons that need to be 
removed as a special extension to 
the main algorithm. Another ap- 
proach for polygon clipping devel- 
oped by Liang and Barsky assumes 
that the clip polygon is always rec- 
tangular with sides parallel to the 
coordinate axes [6]. More general 
clipping algorithms, presented in 
[8, 10, 12], are capable of  clipping a 
concave polygon with holes to the 
borders of  a concave polygon with 
holes. These algorithms may not 
permit self-intersecting polygons. 
Montani and Re presented a solu- 
tion that divides polygons into par- 
allel-connected horizontal stripes of  
a constant height to remove the 
hidden portions o f  the polygons in 
which the selected height deter- 
mines the output  resolution [8]. A 

more efficient polygon division was 
made based on the complexity of  
the polygons [10]. 

One of  the main reasons for clip- 
ping a polygon is to fill it correctly. 
Therefore,  filling a polygon seems 
to be a natural step after clipping. 
Some output  devices may be capa- 
ble of  rendering complete polygons 
or trapezoids while the others can 
render only a line segment at a 
time. Output  in the form of trape- 
zoids is particularly useful for scan- 
line-based rendering algorithms 
and it is quite suitable for hardware 
implementations [13]. A few algo- 
rithms are available to decompose a 
polygon into trapezoids [5, 4, 7]. 
The clipping algorithm presented 
in this article lends itself to produc- 
ing the output  in the form of  trape- 
zoids directly if required. 

General Description 
A polygon may be a single polygon 
or a polygon set. Each individual 

polygon in a polygon set may be 
convex, concave or self-intersect- 
ing. Figure 1 shows a polygon with 
its interior areas shaded. The  algo- 
rithm described in this article clips a 
polygon (referred to as the subject 
polygon) against a polygon (re- 
ferred to as the clip polygon). Clip- 
ping is defined as interaction of  the 
subject and the clip polygons. The  
algorithm is also suitable for 2D 
Boolean operations union and dif- 
ference. 

A polygon is perceived as being 
formed by a set of  left and a set of  
right bounds. Each bound starts at 
a local minimum and ends at a local 
maximum. All the edges on the left 
bound are called left edges and 
those on the right are called right 
edges. The left and right sides a r e  

defined with respect to the interi- 
or(s) of  the polygon. The  edges of  
the polygon may cross, in which 
case the algorithm converts the 
polygon to a nonintersecting poly- 
gon by inserting the points o f  inter- 
sections as the clipping is being per- 
formed. 

The  subject and the clip poly- 
gons are traversed once, and all the 
bounds are formed. Each edge of  a 
bound is assigned a flag indicating 
the type (clip/subject) of  the edge. 

The polygons are scanned from 
bottom to top using scanbeams. Each 
scanbeam is the horizontal sweep 
area between two successive events 
as described in [10]. In other words, 
a scanbeam is defined as the a r e a  

between two successive horizontal 
lines from a set of  horizontal lines 
drawn through all the vertices. An 
Active Edge Table (AET) is main- 
tained to indicate the list of  all t h e  

edges that are intersected by the 
current scanbeam. The  edges in t h e  

AET are sorted in the ascending 
order  of  the x coordinates at the 
bottom of  the current  scanbeam. 
The x coordinate values are up- 
dated as the scanning proceeds 
from one scanbeam to the next. 

The first vertex of  each bound 
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corresponds  to a local min imum 
and the last vertex to a local maxi- 
mum. The  remainder  of  the verti- 
ces are called in termediate  vertices. 
The  in termediate  vertices on the 
left bounds  are re fe r red  to as the 
left in termediate  vertices and those 
on the r ight  bounds as the r ight  in- 
termediate  vertices. Processing of  
horizontal  edges is explained in the 
'Extensions'  section of  this article. 

The  edge intersections are com- 
puted as the polygons are scanned. 
Each intersection is classified simi- 
lar to the vertex classification. This 
classification is made  based on some 
rules which are, in turn,  based on 
the definit ion of  the cl ipping oper-  
ation. This classification is ex- 
plained in detail  in a later section. 

When  the first edges o f  a pair  of  
bounds  become active at a local 
minimum, one edge is assigned as 

Figure 1. Example of a clip/subject 
polygon 

the left edge and the o ther  is as- 
signed as the r ight  edge. This as- 
s ignment  is based on the even/odd 
pari ty of  the edge with respect to 
the rest of  the edges o f  the same 
type in the AET. The  local mini- 
mum is considered as a contribut-  
ing or  noncontr ibut ing vortex, 
based on the position with respect 
to the o ther  types of  edges. I f  it is 
contributing,  then a polygon node 
is created and is assigned to both 
the edges, and these edges are con- 
s idered as contr ibut ing edges. I f  
not, a null pointer  is assigned, indi- 
cating that the edges are noncon- 
tributing. A contr ibut ing edge 
means the edge is current ly  in the 
process of  contr ibut ing to the out- 
put. When  the scanning reaches the 

l l , , , c  ll,,~g: I1,, ,~ lll, , ,c l l , , Ig  l l , , , c  l ~ , , c  l l , , , c  S , , , c  l ~ , , c  ll,,,,~ I1,, ,~ l ~ c  I~,,,~ ~ , ~ :  D , , c  II1,,~: ~ ~ ~ 

top of  an edge, the edge is replaced 
by its successor edge and the poly- 
gon pointer  and the left-right flag 
are passed to the successor edge. 
Thus  the successor edge assumes 
the proper t ies  of  the edge it re- 
places. 

The  polygon pointer  indicates 
whether  or  not  there  should be out- 
put  at a given vertex of  a given 
edge. The  vertex may be an end 
point  of  the edge or  a point  of  in- 
tersection. The  class of  a vertex 
indicates how the ou tput  should be 
generated,  which results in closed 
contour(s) at the end of  clipping. 

Vertices have to be extracted as 
an o rde red  list as efficiently as pos- 
sible. When  we reach the u p p e r  
vertex of  a contr ibut ing edge we 
need to de te rmine  the class of  the 
vertex in o rde r  to p roduce  the out- 
put. Simple checks will de te rmine  
the class of  a given vertex. I f  the 
edge has no successor edge (null 
pointer),  then it is considered a 
local maximum,  otherwise it is an 
in termediate  vertex. Processing at 
each vertex depends  on the class of  
a given vertex as follows: 
1. Local minimum:  create a poly- 
gon node and assign the local mini- 
mum to the vertex list o f  the poly- 
gon. As ment ioned earlier,  
addit ional  local minima may be 
formed through  unlike edge inter- 
sections. These  local minima should 
be t reated as contr ibut ing local 
minima. Edges connected to a con- 
t r ibut ing local minima become con- 
t r ibut ing edges th rough  the assign- 
ment  of  ou tput  polygons to these 
edges. 
2. Left and r ight  intermediate:  
When an in termediate  vertex is 
found,  the vertex need be added  
only to the left end or  to the r ight  
end  of  the vertex list of  the polygon 
assigned to the edge, depend ing  on 
whether  the edge side is left or  
right. 
3. Local maximum:  At a local max- 
imum a pair  of  bounds  meet. Both 
may belong to the same polygon in 
which case we have a closed contour  
for the polygon. I f  they belong to 
di f ferent  polygons, one is ap- 
pended  to the other  polygon. For  a 

given polygon node,  there  would be 
two edges contr ibut ing to it at any 
time: one edge contributes to the 
left end and the other  to the right 
end of  the vertex list of  the polygon 
node. When  polygon P is appended  
to polygon Q at a local maximum,  
there would be four  contr ibut ing 
edges, two for each polygon, say 
Ep l ,  Ep2 and Eql ,  Eq2. After  we 
append  P to Q, the middle  two 
edges Ep2 and Eql  become non- 
contr ibut ing and the edge E p l  will 
be contr ibut ing to Q. There fo re  the 
polygon pointer  o f  Ep l  should be 
set to Q. Note that  Ep 1 and Ep2 are 
adjacent  edges in the AET, thus 
there is no need to search for Ep l .  

At  each unlike edge (edges of  
d i f ferent  types) intersection of  a 
contr ibut ing edge becomes a non- 
contr ibut ing edge and noncontr ib-  
ut ing edge becomes a contr ibut ing 
edge by exchanging output  point- 
ers. At  each like edge intersection, a 
left edge becomes a r ight  edge and 
a r ight  edge becomes a left edge. 
Both the intersecting edges are 
swapped at the intersection to 
maintain x sort in the AET. 

Thus  the polygon contour  can be 
formed very naturally without sort- 
ing, searching or  complex data 
structures. At the end o f  the scan- 
ning we will have a set of  closed 
contours def ining the ou tput  poly- 
gons. Processing time varies line- 
arly with the total number  o f  edges 
in the subject and  clip polygons. In  
a later  section, on t rapezoid genera-  
tion, we will explain how trapezoids 
can be ou tput  instead of  polygons. 

I n te rsec t ion  Classif icat ion 
The  edge intersections can be clas- 
sified into two types: intersections 
formed between like edges and 
those formed between unlike 
edges. A like edge intersection 
should be considered only if both 
the edges are contributing.  Note 
that if one edge is contributing,  so is 
the o ther  edge of  a pair  of  like in- 
tersecting edges. An intersection 
between like edges must  be t reated 
as both left and  right in termediate  
vertices. In the case of  unlike edge 
intersections, all the intersections 
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must be considered.  The  resulting 
vertex classification depends  on the 
types (clip/subject), on the sides 
(left/right) and on their  relative 
position in AET. 

We can now define a set of  rules 
to classify intersections. The  follow- 
ing convention is used to formalize 
the rules: An edge is identif ied by a 
two-letter word. The  first letter 
indicates whether  the edge is 
left (L) or  r ight (R) edge, and the 
second letter indicates whether  the 
edge belongs to subject(S) or 
clip (C) polygon. An edge intersec- 
tion is indicated by X. The  vertex 
formed at the intersection is as- 
signed one of  the four vertex classi- 
fications: Local min imum (MN), 
local maximum (MX), left interme- 
diate (LI) and right intermediate  
(RI). The  symbol 1' is used to mean 
' o r ' .  

Rules to classify intersections 
between unlike edges are: 
Rule 1: LC x LS[LS x LC = LI 
Rule 2: RC x RS]RS z RC = RI 
Rule 3: LS × RC]LC x RS = MX 
Rule 4: RS x LCIRC × LS = MN 
Rules to classify intersections 
between like edges are: 
Rule 5: LC x RC]RC × LC = 
LI and RI 
Rule 6: LS x RS]RS × LS = 
LI and RI 

Figure 2 shows the vertex classifica- 
tions formed by these rules for in- 
tersection operation.  Rule 1 can be 
stated as follows: Intersection of  
left clip edge followed by left sub- 
ject  edge OR intersection of  left 
subject edge followed by left clip 
edge produces  left in termediate  
vertex. We will define the rules to 
produce  union and difference op- 
erations in later sections. 

I m p l e m e n t a t i o n  
The  following data structure is de- 
fined to represent  an edge. 

Local Minima Table (LMT): This is 
a l inked list of  nodes sorted in as- 
cending o rde r  ofy coordinate.  Each 
node points to a list of  bounds that 
start at the y coordinate.  Thus  each 
node corresponds to the y coordi-  
nate of  one or  more local minima. 

I p , c  l l . , c  I p . ~  I1..,~ I1,.,~ Ik-4c l l , - ,~ I1,,.~ Ik . ,~  S . . ,~  I I , . ,~  ll , .qg Ik, , Ic  11,,,~ I1,.,~ Ik, ' ,~ II ," ,c  lk '~c  I k " ~  I 1 " ~  

The  LMT is built at the time of  
forming the bounds,  pr ior  to clip- 
ping. Figure 3 shows a polygon with 
its edges assigned to the LMT. 
Scanbeam Table (SBT): This is 
built as the polygons are scanned to 
keep the length of  the list to a mini- 
mum. The  uppe r  end of  the cur- 
rent  scanbeam is de te rmined  by the 
smaller of  the min imum 'ytop'  of  all 
the edges in the AET and the next 
LMT entry. This is the next entry 
in the SBT. 
Let us define the following opera-  
tions to simplify the algori thm pre- 
sented later: 

MarkSBT(y) 
Insert  a node represent ing 'y' in 
sorted o rde r  in SBT, if it does not 
exist. 

AddLocalMin(edge,p) 
Create a polygon node and set 
right(R) and left(L) pointers to 
point  to 'p'. 
Assign the polygon(P) to the edge 
and its next edge as the output  
polygon. 

AddLeft(edge,p) 
Add vertex(p) to the left end(L) of  
the vertex list of  the polygon 
assigned to the edge. 
Update  L to point  'p '  

AddRight(edge,p) 
Add  vertex(p) to the right end(R) 
of  the vertex list of  the polygon 
assigned to the edge. 
Update  R to point  to 'p'. 

AddEdges(LMTnode) 
For each pair  of  edges (edgel ,  

edge2) of  LMTnode  do; 

Add  edge l ,  edge2 to the AET in 
sorted order .  

Assign the side (left/right) of  
edge l  and edge2. 
(note that edge l  and edge2 
start f rom a local min imum 'p') 

I f  it is a contr ibut ing local 
min imum then 
AddLocalMin(edge 1 ,p); 

MarkSBT(edge 1->ytop); 
MarkSBT(edge2->ytop) ;  
end; 

AppendPolygon(edgel,edge2) 
Set P = e d g e l - > p o l y  and 

Q = edge2->poly;  
Assign vertex list of  P to the left or  

r ight end of  vertex list of  Q 
depend ing  on the side of  edge l ;  

Set ( e d g e l - > p r e v ) - > p o l y  = Q; 

AddLoealMax(edge,p) 
If  the edge is left edge 

AddLeft(edge,p) ;  
Else AddRight(edge,p) ;  
I f  the edge and its next edge have 
the same output  polygon return;  
AppendPolygon(edge  1 ,edge2); 

E d g e  I n t e r s e c t i o n s  
All the intersections in the current  

Rule 1 

Rule 3 Rule 4 

F igure  I .  Intersection classification 

T a b l e  1. 
Edge da ta  s t ruc ture  

Field 

xbot 
ytop 
delx 
type 
side 
poly 
next 
prey 
succ 

Description 

lower x coordinate 
upper y coordinate 
change in x for a unit increase in y 
clip/subject edge flag 
left/right flag 
output polygon pointer 
next edge In the AET 
previous edge in the AET 
successor edge (edge connected to the upper end) 
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scanbeam must be processed before 
we move on to the next scanbeam. 
We know that all the edges in the 
AET are already in sorted order. 
When the scanning reaches the top 
of the current scanbeam (bottom of 
the next scanbeam) we need to 
update 'xbot' values of all the edges. 
I f  edges intersect in the current 
scanbeam, the updated 'xbot' values 
(xtop values) will not be in sorted 
order. The number of  jumps an 
edge must make to find its sorted 
location will give us the exact inter- 
sections of the edge with the re- 
maining edges. We create tempo- 
rary Sorted Edge Table (ST) and 
Intersection Table (IT) to identify and 
store all the intersections in the cur- 
rent scanbeam. Each node of the 
ST stores the pointer to an edge 
and its xtop value. The IT  is a 
linked list of intersection nodes 
sorted in y coordinates of the inter- 
sections. Each node contains the 
pointers of both the intersecting 
edges and the intersection. The al- 
gorithm to find the intersecting 
edge pairs is as follows: 

Set Dy to the height of  the current 
scanbeam. 

Initialize the first node (right end) 
of ST using the first edge 
of AET. 

Set STedge to the first ST node. 

- - - I  

Plgure 3. Local minima table 

IPlOure 4. Processing local minimum 

For each AETedge of the 
remaining edges in AET do; 
xtop - AETedge->xbot + 

AETedge->delx*Dy; 
While (Xtop < STedge->xtop)do; 

Compute intersection between 
STedge and AETedge; 

Insert the intersection and 
both the edge pointers in IT. 

Set STedge to its left STedge; 
End; 

Insert AETedge to the right of 
STedge; 

End; 

Clipping A l g o r i t h m  
The clipping algorithm can 
stated as follows: 

be 

Build LMT; 
Set AET to null; 
For each scanbeam do; 

Set yb and yt to bottom and top 
of the scanbeam. 

I f  LMT node corresponding to 
yb exists AddEdges(LMTnode); 

Build Intersection Table (IT) for 
the current scanbeam; 

For each node in IT; 
Set edgel and edge2 from the 

IT  node; /* edgel precedes 
edge2 in AET */ 

Classify the point of 
intersection 'p'; 

Switch (class of p) do; 
Case(LI KE__EDGE_INT): 

J 

E 

I f  edge 1 is contributing 
then 
AddLeft(edge 1,p); 
AddRight(edge2,p); 
Exchange edge 1->side 

and edge2->side; 
Case(LOCAL_MAX): 

AddLocalMax(edge 1 ,p); 
Case(LEFT_INT): 

AddLeft(edge2,p); 
Case(RIGHT_INT): 

AddRight(edge I ,p); 
Case(LOCAL_MIN): 

AddLocalMin(edge 1,p); 
End; /* switch */ 

Swap edge1 and edge2 
positions in the AET; 

Exchange edgel->poly and 
edge2->poly; 

End; /* IT  loop */ 
For each AETedge do; 

I f  AETedge is terminating at yt 
do; 
Classify the upper  end vertex 

'p' of AETedge; 
Switch (class of p) 

Case(LOCAL_MAX): 
AddLocalMax(AET 

edge,p); 
Delete AETedge and 

AETedge->next from 
the AET; 

Case(LEFT_INT): 
AddLeft(edge2,p); 
Replace AETedge by 

AETedge-> succ; 
Case(RIGHT_INT): 

AddRight(edge 1 ,p); 
Replace AETedge by 

AETedge->succ; 
End; /* switch */ 

End; /*  if */ 
End; /*  AET loop */ 

End; /* SBT loop */ 

\ 

Trapezo id  G e n e r a t i o n  
Trapezoids can be generated as 
output with a few modifications to 
the preceding algorithm. A local 
minimum starts a trapezoid strip or 
breaks an existing trapezoid strip 
into two, depending on whether the 
local minimum is formed by a left- 
right or a right-left edge pair. At 
each contributing local minimum 
we create a trapezoid node, similar 
to polygon node. Each node re- 
quires to store only bottom x c o o r -  

Polygon node Vertex added 
R = Right pointer L = Left pointer 
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dinates and the corresponding y 
coordinate. Whenever a local maxi- 
mum, left intermediate or right in- 
termediate vertex is encountered, a 
trapezoid should be output. A local 
minimum formed by a right-left 
pair should also output  the trape- 
zoid it splits and the trapezoid 
pointers for the participating edges 
should be reassigned appropriately. 

Trapezoids can be output  in the 
form (Xleft,Xright,Ybot,DXle ft, 
DXright,Ytop) and these can be 
scan-converted very easily in a sim- 
ple loop as follows: 

For Y = Ybot to Ytop do; 
DrawLine(Xleftyright,Y); 
Xleft = Xleft + DXleft; 
Xright = Xright + DXright; 
End loop; 

Example 
Let us denote an output  polygon 
node with P[R:L](pl,p2,...,pn), 
where P is the polygon pointer, R is 
right end vertex pointer, L is left 
end vertex pointer and the list 
pl,p2,...pn are the vertices of  the 
polygon. Figure 8 shows subject 
polygon S(sl,s2 ..... s8) and clip poly- 
gon C(cl,c2 ..... c9). The  edge inter- 
sections are denoted by i1,i2 ..... i8. 
The  following table describes only 
those events at which output  is gen- 
erated. 

Results 
The algorithm was implemented in 
C and executed on a MIPS proces- 
sor R2000 under  a Unix TM operat- 
ing system. Trapezoids were gener- 
ated as output  of  the clipping and 
these were filled as described ear- 
lier. Actual machine cycles were 
obtained for several cases and the 
averagetimings were computed for 
each case and listed under  
Method 1. Similar timings were 
obtained for the Reentrant Polygon 
Clipping [9] and scanline fill algo- 
rithms and listed under  Method 2. 
Since the reentrant polygon clip- 
ping algorithm does not permit 
concave clip polygons, only convex 
clip polygons and concave subject 
polygons were used for the test 
cases. The sizes of  clip and subject 

polygons are selected such that they 
fit in a 1,280 x 1,024 resolution. 

Improvement  factors were com- 
puted for each case by dividing per- 
formance values obtained for the 
Method 2 by those in Method 1. 
The  averages of  such improvement 
factors are listed under  ' Improve- 
ment '  columns. Table 3 shows the 
results of  clipping subject polygons 
with a varying number  of  edges 
using the same clip polygon. 

The  total timings of  clip and fill 
indicate that there is always consid- 
erable performance improvement 
over SH clip followed by scanline 
fill operations. This table also indi- 
cates that both clipping and filling 
can be done faster than the scanline 
fill algorithm alone. Further, we 
can see that the relative clipping 
performance improved as the num- 
ber o f  edges increased. 

case for this algorithm. The deter- 
mination of  vertex classifications 
should be made based on the as- 
sumption that the horizontal edge 
is absent. Since horizontal edge in- 
tersections are available at the top 
and bottom of  scanbeams, horizon- 
tal edges can be processed effi- 
ciently as a special case. The  algo- 
rithm can be optimized for 
rectangular clip bounds, which is a 
typical usage of  clipping. The  algo- 
rithm can also be optimized for 
clipping several subject polygons 

MliUNI | .  Processing left Intermedi- 
ate 

Extensions 
Union and difference operations: 
The discussions presented assumed 
the clipping is the intersection o f  
two polygons. I f  we want to output  
polygon as the union of  two poly- 
gons, the output  rules should be 
modified as follows: 

1. LC × LSILS X LC = LI 
2. RC x RSIRS x RC = RI 
3. LS x RCILC × RS = MN 
4. RS × LCIRC x LS = MX 

All local minima of  subject polygon 
which lie outside clip polygon and 
all local minima of  clip polygon 
which lie outside subject polygon 
should be treated as contributing 
local minima. 
For difference operation (subject 
polygon minus clip polygon), the 
rules should be as follows: 

1. RC × LSILS x RC = LI 
2. RS × LCILC x RS = RI 
3. RS x RCILC × LS = MN 
4. RC x RSILS x LC = MX 

All local minima of  subject polygon 
which lie outside clip polygon 
should be treated as contributing 
local minima. 
Horizontal edges: Processing of  
horizontal edges becomes a special 

Iqlluee Ii. Processing right intermedi- 
ate 

Plgueo 7a. Appending polygons (be- 
fore) 

Plguro 7b. Appending polygons 
(after) 
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T a b l e  2. 
POlygon clipping example 

Event Output Generated Description 

Sl 
S7 
I1 
12 
13 
14 
C4 
15 
i6 
i7 
S6 
i8 
S3 
S5 
S4 

P[Sl:Sl](Sl) 
PISl:S7I(S7,Sl) 
P[il:s7l(s7,Sl,il) 
P[il :I2](12,S7,S1,11 ) 
Q[13:13](13) 
Q(13:14](14,13) 
Q[C4:1,4](14,13,c4) 
Q[15:15](i5,14,13,c4,15) 
Q[15:i6](i6,15,14,i3,c4,i5) 
Q[17:iE;](16,15,i4,13,C4,15,17) 
Q[17:S6](S6,16,15,14,i3,c4,15,17) 
Q[18:ie](18,s6,16,15,14,i3,c4,iS,i7 ,18) 
Q[18:s3](s3,i8,s6,16,i5,14,13,c4,15,17 ,i8) 
Q[S5:S3](S3,18,S6,16,15,14,13,c4,15,17 ,18,S5) 
O[s5:s4](s4,s3,i8,s6,16,15,i4,13,c4,i5,i7 ,18,s5) 

Contributing local minimum 
Left intermediate 
Intersection Rule 2 
Intersection Rule 3. Polygon P closed. 
Intersection Rule 4. Polygon Q created. 
Intersection Rule 1 
Right intermediate 
Like edge intersection 
Intersection Rule 1 
Intersection RUle 2 
Left Intermediate 
Like edge intersection 
Left Intermediate 
Right intermediate 
Local maximum 

Table 3. 
Results Of the clipping and filling operations 

Me~hodl Method2 Improvement 

Edges Clip Fill Total Clip Fill Total 

4 
10 
20 
40 

100 
200 

1.20 
3.06 
5.35 
9.73 

23.76 
45.77 

1.97 
6.17 

11.41 
21.60 
52.65 

104.39 

3.17 
9.22 

16.77 
31.34 
76.41 

150.15 

1.88 
4.89 
9.10 

18.16 
47.85 

100.99 

24.37 
57.55 
98.92 

181.71 
430.11 
844.15 

26.26 
62.44 

108.03 
199.86 
477.96 
945.15 

Clip Fill Total 

1.62 12.40 8.33 
1.67 9.39 6.27 
1.83 8.19 5.59 
2.05 7.45 5.20 
2.18 6.23 4.86 
2.44 5.62 4.81 

c7 

c s  

~ 1 6  17 s2 

c2 

cl 

against a constant clip polygon by 
preassigning the edges of  the clip 
polygon to the LMT. 

C o n c l u s i o n  
A general and efficient polygon- 
clipping algorithm is presented. 
The  term 'clipping' is also defined 
in a more general sense which may 
mean intersection, union or  differ- 
ence. The  output  of  the algorithm 
can be polygons or trapezoids. The  
results indicated significant perfor- 
mance improvements over tradi- 
tional polygon-clipping and filling 
operations. 
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FigUre 8. Polygon clipping example 
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CARE plants the 
most wonderful 
seeds on earth. 

Seeds of self-sufficiency that help 
starving people become healthy, 

productive people. And we 
do it village by village by village. 
Please help us turn cries for help 

into the laughter of hope. 

CR Categories and Subject Descrip- 
tors: E.2 [Data]: Data Storage Repre- 
sentations-linked representations; 1.3.3 
[Computer Graphics]: Picture/Image 
Generation--display algorithms; 1.3.5 
[Computer Graphics]: Computational 
Geometry and Object Modeling-- 
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