
Ada/TL Specification and Verification of
a Distributed Computation

Abstract

William Hankley & Peikun Tsai

Kansas State University

AdaflL is a specification language that combines aspects of
Ada, VDM, and temporal logic. It is styled to provide a bridge
between techniques for engineering of distributed software and
techniques for formal specification and verification. An
AdaflL specification builds on an Ada specification of the
structure of task interfaces; semantics of task operations are
given by assertions using abstract structures of VDM; the
behavior of each task is given by a temporal assertion about
the task operations; finally, global properties of the network
arc given by a temporal prcdicatc about the intcrziction of
tasks. Verification of the the specification consists of a
demonstration that the system global properties follow from
the rest of the specification. Specifications arc constructive in
that the verified specification can be transformed to a
distributed Ada program. This paper illustrates the
methodology by first specifying a distributed computation for
summing numbers stored at nodes of a nclwork and second
showing a proof that the computation is correct. The proof
illustrates the common tcchniquc of induction over the nodes
of the network. The s(ructure of this example su~gests an
approach for correctly specifying other distributed
computations.

Background

In spite of some weaknesses, Ada has been promoted as a
foundation for specification languages for distributed systems
[4]. Some specification languages build upon the Ada
framework, for example ANNA [12], TSL [1 1], and Ada/TL
[5]. One advantage of building upon the Ada base is that the
specification Starts with a style and notation that js used by
software engineers. For concurrent and distributed systems a
further advantage is that an Ada based specification defines the
highest level of tasking structure for the target system; there
is not a drastic change of structure from spccifiration to
software design.

Earlier papers [6, 13] have illustrated Ada/TL specification and
proof techniques for concurrent systems. These arc

summarized next.
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The Ada/TL language starts with the Ada specification part as
the specification framework. It adds assertions to define the
semantics of task operations. It uses abstract data structures
and notations from the Vienna Development Method (VDM
[8]) to model information within tasks and to express task
assertions. Experiences with VDM (and similar results with Z)
show that specifications expressed using abstract data
structures arc more expressive and more concise than concrete
code, yet they are easily translated to concrete code. Finally,
Ada~L uses temporal logic to define temporal behavior of
tasks. Within each task, a temporal assertion defines the
direct interaction of the task with other tasks. Temporal
predicates can be interpreted as defining states and transitions.
Lamport [10] argues that is a natural approach which allows
easy understanding of such specification. At the same time,
temporal predicates rest on the foundation of formal logic [9]
ancl thus allow formal verification of specifications. In
addilion to the task assertions, Ada/TL system-wide temporal
asscr[ ions state expcctcd safety and liveness properties. These
assertions always state expected results of indirect interactions
of tasks. If the systcm assertions do indeed follow from the
task specifications, then the system assertions can be verified
using formal proof techniques.

For purposes of verification, the temporal behavior defined by
each task property can be seen as an 1/0 automaton. While the
composite systcm automaton has many states, tfrere are
typically few composite states of allowed task interaction.
Verification of the global property is achieved by
symbolically tracing end justifying global predicates over all
branches between states of allowed task interaction. For
continuing tasks, there are always recurring states.
Verification requires an induction over the recurring states
much like the inductive proof of loop properties for sequential
programs. Of course, in an environment of software
development, formal proofs may give way to lCSS formal
reviews of systcm properties; yet, understanding of the
underlying proof structure is essential for understanding
correctness of spccificd properties.

Motivation

This paper extends the Ada/TL methodology to the case of a
computation distributed over a network of tasks. Two
concepts arise in this paper, first, the Ada specification of
distributed program components and second, the proof
technique itself. These issues are discussed separately below
and then arc illustrated using a distributed :dgorithm for
summing numbers stored a sties of a network. The example is
the focus of the body of the paper. The example is a finite
(terminating) computation, but it is distributed over an
arbitrary number of network nodes. The algorithm is a kind of
“diffusing computation’” algorithm [3]. The algorithm is
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important in that other kinds of “diffusing computation”
algoriduns can bc reduced to this form [7].

The Ada language represents a system of [asks as a single
concurrent program. There are no special Ada language
features for distributed progriims. A number of authors [1, 2,
14] have presented ways for extending Ada for distributed
applications. The prevailing approach is to break a distributed
systcm into separate programs each allocated to a network
node. Communication between separate nodes may bc
suppcsrtcd by a distributed kernel using mechanisms such as
remote rendezvous, remote procedure calls, asynchronous
message passing, or message broadcasting.

For purposes of defining global properties, Ada/TL treats a
distribo[cd system as a single integrated specification with a
family of packages each assigned to a network node, Global
variables of the specification can be used to state requirements
and constraints, but they cannot be used to define the
computation part of the specification.

In earlier papers, verification of a properties of a system of
tasks reqoircd inductive proof of properties at recurring states
of the computation. In the example of this paper, verification
of the systcm property does not require induction over
recurring states, but it does require induction over the number
of nodes. The proof is made tractable by dccomposiog itinto
a hierarchy of related subpropcrtics, which ;irc presented as
lemmas. The lemmas allow the proof to bc stated in concise
Steps.

The distributed algorithm and underlying concept of the proof
arc not new. The contribution of this presentation is to show
the specification and proof in a notation and style which
couples directly with Ada notation and style. We believe that
this style of specification & verification can be used by
practicing software cnginccrs.

Statement of the problem and the algorithm and explanation of
the Ada/TL notation arc given in the next section and then
vcriftcation of the spccificatirm is prcscntcd.

Specification of Requirements

The network consists of an arbitrary number of sites each
Iabclcd with a orriquc sitcId identifier called “MyId”. Each site
supports communication with a subset of neighbor sites using
rcnrote rendezvous. Each site knows the siteId idcntificatimr of
its neighbor sites. The network is connected in that there is a
path of communication bctwccn any two sites, possibly via
intcrmcdialc sites. Each site stores information, which is
spccificd as a positive integer called “No(i)” where “i” is a
sitcId. A single site, identified as “Root”, seeks to find the
sum of all numbers stored at all sites of the network.

Spccitlcation of lhc problcm conslrain[s is given in Figure 1.
The whole network is the package “Network”. It is not
instdlcd at any site, but it is the global view of the network.
The global variables “Edges”, “Root”, and “Nums” arc not
stored at any of the situ, but thc~ represent the global
dcfinitiun of lhc network. The various abstract structures
(sets, maps) are not part of Ada but are taken from VDM. The
configuration of the network is defined by the structure
“Edges”, which is a set of 2-tuplcs of node identifiers.

The “ - l“ lines mark scvcrtil kinds of assertions and
dcfinitioos, using the fullowing kcy words:

“req” assertions are required conditions which the subject
structures must meet, so these are not subject to any
verification;
“clef” lines define functions which are used in assertions but
not directly used within the computation defined by the
specification;
“init” assertions define initial states; “sys property” is the
global property to be verified;
“in” and “out” assertions define conditions for variables and
parameters at the beginning and ending points of task
operations (none of these are used in Figure 1);
“inv” are invariant properties of variables.

Constrained sets are defined using a set constructor with the
form: sct( +ound_v- I cbinding_exp> )
This forms the set of elements that are formed from
components of some other structure and which satisfy the
constraint expression

Predicates over structures have the general form:
( <quantifier> <binding_exp> : cboofean_exp> )

with quantifiers such as “all” and “exist’”. A summing
function has a similar form, but it using the quantifier “sum”.

The generic package “SitePkg” is to be instantiated at each
site. Each site must define the parameters of ‘“MyId” which is
the sitcId, “Nbs” which is the set of neighbor sitdd’s, and “N”
which is the number stored at the site. A task “lnit” is defined
for the site “Root” with the understanding that “lnit” will start
the computation.

The only tcrnporal predicate is the system property which

states that cvcrrtually ( the 0 operator) the variable “S” at the

“Root” site dctcrmincs the sum of “Nums” values stored over
the network,

Specification of the Computation

A naive approach for computing the required sum is for site
“Root” to query aIl other sites with a broadcast message,
rcceivc as response the stored value from each site, and then
compute the sum. A more distributed form of the algorithm is
the

i)
ii)

iii)

iv)

i’ollowing:
Site “Root” queries its neighbor.
Each site which receives a query in turn queries its other
neighbor sites.
When a site first rcccives a query, it records the calling
site as its “ParentId” and later reports back its partial sum.
When a site receives any other query, it immediately
reports back the value zero.
When each site rcccives a rctum report of a partial sum, it
records the partial sum value. When the site has received a
return report from all of its neighbors (excluding its
“ParcntId “site), it is then able to sum the stored values
and report its partial sum as stated in itcm (iii).

The specification for the distributed algorithm is given in
Figure 2. Line labels are included for reference in the
verification, For each site package, a task “Sum” is defined
with communication ports “Start” and “Ack”. “Start” receives
requests to compote a partial sum and “Ack” receives the
corresponding reports of the computed partial sums. The
functional behavior of task operations is defined by their “in”
and “out” assertions; the temporal interaction of the task
operations is defined by the temporal “properly“ asserdcm.
The entry asscrtiorrs for “Start” indicate that for the first call
Lhc vanablcs “ParcntId” and “Np” are bound. “Np” is the set of
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neighbors excluding the calling parent site, For subsequent
calls to “Start” the “StartCount” is bound to one more than the
previous value. The entry assertions for “Ack” indicate that
the returned sum “Partial” is bound as the “RId” component of
“Nbs”.

The following temporal operators are used to form temporal
predicates:

O P . . eventually P is true

seq(Pl ,P2) == PI is true before P2
seq( Pl, P2, ..,)== P1 is true before seq(P2, ...)

O c P == (c and P) is true zero or more times

in sequence until eventually c is false
The “property” temporal predicates are explained below as
sequential behavior of the task.

The property for task “Sum” indicates that it first accepts a
“Start” request and then propagates (or diffuses) the request to
all of its other neighbor sites (determined by “Np”).
Thereafter, it asynchronously accepts either “Start’” or “Ack”
entries so long as there are remaining operations to be
processed, as indicated by the condition “StartCount < lNpl or
S= O”. Whenever an additional “Start” is received the
value “O’ is immediately returned. When the last “Ack” is
received (indicated by “Npa = Np”) then the computed partial
sum “S” is returned to the “ParentTd” task.

This kind of distributed algorithm could hardly be created
without understanding the underlying structure which allows
correctness to be verified. The key ideas are illustrated for a
typical site “i” shown in Figure 3, “Start” requests dynamically
form a spanning tree of sites over the whole network. The
spanning tree is not unique and is not statically determined, it
depends in part on the transit times of the “Start” requests. At
each site, the f~st “Star~’ request determines the parent for the
site. For site “i”, the neighbors for which “i” becomes the
parent form the “Children(i)”. Other neighbors of site “i”
form “Others(i)”. The spanning tree is formed only from the
“Children” for each site. Each site of the spanning tree
computes a partial sum only for its “Children” sites and it
reports back the partial sum only to its parent site. Sites of
“Others(i)” (which have some “parentId” other than “i”)
always report back “O” to site “i”. The global concepts of
kinds of nodes (parents, children, and other) and the spanning
tree are included as part of the specification.

The boolean function “SP(i)” is used to form the global system
property. “SP(i)” states that for task “Sum(i)” when its parent
task “T(p)” issues a “Start” request then eventually “Sum(i)”
will form the partial sum of all numbers stored in its subtree
(including its own number) and report back the sum to its
parent site. Task “T(p) “could be either “Init(Root)” or some
other “Sum(ParentId)”.

The global “sys property” states that “SP(i)” holds for all sites
and eventually variable “S” of the “Irtit” task is bound as the
sum of all the numbers stored in the network.

Verification of Distributed Summing

In the network specification, the “in” and “out” assertions
define the entry operations and “property” assertions define
the sequential behavior of each task. These are taken as
premises for the verification. The objective is to show that
the system property holds. Verification proceeds in two steps.
First we show that the predicate “SP(i)” holds for every site
“i”. That consists of showing that “SP(i)” holds directly for

every leaf site and then showing by induction that “SP(i)”
holds for arbitrary sites. Then, the correctness condition
follows from “SP(Root)” and the condition that
“Subtree(Root) = Connect(Root)”. To simplify some steps of
the proof, various lemmas are used. The organization of the
subproofs is shown in Figure 4. The proofs listed in the
Appendix.

In the general case, the steps of the proof will symbollicaly
trace the interaction of tasks, where the behavior of each task
is given by ita “property” assertion. For this simple example,
the paths consist of only threads thru tasks “Sum(i)”. In
reading the verification, we will stand in the position of a task
“Sum(i)” at site “i”. This means that any variable “X stands
for “Sum(i).X” .

Referring to the Appendix, the steps are labeled first with a
step number of the form n-m, corresponding to the n th step of
a path and m th branch within a path. Branches labeled as n’ or
n-m’ do not lead to the final step of the proofi either the branch
is excluded by subproof conditions or the branch leads back to
a repeating state which terminates with some “eventually”
condition. The predicate for each step either is taken directly
from the specification line number in the second column or it
is derived by logical inference as explained by the comment in
the right hand column. Inference steps are presented in a
semi-formal manner which is intended to suited for peer
review. Within the proof, certain operators such as “al~’ and
“set” are replaced with their equivalent symbolic form

Based on Figure 4, the verification starts from the bottom of
the hierarchy with Lemma 1. Lemma 1 states that if site “i” is
a site in “Others(p)” of another site “p”, then after site “p”
sends “Start(p)” to “i”, “Sum(i)” will finally return “Ack(i,O)”
to “Sum(p)”. When the neighbor site “p” sends “Startt’ to “i”,
it may be received with either of two different “Start”
conditions, plor#. Since “i” belongs to “Others(p)”,
“Start(p)” must be received through condition p4, and p4 can
only be accessed when condition p3 is true. At the moment the
checking p3, it must be true that “StartCount < lNpl” since at
least one “Start” (namely “Start(p)”) has not been received
yet. From p5, “Sum(i)” returns “Ack(i, O)” to “Sum(p)”.
Thus, Lemma 1 holds.

Lemmas la, lb, and lC follow in a similar way. Details are
not shown.

The SP:Non-recursive part of “SP states that for a leaf site “i”
“SP(i)” is true. After establishing the “ParentId” and “Np” set,
there are two main cases to be considered, labeled as branches
*-1 and *-2 . Both cases must lead to the conclusion part of
“SP(i)”. In both cases, since “i” is a leaf site, the sum of
numbers over the “Subtree(i)” is merely the number “N” stored
at site “i”. For the “1” branch site “p” is the only neighbor of
“i” and the result follows directly. For case “2”, site “i”
propagates other “Start” requests (line 3-2) but those rdl must
respond with return value “O” since “i” is a leaf. In line 5-2’,
site “i” may receive additional “Start” requests, but those do
not effect the “SP” result. Obviously, the operations of
concern are “Ack” in line 5-2. Eventually all member of “Np”
respond , so that “Npa = Np”. Line 8-2 indicates further
“Ack” responses are due, which leads back to line 5-2. When
“Npa=Np” (line 8-2) , the conclusion follows easily.

The SP:Recursive part generalizes the SP:Non-recursive part.
The major difference is that “Children(i)” is not empty, so
“Np” is the union of “Children(i)” and “Others(i)”. Lemma 2
was stated to ensure that for all “j” in “Chilclren(i)”, once
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“Start(i)” is sent to “Sum(j)” , Lhcn “Sum(i)” will finally
receive an “Ack” from j. Lemmas 1 and 2 together [ells us all
neighbor sites of “i” (excluding its parent) will finally return
an “Ack”. The induction hypothesis for the recursive proof is
that “SP(j)” is true for all “j” in “Children(i)”, and the goal to
be proved is that “SP(i)” is true. Since we assume there are no
communication failures, Lemma 2 follows from the induction
hypothesis. Step 5 generates the major result. In this step,
site “i” has received all “Ack” responses. Since each received
number is the sum over a sub~ce, then computed result “S” is
shown to be equal to a sum over the “Subtrce(i)”.

Since “SP(i)” must hold for ‘“i=Root”, the desired “sys
property” will follow provided that “Subtrce(Root) = Sites”,
which is stated as Lemma 3. Step 1 of Lemma 3 follows

easily. Step 2 is by contradiction. If there is a site a that is

not part of the “Subtrec(Root)” then a violates the
“Conncctcd” assumption.

Conclusion

Wc have presented a conceptually simple structure for
formalizing and verifying a rcprcscntative algorithm for
cliffusing computations. The site and task structures follow
closely the form of Ada specifications. Within the
specification, task properties define allowed sequences of
states of the task. The specification must also include the
underlying definitions and invariants that allow the algorithm
to be understood and to be verified. For this simple algorithm,
the verification follows naturally as symbolic evaluation of
state predicates along allowed behavior paths. Because the
proof is annotated with specification line numbers and
explanations of inference steps, the proof should be easy to
CXpliiinto peer reviewers. For more complex algorithms, it
is likely that proofs would rcquim further relating threads of
behavior of multiple tasks, which is not treated in summing
proof.
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-- Figure 1

package Network is

type SiteIdType is pending;

Edges: set of (SiteIdType, SiteIdType) := pending;

-- I req (all (s1,s2) in Edges: (s2, s1) in Edges);
-- I req not (exist (s1,s1 ) in Edges ) ;

Sites : set of SiteIdType;
--1 req Sites= sct( s I (s, _) in Edges);

Root: SiteIdType;
- I req Root in Sites;

-- Idef Nbs(i: SiteIdType) == set( s I (i,s) in Edges);
-- I def Connect(i : SiteIdType) == set(i) +

set{ s I s in Comect(sl) and SI in Nbs(i) );
-- I req Sites = Comect(Root);

Nums: map SiteId to Positive := pending;

generic MyId: SiteIdType;
Nbs: NbSet;
N: Positive;

package SitcPkg is
--1req N = Nums(MyId);

S: positiv~

task Init(Root) is
-- I rcq MyId = ROOU
end task Init;

-- I init Init(Root);

end package SitcPkg;

-- I req (all i in Sites: Site(i) is SitePkg(i, Nbs(i) , Nums(i)) );
-- I sys property

O Si[ePkg(Root).S = (sum i in Sites: Nums(i) ) ;

-- structure of site Ids left unspecified
-- global variables used to define the network
-- set of 2-tuples which defiies the network
-- actual value of Edges is not specified
.- Edges is symmetric
-- no self-edges

.- setof allsiteId’s
-- Sites is defined from Edges

-- Root is a particular Site
-- set of neighbors is defined by Edges
-- set of all sites directly or indirectly
-- connected to some site i
-- all sites are connected to site Root

-- number stored at each site, unspecified

-- parasnetem for package to be installed
-- at each site

computed sum information

-- initiation task only for site Root

-- initial condition: activates task Init(Root)

-- S itePkg is instantiated at each site

-- eventually, S at the Root site is the
-- sum of all No’s stored at all sites

end package Network; -. end of package structure,

Figure 1. Specification of Requirements
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. . start of Figure 2. Specification of Distributed Computation

package Network is
-- SitcIdTypc, Edges, Sites, Root, Nbs(i), Nums(i) as in version 1 , see Figure 1;

generic My Id: SitcIclTypc; Nbs: NbSc[; N: Posilivc; -- parameters for package

package SitcPkg is

task Sum(MyId) is -- MvId is the siteId.

S1
S2

S3
S4
S5
S6

S7

al
a2

pl
p2

p3

p4
p5

p6
pl
p8
p9
plo
pll

NbSum: map SiteIdType to Natural: =n\]ll;
.
only one Sum task at each site

S: positive :=0 ;
ParcntId := SiteIdT~c:= null;
StmtCount: Natural := 1;

entry Start( P1d: SitcIdType); rqucst from site which may be the pment
-- I in PId in Nbs(MyId);
-- I out if Parcntld=null then

Np = Nbs - PId
and ParcntIci = PM -- PId was rhc parent si[eId
and if Np = null then

S’out = N
and Sum(Parcntld). Ack(MyTd, S)
cndif

else
StartCount’out = StarlCount’in + 1 -- PId was not the parent siteId

cndifi

entry Ack( fUd: SitcIdTypc; Partial: Natural); -- R1d = responder’s siteld
-- I in RId in Nbs;
-- I out NbSum(R1[i) = Partial

and Npa’out = Npa’in + Rid;
-- I property

scq( Start(PId), -- PId is the parcntId
(all j in Np: Sumfj).Start(Myld) ),

0 (StartCount < lNpl or S = O)

(seq( Start(X1d), -- XId in Othcrs(MyId)
Sum(XId).Ack(.Myld, 0) ) )

or
scq(Ack(RId, Partial),

if Npa = Np then - all Start rqucsts have responded
S = (sum s in Np: NbSun~(s) ) + N cndif,

if MyId = Root
then Init(Root).Ack( Root, S)
c]se Sum(ParentJd). Ack(MyId, S) cnclif)

,ndtmk sm(Jyld),

task Init(Root) is initiatiorr task only for site Root
-- I rcq MyId = Root;

il -- I property scq( Sum(Root).Start(f ?oot),
i2 Ack(Roo[, S));

end [ask Init;
- I init Init(Root); initial condition: ac(ivatcs task Init(Rtmt)

-- following structures arc basis for design and vcrific:]tion of the algori~hm
-- Idcf Np(i: SitcIdType) == Nbs(i) - SC1(Sum(i),l}arcntld) ;

- 1,i~’f (’hildrcn(i: Si[cIdTyp) == sct( x I x in Np(i) find O (Sunl(x).ParcntId = i ) );

-- Idcf othcrs(i: SitcIdTypc) = = sct( x I x in hTp(i) and 0 (Som(x).ParcntId #i ) );
- I inv ( all i in Sites: Np(i) = Children(i) + others(i) ); clear from dct%titions above

Idcf Lcaf(i: SitcldTypc) == (Childrcll(i) = null );
-- Iclef Subtrcc(i: SitclclTypc) == sct( i) + sct(x I s in Chi]drcn(x) and x in Sutrtrcc(s));
end package SitcPkg; Figure 2 continocd on next page
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. . continuation of Figure 2

-. Ireq (all sin Sites: Site(s) is SitePkg(s, Nbs(s) , No(s)) ); -- SitePkg is instantiated at each si~

-- I def SP(i: SiteIdType) = (exist T(P) is tmk:
(T(p): Sum(O.Su@) and Sum(i) .ParentId = p)
~P ~ (Susn(i).S = (sums in Subtree(i~ Surn(s).N )

and Sum(i) T(p).Ack(ii Sum(i).S) )
k

-- I Sys property
(all i in Sites: SP(i) )

and O Init(Root).S = (sum i in Sites: Numsi) ); -- eventually, S at the Root site is the
-- sum of all No’s stored at all sites

end package Network, -- end of package structure,

Figure 2. Specification of Distributed Computation

------------------------------------------------------- ---------------------------------------------------------------------------------

stUt(PId)
~ t

Ack(

std i)

# \ 4“\ .1’ ----
1 1
I
\

ChiMren( i) j
\\ )

‘.- /------

Figum3. ChiMmn and Othen for a Main Site i

Spttm Propes@

\

5P LtmrN 3

A

Non-recursivePart Recursive Put

Lemma 1

Figure 4. I-h-u&y of PmmfSmxture
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Appendix

Lemma 1:

0

1
2
3’
3

‘t

5
2’

p3

p4

51

S7

p5

p4

Lemma la:

Lemma lb:

Lemma lc:

V pCSites:(V iEOthers(p): Sum(i) .Start(p)+ O Sum(p) .Ack(i, O))

Since i E Others(p), following predicate holds for site i:
ParentId # q; //clef of Others(p)
StartCount < lNbsl; //not rec Start(p) yet

0[ StmtCotmt</Nb./ or S=0) / /fr O
case Start(Xid) ffrec Start fr Xid#ParentId

case Xid # p //don’t care about this case
case Xid = p

(ParentId # null) jffr O

StartCount’out = StartCount + 1
Sum(Xid).Ack(MyId, O) //MyId=i by assumption
aSum(p).Ack(i, O) j/fr 3 case, Myld=i
Lemma 1=true

case Ack(RId, Partial)

V pESites:(V iEOthers(p):
Lemma la can be directly

V peSites:(V i< Others(p):

J/fr 4
J/don’t care about this case

Sum(i) .Start(p)~ O NbSum(i)=O )
proved by applying Lemma 1 and Ack:al.

Sum(i), Start(p)~ O Others(p) CNpa(p) )
Lemma lb’ can be directly proved by applying Lemma ‘1“and Ack~a2.

V pESites:Leaf(p) and (V iEOthers(p): Sum(i) .Start(p))+ O (Others(p) =Npa(p) )

Lemma IC can be directly proved by applying Lemma lb with Children(p)=~.

SP : Non – recursive Part: A leaf site i satisfies SP(i).

3 pESites:T(p):(leaf(i) and T: Sum(i) .Start[p) and Sum(i), ParentId=p

o

1 pl
51
S2
S3

2-1 S4
55

56

3-1 p2

4-1 p3

5-1
2-2 S4

--0 Sum(i)~S’ = (surn sESubtree(i)~ Sum(a):N) and T: Ack(i, Sum(i)~S))

S = O; StartCount = 1; ParentId n null;
Np = ~; Npa = ~; //fr var initiation

Start(Pid) //ret Start fr p, Pid=p
(ParentId = null) //fr O
Np = Nbs - Pid
ParentId = Pid
case Np=~ J/i’s only neighbor is Pid

S=N

*S = (sum sG3ubtree:Sum(s) .N) //inv of Leaf
Sum(ParentId).Ack(MyId, S)
+ Sum(p) .Ack(i, S) //1.pl&l.s3, MyId=i

V jENp:Sum(j).Start(i)

* V jEq$:Sum(j).Start(i) //case 2-1
+ true //empty domain
O(StartCount<lNbsl or S=0)

*false //StartCount=lNbsl&S=N

SP(i)=true //fr 2-1.s5&2-l.s6
case Np # ~ //i has more than one neighbors

* true //no assertions
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3-2 p2

4-2
5-2’ p4
5-2 p6

al

a2
6-2
‘7-2

8-2’ p~

8-2 p~
p8

9-2 p9
pll

10-2

V jENp:Sum(j).Start(i)
a V jEOthers:Sum(j) .Start(i)

* OV j~Others:Sum(i) .Ack(j, O)
O(startcmt<pnlsl or sko)

case Start(XId)
case Ack(RId, Partial)

Partial = O; RId<Others
NbSum(RId) = Partial

*NbSum(RId) = O
Npa’out = Npa + RId
O ( (sum sEOthers: NbSum(s))=(l )
O (Npa = Others)

* O (Npa = Np)
case Npa # Np

* true
case Npa = Np

S = (sum seNp:NbSum(s)) + N

*S = (sum slCOthers:NbSum(sl)) +
(sum s2EChildren:NbSum(s2)) + N

~S=O+O+N
=M=N
-S = (sum sc {i}: Sum(s).N)

4 = (sum sESubtree: Sum(s).N)
MyId # Root
Sum(ParentId).Ack( MyId, Sum(i).S)
SP(i) = true

//Children=4
//by Lemma 1

//initially S=0
//don’t care about this case

//ret Ack fr 3-2
//var matching

//out of Ack

//fr 5-2.P6
//out Of Ack
//Lemma la
//Lemma lC
//Children=~

//no ruwertions
//0 true fr 7-2

jjinv of Np
//6-2, Children=#
//algebra
//N-Sum(i).N
//inv of Leaf
//not Root

//fI 8-2. D88c9-2.pll,.
end of SP : Non - rec’u’rsive Part

SP : Recursive Part: Let i be an internal node, and aaaume
(V j< Children(i): SP(j)=true). We want to prove SP(i)=true.

o

1

2

3
4’
4

pl

51
52
53
54

p2

p3
p4
p6

al

V iG3ites: (V jEChildren(i): Sum(j) .Start(i))~ O Sum(i) .Ack(j, Sum(j).S)
Lemma 2 holds foUowing from assuming for all jEChildren(i) SP(j) is correct
By attaching Ack:a2 to SP(j), we know that Sum(i) will finally receive
Ack(j, Sum(j).S) from site j.

S = O; StartCount = 1; ParentId = null;
Np = 4; Npa = ~;

Start(Pid)

(ParentId = null)
Np = Nbs - Pid
ParentId = Pid
Np#4
* true
V jeNp:Sum(j).Start(i)

* O(V jlEChildren:Sum(i) .Ack(jl, Sum(jl).S)
and V j2EOthers:Sum(i) .Ack(j2, O))

O(StartCount<lNb.1 or S=0)

case Start(Xid)
case Ack(RId, Partial)

if RId E Children then Ack(RId, Sum(RId).S)
else Ack(RId, O) endlf

NbSum(RId) = Partial

//fr var initiation
//ret Start fr p, Pid=p

//fr O

//i is not a leaf
//no assertions

//Lemma 2 & Lemma 1

//StartCount< lNbsl, S=0
//don’t care about this case

/jrec fr 2.p2

//out of Ack
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-if RId c Children then NbSum(RId)= Sum(RId). S
else NbSum(RId)=O endif J/fr 4.p6

*if RId E Children then NbSum(RId)= (sum sESubtree(RId): Sum(s).N)
else NbSum(RId)=O endif //SP(RId)

a2 Npa’out = Npa -t- RId //out of Ack
*O (Npa = Np) //Lemma lc, Lemma 2, def of Np

5’ p7 case Npa # Np
+ true //no assertions

5 p7 csse Npa = Np //fr 4.a2
p8 S = (sum sENp:NbSum(s)) + N

*S = (sum sleOthers:NbSum(sl)) +

(sum s2ECMldren:NbSum( s2)) + N //inv of Np
=S = O + (sum s2EChildren:NbSum( s2)) + N //Lemma la
4 = (sum s2EChildren:

(sum sleSubtree(s2): Sum(s]).N)) + N //4.al

*S = (sum sE{Subtree(s2)l s26Children}:
Sum(s).N) + N //merge 2 sums

4 = (sum sE{i + {Subtree(s2) I s2KMdren} }:
Sum(s).N) //N4um(i).N

*S = (sum seSubtree: Sum(s).N) //clef of Subtree
6-1 p9 Case MyId = Root //is Root

7-1 plo Init(MyId).Ack( MyId, S)
8-1 SP(i) = true J/fr 5.p8&7-l .p10
6-2 p9 case MyId # Root J/is not Root

pl 1 Sum(ParentId).Ack( MyId, Sum(i).S)
7-2 SP(i) = true //fr 5.p8&6-2.pl 1
end of SP : Recursive Part

Lemma 3: Subtree(Root) = Sites.

1 Nbs(i) C Sites /Jdefs of Nbs & Sites

+ Np(i) c Sites //clef of Np
* Children(i) C Sites //clef of Children
* Subtree(i) c Sites jjdef of Subtree
* Subtree(Root) c Sites //let i=Root

2 assnme ~(Subtree(Root) > Sites) //by assumption

* 3 crESites: N(O C Subtree(Mot)) and ParentId(cr)=null //subset def
* V /3ESubtree(Root): N(O ~Nbs(~)) //has never called by any site

* ~(rxEConnect(Root)) //clef of Connect

* *(crG3ites)) //req of Connect

* (Subtree(Root) o Sites) //assumption doesn’t hold
3 (Subtree(Root) C Sites) and (Subtree(Root) 3 Sites) //fr 1 & 2

*Subtree(Root)= Sites //clef of “=” in set

sys property: ( V iESites: SP(i)) and O Init(Root).S= (sum .@ites: Sum(s). N)

1 Init(Root) //init condition

* V i~Sites: SP(i) /jfr SP

aSum(Root).S = (sum sG3ubtree(Root): Sum(s).N)
and Init(Root).Ack( Root, Sum(Root).S) //let i=Root

* Ack(Root, S) and Init(Root).S=Sum( Root).S //Init(Root) rec Ack from Sum(Root)

s Init(Root).S=(sum sSSubtree(Root): Sum(s).N) //assignment

* Init(Root).S=(sum s6Sites: Sum(s).N) //Lemma 3

* sys property = true
end of verification
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