Check for
Updates

A system for program component specification
and code generation

Robert P. Brazile
University of North Texas
Department of Computer Science

Abstract

This paper describes an interactive system for pro-
gram specification and generation. It consists of: 1)
a methodology for program generation and 2) a spe-
cial purpose object-oriented database management sys-
tem(OODBMS). The methodology is based on the object-
oriented paradigm and consists of a set of program com-
ponent classes and the rules for using these classes. The
methods defined within the classes are available to the
program developer for creating and relating program
component objects, as well as generating source programs
from the program components. The OODBMS is made
up of a user interface, a method interpreter called the
generation engine and the object management system.

Introduction

Many ideas for using the object-oriented paradigm to in-
crease programmer productivity have been explored. The
concepts have been around in one form or another for a
long time, but the understanding and use of these ideas
is maturing now. The concepts were implemented first in
programming languages(3), and have made their way into
data base management systems[5]. An important use of
the object-oriented paradigm is in creating tools which

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
titte of the publication and ite date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1992 ACM 0-89781-502-X/92/0002/0904...41.50

assist in the software development process. OPAL[l] is
a system designed using object oriented ideas to support
application development. A technique for transforming
data flow diagrams into object-oriented designs is de-
scribed in [2]. A design system shell for experiment-
ing with principles of object- oriented design[4] and a
database for supporting reusability[6] are other software
engineering uses of object-oriented concepts.

We describe a system which can increase the program de-
veloper’s productivity by 1) assisting in the creation and
reuse of program specifications and 2) automatically gen-
erating the complete source program from the program
specifications. This system is made up of:

1. a fixed number of Program Component Classes,

2. methods associated with those classes to support
source code generation,

3. a user interface to assist the program developer in
creating instances of the program component classes,

4. a method interpreter to execute the methods and
5. an object management system to maintain the data

base.

Each of these modules will be discussed in more detail in
the following sections.

Program Component Classes

Program components are pieces of a program. They are
not functions or procedures to be called by a main pro-
gram. They are physical segments of information(code

904

http://crossmark.crossref.org/dialog/?doi=10.1145%2F130069.130106&domain=pdf&date_stamp=1992-03-01

or data or both) which provide a part of the functional-
ity of a complete program. They would not stand alone
and must be combined with other segments to produce a
complete program. The program components are a phys-
ical decomposition of a program, where each component
is generated asyncronously. The various physical compo-
nents are not merged into a coherent program until late
in the generation process. Our criteria for selecting good
program components includes creating reusable compo-
nents as well as simplifying the specification of individual
components.

The design of a program includes designing the algorithms
and the data structures for the program. Breaking the
process down further, the data part of a program may
be thought of as internal data and external data. The
external data may be input data or output data. The
input data may be from a file, from a screen or from some
other input device. The output data may be going to a
file, a screen, a printer or some other output device. This
system has broken the program design problem down to
this level and created Program Component Classes for
each of these pieces of a program design.

The following six Program Components Classes were
identified as sufficient to contain enough information to
compose the whole program from its pieces. The six are
PROGRAM, BLOCK, DATA, SCREEN, REPORT, and
ACCESS(see Fig 1). The DISPLAY class is a superclass
of SCREEN and REPORT, present to take advantage
of the high degree of commonality in SCREEN and RE-
PORT. These are the only superclasses which are main-
tained by the system, but each of these may have sub-
classes. For example, in the PROGRAM class there is
a subclass called REPORT PROGRAM. When the pro-
gram developer creates an instance of the REPORT PRO-
GRAM class, the program object already has knowledge,
through its methods, of how to produce a report program.
The program developer may provide only the DATA ob-
ject and the REPORT object in order to generate a com-
plete working program.

Algorithm Specification

The system currently supports many data processing
applications using default methods and existing PRO-
GRAM subclasses. Examples are data entry programs,

905

Program

I

Display

Block

Access

Data

Report

Screen

Figure 1: Data Base Diagram

file updating programs and report programs. A set of
these basic algorithms have been identified and embed-
ded in PROGRAM subclasses. The program developer
merely chooses the appropriate PROGRAM subclass to
use a particular algorithm. For example, the algorithm
for producing a report is to read data from an input
source, process the data into the information to be dis-
played, format the report and send the formatted report
to the output destination. As mentioned above, there
is a subclass of the PROGRAM class, called REPORT
PROGRAM, which already has this algorithm designed
inside of it. The PROGRAM class simply allows the
program developer to name the program being created,
for example ”Inventory Report Program” and choose the
subclass for the program, for example REPORT PRO-
GRAM. Once the subclass is chosen, which means the
algorithm is identified, certain required parameters must
be specified. For example, the names of the input source
for the data and the name of the report specification for
output. Other optional parameters may also be specified
to modify the generated programs default behavior.

If there is an algorithm which is not already included in
a subclass of the PROGRAM class or if the program de-
veloper wants to modify the algorithm of a PROGRAM
subclass, the BLOCK class allows definition and inclusion
of a block of code into specified points in the generated
program. In the above example, if the processing of the
input data into information for the report required a spe-
cial algorithm, such as a formula for the calculation of
a report item, then this algorithm could be coded in a
BLOCK object and included in the processing section of
the generated program at its correct place in the flow of
the program execution. Note that standard algorithms
can be coded as BLOCK objects once and used in any
and all programs that need to perform that algorithm.

Data Structure Specification

Data Structures are specified using the DATA class. Once
an object in the DATA class is created, it can be used in
any number of programs. There are standard subclasses
of DATA such as STRUCTURE, ALPHABETIC and NU-
MERIC. In addition, it is possible for the user to create
a new subclass for a commonly used data item. An ex-
ample of this might be a CUSTID subclass, which has
its format and procedures defined in its subclass. Any

program which used it would get its properties already
defined.

Other classes closely related to the DATA class are
SCREEN, REPORT and ACCESS. SCREEN and RE-
PORT classes are very similar and allow the program de-
veloper to layout and define screens and reports, including
both format and content. Both screens and reports are
created using a screen painter. The code for creating and
using the screen or report is generated by the system.
Fields on the screen or report are mapped to data items
inside a DATA object.

If data is to be input or output on a device other than
the screen or printer, then the processing for the device
must be specified in an ACCESS object. The ACCESS
class allows the program developer to describe the way the
data is to be accessed. This may be a file access method
such as Sequential or Indexed-sequential, or a data base
access such as SQL or some other database management
system interface language. If some other way of accessing
the data in the program is to be used, such as a remote
sensing device, then an ACCESS object must be specified
to describe the processing which must be done for that
device.

Methods

Methods are the procedures which generate the source
code associated with the program component objects. For
the current version of the system the only function which
methods provide is the generation of the source code for
the object it is associated with. In the future, methods
might do other functions such as produce documentation
for the object it is associated with.

Each method uses the data stored with its object(the
object’s instance variables), as well as the parameters
passed to the method, to determine exactly which code
to generate. Control of the whole source program gen-
eration process is maintained by a gemeraie method in
the PROGRAM subclass for the program object being
generated. This control method determines which other
program component objects to call upon to generate code
for the program and also determines the order of the code
in the final program generated.

906

User Interface

/

\

Method Translator

Screen Painter

Spec. Editors

OMS

\

Generation Engine

Spec Database

Programs

Figure 2: System Flow Diagram

907

An example of a method for an object is an “open”
method for an ACCESS subclass that describes a file
access method. The ”open” method would contribute
source code to "open” the particular file. The methods
are written in a generation language which is a propri-
etary high level language similar to the C language, with
extensions to support source code generation. It is these
extensions which allow efficient generation and placement
of code from the methods. The target language, that is
the language for which the source code is being generated,
is not built into the generation language. At present the
generation language is not ”aware” of which language it
is generating. Therefore, any target language is feasi-
ble. Most of the testing of this tool has been done with
COBOL as the target language, but C and ADA have
also been used. The generation language is interpreted
by the generation engine.

User Interface

The user interface assists the program developer both in
creating individual objects from the program component
classes and in knowing the number and class of objects
to create for a particular class of program. The user in-
terface presents the program developer with menus which
have the selections to be made for the next level of object
creation and with forms to fill in to provide values for the
attributes of the objects. When the value to be filled in is
the name of an object in the data base, list support pro-
vides a list of all objects of that class which already exist
for the program developer to select the proper one. Both
general help and context help is available from anywhere
in the user interface.

In order to assist the program developer in the design pro-
cess, there is a facility called the ”design tree”. A natural
order for creating the objects which go into a complete
program would be to first create the program object and
then create any object the program object references and
so on. The design tree supports this technique of object
creation by displaying a tree structure with the program
object at the root and with the tree containing all objects
referenced by the program object or any other object in
the tree. The program developer may create or modify
any object listed in the tree by simply positioning the cur-
sor to that object and pressing the ”enter” key. The tree

shows, via color coded information, the status(referenced,
defined, complete and checked) of all objects displayed in
the tree.

Generation Engine

The generation engine is an interpreter. Its architecture
includes a lexical analyzer, a parser and a set of action
routines. It interprets the programs(methods) written in
the generation language which cause source code to be
generated. It is invoked by the program developer from
the user interface. A generate message is sent from the
user interface to the PROGRAM subclass corresponding
to the program object referenced in the user interface
menu. The generation engine starts to interpret the gen-
erate method and source code generation proceeds from
there. Methods are stored in tokenized form and cached
in memory for more efficient processing at generation
time. A typical program of 500-700 lines will generate
in 2-3 minutes on a 386 type of micro-computer.

The generation language, a general purpose high level lan-
guage with extensions developed specifically for source
code generation, is a proprietary language. Its control
structures and types are similar to any modern high level
language. However it has features for building source
statements and creating and composing program seg-
ments which facilitate the generation of source programs
in almost any computer(and perhaps non-computer) lan-
guage. The generation language is an essential part of the
system.

Object Management System

The Object Management System is responsible for stor-
ing and retrieving the classes, methods and objects in the
database. The classes, methods and objects are stored
in a random access file in a btree structure. A commer-
cially available btree file manager was used for the btree
functionality. Since the system is designed to run on a
workstation which can be on a network, the object man-
agement system automatically maintains both a local and
a shared database. The local objects are on the worksta-
tion’s disk and the shared classes and objects are on the

908

network disk. When an existing object is referenced it
is automatically transferred from the shared database to
the local workstation database. However, only someone
with project administration permission can move an ob-
ject from the local database into the shared database.
Optionally, an intermediate database, called the project
database, can be configured between the shared database
and several local workstation databases. This database
can hold objects which are being created and shared
within one project while they are still in development
mode. When the project is complete, the objects can be
moved to the network shared database.

The Object Management System is a special purpose
Object-Oriented Database System. It is designed to cre-
ate and maintain a specific set of classes and objects. In
general, new classes cannot be added to its capability.
However subclasses of existing classes may be added, so
the system is not totally rigid. The extent of the system’s
usability and flexibility is just now being explored.

Problems Identified

The initial generation of a program may take from three
to ten or fifteen minutes, depending on the size of the
program. Even though this is a relatively long time, it
seems to be acceptable for the task being done. However,
suppose that once the program is generated and executed,
there needs to be a minor change made, say to the format
of a report. For example, moving a field over one or two
columns. Since the program is generated in source code
form, it is very easy and quick to change the generated
program. It may take just a few seconds in an editor
to change the program and then recompile it. However,
now the generated program and the program specified in
the tool do not match. To make sure they do match,
either 1) the changes must always be made to the pro-
gram specifications and then the program regenerated or
2) there must be a way to analyze the changed program
and "reverse engineer” the changes back into the speci-
fications, or 3) the program developer must update the
specifications to match the generated program.

The problem with solution 1) is the time to regenerate
the program is the same as the time to generate it in the
first place. The second, and subsequent regenerations,

are perceived as taking too long for the task involved. Ei-
ther generation time must be improved or a technique of
partial generation must be developed. Partial generation
has been analyzed and is a very hard problem.

Solution 2) has no* been investigated in this project and
there are no current plans to do so.

Solution 3) is the current solution being used, but this
solution relies on the program developer to remember to
make the changes and to make them accurately. There
are too many potential errors in this process for it to be
acceptable.

The problem is being solved with a combination of solu-
tions 1) and 3). The generation time is being improved
and some partial generation(saving of intermediate forms)
is being investigated. In addition, more capability is be-
ing developed to assist the program developer in keeping
the specifications current and sychronized with the gen-
erated program.

Conclusion

The system described above is a special purpose Object
Oriented Database Management system for program gen-
eration. It is anticipated that experienced program de-
velopers may be able to increase their productivity by a
significant amount using this system.

The user interface, object management system and gener-
ation engine are written in the C language and the meth-
ods are written in a high level language designed specif-
ically for source code generation. The system is imple-
mented on microcomputers. Target languages generated
include C, ADA and COBOL. Other target languages
may be added by changing the methods in the program
component classes. The user interface and generation en-
gine do not change.

Plans for future enhancements include more ACCESS
classes for different types of database management sys-
tems, different hardware environments, different do-
mains(more complex algorithms) and different target lan-
guages.

909

References

1.

Ahlsen, Matts, Anders Bjornerstedt
and Christer Hulten, OPAL: An object-
based system for application development,
Database Engineering, IEEE Computer So-
ciety, Vol. 4, 1985, p267-276.

. Alabiso, Bruno, Transformation of Data Flow

Analysis Models to Object Oriented Design,
Proceedings of OOPSLA’88, San Diego Ca,
Sept 25-30, 1988, p335-354.

. Dahl, O. and K. Nygaard, SIMULA, an AL-

GOL based simulation language, CACM vol
9, pp 671-678, 1966.

. Diederich, Jim and Jack Milton, An Object-

Oriented Design System Shell, Proceedings of
OOPSLA’87, Orlando, Fla, Oct 4-8, 1987,
p61-77.

Maier, D., A. Otis and A. Purdy, Object-
Oriented Database Development at Servio
Logic, Database Engineering, IEEE Com-
puter Society, vol 4, 1985, p294-301.

Nestor, John R., Re-creation and Evolution
in a Programming Environment, Proceedings
of 1986 International Workshop on Object-
Oriented Daiabase Systems, Pacific Grove,
Ca., Sept 23-26, 1986, p230.

910

