
Designing Database Interfaces with
DBface

ROGER KING

University of Colorado

and

MICHAEL NOVAK

lNRIA-Rocquencourt

DBface is a toolkit for designing interfaces to object-oriented databases. It provides users with a

set of tools for building custom interfaces with minimal programming. This is accomplished by

combining techniques from TJser Interface Management Systems KJIMS) with a built-in knOwl-

edge about the specific kinds of techniques used by object-oriented databases. DBface allows
users to create graphical constructs and interactive techniques by taking advantage of an

object-oriented database environment and tools. Not only can database tools be used for creating

an interface, but information about the interface being built is stored within a database schema

and is syntactically consistent with all other schema information. Thus, an interface can deal
with data and schema information, including information about another interface. This allows
for easy reusability of graphical constructs such as data representations.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques—user

inter~aces; E.2 [Data]: Data Storage Representations; H. 1.2 [Models and Principles]:

User/Machine Systems—human factors; H.2.3 [Database Management]: Languages; H.2.4

[Database Management]: Systems–query proceswzg; H.2.8 [Database Management]:
Database Applications; 1.3.4 [Computer Graphics]: Graphics Utilities

General Terms: Design, Experimentation, Human Factors

Additional Key Words and Phrases: Graphical interfaces, object-oriented databases, user inter-
face management systems

1. INTRODUCTION

DBface is a UIMS-type tool intended specifically for building graphics-based
interfaces to object-oriented databases. It is a window-based, interactive
graphical system that allows interfaces to be built with minimal program-

We would like to thank ONR for their support under contracts NOOO14-86-k-O054 and NOO14-
88–k-0559 and USWEST for their support under contract OCG0683B.

Authors’ addresses: R. King, Dept. of Computer Science, University of Colorado, Boulder, CO

80309, email: roger(ilcs.colorado. edw, M. Novak, INRIA Rocquencourt, B. P. 105, ‘78153 Le

Chesnay Cedex, France, email: novak@madonna.inria. fr.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1993 ACM 1046-8188/93/0400-0105 $01.50

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993, Pages 105-132.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F130226.134481&domain=pdf&date_stamp=1993-04-01

106 . R. King and M. Novak

ming effort. Although DBface borrows a lot from UIMS technology, it is not
designed to be a UIMS with database knowledge built in, rather, it is
designed to be a database tool with UIMS knowledge built in. Because
DBface concentrates only on the creation of object-oriented database inter-
faces, certain knowledge about object-oriented databases can be taken advan-
tage of. This includes knowledge about schemas, type-subtype hierarchies,
methods, and database tools such as data definition languages (DDL). There-
fore, a certain amount of knowledge about the types of interfaces being
designed and the objects they manipulate is built into DBface. For example,
DBface can use graphical representations of database objects that already
exist in the database as defaults for a new interface that is being built. If a
new representation is needed it can be built with the database tools available
to DBface. New representations are stored alongside the old ones in the
database. Users can work with representations in the same manner as with
any other database objects. DBface takes advantage of the structure of the
database and of its tools in order to make designing an interface easier and
faster. Also, by making the underlying structure of the interface dependent
on the database, the interface is forced to stay consistent with the database.
Thus, the line between the application (the database) and its interface
becomes seamless.

In the past, database interfaces were generally designed to provide all-
purpose, fairly complete, access to a database. Until a few years ago, most of
these database interfaces where nongraphical. Aside from programming lan-
guage interfaces, they include relational algebras such as ISBL [35], rela-
tional calculi like QUEL [13], and query languages such as SEQUEL [2],
which falls somewhere in between the two. These interfaces vary in many
ways, but they did provide a large degree of completeness. Unfortunately,
they were never designed to be used by novices. Then came interfaces such as
QBE [38], which provides a form style interface for specifying queries. In the
last few years there has also been much interest in graphical database
interfaces. Among these are interfaces such as ISIS [6, 8], Schemadesign [31],
Ski [21], and SNAP [3], which allow schema manipulation in an interactive
graphical environment, and Databrowse [31], a graphical data manipulation
tool designed for viewing and editing logical entities, rather than just rela-
tional records. They also include office forms systems such as FORMAN-
AGER [37], Freeform [22], and SPECDOQ [24] that provide a nonexpert
interface for the storage and retrieval of office data. Unlike the nongraphical
systems, the graphical ones tend to be easier for nonexperts to use; however,
this comes at the cost of completeness.

DBface approaches the database interface issue from a different direction.
Rather than trying to create one interface that everyone can use, we feel that
being able to rapidly create new or altered interfaces could prove more useful.
This allows interfaces to be specifically tailored for a particular application or
to be built for a certain set of users, rather than one interface being designed
as a do-everything compromise. Thus, DBface has the following goals: incor-
poration of a UIMS-type tool into a database management system (DBMS), a
unified data model for the interface and the database, encapsulation of

ACM Transactmns on Information Systems, Vol 11, No. 2, April 1993

Designing Database Interfaces with DBface . 107

interface data and metadata into the database, an extensible framework of
reusable graphical representations of database constructs, building of a
database application and its corresponding interface as an integrated unit,
faster and easier design of database interfaces with minimal programming,
and examination of families of interfaces designed for a set of related
applications.

The incorporation of DBface directly into the DBMS makes several things
possible. It allows the interface being built to “share” the database data
model and to use the tools provided by the database (the encapsulation of
interface data into the database also helps). Also, all interface data and
metadata, including the interface structural description, data flow descrip-
tions, display routines, etc., can be stored in the database. This allows for
pieces of an interface to be used for building other interfaces, since every-
thing is accessible through the database. It also allows the database to
maintain interface consistency. Another issue with database interfaces is
that many of them include the design of a new database application. By
combining the development of the application and the interface and by using
the techniques described above, DBface allows rapid development of database
interfaces with minimal programming.

If interfaces can be rapidly developed, then a set or family of interfaces for
a particular group of tasks becomes a reasonable idea. Instead of creating an
unwieldy all-purpose interface, the designer can tailor a family of interfaces.
For example, there might be a data entry interface, a data retrieval interface,
and a browser for a particular application. A preliminary version of the
DBface concept was described in [23]; here, we detail the step-by-step design
of an interface and examine the issues involved in creating reusable interface
components.

1.1 Background

Although the previous section mentions some of the unique features of
DBface, it may still be unclear why it would not be easier to merely use an
existing UIMS to build a variety of object-oriented database interfaces. To
show how DBface differs from the UIMSS available and why these differences
are important, some background on UIMSS is necessary.

To give a consistent model for looking at interface design and comparing
the approach of various UIMSS, we will use the Seeheim model [9, 10] of user
interfaces (Figure 1). The Seeheim model is a logical model that breaks the
user interface into three logical components: the presentation component, the
application interface model, and the dialogue control. The presentation com-
ponent is responsible for producing device output and gathering user input.
The application interface model is responsible for representing application
data and making it available to the interface, as well as providing the
application with access to the interface. The dialogue component forms the
bridge between the presentation component and the application interface
model. It makes sure that the application carries out user requests and that
the presentation component produces the output requested by the applica-

ACM TransactIons on Information Systems, Vol. 11, No. 2, April 1993.

108 . R, King and M. Novak

Y=H=H=m=G

A
I J I I I I

Fig. 1. The Seeheim model,

tion. Since this model is fairly general, a wide variety

viewed in terms of it.

I

of UIMSS may be

Although any UIMS must necessarily deal with all three components of the
Seeheim model, many systems have focused their research most strongly on
one component. Much of the UIMS research has been on the dialogue control
[11]. Although there have been systems with dialogue models based on
transition networks, grammars, and events, these systems share a common
perspective, UIMSS such as ADM [32], Grins [27], Menulay [4], MIKE [28],
and Trillium [15] focus their work on the dialogue between the user and the
application. The research emphasis in these systems has been on how to
provide the user with the appropriate tools for specifying this dialogue in a
reasonable and convenient manner. Several other systems have centered
their work on the application interface model. Filters [7] and Coral [34] each
provide a method of specifying relationships between application and inter-
face objects. GWUIMS [33] and Higgens [17] both allow for sharing of data
between the application and the interface. Similarly, the presentation compo-
nent has been the focus of some systems which emphasize allowing users to
create new interaction techniques. Peridot [26] users create these techniques
by using examples to show how they should appear, while users of [5] apply
direct manipulation principles [19, 25] to specify them.

Work has also been done that centers around several components or on the
interface as a whole. GROW [1] emphasizes building modifiable and reusable
interfaces. Its features include communication between the application and
the interface via messages, a kernel of graphical objects arranged in a
taxonomic hierarchy, and user-specified interobject relationships. ITS [36]
provides a tighter coupling between the application and the interface to allow
for rapid development of highly interactive applications. This is done using
data sharing and a layered application architecture.

Due to the differences between general application interfaces and database
intefaces, we feel that currently available UIMSS do not address our needs,
The most relevant differences are (a) even though some systems communicate

with application data, general-purpose interfaces need no knowledge of

database schemas, while this knowledge is necessary for a database interface,

and (b) creating a database interface often involves creating a new applica-

tion; creating a general-purpose interface usually does not.

Since DBface knows about database schemas, users may access database
objects, methods, etc., and incorporate them directly into the interface. Also,
interface objects are stored in the database and have the same structure as
database objects. Thus, only one data model exists. Even those UIMSS which

ACM Transactions on Information Systems, Vol 11, No. 2, Apr,l 1993.

Designing Database Interfaces with DBface . 109

share some data between the interface and the application still require users
to view interface and application objects separately and provide information
about how the two are related in order to integrate them. Having a single
data model makes this unnecessary. By providing access to database tools
such as query languages and methods, DBface also gives users more ways of
rapidly constructing an interface. Instead of writing code to generate an
interface technique, a user may invoke a database method or use a query
language to define the technique. Interface objects may also be reused, since
they are stored in the database and are not hard-wired to any particular
interface.

Many database interfaces require some new applications to be built in
order to support them. For example, an office forms interface involves much
more than an interface to the database. New functionalities must be built.
These may include new mathematical functions such as computing the city
and state sales tax on a sales field, and utilities such as an interoffice memo
system. Both of these new functionalities involve more than simple inter-
action with the DBMS. In order to support this type of interface, we wish to
allow the user to interactively design an interface and its corresponding
application simultaneously [17]. Unlike in a UIMS, our approach treats the
interface being designed as an integrated database environment, rather than
a dialogue between a distinct user interface and an application. Instead of
defining merely an interface, we define the visual, functional, and interactive
aspects of the environment. Thus, certain otherwise hard-to-obtain function-
alities such as binding representations to objects can be achieved. This also
allows for “realistic” default interfaces and faster specification of representa-
tions. In fact, such an integration of database and UIMS technology has been
suggested before [12, 29].

Although DBface only runs on an object-oriented database called Cactis
[16, 18], the ideas apply to any object-oriented database. Our approach will
not support interfaces outside the object-oriented database realm. This is not
as limiting as it seems to be, since many applications may be placed into an
object-oriented database. For example, much of the circuit board design
software currently available uses simple files to store circuit information.
Such systems could easily fit into the object-oriented database paradigm. One
could argue that aside from making it possible to use DBface with the
application, storing the data in a database would make the application itself
more manageable. Also, DBface could be used to build the circuit design
application as an integrated database application and interface.

1.2 The DBapp Concept

Since building a database interface often involves developing both an inter-
face and some new application on top of the DBMS, having knowledge of the
database schema and tools becomes quite important. In order to explain this,
it is necessary to examine just how the structure and construction of database
interfaces differs from general interfaces. In Figure 2 we see three kinds of
interfaces. Part A shows a general interface, while parts B and C show
database interfaces. In part B, an interface is built on top of the application,

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.

110 . R. King and M. Novak

~ Interface I

H

ElApplication
(Non-DBMS)

(imeral Purpose Interface

(A)

I I

It
CEEl

H

❑DBMS

Standard DBMS Interface

(B)

m
H

ElDBMS

In[egra(wf DBMS In[erf”ace

(c)

F1g.2. An interface comparison.

which in turn is built on top of the database. These kinds of interfaces occur
often enough when dealing with DBMSS that the line between what is a
database application and what is a database interface can become quite
blurry. In fact, a large percentage of what we view as database applications
are primarily interfaces with some applications built in. This list includes
many schema browsers, schema editors, form-based data entry and retrieval
systems, etc. How we view these database applications may make no differ-
ence structurally; however, we feel that part C is the most conceptually
correct way to view them and thus contributes to the development of more
efficient creation methodologies. From now on, we will refer to these inte-
grated DBMS applications as DBapps.

When creating a traditional (nondatabase) application, the application and
interface are generally built separately. The application handles functional-
ity, and the interface is concerned with 1/0. Unlike conventional interfaces, a
DBapp includes both application and interface routines. For example, when
designing a traditional electronic invoicing system (one that contains its own
data storage and therefore is not built on top of a database), the application
would generally be designed first. This would involve creating storage struc-
tures, functions for storing and retrieving data, functions for calculating
totals, subtotals, taxes, etc. Next, a user interface would be built (either
manually or using a UIMS).

A DBapp is generally designed in a different manner. Consider what
designing this invoicing system on top of a database involves. Unlike the
example above, most of the storage structures and storage and retrieval
functions already exist as part of the DBMS. Therefore, much of the applica-
tion already exists. What still needs to be built are the mathematical func-
tions and the interface. Because Cactis methods (like methods in most
object-oriented databases) are computationally complete, functions such as
averages, totals, standard deviations, transitive closures may also be incorpo-

ACM Transactions .n Information Systems, Vol 11, No. 2, Aprd 1993.

Designing Database Interfaces with DBface o 111

nwoice fivo icc -numb er

Customer
date / /

name phone

address
store

city

state _ zip salesperson

p aynent _typ e

cash check fm. other paid-out

F!!EH

sale

Want it y tJ/M mfg. model_desc . amount

I balance -

subtotal = O; object = CURR_OBJ; attl = amount; atL? = quantity;
FOR all_obj WHERE (all_obj RELATED_TO object)

IF ((TYPE_OF all_obj) equals(sale))
subtotat = subtotal + (all_obj.amount * all_ob@umW):

Fig. 3. Invoice and associated query.

rated into the database. Note that this would be very difficult to do in a
relational language such as SQL. These mathematical functions are most
significant in the context of the interface (they are attached to a particular
interface functionality); therefore, it makes sense to build them concurrently
with the interface. This does not mean that they have to be built simultane-
ously (this is up to the designer), but merely that each interface object may
have some attached functionality. For example, a user might want to enter
sales and have the system calculate subtotals, tax, etc. The DBapp is de-
signed so that entering a sale results in these totals being calculated. This
involves creating operations for doing such things as calculating totals across
a set of objects, etc. Figure 3 shows a sample invoice and the body of a routine
(in a pseudoquery language) that uses the sale amounts and quantities to
calculate a subtotal for a particular invoice (the invoice is the CURR _ OBJ).
This routine directly accesses the database in order to retrieve the attributes
it needs. By making this routine part of the DBaPP, the designer has the

flexibility to go back and forth between building the interface part and the

application part.

ACM Transactions on Information Systems, Vol. 11, No. 2, Aprd 1993.

112 . R. King and M, Novak

Designing the application and the interface concurrently is beneficial for
several other reasons. First, this is a somewhat intuitive way to view the
development of a DBapp. Generally, one thinks of the functionality of an
interface construct while designing that construct. This does not mean that
both components need be created simultaneously, but rather that they are
related pieces of a more general construct. Second, this allows for a natural
linking of interface constructs and their functionality. For example, both the
graphical output associated with displaying an average salary and the appli-
cation that actually calculates this salary can be implemented as database
methods attached to some common database object type. This also solves the
problem of how to represent application data within an interface, since a
DBapp can directly share data with the database. Third, a DBMS maintains
these constructs and the connections between them. Last, and perhaps most
important, a common style of interaction for creating both visual and func-
tional constructs is provided. This is more likely to result in a seamless
DBapp. Section 4 illustrates this by showing how an interface for viewing
computer networks is built with DBface.

2, ARCHITECTURE

DBface is designed to integrate smoothly with an object-oriented database. It
is built on top of a DBMS named Cactis [16, 18]. Since the database is an
integral part of DBface and since using DBface involves using Cactis schemas
constructs and the various schema manipulation tools (DDL, C language
interface, etc.) available within Cactis, we will give a brief description of
Cactis before proceeding to describe the architecture of DBface.

2.1 Cactls

Cactis is designed to support applications that require complex functionally
defined data. Techniques based on attribute graphs are used to optimize the
maintenance of this data. Cactis views an application environment as a
collection of constructed ob]”ects. Objects may have attributes and relation-

ships, both of which are typed. A constructed object’s type is determined by
its attributes and its connectors. An attribute is an atomic property of a
constructed object. These atomic properties may be of any C data type, except
pointer. In Figure 4 (part of a Cactis DDL file), the object type country has

the attributes inst, name, border, new_ site _in, map _ drep, and
sites_ in. Inst, new_ site_ in, map_ drep, and sites_in are integers, while
the types of name and borCler are constructed types defined earlier in the
DDL file. The values associated with new_ site _in, map _ drep, and

sites_ in are calculated by their associated methods.
A relationship is a directional mapping from one constructed object to one

or more constructed objects. Restrictions such as nonnull or unique may also
be put on a relationship. Relationships are instantiated via connectors. For,
example, the connectors sites and entry could be used to create a relation-
ship between an instance of country and an instance of site. A relationship
does not exist until two instances have actually been connected. Relation-

ACM Transactions on Information Systems, Vol 11, No. 2, April 1993.

Designing Database Interfaces with DBface . 113

instance type country
relationships

plug sites

attributes

inst

name

border

new_site_in

map_drep

sites_in

end;

instance type site

relationships

socket entry

plug to_site

socket from_site

plug computers

attributes

inst

site_name

count ry_of

Ioc

computt!rs_drep

map_site_drep

connect_drep

compute rs_at

: country_site;

: int32;

: nametype;

: bordtype;

o int32 := add_site(inst);.

: int32 := draw_map(inst,name, border);

: int32 := iterate tmp : int32

init O

for each w(I in sites do

tmp := tmp + sites.wo

end;

: country_ site;

: site_site;

: site_site;

: site_comp;

: int32;

: nametype;

: int32 important := entry.wo;

: pairtype;

: in[32 := draw_ all_comps(inst,site_name);

: int32 := draw_site(site_ name,loc);

: int32 := connect_ site(inst,loc);

: int32 := iterate tmp : int32

init ()

for each w(I in computers do

tmp := tmp + cornputers.wo

end;

end;

Fig. 4. Section of Cactis DDL file describing CSNET network.

ships may also be used to pass attributes from one object to another when
calculating derived attributes. For example, site names could be passed to an
instance of type country to produce a list of all the sites in a given country.
This makes it unnecessary to store the information in two places.

2.2 DBface

In order to effectively manage visual representations and coordinate interface
tasks, DBface is compotied of the representational and the operational compo-
nents (Figure 5). The representational component is responsible for manag-
ing and storing data representations (management module) and for display-

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.

114 . R. King and M. Novak

4
Representational

Component

m=m =mOperational
Component

Cactis Tools

El Ezl ““”
—-- —

Cactis Database

-----------1

Fig, 5. DBface architecture.

ing them and handling user 1/0 (presentation module). The operational
component is responsible for the functionality of the interface. This includes
keeping track of state changes, defining interaction techniques, etc. Both
components use the Cactis data model and have access to the database
management tools provided by Cactis for data and schema manipulation.
Both components also communicate directly with Cactis, but each has its own
distinct tasks. Since DBface uses Cactis for storage of interface data and
metadata, much of the following discussion is Cactis specific. However, the
particular database being used is less important then the fact that DBface is
closely tied to an object-oriented database.

The representational component is responsible for the visual aspects of an
interface. Its primary function, therefore, is to deal with graphical represen-
tations of database objects. These objects, which may be either schema or
data objects, may be constructed objects, relationships, or attributes. The
management module builds and maintains the methods used to produce
these object representations and the presentation module displays them.
Thus, if we build an interface where a data object of type country has a
representation that consists of a map of that country, the management

module finds the right method and makes sure that we have the correct

parameters for it, then the presentation module uses the method to actually
draw the map. All the information needed to do this would typically be
encapsulated within the type country. The secondary duties of the presenta-
tion module are the input and output associated with an interface. Input will
generally consist of reading in some user data or command, while output will
consist of either displaying new objects on the screen or invoking a different
representation of objects already present. An object may have many different
visual representations in the same interface, each of which might be used at
various times within the same interface. For example, an instance of coun-

ACM Transactions on Information Systems, Vol. 11. No. 2, April 1993.

Designing Database Interfaces with DBface . 115

try could contain a map and a written description of the country. A query
that requests the country’s location may produce a map of the country, as
well as maps of bordering countries, while a query requesting the history of
the country may produce the written description.

The operational component is responsible for query resolution. It processes
user queries and sends the results to the representational component so that
the correct screen updates are performed. The operational component’s func-
tion is very similar to that of the dialogue control in the Seeheim model. Since
it uses the Cactis data model and has access to the Cactis database manage-
ment tools and data, no application interface model is necessary. Instead, the
operational component talks directly to the application. This has several
advantages. First, it allows DBface to store the operational description of an
interface within Cactis. Thus, the operational description also is a database
object and therefore, Cactis can manage both the data and the operational
description in a very similar manner. Not only does this make storage of
interface descriptions convenient, but it also allows operations to be function-
ally dependent on anything present in the database. This allows an interface
to change its behavior as the database is modified.

Second, since these tools give the interface direct access to the application
data, semantic feedback can be gathered merely by examining the relevant
data. That is, the interface can easily check what is happening within the
application. Similarly, constraints can be checked and adhered to. The most
important effect of allowing the operational component access to these tools
occurs when designing interfaces. Instead of only being able to bind a user
request to some application subroutine (which must be coded specifically for
that application), the interface designer may construct a query using one of
these tools. Thus new interface functionality can be added quite rapidly in
most cases and much of the functionality of Cactis can be easily plugged into
an interface.

DBface is implemented on Sun workstations. It is written in C and runs in
a UNIX environment. Window management is done using the Sunviews
window package. Sunviews also handles the graphics and user input. Since
Sunviews manages the windows, they may be moved, hidden, resized, col-
lapsed, etc., just as any other Sun window. Methods for creating representa-
tions are stored in Cactis along with the database objects they represent. No
distinction is made between them and regular Cactis objects. Operation
descriptions are also stored in Cactis, but they are distinct from regular
Cactis objects.

3. FUNCTIONALITY

Generally, UIMS users have approached interface design by specifying screen
layout, then binding each possible user action to a specific application subrou-
tine. Often, interface routines for the application program to call are also
provided. DBface takes a different approach to designing interfaces. The user
may define what we view as two closely linked aspects of the interface,
appearance and functionality, concurrently. When defining appearance we

ACM TransactIons on Information Systems, Vol. 11, No. 2, April 1993.

116 . R. Kmg and M. Novak

are really defining two kinds of visuals: interface constructs and database
objects. By interface constructs we mean items such as menus, scrollbars,
etc., as well as concerns like screen brightness, icon sizes, etc. Defining the
appearance of’ database objects involves specifying representations for object
types. A representation may be identical for each instance of an object type or
it may be data dependent. In fact, it could be dependent on external data. For
example, we could use the system clock to determine the brightness of a
picture that represents the object instance sun.

By defining the appearance of database objects separately, we need not
worry about them when defining functionality. Rather, we just specify which
already defined type representation is to be used. Since the various represen-
tations for an object are encapsulated within that object, the DBMS main-
tains them and DBface determines which one to actually invoke. Thus, the
type of the query result determines the screen appearance. Any type that has
no user-defined representation will use a built-in default representation. For
example, if a query results in an object of class person, the interface
automatically uses the representation of person that has been defined as the
default (the system default is used if none has been defined). The default for
all objects could be as simple as printing the object type (schema) or object id
(data) in a box. The user may specify a different representation when desired.
If one wishes to leave the screen alone and produce the result elsewhere, this
may also be specified. To show how appearance and functionality are interac-
tively defined using DBface, we will show examples of each.

3.1 Representation Definition

Representations in DBface are defined with the representation definition
window. It provides tools for building new representations and for plugging
existing representations into an interface. To illustrate how representations
are defined, we will look at an interface we are building for viewing a subset
of CSNET [30] sites. The DBface main window allows a user to select
representation definition or operation definition windows, as well as auxiliary
functions needed for building interfaces. Figure 6 shows a representation
definition window. The buttons on the left specify what kind of object is being
worked with and the line on top is a status line. Two views are possible: data

and schema. The schema view lets us work with object types, while the data
view lets us work with object instances. Two levels are also available in the
schema view: schema and hierarchy. The schema level shows object types
and their attributes and connectors, while the hierarchy level shows a forest
of classes and subclasses. The current level and view are both schema. Note

that there has been no specific type selected, thus the current representation
is applicable to all types in the database.

The representation we are viewing is the default schema representation
and was selected using a popup menu (not shown). The text enclosed in
rectangles represents constructed object types and the unenclosed text repre-
sents the attributes of the constructed objects. The arrow-shaped boxes
represent connector plugs and the inverted arrow boxes represent connector
sockets. Any constructed object with a plug may establish a relationship

ACM Transactions on Information Systems, Vol. 11, No, 2, April 1993

Designing Database Interfaces with DBface . 117

,,, .,, , ,,,, ,., ,, ,,. .,.,,, ,.,,. , ,,, ,,

~
attt-,bute

IEE!ii3 ‘St memory .,”!,

@zzizIa
~ I COrw.ter I

~ A“N-
XIEzzi2 ZEii2Ec

in, t cat~gaw

I name

EImiZED

inst name i!or’aer

Isit..
I CW,try.site>

iast sit,.,..
---—=—=~====———

MD_,it. _4ren cmm.t. drep .Ornput.m., t

mitt-y
-

1
-----7===F=----->c.untl-.s, t. 1~> 2EIGIEI 1~>

,, ,, ,, ,,, ,,, ,, ,,

Fig. 6. Schema default representation.

with a type having a matching socket. For example, an object of type

computer may have a relationship called c_ type with an object of type
computer_ type. The corresponding relationship (for the object of type
computer_ type) would be name.

The data objects that this schema represents also have default representa-
tions. Figure 7 shows a default representation for a data object of type
computer_ type. The default data representation is merely a textual display
of the object type and its attributes. Note that some attribute values are
nonprintable. These are merely complex data types. They could be printed if
we wished to break them down into their simple types. For lack of space, we
do not do that here. Also note that comp_drep is an attribute that corre-
sponds to a representation method (attributes ending with _ drep are associ-
ated with data representations while those ending with _ srep are associated
with schema representations).

Figare 8 shows a nondefault data representation that draws a particular
computer type, along with its manufacturer and model name. This represen-
tation was selected from the same popup menu as the default and was

ACM TransactIons on Information Systems, VOI. 11, No. 2, Aprd 1993.

118 . R. King and M. Novak

[method
1

e:-!l t
1

,,,,,,,, ,,:,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,-,.,.,,.,:,,,,,:,,:,,,,:,,,,,,,,..,,
.

m schema Current Object : 20 Object Type
+

ccunputer_type

Iilstance , 20, rype: comp.ter_tme

At t rtiut t N&m Attrtiute ~t Attrtiute value
--------- ----

ins t ‘--- lnt32 20
category nametype Warhstatlon
Wmrlufacturer nan,etyp, sun
co,,q.mod.l n.metypa spare 1
.Utlme draut we NUI-PRDITABLE V>W E
COw.a rep lnt32 REP2E5D4T>TIoN METHOD
ports “..,1,s t NCO-PRLWABLE VALUE
mmt or mwetrpt color

,,,:::,:, ::,:::,,

Flg 7. Data default representation

y,,,,,, , ,,, ,,,, ,,,,,,,,,,,,,,,,,, ,,,, ,,, ,,,

[Ob]ect
1][

~ Schema Current Object. 20 Object Type. cwnpuf. er. t,pe
*

[hierarchy 1

relat>onshi

(
method

e.lt

‘i ,~ A

SUB (sparCl)

f

~’,’

,,

Fig 8, Computer_type data representation

displayed using the method associated with the attribute comp _ drep (the
suffix _ drep is used by DBface to ascertain that comp _ drep is a represen-
tation method and should be listed in the menu along with the default
representation). The data that this method needs in order to draw this
representation is stored in other attributes of the object type
computer_ type. One of these attributes is a list of the data points needed
to draw the representation. Others include the computer manufacturer,
model name, etc. Note that once this method has been written, it is available
for any interface to use since it is part of the object type computer_ type.

This encapsulation allows DBface to easily keep track of the various repre-
sentations available for any data type. Since DBface keeps track of the
representations available for various object types, interfaces can easily access
a variety of representations. Not only does this make it easy to build an
interface, it also allows for easy reuse of the data representations when
building more than one interface. In fact, the various representations could
be made into a library by providing the appropriate access routines.

3.2 Representation Storage

DBface representations are stored as reusable methods dependent on some
set of object attributes. Although an attribute could be a simple bitmap to be
dumped by the method, this is not the way that most data representations

ACM TransactIons on Information Systems, Vol. 11, No 2, Aprd 1993

Designing Database Interfaces with DBface . 119

instance type cOmputer_type
relationships

plug name : cornp_type;
attributes

inst : int32;

category : nametype;
manufacturer : nametype;

comp_model : namf?type;
outline : drawtype;

comp_drep : int32 := draw_computer

(manufacturer,comp_modeLoutline);

ports : namelist;

monitor : nametype;

end;

Fig. 9. Selection of Cactis DDL file describing computer types.

are done. Generally, the data provided allows the representation method to
create the representation in a more intelligent manner than a simple bitmap.
The choice, however, is up to the designer. For example, the way that the
computer type shown in Figure 8 is stored and drawn can be seen by
examining the object type computer_ type in the section of a data definition
file shown in Figure 9. The method for drawing a computer type is connected
to the attribute comp _ drep and dependent on the attributes comp _mame,

comp _model, and outline. Outline is the attribute that contains the
actual coordinates for drawing a picture of the given computer.

Another important aspect of the storage method used is the transparent
integration of new and old data representations. Data representations are
maintained by Cactis and are not hard-wired to one particular interface.
Also, because all the data representations created previously look no different
than newly created ones, they may be used for building new interfaces and as
building blocks for creating new representations. This is a key factor in
providing representation reusability.

3.3 Operation Definition

Operations defined in DBface include menu actions, queries, etc., as well as
state changes used for control flow. These operations are created using the
operation definition window. We will demonstrate some of the features of the
operation definition window by showing how some features of a more tradi-
tional database interface would be built. As our example, we will describe
how part of an existing interface, an office forms system called Freeform [22],
would have been built with DBface.

Figure 10 shows an operation definition window. Although there is no
reason we cannot have both the representation definition and operation
definition windows up simultaneously, we will only use one at a time in order
to make our diagrams less crowded. Unlike the schema in Figure 6, this
representation uses inclusion to represent relationships. Thus, an object
related to a second object will be included inside the second object. For

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.

120 . R King and M. Novak

Action

Result

screen move

resize 1
change state

W

:,,,,.,,:,,,:,,,

::::::7:::::::: : :::,::::,,.,,:,+,:, :::,,,,,,.,:,,, ::,,,,,,,,.,,,,.,:,,,.,,,,0.,,:,,,:.,,,.:,,,,,.::,,,:: ,,, ::,,,,,,,:,, ,:,, ,:,, ,,,,, .,,:,,:,,,,,,:,,,,.,,,..,,,,,,.,,.,,,.,,:,.,,,,,:,,:, ,,

nvoica
payment-t ype transacti on_t ypo date invoice-number conunonts

ol d-to->
uato,ner

omp-i d->
ompany

“am. address zip

sol d->
invoice

payment-type transaction-type date tnv Oic O-number
c0mm8nts

sal es-id->
person

name phone address city state zip

pers id->
person

name phone address city state zip

,,,,:

F!!?!ElI:%;,w‘O,.l description ❑ anufacturer

Fig. 10. A schema form representation

example, an object of type invoice is related to an obiect of tv~e customer. .
through the relationship- sold_ to. Note that the direction of a relationship is
fairly arbitrary. Attributes are also included within the constructed object
they belong to. The label on top of each box is the name of the relationship
between the object represented by the box and the object it is included in. The
type of an object is in the upper left corner of its surrounding box. The bold
box around salesperson denotes that the relationship employee (between

company and salesperson) is one-to-many. Since Cactis uses connectors to
create relationships, the relationships shown in this diagram are really only
potential ones. To have real relationships, one must talk about object in-
stances rather than object types.

Figure 11 shows a further refined form representation. Although this
representation was developed from the previous one, it deals with data,

rather than schema, information. Thus, the relationships in this representa-

tion have been instantiated. Aside from following real connections, this

representation also provides blanks for filling in or displaying attribute

values. Further refinement will include making representations different for

various types of attributes, and representing multivalued relationships such

as items with some appropriate structure like a table. Once we finish with

our changes and store them, the newly created schema representation will

become available from the popup menu.

ACM Transactions on Informat,cm Systems, Vol 11, No 2, Apr,l 1993.

Designing Database Interfaces with DBface . 121

,1::.: : :: : :,; : ,,’:,,,.+:::) ,:,,:::,:,:,::,:;,

P
;’1. ..B
~.,,, Action,:.,,,:,,,,:,,, ick,:,:,
::,,, ~Dve
:,:,,
y,:
~: enclose

!,:,: text item
::,:~: menu
;,;
::,,: scrol lbar,:,;,,:,,, exit,:,,:,:,,:,,,

,:,,
,,,,
;:,;-
::,,::,:,; Result
,,,
,::,, ~cregn ~o”e;,,
:,::,:,, resi Z13
y)
y: change state
:::::

[neu action~,:;, 1
;f:~ query,::,
;;

,,,,,
1,:,,
::’,,,,
j
,,,
;,

.:,,,.?

;:
:.
:.:
{:,
v,,,,,.::.,,:,,:::,:,,:,,,,:,,::,:.:,:.:,:::,: ,:,:

II

invoice

payment-type transact ion-type__
date i nvo I ce_number ____________
comments ------

sold_to->
customer

It ers_i d->
person I

nan)e ___________ phone _____________
address __________ c i t y____________
stat e-_ _____ 2 i p_ —____________

01 d-by->
alespersnn

employer->
Ilcomoanv II,.

name ____ address __
z i p_______________

I

sales_ id->
[person I

name ___________ phone _

address ___ c i ty_____________
state ________ z 1 p_______________

i terns->
~

quantity model
description _______ ❑anufacturer ________

pr 1 cc_______________

I
,:,,.,:,,,.,,,:,7:,:,.,,.:,,..?.,:,,.:,,,:,,,:: ,,,,,,,,,,,,,,,,,,:,,,,,,,,,, , , ,:;,,,,,,,,,,,,,,,,,,,,,,,:,,,,,,,,,,,,,,,,:,:,,,, ,,,,,,,,, ; ; ; ; ,,, ,,,,,:

Fig. 11. A data form representation

Working with the operation window, a user can create interface techniques.
For example, by sele~ting an action (or sequence of actions) from the A~tion
buttons and a result (or sequence of results) from the Result buttons, the user
can bind the desired functionality to a set of actions. Suppose the sequence
pick, new action, and menu is selected. This specifies the following se-
quence. The user picks an object. The result of this is a new action. This new
action will be the appearance of a menu. Thus, a pick in Freeform will create
a menu. Since a menu is to be created, a Menu Specification window pops up,
for the user to specify which menu to use. Figure 12 shows such a window,
with a new menu being defined. We could have also chosen an already
defined menu, but instead, we will demonstrate how one goes about defining
a menu. This is done by defining each menu item and its corresponding
functionality. The menu item being defined in Figure 12 is Describe

Current Object. The result of choosing this menu item will be query, which
will be defined in the Operation Result Specification window.

We will define this query using the C interface to Cactis. The query starts
by doing some type checking to make sure a legal schema type is being
described. If it is not, an error message is displayed in the output window and

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.

122 . R. King and M. Novak

,.,J,, ,,, ,,, .,,

Action

p,ck
)

move

enclose

te. t item 1
menu

-

Pesul t

,,,,,:,,:::!, ,,,,,,,.,::.:.,,,,,,,,,,, $,, : ,,, ,,, ::,,,,:,,,,,:,.,,,,,.::,,,, ,.,:,,:,,,..:,:,::,::,:.:,,,,, ~~~~~~.,,: ,:,, - .:,:,~::.,,,:,,,, ,:, ,,,,,,, ,,,,, ,,
,, ,,,,:,,,,,:,, ,:,,,,.,:,,, ,,, ,,,,,,:,, :,, ,. ,,,,, :,

,,,,,:,,:,,,,,:,:,,,,,,, ,,,,

ectory: ~ nt/alpo/users/n ovak/facekt t/src/facek4 t

e: popups. ~

sprintf (vstr, “X-*S ,,, SHDRT_COL, ’,--------- -~-–,,);

strcat(outstr, vstr);

Sprint f(VStr, ’’%-* s’’, SHORT_COL, I’.--!,),
strcat(outstr, vstr);

sprint f(vstr, ’’%–*s’’, SHORT_COL, “----–------– ----”);

strcat(outstr, vstr);

taxtline(~, rw++, col, outstr, FONT_ REG);

gptr s obj_table[get_i nde~(schema_type_ curr-)]. attr;

while (gptr 1= NULL) {

if (strcmp(’’ inst’’, gpt>name)))) {

sprint f(Outstr, “%-*s ,’, SHORT_COL, gptr->name);

sm-intf (vstr, ,’%-. s “ ,SHORT.COL , Qptr->tvpe) ;

Skcat(outstr, vstr); ”

twxtline(p, rw++, col, outstr, FONT_ REG);
1J
gptrzgptr->next;

‘,

;o1 = 12 + (2 * SHORT_ COL),
row = 4,

gptr ❑ obj_tabl~[get_lndex(schwm_ type_ curr)] rel ;
uhlls (gptr 1= NULL) {

sPrintf(OUt Str,’’%-*s “,SHORT_COL, gptr->nams);
sp.lntf(Vstr, “X-*S “,SHORT_COL, gptr->type);
Strcat(outstr, vstr);

taxtl ina(w. rw++. col .outstr. FONT-REG):

- ~ ;O1;., o,,,,, “D’r=u”’;’’’pxt’‘ ‘ ‘ -(”’JMe”.Name.

1
,,,,:,,,,,,,:,;:,lim ~me.

Oescribe Current Ob, ec$
:,, ,, ,,

(Define Functionality i. Operatl.n De ftnftion wlndw),,,,, :,,,,:, ,,
,,, ., (Left mo.s, button aborts, ri~ht mouse button ..” firms).,, ,,, ,,, , ‘“-’k

: ,,:,,,:,,,, ,,,,,,,,,, -_J ,:, ,,
,,, ,, .,,,,,,, .,, ,,, ,,, ,,, ,,, ,,. ,,, ,. ‘:, , “

,’,.,,, ,,:, .’,,. ,, ,,,, ,,:,,,,.:::, ,.,,,,,’. ,,,,, .,, ,,,,,,, , ,., ,,, ,,,,, ,,,,,,,,,L,, ,, ,,,,, ,,, ,,, ,, ,,,,

Fig, 12. Adding functionality to a menu item

the query is complete. Otherwisej all attributes and relations valid for the
schema type being described are found by walking the database schema. This
information is formatted and displayed in an output window. Although many
UIMSS allow C routines to be bound to interface constructs [14], the advan-
tage here is that DBface implements them as Cactis methods, thus giving all
queries direct access to any database data or data dictionary information
needed. By having the DBMS manage functions, DBface gains more computa-
tional power than by merely using C routines.

The result of selecting the Describe Current Object menu item from
within Freeform is shown in Figure 13. Because every object has either an

explicit or implicit visual border, the current object (the one being picked) is

the innermost object whose border the cursor is within when the menu is

selected. In this case it is the form field labeled customer (object type person)

that is surrounded by the dashed line. Note that the query also finds the
connector role, even though it is not part of the form being displayed. This is
because it is part of the object type person.

DBface also provides a mechanism for control flow through the use of state
diagrams. The operation definition window provides tools for creating states

ACM Transactions on Information Systems, Vol. 11, No 2, April 1993

Designing Database Interfaces with DBface . 123

inwo i ce invoice –mud e r
r

1

---- -_———--- __——____ ____
customer

name phone

address Show Fill Order
city

state _
Hide Fill Order

zip
---- -——- ---- ---- ____ ---- Change Fill Order

Dayment.type Expand Current Object

cash Cofnpress Current Object

Hove Current Object

sale
Resize Current Object

Delete Current Object
quantity UIM mfg.

Undo Last Oelete
L

Add Current Object

Add New Object

Create Derived Object

Save Edit Session
comments Write Edit Session

Repaint Screen

Exit Editor

I deposxt _

Attribute Name 4ttr1bute Type Relat?onsh]p Name Relat, ansh, p Type

name nametype rOl.9 who. am. f
phone int32

address nametype

City nametype

state nametype

zip int32

Fig.13. Selecting aFreeformmenuitem

and binding state changes to user actions. Although state diagrams are not
new [20], and DBface does not enforce their use, we feel they are ineffective
methodology and strongly encourage them. Like other interface constructs,
state diagrams are stored as sets of related database objects. An example of
their use willbe shown in the next section.

3.4 Concurrency and Recovery

Previous sections have discussed the benefits ofusing the DBMS for creating

interfaces and for storing application data. There are also several advantages

provided bythe database when actually usingan interface built with DBface.

ACM Transactions on Information Systems, Vol. 11, No.2, Aprd 1993.

124 . R, King and M, Novak

Since the interface is being run as a series of database transactions, data
consistency is automatically provided by the DBMS transaction mechanism.
This makes it possible to provide concurrency and recovery for any interface
built with DBface.

Often, we may let several users execute an interface concurrently. With
conventional UIMSS, this capability must be built into the application (or
perhaps into the interface). Without the proper safeguards in place, the data
may be rendered inconsistent. In interfaces built with DBface, the DBMS
takes care of problems created by concurrent access. Let us examine an
interface that uses the invoice in Figure 11 for data entry. If two users are
both adding a sale at the same time, there is potential for data inconsistency.
The DBMS will sequence the two transactions and maintain consistency.
This is invisible to the user.

Another potential conflict can be seen if we look at the form being edited in
Figure 13. If two users are editing the same form at the same time and both
try to add a new field in the same location, we wish to only allow one of them
to succeed. Here, the DBMS automatically locks out one user while the other
adds the field. Even though one user’s attempt to add a field will now fail, the
DBMS will automatically recover. The transaction is rolled back to a point
where data consistency is achieved. Although recovery may not be invisible

(there will probably be some error message), the data will not be compro-
mised. Recovery from system crashes, power failures, etc. is handled simi-
larly. Although any UIMS could call a DBMS routine and provide transaction
management for a particular operation, the tighter coupling between the
interface and the database in DBface allows for more flexibility. One or more
operations may be made into a transaction or the whole interface may be a
single transaction. This allows interfaces to have correct, concurrent behavior
at any level of granularity desired.

4. A NETWORK EXAMPLE

A software engineer might want an easy way to get information about
computer networks. With network configurations changing fairly often, stor-
ing the information in a database and having a graphical interface to access
this information makes good sense. Because such an interface does not look
much like a “regular” database interface, it is useful for illustrating the
variety of interfaces that can be built with DBface.

Although an existing interface may be used as a starting point, here we
will create a brand new interface called network. This is done from the
DBface main menu (not shown) and causes several internal events to happen.
First, instances of object type interface and state are automatically added to
the database. These objects types, as well as some others, are used to keep
track of the structure and functionality of interfaces built with DBface. The
structure of these types is automatically provided by the DBMS. In order to
establish a start state for this interface, these two instances are connected
with a relationship and the new instance of type state is made the start
state. Now a new interface with a start state exists.

ACM TransactIons on Information Systems, Vol. 11, No. 2, Apr]l 1993

Deslgnlng Database Interfaces with DBface . 125

,,,, ,,,,,,,,,,,,,,,,,,;; ,,,,,,,,,.,,,,,,,,.,.,,,,,,,,,:,,.,,,,,:,,,,:,,,.,,.,.,.,.,,,.,,,,,.,,.,,.,.,.,.,,,.,,,,,.,,.,.,.,.,.,.,,.,,,,,.,.......,,.,, ,..,,,, ,,,
;:; -. ... ,.

I~pisij
,,;[,,,:

Object Type: country ,,,,,,,,,,:,:,

::;,, hierarchy CSFIET Map
,:.,,,,:,:,,,,,

~ I%3!l

(United States) ,:::;
::::;:::
,::’:

::.:, ::
exit

:j,::, ,::::
,,:,:

;,,
,;,,
:, ,,
,,,,,

,,,,
,::::

,,,,, ,:,:
:x,,
,,:,,
,,,,,,

:,:,

,,
: :.:
y/
,,,,.
::,;

,j

,::,,
,:,,

,,,,,
,:,,,

;:::: z ucdavis. edu ,,:,,

, ,,
.,,:

,:,1,, ,,,’
,,.,,,,.,

fi
,:,:, ,:,:

,:,,,,
f,j ,.,
,:,:,, .,,,,,
:,,,/ },
;:;::
:::,:,

:!,’
;::::,
:::::

,,,,,
,,::::

,:,:, ,::’:;
,,,:,
:::!
:;:!
.,,:.

,,.,,

,:y
;:::: ~:
,,:,~,,,,, ,,,,,, ,,,,,,,,,:,,::,:,,:,,,,,,:.,,:,,::,,,:,,:,,,,, ,,,: , ,:,,,:,:,:,,,,,,.,,,,,:,,,: ,,,:: ::, : : :,,.,,,, ,, .,,,., .,, , : ::,:,:: :,:,::,,,,:,,:::,::,::,:,::.:,:,:,:,,,:,,::,:,:,:,:,::,,,,: :,::,,,,,::::::,,,:,,,,:,,:,,:, ,: :, :,,,:,,,,,,,,,:,,:,:::, ,,: :,,., : ::,,,,,,,,,,,,,:,:

Fig. 14. ACSNET map representation.

Second, a makefile and a main program are automatically generated for
this interface. The main program initializes the new interface by setting up
the necessary Sunviews protocols and creating an initial 1/0 window. The
makefile compiles in the main program, the necessary D13face code, and
Cactis. If we compiled and executed our new interface at this time, it would
merely bring up an initial window for the interface. Now we need to start
adding representations and functionality to our interface.

4.1 Creating Some Representations

To create the interface, we need to have representations of all the database
objects that the interface will display. These include the objects of type
country, site, computer, etc. These representations also need to be “layered”
so that we may show combinations of objects in some meaningful way.

In Figure 14, we show a pictorial representation of a small subset of the
CSNET sites in the United States. This representation was built by invoking
several representation methods using a layered approach. The map is drawn
using two different representation methods (shown in the partial DDL file in
Figure 4). The attribute map_ drep of type country is used to invoke the
method draw_ map, which draws the map of a country (in this case the
U.S.A.). Draw_ map follows the relationship sites to find all the sites in this
country. For each site visited, the method draw_ site is invoked through the
attribute map _ site_ drep. This draws the individual sites. No arguments
need to be passed to the methods since they are encapsulated within each
object instance. Thus, draw_ map only has to follow the relationship sites to

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.

126 . R. King and M. Novak

name

Fig. 15 Class hierarchy,

each site instance and then reference the attribute map_ site _ drep for the
site to be drawn.

Each site contains a number of computers. Figure 15 shows a class
hierarchy for the schema type computer. In this hierarchy, computer is the
base type, mainframe, workstation, and micro are subtypes, and so on.
Classes are represented by enclosed text and attributes are represented by
unenclosed text. Attributes are connected with lines, subclasses are con-
nected with arrows. Although this hierarchy is not complete (for readability),
we can see that computers such as a Pyramid and a Sun 4 are different and
contain different attributes. The database contains methods (accessible to
DBface) which know about these differences and will later be used to draw
the computers that exist at a particular site.

4.2 Adding Control Flow

Aside from having the necessary representations available, the network
interface must also be able to handle state transitions. This makes it possible
for the operational component to process queries at the proper times and let
the representational component know what representations are valid at any
given time. Similarly, the system must also keep track of when input is
necessary.

Figure 16 shows a DBface Operation Definition window being used to
define the control flow of the network interface. The state diagram for the
network interface is being displayed and state 3 (highlighted) is the current
state. The arcs (defined below the diagram) all correspond to menu choices.
Note that there is no way to leave state 3 at this time. The popup menu
shown to the right of the state diagram is being used to select a new state to
go to. This popup was bought up after a user specified that a menu pick
would result in a state change. This was done by selecting the menu button

ACM TransactIons on Information Systems, Vol. 11, No 2. April 1993

Designing Database Interfaces with DBface . 127

,:,,,,,,,,,:,:,,:,::,...............,,:,:,,,.,,,..,:,,:.,,,:,,:,,...,,,:,,,:,,,:,,,,,,:,,:,,,,

Action

[pick

m

enc

m ““-STATE w~~l

text 1

m

Scro

e

EXIT 3

Result
A- Select New Country

screen move

[1
B- Select site

resize
C - Exit
D - Exit

(new action 1 E - Exit
query F - Show Site

, :,,,,:.,, ,,, ,,,,,:,,,:,,,,/, ,:,::,,::.,:,.,:.,:,.,,:,,,,:,,,:,.,,,.,,,,,:,,,:,.:,:,.,:,:.,,:,,,,,,,.,:,:,:,,:, ,,,,,,,,:,:,:, . .:,.,,,’,’,,,,,:,,, :,,,,,,,,, ,,, ,,,:::::,,:,,,,,,:,,,.:,. ,,, ,,,,,,,: ,’: :.,,,, “.

Fig. 16. The network interface state diagram.

from the set of Action buttons and the change state button from the Result

buttons. The change state button is not visible during the life of the popup
menu, but it can be seen in Figure 17. Once a state is selected, the user will
be prompted for more information about the menu choice that causes the
state change. However, the system already knows that it is the menu
available in state 3 that the choice will come from.

Figure 17 shows the state diagram with the new arc from state 3 to state 2
added. The menu choice that will enable this state change will be Exit Show.

There is now a way to reach every state and a way to get from any state to
the exit state. Since state diagrams are maintained by the DBMS, they are
also reusable. Network was built in a couple of days using DBface. Since
most of the representations needed for both input and output were already
part of the database, they were merely “plugged in” to network. As a result,
the total amount of code written by hand for this interface was less than 500
lines of C. About half of this code consisted of new data representations and
the rest consisted of some Sunviews font, window, and event-handling
routines.

4.3 The Network Interface

Upon entry, the interface lets the user select a country, then a site. Once we
do this, we can also request that network show us the site connections. This
results in the map seen in Figure 18. The country and site name are
displayed as part of the window header and all the site connections the
current site (cs.colorado.edu) has are graphically displayed. The connections
are drawn by accessing a representation method attached to the object type
site. This method finds all the sites connected to the site of interest and then
draws the connecting lines. Other database methods attached to the object

ACM Transactions on Information Systems, Vol. 11, No. 2, Aprd 1993.

128 . R. King and M. Novak

.,,,.,,.,,,; ,:,?: ?,:,(,?.,:‘:’,fi,,,,,,,,,,,,,,,,,,,
,,, ,,,,, ,,, ,,,,,,,.,:,,,.,,. ,,:,.,,

“’P
:1 .-..-,

Act Ion

ick

move

encl ose

text Item

menu

scrnl lbar

exit

:1- Result

A - Select New Country

B - Select Site

C - Exit

O - Exit

E - Exit

Fig. 17. Adding a state to the network interface state diagram

CSIVET Map
(United States)

A

Washington. edu

/

-!~.)

chicago. edu

1,1 * indiana. edu

Select New Country * s.colorado. edu

Select Site *

Add New Site

Show Site Connections

Delete This Site

Exit
cs.utexas. du

Fig 18. Showing site connections.

type site could also be “plugged in.” For example, a method that draws a
pictorial representation ofasite couldbe selected as alternative feedback.

Now we can see what resides at the current site. Selecting Show Site in
Figure 18 shows the computers at cs.colorado.edu. Note that a small sub-

ACM Transact] orison Information Systems, Vol. 11, No 2, Aprd 1993

Designing Database Interfaces with DBface . 129

kihblesnbits (server) bad t igge r tut (server)

=QBA

Fig. 19. Showing the computers at a site.

set of computers is being used to represent this site. The method
draw_ all_comps (Figure 4) is used to draw the representation seen in
Figure 19. It is built up from the representations for object types computer

and computer_ type. Each computer at the selected site is shown along
with its type and name. Which computers at a site are servers is also shown.
In this example, the servers are kibblesnbits and tut. The network interface
does not even need to know the specifics about each computer at that site. For
each computer, the database knows its type and the proper method to invoke
for that type.

Since different computers have different attributes, the information given
for a Sun will differ from the information given for a Pyramid. The database
knows these differences and therefore, much of our work is done for us,
especially if there is already a built-in method for displaying attribute
information.

Data entry methods can also be maintained by DBface. Figure 20 shows a
new site being added. The function that does this, including bringing up the
new window and gathering input, is a method attached to the object type
country. The site name is entered in the small window and the location is
entered by clicking the mouse on the map. The location could also be typed in
if desired. Then the user selects the commit button to actually create the site.
Adding this site causes several things to happen. First, an instance of type
site is added to the database. Next, this site’s site_ name and 10C attributes
are given values. Then the site is connected to the current instance of
country and drawn on the map.

5. FUTURE DIRECTIONS

We would like to make a few additions to DBface. These include a debugging
tool for keeping interfaces consistent with DDL changes, techniques for the
automatic generation of new representation methods from existing ones, and
a facility for bootstrapping interfaces built with DBface. The state diagram
mechanism is also a likely candidate for added functionality. We have built

ACM TransactIons on Information Systems, Vol. 11, No. 2, Aprd 1993.

130 . R Kmg and M. Novak

CSNET Map
(Unite61 States)

“k

swashingtan. edu r’

‘Ip?J+

\

* m“ .edu
chicago. edu

* indiana.edu

\
>

.-
Site Name: umich.ed~

145

‘C’s (Select location on map with left button)

mm
\\

‘J

,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,.,,, ,,,,,,, ,,,,,,,, ,,, ,,,,,, , ,,, ,,, ,,,, ,,, ,,, ,,, ,,/,,,,

Fig. 20 The new site added.

only state diagrams that are not much larger than a Sunviews window and
this will notbe sufficient in the long run.

We would also like tolook atsome ways ofletting interface designers spend
more time being creative and less time developing specific constructs. First,
we would liketo see ifadding some new interactive techniques lets designers
spend less time building their own techniques. Would we end up with
different types of interfaces? Similarly, would the addition of some specialized
database access constructs and routines help minimize the amount of database
knowledge a user needs to have, such as knowledge of the DDL? And last, we
would like to examine the effects of combining the operational and represen-
tational components. Since this would allow all components to be built
simultaneously and in the same style, we think it may make an interface
designer’s job more intuitive and easier.

There are also some broader issues that still need to be examined. First is
the issue of portability. Although we feel we have validated the concept of
integrating UIMS and DBMS technology, we would like to see if it is possible
to create a tool like DBface that can function with a wide set of object-
oriented databases. This would also necessitate devising a global DDL that
easily translates into a variety of DDLs. And second, we wish to see if the
techniques used by DBface can be successfully used by UIMSS. Although
techniques that depend on extensive knowledge of the application may not
translate well to a general-purpose UIMS, they may prove useful in special-
application UIMSS.

ACM TransactIons on Information Systems, Vol. 11, No 2, Apr,l 1993

Designing Database Interfaces with DBface . 131

DBface has proven to be a useful tool for prototyping interfaces. Although
we still need to test the system with nonexpert users, within our research
group it has significantly reduced the amount of time needed to prototype an
interface. Currently, we have built one complete interface (the network
example) and some pieces of another (Freeform); both of these were built
much faster than if they had been done by hand. ‘I’he network interface was
built in less than two days. Our guess is that had it been built by hand it
would have taken over two weeks.

ACKNOWLEDGMENTS

We thank all the referees, whose comments and suggestions have vastly
improved this paper. DBface was previously called FaceKit [23] and has been
renamed due to the emergence of a commercial product with that name.

REFERENCES

1. BARTH, P. S. An object-oriented approach to graphical interfaces. ACM Trans. Graph. 5, 2

(Apr. 1986), 142-172.
2. BOYCE, R. AND CHAMBERLAIN, D. SEQUEL: A structured English query language. In Proceed-

ings of the ACM-SIGFIDET Workshop on Data Description, Access and Control (May 1974),

219-261.

3. BRYCE, D. AND HULL, R. SNAP: A graphics-based schema manager. In IEEE Conference On

Data Engineering (1986), 151-164.

4. BUXTON, W., LAMB, M. R., SHERMAN, D. AND SMITH, K. C. Towards a comprehensive user

interface management system. Comput. Graph. 17, 3 (July 1983), 35–42.

5. CARDELLI, L. Building user interfaces by direct manipulation. In ACM UIST Proceedings

(1988), 152-166.

6. DAVISON, J. W, AND ZDONIK, S. B. A visual interface for a database with version manage-

ment. ACM Trans. Off. Znf. Syst. 4, 3 (July 1986), 226–256.

7. EGE, R. K. Defining constraint-based user interfaces. Data Eng. 11, 2 (June 1988), 54-63.

8. GoLrmMN, K. J., GOLDMAN, S. A., KANELLAKIS, P. C. ANI) ZDONIK, S. B. ISIS: Interface for a

semantic information system. In SIGMOZD Conference Proceedings (May 1985), 328–342.

9. GREEN, M. Report on dialogue specification tools. Con-zput. Graph. Forum 3 (1984), 305-313.
10. GREEN, M. The University of Alberta user interface management system. Comput. Graph.

19, 3 (July 1985), 205-213.

11. GREEN, M. A survey of three dialogue models. ACM Trans. Graph. 5, 3 (July 1986),

244-275.

12. GREEN, M. Directions for user interface management systems research. Comput. Graph.

21, 2 (Apr. 1987), 113-116.

13. HELD, G., STONEBRAKER, M. AND WONG, E. INGRES: A relational data base management

system. In Proceedings of the AFIPS NatLonal Computer Conference 44 (Anaheim, Calif.,

May 1975), 409-416.

14. HELFMAN, J. I. Panther: A specification system for graphical controls. In CHI + GI 87

Proceedings (Toronto, April 1987), 279-284.

15. HENDERSON, D. A. The Trillium user interface design environment. In CHZ 86 Proceedings

(Boston, April 1986), 221-227.

16. HUIMON, S. ANrI KING, R. CACTIS: A database system specifying functionally-defined
databases. In Proceedings of the International Workshop on Object-Oriented Databases

(Pacific Grove, Calif., Sept. 1986), 26-37.

17. HUDSON, S. AND KING, R. Semantic feedback in the Higgens UIMS. IEEE Trans. Softw.

Eng. 1.4, 8 (Aug. 1988), 1188-1206.
18. HITDSON,S. ANDKING,R. Cactis: A self-adaptive, concurrent implementation of an object-

oriented database management system. ACM Trans. Database Syst. 14, 3 (Sept. 1989).

291-321.

ACM Transactions on Information Systems. Vol. 11, No. 2, April 1993.

132 . R. King and M Novak

19. HUTCHINS, E. L., HOLLAN, J. D. AND NORMAN, D. A. Direct rnampulatlon interfaces. In User

Centered System Design, Lawrence, Erlbaum, 1986, 87-124.

20 JACOEZ, R. J K. A specification language for direct-manipulation user interfaces ACM

21,

22.

23.

24.

25

26.

27.

28.

29.

30

31.

32.

33

34.

35.

36.

37.

38.

Trans. Graph 5, 4 (O&. 1986), 283-3~7. -

KZNG, R. AND MELVILLE, S. Sku A semantic-knowledgeable interface. In VLDB Conference

Proceedings (Singapore, Aug. 1984), 30-33.

KZNG, R. AND NOVAK, M. Freeform A user-adaptable form management system. In VLDB

Conference Proceedings (Brighton, England, Sept. 1987), 331-338

KZNG, R. AND NOVAK, M. FaceKit: A database interface design toolklt. In VLDB Conference

Proceedings (Amsterdam, Aug. 1989), 115-123.

KZTACAWA, H , GOT(OH, M , MISAKA, S AND AZUMA, M. Forms document management system

SPECDOQ—its architecture and Implementation. In SIGOA Conference Proceedings

(Toronto, June 1984), 132—142.

LmL A., AND LOCHOVSKY, F. H Enhancing the usability of an office information system

through direct manipulation In CHI 83 Conference Proceedings (Boston, Dec. 1983), 130–134.

MYERS, B. A. Creating dynamic interaction techmques by demonstration. In proceedings of

the 1987 CHI + GI, (Toronto, April 1987), 271–278.

OLSEN, D. R., DNWPSEY, E P. AND ROGGI+, R. Input/Output hnkage m a user interface

system. Comput. Graph. 19, 3 (July 1985). 191–197.

OLSEN, D. R. MIKE: The menu interaction control environment. ACM Trans. Graph. 5, 4

(Oct. 1986). 318-344.

OLSF.N, D. R. Larger Issues in user interface management. Computer Graphics (ACM

SIGGRAPH Workshop on Software Tools for User Interface Marzagement) 21, 2 (Apr. 1987),

134-1:37

QUARTERMAN, J, S AND HCMKINS, J, C, Notable computer networks, Commun. ACM 29, 10

(Ott 1986), 932-971

ROWRS, T. R. AND CATTELL, R. G. G Entity-Relationship database user interfaces In

Readzngs m Database Systems, Morgan Kaufmann, 1988, 359-368.

SCHCU.ERT, A. .J., ROGERS, G. T. AND HAMILTON, J. A. ADM—A dialog manager. In F’roceed-

zngs of the 1985 CHI (San Francisco, April 1985), 177-183.

SIB~RT, J. L., HLIRL~Y, W. D. A.N~ BLESER, T W. An object-or] ented user interface manage-

ment system. Comput. Graplz. 20, 4 (Aug. 1986), 259–268.

SZE~ELY, P. A. AND MYERS, B. A. A user interface toolkit based on graphical objects and

constraints, In 00PSLA Proceedings (San Diego, Calif., Sept 1988), 36–45.

ULLM.AN, J Pnnczples of Database Systems. 2nd cd., Computer Science Press, Rockville,

Md

Wmrw., C., BRNNRTT, W,, BOIES, S., GOULD, J, AND GREENE, S. ITS: A tool for rapidly

developing interactive applications, ACM Trans. Inf’ Syst. 8, 3 (July 1990), 204-236.

YAO, S B., HEVNER, A R SHI, Z AND Luf), S FORMANAGER: An office forms management

system. ACM Trans. Off. Inf, Syst, 2, 3 (July 1984), 235–262.

ZI,OIJ~. M. M. Query by example. In Proceedings of the AFIPS Nut{onu[Comzzuter Con&r-

enw 4-J (Anaheim, Cab;., May i975), 431–438. -

Received February 1992; revised May 1992; accepted November 1992

ACM TransactIons on Information Systems, Vol. 11, No 2, Aprd 1993

