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Abstract

During the paat decade, parallel database systems have

gained increased popularity due to their high performance,

scalability and availability characteristics. With the pre-

dicted future database sizes and the complexity of queries,

the scalability of these systems to hundreds and thousands

of processors is essential for satisfying the projected de-

mand. Severaf studies have repeatedly demonstrated that

both the performance and scalability of a parallel database

system is contingent on the physical layout of data across

the processors of the system. If the data is not declus-

tered properly, the execution of an operator might waste

resources, reducing the overall processing capability of the

system.

With earlier, single attribute declustering strategies, such

as those found in Tandem, Teradata, Gamma, and Bubba

parallel database systems, a selection query including a

range predicate on any attribute other than the partitioning

attribute must be sent to all processors containing tuples of

the relation. By directing a query with minimal resource

requirements to processors that contain no relevant tuples,

the system wastes CPU cycles, communication bandwidth,

and 1/0 bandwidth, reducing its overall processing capa-

bility. As a solution, several multi-attribute declustering

strategies have been proposed. However, the performance

of these declustering techniques have not previously been

compared to one another nor with a single attribute parti-

tioning strategy. This paper, compares the performance of

Multi-Attribute Grid deClustering (MAGIC) strategy and

Bubba’s Extended Range Declustering (BERD) strategy

with one another and with the range partitioning strategy.

Our results indicate that MAGIC outperforms both range

and BERD in all experiments conducted in this study.
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1 Introduction

During the past few years database management systems

(DBMS) have become an essential components of many ap-

plication domains (e.g., airline reservations, stock market

trading etc). In the arena of high performance DBMS,

multiprocessor database machines (Gamma [DGS+ 90],

Bubba [BAC+ 90], XPRS [SP088], Non-Stop SQL [Tan88],

DBC/1012 [Ter85], Volcano [Gra89]) have become increas-

ingly popular. In such systems, relations are generally hor-

izontally declustered [RE78] [LKB87] across multiple pro-

cessors. Haah and range are two widely used declustering

strategies. In the first, a randomized function is applied

to the partitioning attribute of each tuple to select a home

processor for that tuple. This enables selection operators

with an equality predicate on the partitioning attribute to

be directed to a single processor. However operators with

a range predicate must be sent to all the processors con-

taining fragments of the relation. In the range partitioning

strategy, the database administrator specifies a range of key

values for each processor. This strategy provides a greater

degree of control over the distribution of tuples across the

processors and the execution of selection operators with ei-

ther a range or an equality predicate on the partitioning

attribute can be directed to those processors that contain

the relevant fragments.

For a selection operator, the number of processors that a

relation is declustered across determines the maximum de-

gree of parallelism for the queries referencing it. However,

if only a few tuples satisfy the predicate of a selection oper-

at or and its resource requirement s(CP U or 1/0) are mini-

mal, then the execution of the operator should be localized

by partitioning the tuples that satisfy the query across only

a few processors [CABK88]. Doing so will minimize the ex-

ecution time for the operator by minimizing the communi-

cation overhead associated with scheduling and terminating

the operator on multiple processors. Using more processors

simply wastes CPU cycles and 1/0 bandwidth and may ac-

tually reduce the throughput as these processors consume

CPU cycles and 1/0 bandwidth only to determine that their

fragments of the relation do not contain any relevant tuples.

Minimizing the number of processors ueed to execute such
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operators frees the other processors in the system to execute

other operators, increasing the overall processing capability

of the system.

One major limitation of both the range and hash declus-

tering strategies is that neither can decluster a relation on

more than one attribute. Therefore, any selection operation

whose predicate includes an attribute other than the parti-

tioning attribute must be directed to all the processors that

contain fragments of the relation. In a system consisting of

hundreds to thousands of processors, the overhead of initi-

ating a selection operator on processors that do not contain

any relevant tuples can actually constitute a major fraction

of the query’s execution time. In addition, most of the pro-

cessors will search their fragment of the relation to find no

relevant tuples.

As a solution to this limitation, several multi-attribute

declustering strategies have been proposed. However, the

performance of these declustering strategies have not been

compared with one another nor with a single attribute

declustering strategy. This paper compares the performance

of two multi-attribute declustering strategies, BERD and

MAGIC, with each other and with the range partitioning

strategy. The rest of this paper is organized as follows.

Sections 2 and 3 contain a brief overview of each of these

partitioning strategies. In Section 4, we discuss the impact

of high correlation of the partitioning attribute values on

the execution paradigm provided by both multi-attribute

partitioning strategies. Section 5 describes the simulator

used for this performance evaluation. Sections 6 and 7 de-

scribe the workload and the performance of the alternative

multi-attribute partitioning strategies for this workload, re-

spective y. Our conclusions are cent ained in section 8.

2 BERD Declustering

BERD declusters a relation by distinguishing between the

primary and multiple secondary partitioning attributes for

the relation. First, the relation is range partitioned using

the primary partitioning attribute value (say attribute A),

Then, for each of the secondary partitioning attributes (say

attribute B), an auxiliary “relation” is formed from its at-

tribute values, their associated tuple identifiers, and the

processor on which the original tuple resides. The tuples

in each of these relations are then range partitioned over

multiple processors and the fragments at each processor are

organized in the form of a B-tree index on the attribute
value.

If a query with a range predicate on attribute A (e.g.,
retrieve R.all where R.A < 50) is submitted, the query opti-

mizer utilizes the partitioning information of this attribute

to direct the query to those processors with the relevant

fragments. If the query predicate references attribute B

(e.g., retrieve R.all where R.B < 50), the system first uses

the auxiliary relation to determine which processors con-

tain qualifying tuples and then directs the query to these

processors.
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Figure 1: A two dimensional directory on the STOCK

relation

3 MAGIC Declustering

MAGIC partitions a relations by constructing a grid direc-

tory on a relation (see Figure 1 for a two dimensional grid

directory) where each entry in the grid represents a frag-

ment of the relation. Before describing MAGIC in detail,

we start with an example in order to demonstrate the ex-

ecution paradigm it provides for queries accessing different

partitioning attributes. Assume a STOCK relation with the

following attributes:

STOCK (ticker~ymbol, name, price, closing, opening, P/E)

Assume that one half of the accesses (termed query type

A) to the Stock relation use an equality predicate on

the ticker-symbol attribute (e.g., select STOCK. all where

STOCK .ticker~ymbol = “AXP” ) and that the remaining

queries (termed query type B) use a range predicate on the

price attribute (e.g., select STOCK.S.11 where STOCK .price

> 10 and STOCK .price <= 20). Furthermore, assume that

both queries produce only a few tuples and use an access

method to retrieve the qualifying tuples. For this workload,

MAGIC declustering would construct the two dimensional

directory on the STOCK relation, shown in Figure 1, in

which each entry corresponds to a fragment - i.e., a dis-

joint subset of the tuples of the relation. The rows of the

directory correspond to ranges of values for the price at-

tribute, while the columns correspond to the intervals of the

ticker-s@d attribute. The grid directory consists of 36 en-

tries (i.e., fragments), and assuming a system consisting of

exactly 36 processors, each fragment will be assigned to a

different processor. For example, tuples with ticker_symbol

attribute values ranging from letters A through D and price

attribute values ranging from values 21 to 30 are assigned

to processor 13.

Next, consider the execution paradigm of query type A

and B with MAGIC. Query type A is an exact match query

on the tickersymbol attribute and MAGIC will use six pro-

cessors to execute this query because its selection predicate

maps to one column of the two dimensional directory. As
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an example, consider the query that selects the record cor-

responding to American express (STOCK .tickersymbol =

‘(AXP” ). The predicate of this query maps to the first col-

umn of the grid directory and processors 1, 7, 13, 19, 25, and

31 would be used to execute it. Similarly MAGIC directs

query type B to six processors since its predicate maps to

one row of the grid directory and the entries of each row have

been assigned to six different processors. Consequently, the

MAGIC partitioning strategy uses an average of six pro-

cessors for both queries. In comparison, a one dimensional

partitioning strategy such as range would use an average of

18.5 processors for a similar workload. This is because range

partitioning can only decluster a relation on one attribute

(say attribute R-ice) and will direct the query referencing

that attribute (query type B) to one processor while type

A queries must be directed to all the 36 processors.

3.1 Overview of MAGIC

In order to decluster a relation R using MAGIC, the

database administrator must specify the h’ partitioning at-

tributes, the resource requirements of each selection opera-

tion on the relation, and their respective frequency of execu-

tion. Using this information, MAGIC computes the number

of processors (termed M) that should be used to execute

the “average” query representative of the workload (termed

QA”e). In order to ensure that M processors are used to ex-
ecute QA”e, the cardinality of each fragment of R is set to

~ th of the number of tuples processed by QAve. Thus,

the selection predicate of QA”, will cover III fragments. If

each of the A4 fragments is assigned to a different proces-

sor, the correct number of processors will be used to exe-

cute QAV.. In addition to M, MAGIC also computes Jf,,

the number of processors that should be used to execute

those selection operators whose predicate includes attribute

i based on the resource requirements of the corresponding

subset of selection operations. M, is used to determine the

splitting strategy when constructing a grid directory on the

relation.

Once these values have been determined, MAGIC pro-

vides the insertion phase of the grid file algorithm [NHS84]

wit h the following information: 1) the cardinalit y of each

fragment, 2) the splitting strategy, 3) the relation to be

declustered, and 4) the K partitioning attributes. The grid

file algorithm scans the relation and constructs a A’ dimen-

sional grid directory whose ith dimension consists of fii

ranges of partitioning attribute values. Each such range

is termed a slice. For example, the ticker-symbol attribute

in Figure 1 is composed of six slices (A-D, E-H, etc.). The

MAGIC partitioning strategy then analyzes the grid direc-

tory and assigns its entries (corresponding to fragments of

the relation) to the processors.

During the final stage of the partitioning process, the

relation is scanned a second time and tuples are assigned

to processors based on the contents of the grid directory.

The grid directory is then stored in the database catalog
and is used by the query optimizer to localize the execution

1Assuming that the range of query does not overlap two in-
tervals of the grid directory.

Term Definition

K Number of partitioning attributes

P Number of processors in the system

QA”e Average query representative of the

individual queries in the workload

M Ideal number of processors to execute QAtie

M, Ideal number of processors to execute queries

whose predicate includes attribute i

Ni Number of range intervals associated with

dimension i

Q, A query in the workload

CPU, The CPU processing requirement of Q,

Di~ki The Disk processing requirement of Qi

Net; The Network processing requirement of Q,

FreqQ, Frequency of occurrence of Q, in the

workload

CP Cost of Participation - overhead of using an

additional processor to execute query Q,

FC Cardinality of a fragment

Cs Cost of searching the grid directory

constructed by MAGIC declustering

Table 1: List of terms used repeatedly in this paper and

their respective definitions

of those selection operators whose predicate involves one or

more of the partitioning attributes.

3.2 Cardinality of a Fragment

Assume a mixed workload consisting of n selection

operations. Each operation Q, retrieves and processes

TuplesPerQi tuples from the database, has a frequency

of execution of (FreqQ, ), and consumes three principle re-

sources during its execution: 1) CPU cycles, 2) disk 1/0s,

and 3) communications bandwidth. For each operation Q,,

the workload defines the CPU processing time (CPU,), the

Disk processing Time (Disk,), and the Network Processing

time (Net,) of QAVe is representative of all the queries in

the workload. The number of tuples retrieved by QAue are

(Tup/esPerQA~~ = ~~=l(TuplesPerQt * FreqQ,)). Sim-

ilarly, each of the CPU, disk and the network processing

quanta for this query is the weighted sum of the quanta of

the individual operations (e.g., CPUAve = ~~=1 (CPU, *

FreqQ; )). Observe that these times are determined based

on the resource requirements of the operation and the pro-

cessing capacity of the system and thus, we derive the car-

dinality of the fragment based on the resource requirement

of the average query, QA.e.

As a relation is partitioned over additional processors,

the response time of the query decreases proportionally.

However, the overhead ( termed CP) incurred for each ad-

ditional processor must be taken into account. Assume a

linear increase of this overhead as a function of the pro-

cessors employed (as is the case in the Gamma database

machine)3. In addition, if the resource requirements of the

2The linear speedup results presented in [DG S+ 90] justify
this claim.

3The algorithm used to schedule and co-it a multiprocessor
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query are extremely low, then searching the one dimensional

directory can constitute a significant portion of the query’s

execution time. The number of, entries in the grid directory

can be at most fM-~~~e~$e~~l~t~~Re~~. If a linear search is

fperformed then one ha f of the entries must be searched to

find the qualifying entries. Thus the response time of the

average query QAwe is defined by:

CPUAue + Disk..i~~ -1-NetA~e ● ~ ~ ~p
RT(M) =

M

+ (M - 1)* Card(Re/) * CS

2 * Tup!esPeTQAv~
(1)

where CS represents the cost of searching a single entry in

the directory. Hence the desired number of processors (i.e.,

the value of M that minimizes RT(M)) to execute QA”e is

specified by setting the first derivative of equation 1 to zero

and solving the value of M:

M represents the number of processors that should

be employed to execute QA”.. Since QA”e processes

Tup~esPerQAtie tuples, each fragment of the relation should

contain FC = ~tip~efip~~~ k tuples4.

In addition to M, M:, which specifies the number of pro-

cessors that should be employed to execute queries accessing

attribute z’ is also determined. Thus, ideally, Mi different

processors should appear in each slice of dimension i. As-

suming s represents the number of different queries whose

selection predicate includes attribute i, we first compute the

frequency of occurrence of each query relative to the total

frequency of all queries whose predicate includes this at-

tribute (termed RelFreqQ). For each query j, the relative

frequency of that query is:

FTt@j
RelFreqQJ =

x~.l FreqQ.

Then, the value of M, for attribute z is:

(2)

The value of Mi is used both to determine the splitting

strategy when constructing the grid directory and while as-

signing the elements of the grid directory to processors.

3.3 Creating the Grid Directory

In order to construct a grid directory on a relation, the

grid file algorithm requires the frequency with which each

dimension of the grid file should be split. This determines

the shape of the grid directory, in particular, the number of

range intervals (N;) each dimension i is divided into.

Since the M, value for each dimension will normally be

different, the values of M~, for z = 1 to K, must be taken into

consideration when splitting the directory in order to ensure

query defines this function.
4jy~ < l,then F’C= TU@eSPerQAve

M“

Ticker_ syrrbol

1 4 7 10 13 16 19 22 25 28 31 34

PRICE
2 5 8 11 14 17 20 23 26 29 32 35

3 6 9 12 15 18 21 24 27 30 33 36

Figure 2: Different values for kf~

that each slice of dimension i has at least M, elements (so

that M; different processors can be assigned to each interval

or slice of dimension i). To achieve this, the number of

elements in each dimension should be proportional to the

Fraction.Sphts, defined as:

(~:, M,) - Mt
FTaction.Splitsi = FreqQ, * (

~~1 M, ) ‘4)

This results in a directory with at least Mi elements

for each element of dimension Di. For example, assume

Mticker-svmbd = 3 and Mp.tce = 1. AIso, assume that

90~o of the queries access the ticlcer..symbol attribute and

10% access the price attribute. Using Equation 4, the split-

ting frequencies of the ticker-symbol and price attributes can

be calculated to be 22.5% and 7.5%, respectively. Conse-

quently, the ticker-symbol attribute will have three times as

many elements as the price attribute, resulting in the di-

rectory shown in Figure 2 6. Using the cardinality of each

fragment and the splitting frequencies for each dimension,

the grid file algorithm scans the relation and constructs a

grid directory on the relation.

In the context of MAGIC declustering, each element of

the directory corresponds to one fragment of the relation.

The output of the grid file algorithm is a K dimensiomd

directory whose ith dimension consists of N, ranges of par-

titioning attribute values.

3.4 Assigning the Grid Elements

Once the construction of the grid directory has been com-

pleted, MAGIC analyzes the grid directory and assigns its

elements (i.e., fragments of the relation) to the processors.

This is a complex task since two conflicting goals must be

sat isfied. On one hand, Mi different processors should be

assigned to each dimension D~, while on the other hand, the

elements of the grid directory should be distributed evenly

among the processors in order to: 1) use the full processing

5Note that ~~1 FTaction_Splits, does not equal 1.0. This
is not important because our objective is to compute the ratio of
splits along each dimension. In this example, the ticker- symbo /
attribute should be split three times as frequently as the price
attribute.

‘In this figure, the number of slices along the ticker-symbol is
actually four times that of the price attribute. With the com-
puted ratio of jmction-splits (using Equation 6), the grid tile al-
gorithm will construct either a 3x12 or a 4x9 dh-ectory. In either
case, the number of elements for each slice of the ticker-symbol
attribute will be equal to or greater than Mticker— sv~bo~.
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capacity of the system and, 2) balance the load evenly across

the processors. When the fragments in the grid directory

are less than or equal to the number of processors in the

system, the assignment of the fragments to the processors

is straightforward; each fragment (or element of the grid

directory) is assigned to a different processor. When the

number of fragments is greater than the number of proces-

sors in the system7, the problem can be posed as a integer

programming problem which can be solved for a optimal

solution [GMSY90]. However, this requires an exhaustive

search of the solution space and even for small grids the time

requirements are unacceptable. [Gha90] presents a heuris-

tic that approximates the optimal solution and evaluates

against the theoretical lower bound computed in [GMSY90].

The results obtained demonstrates that the heuristic can ap-

proximate an assignment that corresponds to the theoretical

lower bound. The interested reader is referred to [Gha90]

for complete details of the heuristic and its evaluation.

4 Correlation of the Partition-

ing attribute values

When the values of partitioning attributes of a relation are

highly correlated, it can have a significant impact on the

performance of the alternative multi-attribute declustering

strategies. Selection queries on highly correlated attributes

can be localized to a single processors (or fewer processors

than what was originally anticipated). As an example, con-

sider the relation:

Emp (ss#, name, age, salary, dept.no)

Assume that the age and salary attributes are the parti-

tioning attributes. Furthermore, assume a high correlation

between these attribute values, where the salary of an em-

ployee increases proportionally to his/her age. Assuming

that the salary attribute is the primary partitioning at-

tribute, BERD range partitions the relation using the salary

attribute values and constructs an auxiliary relation using

the age attribute value. Range queries that reference the

partitioning attribute (termed Qsala,V ) will be executed by

a single processor. However, the number of processors used

to execute queries that reference the secondary partitioning

attribute (termed QaQe) depends on: 1) the degree of cor-

relation between the age and salary attributes, and 2) the

selectivity factor of the query. Assuming that Q~g~ retrieves

10 tuples and that there is a low correlation bet ween the two

attributes values, Qa9e is executed by at most eleven Pro=-
sors. This is because with BERD partitioning, this query is

executed in two steps: First, Q~ge is directed to the proces-

sor with the relevant fragments of the auxiliary relation to

determine the location of the 10 qualifying tuples. During
the second step, Q.ge is directed to the processors found in

the first step. When there is a low correlation between the

partitioning attributes values, the first step is likely to de-

termine that the 10 qualifying tuples are distributed across

ten distinct processors.

7when h. = 1, the as~ignrnent of elements to processors in a

round robin fashion satisfies both of the constraints [Gha90].

However, when there is a high correlation between the

partitioning attribute values, the 10 qualifying tuples could

be located on the same processor that contains the relevant

fragment of the auxiliary relation, localizing the execution

of Qage to a single processor.

With MAGIC, when the partitioning attributes values

of a relation are highly correlated, the tuples of a relation

may not be evenly distributed across the entries of its grid

directory.This is a mixed blessing. On one hand, the opti-

mizer will direct queries that reference either partitioning

attributes to fewer processors than that originally obtained

by the assignment procedure. This is because while the as-

signment procedure assigns the empty entries of the grid

directory to processors (i.e., an entry corresponds to a frag-

ment ), if an entry cent ains no tuples, then the query opti-

mizer does not have to direct the query to that processor.

This improves the performance of the system for queries

with minimal resource requirements (i.e., those that should

be directed to one or two processors) because the assign-

ment procedure generally over-estimates the value of M,

(the ideal number of processors that should be employed to

execute queries referencing attribute i).

On the other hand, when partitioning attribute val-

ues are highly correlated, the original assignment step of

MAGIC will almost always result in a skewed distribution

of the t uples across processors because: 1) the assignment

step assumes a uniform distribution of tuples across the en-

tries of the grid directory, and 2) it attempts to approxi-

mate an even distribution of tuples by assigning the same

number of grid entries to each processor. In [Gha90], we de-

scribe a heuristic for approximating a uniform distribution

of tuples. Briefly, the heuristic determines the processors

with the fewest and the one with the most tuples. Next, it

switches the assignment of either two rows or two columns

(i.e., two slices in a dimension K) in order to reduce the

weight difference between these two processors. It uses a

hill climbing search technique and swaps the assignment of

those two slices that minimizes the weight difference by the

greatest margin. It is important to note that by swapping

two slices of a dimension, the number of unique processors

that appear in each dimension does not change. The heuris-

tic is very effective and [Gha90] contains an evaluation of

it. As an example, in the worst case scenario where the

value of the two partitioning attributes is identical for each

tuple of a relation, for a 32 processor system, the original

assignment of entries would have resulted in a very skewed

distribution with 12 processors containing no tuples of the

relation. After applying the heuristic, there was only a 20%

difference between any two processors.

5 Simulation Model

A validated simulation model of Gamma [DGS+ 90] was used

in this study to implement and evaluate the alternative

declustering strategies. This simulation model is organized

as follows. Each node in the multiprocessor is composed

of a Disk Manager, an Operator Manager, and a Network

Interface manager. Additionally, five stand-alone modules

are provided: a Communication Network manager, a Query
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Manager, a Terminal module, a Query Scheduler and the

System Catalog manager. See Figure 3 for a picture of the

entire simulator. The DeNet simulation language [Liv88]

was used to construct the simulator.

The Disk Manager (DM) schedules disk requests to an

attached disk according to the elevator algorithm [TP72].

In order to accurately reflect the hardware currently be-

ing used by Gamma [DGS+ 90], the disk manager interrupts

the CPU when there are bytes to be transferred from the

1/0 channel’s FIFO buffer to memory or vice versa. The

CPU module enforces a FCFS non-preemptive scheduling

paradigm on all requests, except for byte transfers to/from

the disk’s FIFO buffer. An Operator manager is responsi-

ble for modeling the relational operators (e.g., select). This

manager repeatedly issues requests to the CPU, Disk and

Network Interface managers to perform its particular op-

eration. The Network Interface manager enforces a FCFS

protocol for access to the global communications network.

The Network module currently models a fully connected

network and the Terminal module provides the entry point

for new queries. The Query Manager constructs a query

plan for executing a multi-site query. The Query Scheduler

coordinates the execution of the operators of a multi-site

query. Finally, the System Catalog manager keeps track of

how many relations are defined, what disk each relation is

declustered across, which partitioning strategy is used to

decluster a relation, and the number of pages of each rela-

tion on each disk. For each relation, a mapping from logical

page numbers to physical disk addresses is also maintained.

This physical assignment of pages allows for accurate mod-

eling of sequential as well as random disk accesses. Indices,

including both clustered and non-clustered B+ trees can be

constructed on a relation. Table 5 summarizes the key pa-

rameters of the model.This simulation model was validated

Disk Parameters

Averaze Settle Time 2 msec.
Average Latency 0-16.68 msec (Unif)

Transfer Rate 1.8 MBytes/see

Seek Factor 0.78 msec

Disk Page Size 8 Kbytes

Xfer Disk page to memory 4000 instructions

Network Parameters

Maximum Packet Size 8 Kbytes

Send 100 bvtes 0.6 msec

Send 8192 ~ytes 5.6 msec

CPU Parameters

Instructions/Second 3,000,000

Read 8K Disk Page 14600 instructions

Miscellaneous

Tude Size 208 bytes

Tu~les/Network Packet 36

Tuples/Disk Page 36

Number of Processors 32

Table 2: Important Simulation Parameters

against the Gamma database machine (see [Sch90, Hsi90]

for details).

6 Workload Definition

The goal of this performance evaluation was to compare the

performance of MAGIC and BERD declustering with one

another and the range partitioning strategy. In order to

achieve this objective, we designed a multiuser workload and

used the throughput of the system as the evaluation crite-

ria. The database consisted of a relation R and its workload

consisted of two query types (QA and QD). QA is an aver-

age query representative of the queries referencing attribute

R.A of relation R while QB is representative of those that

reference attribute R.B. Attribute R.A serves as the parti-

tioning attribute for the range partitioning strategy and as

the primary partitioning attribute for Bubba’s declustering

strategy. Attribute R. B serves as a secondary declustering

attribute for Bubba’s partitioning strategy. MAGIC con-

structs a two dimensional grid directory using attributes A

and B.

With respect to their utilization of resources, QA and

QB can be categorized as: “low”, “moderate”, or “high”.

Queries with low resource requirements should be directed

to only 1-2 processors in order to minimize the overhead of

parallelism. On the other hand, all processors should be em-

ployed to execute queries with high resource requirements

in order to avoid the formation of hot spots and bottleneck

processors [G D90]. Finally, queries with moderate resources

requirements should be directed to a subset of processors.

We eliminated queries with high resource requirements from

our workload because such queries can always be directed to

all the processors by simply ignoring the partitioning infor-

mation. Consequently, there are four possible query mixes:
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QA QB
low low

low moderate

moderate low

moderate moderate

For this performance evaluation, we simulated a 32 pro-

cessor configuration of the Gamma database machine. The

database consisted of a 100,000 tuple relation (relation R).

The characteristics of this relation is based on the stan-

dard Wisconsin benchmark relations [BDC83] and consists

of thirteen attributes. Two of its attributes are termed

uniquel and unique2, and their values are uniformly dis-

tributed between O and 100,000. In our workload, attribute

A corresponds to uniquel and attribute 1? to unique2. In

all experiments, there is a non-clustered index on attribute

A and a clustered index on attribute B. Queries with low

resource requirements that access attribute A are modeled

as a single tuple retrieval query using a non-clustered index

while those that access attribute B are modeled as a O.Ol~o

clustered-index range selection query (retrieves 10 tuples).

Queries with moderate resource requirements that access

attribute A are modeled as a O.03!%0non-clustered range se-

lection query (retrieves 30 tuples) while those that access

attribute B are modeled as a O.3% clustered-index range

selection query (retrieves 300 tuples). The different queries

chosen to represent a query with either low or moderate

requirements have almost identical execution times even

though they reference different attributes and use differ-

ent types of indexes. For example, the 0.0370 non-clustered

range selection query referencing attribute A has almost the

same execution time as the O.3yo clustered index selection

query referencing attribute B. Ideally, both of these queries

should be directed to nine processors. In each experiment,

the workload consisted of 50% of each query type QA and

QB.
The queries used here are representative of our target

class of queries. Each query type could have been modeled

as a set of queries with different execution times. How-

ever, as long as the average query representative of this set

of queries retrieves the same number of tuples and has an

identical execution time, the performance results and con-

clusions drawn in the following sections would be applicable.

For each query mix, we analyzed the performance of the

system in the presence of both slow and a high correlation

of the partitioning attribute values.

7 Performance Evaluation

7.1 Low-Low Query Mix

Figure 3.a presents the throughput of the system with

alternative declustering strategies for the low-low query mix

as a function of the multiprogramming level when there is a

low correlation between the partitioning attributes. For this

workload, MAGIC constructs a 62x61 grid directory and, on

the average, uses 6.39 processors.

The range partitioning strategy directs QA to one proces-

sor and QB to all 32 processors, utilizing 16.5 processors on

average. With BERD, QA is directed to a single processor

Throughput(Queries/Second)

300
[

250 -
~-- -----”-

.-----’-tiGIC
200- /’”./,.,-,,,

o~
1816243240485664

Multiprogramming Level

Figure 4: Low-Low Query Mix with a Higher Selectivity

while QB is directed to at most eleven processors, utilizing

6 processors on the average. MAGIC, however, outperforms

BERD by approximately 7% even though, on the average,

more processors are used than with BERD. This is because

BERD executes QB in two sequential steps: First, QB is

directed to a single processor containing the relevant frag-

ments of its auxiliary reIation in order to determine which

processors cent sin the 10 qualifying t uples. Next, QB is di-

rected to these processors found in the first step. The first

step of BERD is a sequential process that is likely to com-

pete for resources with the other queries executirw concur-

rently on the same processor. Every time this happens, the

execution time of the query increases significantly, reducing

the throughput of the system. MAGIC, however, analyzes

the grid directory and directs QB to 8 processors and each

processor retrieves approximately ~ of the qualifying tuples

in parallel.

Both BERD and MAGIC provide a higher throughput

than range partitioning because they direct each query to

fewer processors, freeing other processors to execute other

queries. The number of processors used by BERD increases

as the number of tuples that satisfy the predicate of QB

(the query referencing the secondary partitioning attribute)

increases. To demonstrate this, we increased the number of

tuples that satisfy the predicate of QB from 10 to 20 and

measured the throughput of both BERD and MAGIC. As

demonstrated in Figure 4, MAGIC outperforms BERD by

50’% at a multiprogramming level of 64.

When there is a high correlation between attribute values

A and B, the throughput of the system with both BERD

and MAGIC is significantly enhanced (see Figure 3. b). In

this case, both MAGIC and BERD direct each query to a

single processor, resulting in an ideal execution paradigm

for this workload. MAGIC outperforms BERD by approxi-

mately zi5~0 at high multiprogramming levels because it does

not incur the overhead of accessing the auxiliarv relation to

determine which processor contai& the releva~t fragments

(it uses the grid directory to compute these processors).
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7.2 Low-Moderate Query Mixes

Figure 5.a presents the throughput of the various decluster-

ing strategies for the low-moderate query mix when there is

low correlation between the partitioning attributes values.

In the case of MAGIC, the value of &f, for QB is 9 processors

(i.e., ideally 9 processors should be utilized to execute QB)

while &f, for QA is one. Using Equation 4 of Section 3.3,

the grid file algorithm splits the dimension corresponding to

attribute B nine times more frequently than the dimension

corresponding attribute A.

When there is a low correlation between the partition-

ing attribute values, MAGIC constructs a 23x193 directory.

The assignment procedure causes MAGIC to direct QA to

two and QB to sixteen processors. BERD partitioning di-

rects QA to 1 processor and QB to all 32 processors. (QB

retrieves 300 tuples and, due to the low correlation between

the partitioning attribute values, these tuples are scattered

across all the processors. ) The range partitioning strategy

provides an identical execution paradigm. BERD provides

a lower throughput (Figure 5. a) than range declust ering be-

cause it incurs the overhead of accessing and searching the

auxiliary relation.

When there is a high correlation between the partition-

ing attribute values, both MAGIC and B ERD direct each

query type to a single processor (see Figure 5. b). Conse-

quently, most resources in the system remain idle at low

multiprogramming levels, resulting in a low system through-

put. At high multiprogramming levels, both MAGIC and

BERD outperform range by a significant margin since they

direct both queries to fewer processors and do not waste

any system resources. MAGIC outperforms BERD because

it does not incur the overhead of searching the auxiliary re-

lation to determine the processors that contain the relevant

fragments for executing QB.

7.3 Moderate-Low Query Mixes

For this query mix, the value of M, for QA is nine processors

while that of QB is one processor. Thus, MAGIC splits the

dimension corresponding to attribute A nine times more

frequently than attribute B.

When there is a low correlation between the partition-

ing attribute values, MAGIC constructs a 193x23 directory.

This causes the query with low resource requirement (QB)

to be directed to two processors and the query with mod-

erate resource requirement (QA ) to sixteen processors. The

performance results obtained by the alternative decluster-

ing strategies for this case is almost identical to that of

Section 7.2 and eliminated due to space restrictions. One

difference is that BERD outperforms range when the par-

titioning attribute values are not strongly correlated. For

this query mix, the low resource intensive query referencing

attribute B retrieves only 10 tuples (compared with 30 in

the low-moderate query mix). While the range decluster-

ing strategy directs this query to all 32 processors, BERD

directs this query to at most 11 processors. Consequently,

it minimizes the number of processors utilized for QB and

provides an overall higher throughput.

7.4 Moderate-Moderate Query Mix

Figure 6 presents the performance of the alternative declus-

tering strategies for the moderate-moderate workload as a

function of the multiprogramming level. When there is a

low correlation between the partitioning attribute values,

MAGIC outperforms both range and BERD partitioning

because MAGIC constructs a 101x91 directory and utilizes

an average number of 6.5 processors while both BERD and

range partitioning direct QA to one processor and QB to all

thirty-two processors, utilizing 16.5 processors. Moreover,

BERD incurs the additional overhead of accessing the aux-

iliary relation to determine the processors that contain the

original tuples.

When there is a high correlation (see Figure 6.b) between

the partitioning attribute values, both MAGIC and BERD

direct all queries to a single processor. At low multipro-

gramming levels most resources in the system remain idle

resulting in a low system throughput. In fact, range outper-

forms both MAGIC and BERD at multiprogramming level

of one because it distributes the CPU processing of a query

across multiple processors reducing the response time of the

system.

At high multiprogramming levels, BERD and MAGIC

maximize the throughput of the system because: 1) they do

not incur the overhead of parallelism when executing each

query, and 2) the idle resources are utilized by the additional

queries in the system. At multiprogramming level of 64,

MAGIC outperforms BERD by approximately 25% because

it does not incur the overhead of searching the auxiliary

relation.

8 Conclusion

In this paper we compared the performance of two alter-

native multi-attribute declustering strategies, MAGIC and

BERD, with respect to each other and the single attribute

range declustering strategy. Three major conclusions can

be drawn from this study. First, for a workload consist-

ing of selection queries with range predicates with either

a low or moderate resource requirements, MAGIC always

provides better throughput than BERD partitioning. This

is because BERD incurs the overhead of accessing an auxil-

iary relation to determine which processors contain relevant

fragments. Second, the correlation between the partitioning

attributes of a relation can have a significant impact on the

performance of each multi-attribute declustering strategy. If

there is a high correlation between the partitioning attribute

values, then the execution of queries that reference different

attributes can be localized to a single processor (or fewer

processors than that originally anticipated). Localizing the

execution of queries with minimal resource requirements to

a single processor increases the overall processing capability

of the system as the “freed” processors can execute other

queries. In addition, such localization can reduce the re-

sponse time of a query as the overhead of scheduling and

terminating the query on multiple processors is reduced. Fi-

nally, MAGIC outperformed the range declustering strategy

in all the conducted experiments.
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