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Abstract

We investigate the performance of some of the best-known object clustering algo-
rithms on four different workloads based upon the Tektronix benchmark. For al] four
workloads, stochastic clustering gave the best performance for a variety of performance
metrics. Since stochastic clustering is computationally expensive, it is interesting that for
every workload there was at, least one cheaper clustering algorithm that matched or almost
matched stochastic clustering. Unfortunately, for each workload, the algorithm that ap-
proximated stochastic clustering was different. Our experiments also demonstrated that
even when the workload and object graph are fixed, the choice of the clustering algo-
rithm depends upon the goals of the system. For example, if the goal is to perform well
on traversals of small portions of the database starting with a cold cache, the important
metric is the per-traversal expansion factor, and a well-chosen placement tree will be
nearly optimal; if the goal Is to achieve a high steady-state performance with a reason-
ably large cache, the appropriate metric is the number of pages to which the clustering
algorithm maps the active portion of the database. For this metric, the PRP clustering

algorithm, which only uses access probabilities achieves nearly optimal performance
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1 TIntroduction

In recent years a number of clustering algorithms for object-oriented databases have appeared
in the literature. These algorithins attempt to improve the performance of object-oriented
database systems by placing on the same page related sets of objects, thus attempting to
avoid the performance penalty of one disk I/O per object access. For the most part, these
algorithms have each been presented in isolation, with some experimental data illustrating
how these algorithms perform when compared to no clustering or “random” clustering. In
this paper we investigate the relative performances of a number of these clustering algorithms
on four different workloads based upon the Tektronix [And90] benchmark. Our results apply
directly to object bases with similar object structure, properties, and usage as in the Tektronix
Benchmark.

The algorithms we compared were BFS, DFS, and WDFS [Sta84], Placement Trees [BD90],
Cactis [DK90], PRP [YW73] and stochastic clustering [TN91]. Of these algorithms, BFS and
DFS depend only on the structure of the object graph, while the other algorithms depend
in addition on a information gleaned from a training trace representative of some workload.
In more detail, these algorithms are “trained” by letting them gather statistics from a trace
representative of the workload; they then use these statistics and the structure of the object
graph to decide upon a good clustering. To evaluate the quality of the resulting clustering,
one runs another trace, different from the training trace yet still representative of the given
workload, and gathers statistics about page fault rates and numbers of pages touched.

We found that for all four workloads tested, stochastic clustering gave uniformly the
best results by a variety of performance metrics. Stochastic clustering works by postulating
that the workload is generated by some stochastic process, then gathering statistics from the
training trace to estimate the parameters of this hypothetical stochastic process, and finally
mapping objects to pages so as to minimize the probability that a pair of consecutive object
accesses in the reference stream crosses a page boundary. The results of these experiments
were an important confirmation of the utility of the ideas behind stochastic clustering, since
before performing these expetiments, it was not obvious that stochastic clustering would
perform this well. In particular. a number of the assumptions made by stochastic clustering
are only approximately true - veferences in the workloads in the Tektronix benchmark are
not generated by stochastic processes, and it was not immediately obvious that minimizing the
probability that consecutive ohject accesses cross page boundaries maximizes performance.

Stochastic clustering, while highly effective in these experiments, is prohibitively com-

putationally expensive to be applied directly in many situations. In view of this fact, it is



important to find lower-cost algorithms that approximate the performance of stochastic clus-
tering. Our results were encouraging in that for each workload tested, there was at least one
computationally less expensive algorithm that approximated the performance of stochastic
clustering. However, unfortunately the algorithm that approximated stochastic clustering
was different for each workload. This suggests that a practical clustering strategy may be a
set of clustering strategies, each appropriate for a different class of workload, rather than a
single monolithic strategy.

Another fact that became clear in our experiments is that even if you fix the object base
and the workload, which clustering algorithm is best depends in an important way on the
performance goals of the system. For example, if the goal of the system is to perform well
on traversals of a small portion of the database starting with a cold cache, the important
metric is the ratio of the number of pages a traversal touches to the smallest number of
pages in which the objects touched by the traversal could be stored. On the other hand,
if the goal of the system is to perform well in steady state with a fairly large cache, the
important metric is to how many pages the clustering algorithm maps the active portion of
the database. An algorithm that performs well by one metric will not necessarily perform well
by the second. A particularly interesting result is that for the large cache, steady state case,
the PRP (Probability Ranking Partitioning) algorithm is nearly optimal. This is surprising
since the PRP algorithm makes no use of the object graph at all, clustering solely on the
basis of statistics gathered from the training trace.

A final result of this study is that like high performance race horses, high performance
clustering algorithms can be temperamental. That is, the “bad” clustering algorithms are rel-
atively insensitive to differences between the training trace and the testing trace, whereas the
“best” clustering algorithms show dramatic drops in performance when the testing workload
contains elements of a workload that was not included in the training trace. This suggests
that the highest performing algorithms may not be desirable if the reference patterns in the
system vary markedly over smail intervals of time.

The remainder of this paper is structured as follows: in Section 2 we describe our model
of an OODBMS and the clustering problem that arises in this model. Section 3 describes our
simulation environment, which we used to run the experiments. In Section 4 we present the

results of our experiments, and we conclude in Section 5.
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Figure 1: A simplified OODBMS Architecture

2 Clustering in OODBMS

A general Object Oriented Data Base Management System architecture is shown in Figure 1.
The system consists of a) a data base server serving one or more clients, b) the system’s
secondary memory only accessible to the server, and c) the clients, programs written in some
object oriented programming language the OODBMS supports. The server supports some
object abstraction for its clients, and every object in the system is uniquely identified by its
Object Identifier (OID), a permanently assigned number. The object state representation is
stored in the system secondary memory consisting of fixed uniform size pages. Each object is
assigned to only one page through the Clustering Mapping. Both the server and the clients
have a mechanism to find the page of an object given its OID.

Conceptually, objects can be considered vertices of a directed and possibly cyclic graph
called the Object Graph. The directed edges of the object graph are just the object to object
pointers. Typically, the client programs access objects sequentially during their execution (i.e.

one at the time), by dereferencing object pointers and thus

‘walking on the object graph”.
The program requires access to the object representation, and therefore, the client process
is suspended if the object is not available. The process is resumed when the missing object
is obtained from the server. In the Paged OODBMS Architectures the server will not just
return a single object, but will return all objects mapped to the same page as the requested
object. After the client receives the page containing the requested object, the client resumes
execution and can access all of the objects brought in with that page.

Because of the high overhead associated with servicing requests, most OODBMS’s add
caches on the client and on the server. The client cache reduces server requests, and the

server cache reduces disk accesses. It is important to note that a page of the client cache



contains the same objects as the corresponding page on the server. Redistributing objects
to pages is usually avoided, because it can cause performance problems when writing back
modified objects, and because it may force the client to acquire many fine granularity object
locks instead of fewer coarse page locks

The choice of placing objects to pages affects the performance of the system in terms of
system load, server overhead, concurrency control, and recovery. For example, 100 different
objects can be placed into as many as 100 different pages, or as few as 5 pages of 4k bytes each
(assuming a 200 byte average object size). The latter clustering mapping will require 1/20
as many client server interactions, 1/20 as much client cache memory, 1/20 as many pages
that might need logging during updates, 1/20 as many page locks that have be obtained, and
smaller probability of conflict between different transactions. In this paper we will concentrate

on the effect of clustering on memory utilization and system load.

2.1 Clustering Performance Measures

As the previous discussion motivates, the “packing capability” of clustering algorithms is a
simple way to measure their performance. If we view objects as records and client requests
as queries of records, the Fapansion Factor (EF) can be used as such a metric. When the

client requests a set of objects @ that maps to N(Q) distinct pages, EF'is defined as:
N(Q)
i

2

where the denominator is the size of ideal packing of ||@Q]| objects to pages of L objects each.

ERQ) =

In the above example, EF can be as low as 1 and as high as 20, but in general FF ranges
between 1 and L. If the client may issue any one of @1, @, ....Q,» queries, each with probability

P(Q;), it makes sense to define the average [
EF Z P(Q:)EF(Q;)

For a given set of queries and their probabilities, the ideal clustering mapping minimizes FF.
Although it is easy to avoid bad clustering mappings of EF = L, in general it is very hard or
impossible to find a clustering mapping of EF = 1 [YSLS85].

Although this definition makes sense for records and queries, I/ F alone is not an adequate
metric for clustering. The EF measures the distribution of objects to pages, but does not
take into account the order and frequency with which each object is needed. There are a

large number of possible clustering mappings! that have the same EF. However, not all of
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them achieve the same performance on small cache sizes. For example, suppose we map 6

objects {a,b,c,d,e, f} to 3 pages of size 2:

¢ = {[(va]v{c’ d],[e,f]}
cs = {[a, f,[b,d],[c,e]}

Both mappings c;, ¢, achieve the same FF = 1 for all queries involving all 6 objects. Both
perform well with caches of size 3 pages or more. However on a cache of 2 pages they may

perform very differently. A query using objects in the following sequence:
t = (abe) (def) = abec abe abe ... def def def ...

will thrash under ¢,, but it will work fine under ¢; only producing 3 page faults. It is easy
to see that ¢; outperforms ¢, because it maps the frequently needed objects {a,b,c} and
{d,e, f} to 2 pages whereas ¢, maps them to 3 pages.

In general, suppose we are given a clustering mapping such that a set of objects ¢ maps
to N = N(Q) pages. If the client cache is at least N pages big, the client will only experience
an initial startup delay proportional to N, and after that, its computation will proceed at
full speed. However, if the cache cannot hold N pages “thrashing” (a series of page faults)
will occur, especially if some of ) objects are requested repeatedly. If the cache has size
C < N, then every traversal through the objects will generate at least N — C page faults,
and the computation will proceed at a much lower speed (requiring at least N — C' server
requests per iteration).

It is well known that the performance of caches depends on the “locality” of page requests.
Clustering maps many objects to each page and thus it increases the page locality. On small
caches mappings that achieve better locality will perform better. The average working set
size can be used to measure locality [Den68], the lower the working set size the higher the
locality. For a sequence of requests (X,,) = @1, 9, ...2,, the working set at time ¢ is defined

as the cardinality of the set of the last w requests:
WSS (w,t) = |{®i—wits Ttwrzy --Ze ]

By representing access patterns as stochastic processes, clustering can be formulated as
an optimization problem, and optimal clustering corresponds to the clustering mapping that
minimizes the expected working set size. The complexity of “optimal clustering” in general
(which has been shown to be NP-complete in [TN91]) makes it very hard to find the optimal

clustering mapping. However, this formulation gives a new view to the problem, helps to
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Figure 2: The Tektronix Benchmark Object Graph

come up with some more reasonable (close to “optimal”) clustering algorithms, and also
gives a practical limit to how much clustering can help performance.

The new formulation of clustering uses Markov processes to model “access patterns.” A
Markov process is a sequence of correlated random variables, which in our case models object
requests; the probability to request some object y at time ¢ strictly depends on the last object

requested:
Pr{Xi41 = y|Xi = 2} = P(z,y)

As a result, for a population of n accessible objects, this access pattern model requires at
most n? parameters the values of the P(a,y) matrix. Those parameters can be estimated

from sample sequences, and in practice P is sparse, because of various access constraints.

3 Simulation Environment

In this study we have used cache simulations as a way to evaluate the performance of clus-
tering algorithms. The evaluation of a clustering algorithm has three steps, the training,
the clustering itself, and the testing. Training involves deriving a suitable access model for
the algorithm (that is, a description of the access patterns) using the object graph and/or
sample traces. Next, the clustering algorithms use their access model and the object graph
as input and generate a mapping of objects to fixed uniform size pages as output. Finally,
the generated clustering mapping is evaluated by running test traces over the object base

using a cache simulator.

3.1 The Workload

Our experiments were selected from the CLUB-0 clustering benchmark for the O, system

[HBD91]. CLUB-0 uses synthetic workloads based on a subset of the Tektronix Hyper-model



Benchmark [And90]. The object graph in CLUB-0 is a DAG, derived from a balanced 5-way
tree with some additional edges.” Figure 2 illustrates the first levels of an actual tree we have
used in our simulation. Each node of the tree has edges to 10 other nodes. Five of these
nodes are reachable by “child” edges, hence are called children of the parent; the other 5
nodes are reachable by “part” edges and are called subparts of the parent. The subparts of a
given node are chosen at random from among all the nodes at the same level as the children
of the node. The depth of the tree used in CLUB-0 is 6 resulting in 3906 objects. A query
is a collection of traversals, each traversal being a sequence of object accesses representing
some hypothetical operation on the graph. A traversal starts from a node high in the tree,
and at each step uses a fixed rule to select the next object to visit.

Structural operations on the graph are modeled by traversals denoted as AX B, which
start from a randomly selected node at level B of the graph (B = 0 denotes the root of the
tree). AnB denotes a Depth First Traversal (DFS) performed by exclusively following either
the children hierarchy (1nB) or the parts hierarchy (MnB). We have added a new traversal
AsB to model searches on the object graph. AsB locates some leaf level object by following
a path on the graph, starting at level B and exclusively following the children hierarchy
(1sB) or the parts hierarchy (A4 sB). The decision which of the parts (or children) to follow
is taken randomly and independently on each level. We have also introduced srnd, for
“skewed random”, a modified rnd of the Tektronix Benchmark, that visits objects randomly
with a probability that follows normal distribution. The variance in the skewed workload
was set to 1/10 of the object base size, and the objects were selected based on their OID
but using a random permutation first. As a result, hot objects are spread “uniformly over
the object base”, so there is no relationship between heat and the position in the object
graph.® A query is just a sequence of traversals each one starting from a randomly selected
node at the starting level B. A query trace is a concatenation of its traversal traces, and
contains references to objects necessary to run the query. The traversal trace is obtained by
trapping all object accesses vccurring during the execution of that traversal, as if the code
was running on an object oriented run time system. As a guide, we used the code produced
by the non-swizzling E compiler [RC89] with all optimizations having to do with persistent
objects turned off, so that object references appear every time the original traversal code

requires access to the object state. Finally, for our purposes a workload is a trace obtained

*The object graph of the original Tektronix Benchmark contains one more relationship, the hyper links;

those links are omitted here for simplicity as they were {rom the CLUB-0 benchmark.
3In addition to these queries, the CLUB-0/Tektionix benchmark includes several other queries. We did

not present results from experiments on these workloads since they did not provide additional insight.



by mixing, concatenating, or interleaving query traces.

3.2 Clustering Algorithms

We have implemented and tested several algorithms based on heuristics and ideas discussed
in the literature. The goal of all algorithms examined is to partition the object graph (OG)
by assigning objects to uniform size pages. The object graph is formed considering objects as
nodes and any reference from an object to some other object as a directed edge connecting
them. Most clustering algorithms use as input a graph representation of the access patterns
(called clustering graph or CG), assumed to be characteristic of the client behavior. The rep-
resentation is usually derived from the object graph and/or from sample traces (the training
traces).

In general, three types of CGs are used:

e The OG, i.e. the object graph itself; a rudimentary representation of access patterns
that does not take advantage of any other knowledge that may be available. No statis-

tical information from the training traces is captured in OG.

¢ The SG (Statistical object Graph); the object graph annotated with edge and node
weights. The node weight (edge weight) is equal to the frequency the object (edge)

appears in the training trace.

e The SMC (Simple Markov Chain) is the directed graph form of a first order Markov
process that could have produced the object trace. For each accessible object in the
system the graph contains a node. Any positive probability that one object can be
accessed after some other object, is represented as a directed edge. The node (edge)
weights are the the estimated stationary (transition) probabilities of the chain from the

sample trace.

The plain object graph does not convey much access information. The last two graphs
express the behavior of the client as it is manifested in the training trace, using a much more
compact representation than the trace itself. The SG limits its information in the usage
of objects and references, failing to capture access dependencies other than those that exist
in the original object graph (for example, SG will not record a return from a node to its
grandparent during a DFS traversal). SMC does not have this type of restriction since it
records arbitrary transitions. However, it does not record access dependencies involving more
than 2 objects because of its memoryless characteristics. Multi-dimensional access models

(i.e. hyper-graphs) could be used to obtain more accurate access pattern description at the
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expense of size. Unfortunately processing those models would be computationally infeasible,
since the high—dimensional hyper-graphs needed may have a large number of hyper—edges.

The majority of the algorithms assign objects to clusters sequentially, by performing a
form of graph traversal on CG and assigning objects to clusters as they go. On each step the
object is put in to the current cluster and if it fills up, a new empty cluster is created. Table
1 summarizes the algorithms used. The notation in that table is to generate the name of an
algorithm from the type of clustering graph it uses (OG, SG, or SMC) and the style of the
graph traversal or operation they perform.

The SMC.PRP and SMC.KL algorithms were proposed in [TN91]. The PRP (initially
proposed for record clustering in [YW73]) method just uses the node weights of the SMC
graph (i.e. the absolute probabilities), by sorting objects with respect to their probability and
then assigning them to pages in that order. This scheme is also known as Probability Ranking
Partitioning. The SMC.PRP algorithm has O(nlogn) cost. The SMC.KL algorithm uses
the standard Kernighan—-Lin [KL70] graph partitioning algorithm to find a near to optimal
clustering of the SMC graph. SMC.KL is the algorithm we have referred to in the introduction
as “Stochastic Clustering.” SMC.KL partitions the object graph so that the expected working
set for window size 2 is minimized. SMC.KL is a heuristic partitioning algorithm that achieves
only pairwise optimality, i.e., there will be no two nodes belonging to two different partitions
that can be exchanged and result in a lower total cost partitioning. SMC.KL does not
cluster sequentially, since it applies repartitioning until no cost improvement is possible. The
complexity of SMC.KL is dominated by the complexity of graph partitioning and it is on the
average O(n?*)[PS82].

SMC.WISC, a new algorithm we propose, appears in many cases to approximate well
SMC.KL in terms of performance. WISC is a traversal based (greedy) low cost graph par-
titioning that does non—hacktracking clustering. Objects are visited with the order of their
absolute probabilities, hotter objects first. Fach un-clustered visited object is selected to
start a partition. While there is room in the current partition, all objects accessible in terms
of the SMC graph from the current contents of the partition are considered. The object that
maximizes the overall probability of using that partition, is selected and the process is re-
peated until the partition fills up. At this point, the next un-clustered object from the sorted
list is considered, and the whole process is repeated, until all objects have been clustered.
SMC.WISC has cost O(nlog(n)).

The OG.DFS algorithm traverses the object graph in a DF'S manner. It minimizes the
number of different pages touched during a pure DFS traversal that uses all possible object

graph edges. OG.BFS traverses the graph in a BF'T manner, grouping siblings together as
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much as possible. Both algorithms have linear cost O(n).

SG.WDFS is much like the OG.DFS except that during the DFS traversal, siblings are
selected depending on how hot their edge is. This algorithm attempts to minimize the
number of clusters “probable” DFS traversals will touch. Edge probability information can
be supplied by the compiler based on static usage information (like in Semantic Clustering
[SS90]), or as user hints (like those originally planned for E [RC89]). In our case, SG.WDFS
gets its hints from the sample traces. SG.WDFS has linear cost O(n). OG.BFS, OG.DFS
and SG.WDFS have been proposed first in [Sta84] for clustering Smalltalk objects.

The SG.CACTIS is based upon the clustering algorithm proposed in [HK89], a heuristic
algorithm that performs PRP scan of the objects, clustering the closure of each group as it

is formed. Quoting from [DI90],

Clustering starts by placing the most frequently referenced object in the database
in an empty block. The svstem then considers all relationships that go from an
object inside the block to an object outside of the block. The object at the end

of the most frequently traversed relationship is placed in the block.

To apply this method we interpret “relationship” as “edge in the object graph.”

Finally, we have implemented OG.PT, an algorithm based on placement trees. A place-
ment tree is a pattern that matches a subset of objects reachable from a given node, the root
of the placement tree. The matched objects are always connected with object pointers and
form a tree. OG.PT traverses the object graph in some manner (e.g. BFS or DFS), and
matches a given placement tree against the object graph starting at the visited object. All
matched un-clustered objects are inserted to a logical cluster, which is subsequently assigned
to physical pages. Although OG.PT is very intuitive, it is not an automatic method. On O,
the data base administrator sclects the placement trees [Deu91] based on his system experi-
ence. In our implementation, OG.PT refers to the performance of the best placement tree we
were able to find for the workload in question. As we will see, there are cases where OG.PT
achieves very good performance. mainly when the object graph is regular and is used in a

uniform way.

3.3 Cache Simulation and Performance Metrics

Each clustering mapping was tested using a client simulator as in [TN91], and [HBD91}. The
input to the simulator is the testing trace and a clustering mapping. Fach object reference

is converted to the corresponding page reference using the mapping. Then, that page is
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Algorithm Complexity | Proposed
OG.DFS 0O(n) [Sta84]
OG.BFS O(n) [Sta84]
OG.PT O(n) [BD90]
SG.WDFS | O(n) [Stasd]
SG.CACTIS | O(nlogn) | [DK90]
SMC.PRP O(nlogn) | [TN91]
SMC WISC | O(nlogn) | here
SMC.KL O(n?4) [TN91]

Table 1: Tested clustering algorithims

retrieved from a variable size LRU cache, and the number of page hits is updated for each
cache size. Periodically or at the end of the simulation the average cache hit rate is reported.

The primary performance metrics used in this study, are the client cache hit ratio # R and
the expansion factor FF (defined in Section 2). I Fis more appropriate when cache sizes
are large, where the particular arrangement of objects to pages does not matter. EF is less
meaningful when client caches are small compared to the portion of the object base being
accessed. H R illustrates better the performance of clustering mappings, when traversals are

longer and fill up a small cache.

4 Results

In this section we present the results of our experiments with the performance of the clus-
tering algorithms on a variety of workloads. In addition to exploring the performance of
the algorithms on “pure” workloads, we also investigated the performance of the algorithms
when “noise” references or references from workloads other than the training workload ap-
peared in the testing trace. (Recall that saying that the training and testing traces are from
the same workload does not imply that they are identical traces, since all of the workloads
have a strong random component ) The experiments presented here are for a uniform object

sizes of 200 bytes (typical, as reported in [Bai89]), and pages of 4k bytes each.

4.1 Performance of single traversals

This experiment tests the algorithms with respect only to their EF, i.e. their capability

to group all objects requested during a single traversal as dense as possible. We measured
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Figure 3: Performance on pure workloads

EF by running the client on a large cold cache, and counting the number of page faults at
the end of the traversal. Since the client cache is initially empty this number gives exactly
N(Q), the number of pages the traversal is mapped to (also called “traversal pages”). EF'is
also an indication of the “loading time”, or how quickly the required objects for a traversal
are brought in. To estimate EF, the experiment is repeated a number of times, each time
selecting a different traversal.

Figure 3 shows the EI"achieved by clustering algorithms on a variety of workloads. Note
that one of the curves in the graph has three labels: OG.BFS, OG.DFS, and SG.WDFS. The
meaning of this notation is that the curves for those three graphs were virtually indistinguish-
able within the margin of experimental error. We will follow this convention of condensing
indistinguishable curves and their labels to a single curve with the union of the original labels
in the graphs throughout this section. Workloads are ordered with respect to the amount of
active objects, i.e. the percentage of the object graph they use. 1n2 accesses the most objects
and mn2/ms0 the least.* The graph shows that very few algorithms perform always close
to the minimum FEF=1.The expansion factor of all algorithms fluctuates as the workload

changes, and random clustering gets gets better as fewer the objects are accessed. Statistical

*We will postpone the explanation to Section 4.2
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algorithms (SG.CACTIS, SG.WDFS, SMC.KL,SMC.WISC) are more adaptive, since they
take advantage of the access pattern training. Algorithms based only on the object graph
are less adaptive, since they do not train on access patterns. Most algorithms do not have a
constant rank for all workloads, except of SMC.KL (best) and RND (worst). Note that the
skewed random query (srnd) makes most algorithms as bad as random clustering, since srnd
does not follow the object graph at all.

Notice that PRP performs well, although not optimally, on all of these workloads. The
good performance of PRP on the object-graph traversal workloads (mn2, 1n2, and ms0)
is surprising, since PRP never looks at the object graph and clusters based solely on the
zero-order statistics from the training trace. The performance can be explained as follows.
Since the root objects for the traversals in the training trace are randomly selected, due
to randomness these objects will be selected with slightly differing frequency. Since every
traversal out of the same root object is identical, every object (except for the leaves of
the traversal) is selected with a frequency identical to that for the root of the traversal.
Ignoring duplicates between traversals (which are relatively few in these workloads), this in
turn means that the frequencies for objects belonging to the same traversal are identical and
slightly different from the frequencies for objects belonging to different traversals. Finally,
this means that since PRP groups objects according to decreasing frequency of access, it will
tend to cluster an object with other objects that belong to the same traversal. In effect, PRP
is using the different frequencies of objects belonging to different traversals to “learn” the
structure of the object graph.

Placement trees are extremely good in the 1n2 queries, where traversals are disjoint and
well known in advance. Fach traversal accesses its own subtree rooted at level two, and a
placement tree can easily pack objects exactly that way. As a result OG.PT gets an EF close
to 1. In non-graph queries like srnd, placement trees are not applicable at all, since by
definition placement trees attempt to group together only objects connected by edges of the
object graph. Since the traversals of mn2 (ms0) are not disjoint (there can be multiple paths
through part edges to the same node), we could not come up with placement trees that
group each traversal as well as in the 1n2 case. Finally, the simple structural algorithms
(OG.DFS,0G.BFS) cannot compete with the more sophisticated placement trees.

The stochastic clustering algorithm is definitely a winner in terms of EF. It performs as
good as the manually chosen placement trees in its ideal case (In2), it adapts to arbitrary
random queries (srnd) as well as to the queries that traverse the object graph in a variety of

ways.
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4.2 Steady State Performance

It is intuitively known that large caches are more forgiving to less efficient clustering mappings
than are small caches, an effect we want to illustrate with this experiment. If the object graph
is used repeatedly and the client cache is “large”, then EF (or even EF) is not the right metric
of clustering performance. In the case of cold caches the number of page faults is proportional
to EF. If the cache is not empty, then in addition to the intra-traversal locality, the hit ratio
is influenced by the amount of pages shared between traversals (the inter-traversal locality).

The cache gets “hotter” as more and more traversals are executed on the client. The first
traversals achieve a lower hit ratio, and the cache is in effect loaded with pages that were
used by old traversals. Subsequent traversals find more and more of their needed pages in
the cache, and their hit ratio improves. A simple analysis of random clustering suggests that
very quickly, the whole object base will be touched, since there is a high probability that
each object referenced by a traversal will be found on a different page. In the mn2 case each
traversal makes 311 object requests and accesses up to 156 distinct objects. Under random
clustering, about 1040 randomly selected objects are required to touch all 196 pages of the

object graph. To touch 1040 objects, 9 different traversals are required approximately,®

5This number is only approximate because of the possible duplicates in the mn2 traversals and the ran-

domness in selecting distinct traversals from all 25 possible ones.
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thereby producing 2800 mn2 references. Indeed, as the results of Figure 4 show, random
clustering arrives at the steady state in approximately 3000 references. Random clustering
might seem an ideal way to increase the inter-traversal locality, and this is certainly true if
the whole object graph is accessed with the same probability and ample cache memory is
available.

However, an interesting property of the Tektronix Benchmark object graph restricts the
number of objects accessed during mn2 traversals. The mn2 query uses exclusively the parts
relationship, indicated by the dashed edges of Figure 2. In our case on each level h of the
tree (level 0 being the root) there are A(h) = 5" nodes that point to A(h+1) = 5"*! children
through the parts edges. Since each node has only 5 parts, the expected number of orphans

(i.e. children that are not connected by the parts edges) at level h is:

A(h) (1 - ;1%71—)>A(h)

Those nodes cannot be reached by any node higher in the tree and are represented as round
objects in Figure 2. If the previous formula is applied recursively from the starting level up
to the leaves, it can be derived that the expected number of total nodes accessible for the
mn2 query that starts from the second level of the 6-level tree, is just 33% of the total (for
the derivation please refer to Appendix A.2).

The graph of Figure 4 shows the cumulative number of pages accessed during mn2 traver-
sals as a function of the number of references, using a large initially empty cache, that can
hold the whole object base. The graph begins after the first traversal has been performed,
so the curves start from a position proportional to FF. Initially all clustering mappings
rapidly bring in a number of pages, and after some point, they have a very slow page fault
rate thereby reaching the steady state. The curve labelled as OG.KL corresponds to optimal
clustering of the object graph using the Kernighan-Lin partitioning algorithm and giving all
edges equal waits. In most of the cases, OG.KL performed no different than random cluster-
ing, and therefore straightforward partitioning even of a relatively sparse object graph may
not be a good clustering heuristic. The OG.PT-0 curve corresponds to the second to the best
placement tree (OG.PT) we found for this workload, and it performs much worse.

The number of pages touched at the steady state shows an important property of cluster-
ing algorithms; their capability to map the active portion of the database to the minimum
possible number of pages. The long term expansion factor or EF,, is an indicator of the

steady state performance. L f is the ratio of pages accessed in the steady state (Ny) to
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the number of pages that would be required ideally to pack all active objects (14 ):

Ne

In the object graph we tested, there were actually 1498 accessible objects through the parts

Ll =

edges, corresponding to 38% of the object graph® represented by the dashed line in the graph
of Figure 4. FF,, is definitely related to EF; FF measures the average packing capability
for each one of the possible traversals that influence FF,,. In our case, since there are 25
possible equiprobable traversals, FF,, cannot be worse than 25F F. However, large EF does
not necessarily mean large EF,,. Imagine a (possibly unrealistic) clustering mapping, that
arbitrarily packs all accessible objects to a small number of pages. This mapping may have
a bad F Fsince active objects accessed at different traversals will be mixed, but its FF,, will
be the optimal since no inaccessible objects will be clustered with accessible objects.

If only EF,, is our concern (i.e. when the system operates near the steady state), then
SMC.PRP suffices. PRP uses the absolute access probabilities of objects, and packs objects
according to it. As a result PRP achieves the minimum FF,,. Note that this is true even
though PRP makes no use whatsoever of the object graph. The performance of placement
trees in steady state can now be explained, since they manually assign all objects that can
possibly be accessed during a traversal to a single cluster, assuming that in the worst case
all reachable objects are used. Although their EF was higher than SMC.KL (see Figure 3),
their FF,, was not much worse than optimal, due to sharing of pages hetween traversals.

The graph of Figure 5 is another interpretation of the steady state performance, indicating
the minimum cache size needed to guarantee a given hit rate at the steady state (note that the
graph ends at 99% and not 100%). The graph can be used for selecting a clustering algorithm
for the mn2 workload, given an amount of available memory and a desired hit ratio. If the
cache size can be close to the FF,,of a clustering algorithm, then the hit ratio will be close
to 100%, and the algorithm is acceptable. If memory is a constraint, then potentially more
expensive algorithms with smaller E'F,, should be used. For example at the steady state,
random clustering we achieve 90% hit ratio by caching 80% of the object graph. The same hit
ratio can be achieved with SMC.KL/WISC/OG.PT by caching less than 10% of the object

base.

b1t is 38% on this particular graph and not exactly 33% due to statistical variation.



Graph | Graph | Total number | S1 experiment | S2 experiment | S3 experiment
Name | Levels of objects | (obj/traversal) | (obj/traversal) | (obj/traversal)
TB1k 5 656 | mn2 (131) mn2 (756)
TB4k 6 3781 | mn2 (756) mn3 (756) mn2 (756)
TB20k 7 19406 | mn2 (3881) mn4 (756)
TB20kR 7 19406 mn3 (756)

Table 2: Scale-up queries

4.3 Increasing the problem size

So far, the evaluation of clustering algorithms has been conducted on object graphs of fixed
size, exactly as specified in the CLUB-0 benchmark. Next we will present some scale-up
results, involving object graphs of different sizes and structure. The expansion factor results
are much harder to understand across different graph and query sizes, so the main perfor-
mance metric used is the traversal pages (i.e., the number of pages needed to hold all objects
accessed during a traversal). Interestingly, the relative order of algorithms is maintained
as the traversal size increases with the object graph, but not in other cases. Results from
the steady state performance did not provide any insight to the problems and they will be
omitted here due to lack of space.

We selected three different object graphs, a small (5 levels) a medium (6 levels) and a
large (7 levels). Each graph is about 5 times larger than the previous one, and is constructed
according to specifications of CLUB-0 except for the size. The third experiment uses just
two graphs and it will be explained later (Table 2 shows the exact parameters used). We
chose to present the Depth First Search traversal on parts (mnx), since it produced the most
interesting results. Figure 6 gives a graphical representation of queries and object graphs
used.

Experiment S1 runs the same mn2 query on all graph sizes, and the traversal objects
(the objects accessed per traversal) range from 131 (on TB1k) to 3881 (on TB20k) being
proportional to the object graph size. As the graph of Figure 7 shows the traversal pages
increase with the graph size smoothly, and most importantly the order of the algorithms
remains the same. The loading factor (i.e. the ratio of traversal pages to traversal objects)
remains approximately the same for all algorithms.

If scale-up involves queries that access the same number of objects per traversal regardless
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Figure 6: The scale-up experiments setup Figure 7: Scale-up Experiment #1

the object graph size, there are some surprises, because of the changing traversal localities.
Experiment S2 always accesses 756 objects, by starting the traversals 1-level lower for every
1-level higher graph. Because queries start lower on bigger graphs, there are more possible
traversals and less sharing (common sub-traversals). For example, in the 5-level case the mn2
query starts at the second level, and each part edge is selected among 125 possible nodes of
the third level. In the 7-level case, there are 3125 possible traversals, and there are virtually
no duplicate objects. As a result, such queries on larger graphs will have less duplicates
per traversal (i.e. lower intra—traversal locality) and less sharing between different traversals
(inter—traversal locality).

Figure 8 shows a sharp increase in the traversal pages, because the intra—traversal locality
drops significantly going from the 5-level to the 6-level graph, and random clustering illus-
trates that effect. As we move to the 7-level tree, most of the algorithms access the same
number of pages or slightly less, except for PRP. For an explanation of the PRP performance
please refer to Section 4.1. Since SG.CACTIS is basically based on PRP, it performs slightly
worse too. Finally, by tuning placement trees we were able to maintain their previous rank.

A real object base may contain sets of similarly structured complex objects, and the next
experiment investigates that case. TB20kR uses a 7-level object graph constructed by 5
disjoint TB4k graphs as Figure 6 shows. The algorithms were tested with mn3 on TB20kR
and mn2 on TB4k, to ensure that on both graphs 756 objects are accessed per traversal.
Interestingly, the mn3 traversals have much less inter—traversal locality than the mn2 ones:

A given traversal from TB4k can share (i.e. have common subtraversals) with any of the rest

20



Traversal Pages

120 [~ /

140 |- / _

-
"
»
B 10—+ PRP A ]
-
[ —~
g
E 80 1 OG.BFS | —
+ / OG.DFS
SG‘CACT'S_ —t:::“:::::::::“”“' AR Rkttt /'§'G'W'QE§
4 S 60 = — T Sk
e/ SMC.WISC /
o % T " sacacrs
PPl /smc.wsic
yal "
+
[ | |
TB1k TB4k TB20k

Object Base Object Base

Figure 8: Scale-up Experiment #2 Figure 9: Scale-up Experiment #3

24 possible mn2 traversals. However, a given traversal from TB20kR can only share with
with any of the other 4 traversals that belong to the same subtree; as opposed to TB4k, the
structure of TB20kR does not allow sharing between all the 25 x 5 = 225 possible traversals
of TB20kR.

It is interesting to observe that even the simplest structural algorithms like OG.BFS/DFS,
are not affected much by the factor of 5 increase in size (graph of Figure 9). PT improves by
a small factor, helped by the smaller inter—traversal locality. Inside each subtree a placement
tree may mix traversals; different subtrees however will never be mixed though. PRP in
general will mix subtraversals: Mixing two subtraversals in the TB4k case is not as bad as in
TB20kR, since in the former case the probability that two clustered subtraversals belong to
the same traversal is very high. As it can be seen from the graph, PRP quickly deteriorates
almost by the same factor as random clustering, and as a result the PRP based SG.CACTIS
and SMC.WISC are both affected, but to a lesser degree since they also use the structure of

the clustering graph.

4.4 Noise effects

Most clustering algorithms base their performance on the knowledge of access patterns, as it
is registered in their access models. Real access patterns however, may be different than the

ones used for training. One way real access patterns may be different is that some unexpected

~

21




80 10007 I : I | |
e
RND ———
’ woet ™
70 .’r:‘:z |
w0l Ll I +-: ;-?.ﬁf-.: :;‘:_d”“-»*“
e
5w 3 | o Y
2 0 b . g ]
4 L4 ~
K] © P ;f. o oSS
® & - S WoFs
~ 50 2 @ | SG.CACTIS ¢ .
& ] >
- : 5
2 40 £ 50 - o .
: : K
2 [: S
= %’/ . | :
130 | SG.CACTIS, ] Z
OG.PT ,/ﬂ’ ey
PRP .5 |
.f,-.' 30 f "_, |
Py iy | /.
; smewisc
SMC.WISC 0 —
i SMC.KL
1 | i I | ] | : ' | |
50 0 20 - L L L
% MN2 in the mix

10 20 30 40
Noise in MN2 trace (% of references)

o=

Figure 10: “Noisy” references in mn2 queries Figure 11: Changing access patterns
references may appear in the actual trace. To study this effect we added white noise to the
testing object stream (as in [PZ91]). White Noise is a stream of random references chosen
with uniform probability from the whole object population.
The graph of Figure 10 shows the average number of traversal pages of mn2 as a function
of noise level. For small caches, practically every noisy reference is a miss, so we should
expect an increase of the page faults with noise level. With 20% noise level there is one noisy
reference every 5 mn2 references, resulting to 62 random references during an mn2 traversal.
62 random objects map to 53 pages (out of 200) on the average. Since SMC.KL maps an
mn2 traversal to 28 pages, there will be 7 pages in common on the average and therefore, 74
pages accessed totally (or 38%). Similarly, random maps 156 objects to 101 pages and has

27 pages in common with the noise on the average. As a result, it should require 128 pages

(65%) and indeed it does.

4.5 Changing Access Patterns

So far, clustering algorithms were tested on pure traces, that is, traces containing traversals
from a single query. The mixed workloads contain traversals from more than one pure

workload. Mixed workloads will be used to observe the behavior of the clustering algorithms

when the training trace is not entirely indicative of the testing trace.
Since efficient statistical algorithms are heavily dependent on the expected access patterns,
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they should be affected the miost by differences hetween testing and training. Less efficient
algorithms will be less affected, and finally random clustering should not be affected at all.
This phenomenon resembles the behavior of a filter designed to accept a certain frequency
and reject others, so we will call it the tuning effect. The interesting question is the tuning
sensitivity and the next experiment was done to investigate it.

In this experiment the clustering algorithms were trained with a pure 1n2 workload,
but are tested with a varying mix of 1n2 and mn2 traversals. Although functionally both
traversals perform the same DF'S traversal starting from the same randomly selected nodes,
they follow different edges in the object graph, and generate different access patterns. The
graph of Figure 11 shows the (average) number of traversal pages as a function of the mix
proportion. The random algorithm remains practically unaffected, and the less efficient
algorithms did not loose much either since their performance does not depend on the access
patterns. The most efficient algorithms remain good initially, but they lose performance
quickly and for a mix of over 50% they are no longer the best.

From this experiment, one can conclude that the simple structural algorithms (which
behave like coarse filters) are not bad for dealing with highly unpredictable access patterns.
Good algorithms behave as more fine filters and great care should be taken when using
them, since a significant change in the access patterns may affect them dramatically. We did
additional experiments that trained on a mixed workload and tested on a varying mix; that
mix did not contain “unknowu access patterns” but simply different proportion of known

access patterns, and the tuning effect was not as severe as here.

5 Conclusions

We have investigated the performance of a number of well-known clustering algorithms over
a standard object-oriented benchmark, the Tektronix Hyper-model benchmark. The main

points ohserved in our study are that

o Stochastic clustering, while expensive, performed the best in all the tests we ran. While
other, less expensive algorithms on occasion performed similarly to stochastic clustering,
no single algorithm was close for all workloads, so if stochastic clustering cannot be used,
care should be taken to natch an appropriate inexpensive clustering algorithm with a

given application.

¢ The more precise the clustering algorithm, the more sensitive it is to mismatches be-

tween training and testing access patterns.
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¢ In contrast to mismatched access patterns, sporadic unexpected references affect the
clustering performance of algorithms by approximately the same degree, and the algo-
rithm ranking is not affected at all. As a result, such references can be safely ignored

during the statistics gathering process.

o Ior cold-cache traversals of small portions of the object graph, the expansion factor is
the important performance metric; for steady-state large cache performance the number
of pages to which the clustering algorithm maps the active portion of the database is
the appropriate metric. A clustering algorithm that performs well on one metric may

not perform as well the other.

o Structural clustering techniques and especially placement trees, are very effective when
a subset of the object graph edges is almost exclusively used to reach objects. However,
when accesses are not done through the object graph (like the SRND queries), or when
they use most edges of a complex graph structure (like mixed mn2/1n2 workloads),

additional statistical information is necessary to produce a good clustering mapping.

We are currently investigating further issues in object clustering, including the effect of
non uniform object sizes, low-cost approximations to stochastic clustering, efficient algorithms
for re-clustering sets of objects, and techniques for generating and propagating statistics

throughout the database based upon type information and partial access statistics.
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A Appendix

A.1 The short-term performance of PRP

Although the performance of the PRP algorithm in the steady state is expected, it seems
counterintuitive that PRP achieves good short term performance (EF) too. This has puzzled
us, until we realized the following: The mn2 workload consists of a number of DFS traversals
of the parts edges. Fach traversal accesses 156 objects ( “the traversal objects”), possibly
with some of them appearing multiple times. The DFS code generates access patterns in
such way that all objects in a traversal but the leaves have the same probability of access,
say @, whereas all leaves have probability equal to §. Assume for the moment that traversals
access distinct objects, and that there are no duplicates in each traversal.

The training workload for mn2 is a long random sequence of mn2 traversals. Because
of randomness, it cannot be expected that all traversals will show up the same number of
times; in fact, most of the traversals will appear slightly different number of times. As a
result, the estimated probabilities of one traversal objects will be slightly different than the
estimated probabilities of some other traversal objects. In other words, traversal leaf and
non-leaf objects will be clustered with respect to their absolute probabilities. Since PRP uses
those probabilities to cluster, it automatically groups together traversal objects.

Since the mn2 parts edges are selected randomly, a whole subtree may be accessible
by more than one node, and that creates duplicate subtrees (if the subtree is accessible
more than once from the same traversal), or shared subtrees (if a subtree is accessible by
more than one different traversals). Such a subtree will always have higher probabilities
than others, since it can be accessed by more than one places. Under moderate to light
amount of sharing/duplicates, the previous analysis is approximately correct, since all the
shared/duplicate subtrees are clustered first.

The graph of Figure 12 illustrates the effect, by marking the probabilities of objects that
are accessed by a single mn2 traversal. As you can see many such objects have distinct
probabilities and they are the only ones with that probability. If a very large number of
traversals were contained in the training trace, then the graph would only have 2 probability
levels; one for the leaves and one for the rest. If no sharing existed objects of a single traversal
would be on just two levels.

In general, suppose the workload consists of a number of traversals each one visiting a
fixed set of objects only once; also we have a training trace that consists of a long sequence of
randomly selected traversals: finally, there is no object sharing between traversals. Because

of randomness, we cannot expect that each traversal is going to show up the same number of
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Figure 12: Object Probabilities on mn?2
All unshared objects of traversal 1 (2) are clustered in two levels hy and Iy (hy and l,). Shared

objects of traversal 1 and 2 have higher probability (hg), but are still clustered together.

times in the trace. In fact, most traversals will appear different number of times, and some
may not appear at all (especially if the trace is short). As a result, the estimated access
probabilities for all objects that belong to the same traversal will be the same. In contrast,
probabilities of objects in different traversal will be different. Thus, access probabilities
automatically cluster objects of the same traversal, and PRP performs well since it does not
mix objects from different traversals.

If there are objects commonly accessed by different traversals they will have a higher
probability than the non-shared objects. This will distinguish them from the non-shared
objects, and the PRP algorithm will cluster them first. Thus PRP may mix objects from
different traversals, but under low sharing (like in the Tektronix Benchmark Object Graph
with the given parameters), the amount of mixing will not be much. In any case, clustering
such hot objects is not bad for the long term performance; shared objects are more likely to

be needed in future traversals than unshared objects.



Level () N, A, (% )
2 25 15 (63.96 31 15 (51.58)
3 125 | 59 (47.39 156 75 (48.22)
4 625 | 236 (37.76 81| 311 (39.85)

)| TN.| TA  p(%
)
)
)
3125 | 983 (31.46) | 3906 | 1294 (33.14)
)
)
)

5
6 15625 | 4217 (26.99) | 19531 | 5511  (28.22)
7 78125 | 18480 (23.65) | 97656 | 23991  (24.57)
8 390625 | 82285 (21.06) | 488281 | 106276  (21.77)

Table 3: Reachability Figures for TBOG
In our experiments we used a 6 level tree (t = 5) with 3906 total nodes. On the average, only
1294 nodes are accessible, i.e. 33.14%. The actual graph we used had slightly more accessible

objects (approximately 38%) due to statistical variation.

A.2 Reachability of the Tektronix Benchmark Object Graph

We examine here the reachability properties of the Tektronix Benchmark Ob ject Graph
(TBOG). TBOG has nodes connected by the “children edges” forming a complete c-way tree
hierarchy. In addition, another logical tree hierarchy is formed by connecting a node at level
¢t with p nodes from the next level ¢+ 1 using the parts edges. The target nodes at level ¢+ 1

are selected randomly with uniform probability among the

Nip1 = cN,

nodes of the ¢ + 1 level (N, represents the number of nodes at level ¢t and Ng = 1).

Now suppose that a traversal starts at level & and only accesses TBOG nodes through the
parts hierarchy. Let A; be the number of nodes accessible at level h. At the next level up to
PA;, nodes are accessible, with possible duplicates. The expected number Apyy of accessible
objects at the A + 1 level corresponds to the expected number of occupied boxes when pA,
balls are thrown randomly with uniform probability to Ny, boxes. Using the results from
the problem of “balls and boxes” [KSC78] we get:

1 pAr
Appr = Nygy — <1 - ]_7;1;> Npiq
As Ay, grows and N,y remains fixed, the expected number of inaccessible ob jects goes to 0.

However, for small values of A, there will be quite a few inaccessible objects.
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where p gives the ratio of accessible objects to the total objects.

Table 3 shows p as a function of the graph depth, for a TBOG

x with ¢ = 5, p = 5 when
the query starts at level ho = 2. From there you can see that the 6-level TROG

our experiments allows access to only 33% of the object graph on the average,

we used in
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