
Improving Fault Tolerance and Supporting Partial Writes in Structured Coterie Protocols

for Replicated Objects *

Michael Rabinovich and Edward D. Lazowska

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

This paper presents a new technique for efficiently controlling

replicas in distributed systems. Conventional structured coterie

protocots are efficient but incur a penalty of reduced availability

in exchange for the performance gain. Further, the performance

advantage can only be fully realized when write operations always

replace the old data item with the new value instead of updating a

portion of the data item. Our new approach significarttty improves

availability white allowing partial write operations.

After presenting our generaf approach, we apply it to an existing

structured coterie protocol and anatyze the availability of the

resulting protocol. We also show that other classes of protocots can

make use of our approach.

1 Introduction

Replication of data is commonly used in distributed systems

to increase the availability of services. In most cases, the

consistency of the data must be maintained despite node fail-

ures and/or network partitionings. This can be achieved by

requiring that, in order to suceesd, read and write operations

obtain permission from certain sets of replicas. These sets,

called read and write quorums, are defined in such a way that

any two write quorums as well as any read and write quorums

have at least one node in common. Then, a read operation is

guaranteed to see at least one most recent version of the data,

and no two write operations can succeed simultaneously thus

excluding the possibility of write conflicts.

Because the coordinator (the node that initiated the oper-

ation) must communicate with all nodes from at lea8t one of

the quorums before returning to the user, there is some in-

*This research was supported in pan by the National Science Foundation

(Grants No. CCR-8907666 and CCR-8619663), Digital Equipment Corpo-

ration, Apple Computer, and the Washington Technology Center.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice ie given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM SIGMOD - 61921CA, USA

01992 ACM 0-89791 -522-4 /92/0005 /0226 . ..$1 .50

226

herent performance penalty for providing strong consistency.

To minimize this penalty, it is desirable that the quorums be

small. The structured coterie protocols [10, 3, 1] achieve this

by defining quorums based on a logical structure imposed on

the network. For instance, in the grid protocol [3] considered

in section 5, the nodes replicating the data item are viewed as

arranged in a rectangular grid. A read quorum is defined to

be any set of nodes that includes a representative from every

column of the grid, and a write quorum is defined to include

some read quorum plus an entire column of the grid. For

square grids, the size of read quorums is @and the size of

write quorums is 2fi – 1, where N is the total number of

replica% This is in contrast to the voting protocol [6], where

the quorum size in the simplest case is 1~].

Since in the existing structured coterie protcreols, the oper-

ations rely on their knowledge of statically pre-defined logi-

cal structure of the network, these protocols are static by their

nature. This means they cannot adjust the read and write

quorums to reflect failures and recoveries occurring in the

system. On the other hand, the voting protocol allows such

re-adjustment [9] because in this protcreol the quorums are

defined based on the number of votes regardless of their iden-

tity. As a result, the dynamic voting protocol can keep the

data item available as long as there is one accessible replica

provided the failures are mostly sequential so that the pro-

tocol could adjust to the failures as they arrive. In contrast,

in the existing structured coterie protocols, any read or write

quorum of replicas being down makes the system unavail-

able, even if the failures are accumulated gradually overtime.

In this paper, we propose a mechanism for quorum re-

adjustment in the case of the structured coterie protocols.
Morcmver, we argue that our approach is a preferable way to

adjust quorums even in the voting protocol. We observe that,

given an ordered set of nodes, one can usually devise a rule

that unambiguously imposes a desired logical structure on

this set. Then, the read and write operations can rely on this

rule rather than on the knowledge of statical structure of the

network in determining what replica sets include quorums. If

in addition, at any time, all operations can agree on a set of

replicas from which the quorums are drawn, then the proto-

col can adjust dynamically this set to reflect detected failures

and repairs and at the same time guarantee consistency.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F130283.130319&domain=pdf&date_stamp=1992-06-01

In our protocol, we assume that each node is assigned a
name and all names are linearly ordered. Among all nodes
replicating the data item, we identify a set of nodes consid-
ered the current epoch. At arty time, the data item may have
only one current epoch associated with it. Originally all repli-
cas of the data item form the current epoch. The system peri-
odically runs a special operation, epoch checking, that polls
all replicas of the data item. If any members of the current
epoch are not accessible (failures detected), or any replicas
outside the current epoch have been successfully contacted
(repairs detected), an attempt is made to forma new epoch.
(Epochs are distinguished by their epoch numbers, with later
epochs assigned greater epoch numbers.) For this attempt to
be successful, the new epoch must contain a write quorum
of the previous epoch, and the list of the new epoch mem-
bers (the epoch list) along with the new epoch number must
be recorded on every member of the new epoch. Then, due
to the intersection property of the quorums, it is possible to
guarantee that, if the network partitions, the attempt to form
a new epoch will be successful in at most one partition and
hence the uniqueness of the current epoch will be preserved.
For the same reason, any successful read or write operation
must contact at least one member of the current epoch and
therefore obtain the current epoch list. Hence, the operation
can reconstruct the logical structure of the current epoch and
useit to identify read or write quorums. Similarly to dynamic
voting, the system will be available as long as some small

number of nodes (the number depends on the specific proto-
col) are up and connected.

Also, our protocol addresses the problem of supporting
partial writes, i.e., the write operations that, on a given
replica, update only a portion of the data item rather than re-
placing it entirely with a new value. File systems are an ex-
ample of such systems. Supporting partial writes efficiently
presents a difficult problem. Indeed, if all writes are total,
the protocol does not have to worry about how current the
version being replaced is. Hence, different write coordina-
tors can perform the write on the members of different write
quorums of replicas. The coordinator will replace the data
item with anew version on all nodes from the quorum there-
fore guaranteeing that a subsequent read will see the latest
version of the data (if successful). This scheme allows good
load sharing (because requests from different coordinators
are normally served by nodes from different quorums) and
light network traffic. In systems with partial writes, a write
operation can be applied to current replicas only. Therefore,
it was thought [6], the write coordinator must collect permis-
sion from a write quorum of current replicas to perform the
write. This means that requests from different coordinators
cannot be served by different quorums, and the coordinator
must either perform the write on all accessible replicas of the
data item or face the possibility of synchronously bringing

the obsolete replicas up-to-date whenever no full write quo-
rum of current replicas is available.

In our approach, we note that the write coordinator can
avoid having to apply the write to every replica in a write

quorum. Instead, it can mark some replicas “stale”. Then,
the subsequent operation is guaranteed to see either a cur-
rent replica or a replica marked stale, as long as it can ob-
tain responses from a quorum. Therefore, the write coordi-
nator avoids having to collect permission from a write quo-
rum of current replicas (even stale replicas will do), different
coordinators can communicate with different write quorums,
and synchronous reconciliation of obsolete replicas is never
needed. In addition, the distinction between good and stale
data allows a very effective asynchronous update propaga-
tion. When the write coordinator discovers it will have to
mark some replicas stale, it sends a list of these to the good
replicas so that they can bring the stale ones up to date.

2 Related Work

Our epochs are in essence analogous to distinguished parti-
tions in dynamic voting [9] except the members of an epoch
know the full list of members of their epoch asopposed to just
the cardinality of the distinguished partition. This allows the
structured coterie protocols to become dynamic. Besides, our
epoch management is different from the mechanism used in
dynamic voting [9] in that we separate the read and write op-
erations from the operation that checks whether epoch chang-
ing is needed. l%ere are many benefits in doing this, First,
epoch checking must be done much less frequently than reads
and writes. It makes sense then to separate frequent op-
erations from less frequently needed work. Second, epoch
checking requires an attempt to communicate with all nodes
whereas we want to avoid that in reads and writes. Third,
while a stream of reads and writes is beyond the control of
the system and usually dries out during off-hours, we want a
steady (albeit infrequent) pulse of epoch checking operations
to avoid the accumulation of failures. Fixing this problem by
running “dummy” writes as suggested in [9] can hurt the per-
formance since the “dummy” writes may interfere and hence
delay the “normal” reads and write. In contrast, epoch check-
ing does not interfere with reads and writes in the absence
of failures. Finally, if several data items are replicated on
the same set of nodes, the epoch management can be done
per this whole group of data. Thus, the overhead is amor-
tized over several data items, whereas if epoch management
is bundled with writes it must be done separately for each
data item.

The idea of changing the nodes’ states asynchronously
with read and write operations to reflect the dynamically
changing topology of the network was previously used in the
accessible copies protocol ([4], generalized in [5]). Our ap-
proach is different in that we require at least a write quorum of
nodes from an existing epoch to be included in the new epoch.
In the accessible copies protocol, new views are formed re-
gardless of the node membership in the earlier views, There-
fore, in order to ensure that the data object can be updated
in at most one view, the accessibility threshold is introduced.

227

Assuming the accessibility threshold is at least half of the to-
tal number of replicas and the write quorum is at least half
of the replicas in the view, one can infer that at least a qttar-
ter of the total number of replicas need be operational and
connected for the data object to be available for update. Our
protocol is free of such limitation. On the other hand, the
advantage of the accessible copies protocol is that it can use
the read-one, write-all discipline and still allow up to half of
the nodes in the system to fail. Our protocol is not suitable
for using this discipline because in this case, a single failure
would make the epoch change impossible and the data object
unavailable for update.

The distinction between the good and stale replicas was
previously used in the dynamic voting protocol with its log-
ical and physical version numbers [9]. However, this idea
was not employed there to reduce the number of replicas that
must be contacted during the write operation, since in [9], in
the absence of failures, all replicas of the data item must be
contacted.

3 Model and Terminology

We consider a distributed system that replicates data items
on several nodes. ‘IWOoperations on the data items, read and
write, should be supported. We assume that each node ini-
tiating an operation knows on which sites the corresponding
data item is replicated. We assume that write operations up-

date only a pontion of information in a data item rather than
replacing it entirely with a new value. Hence, a write cart be
applied to current replicas only. We assume RPC-style com-
munication in which the notification RPC. Cal lFai led is

returned to the sender if the message cannot be delivered.
Multicast capability is not required of the network but is de-
sirable for better performance. Finally, we assume that nodes
and communication links are fail-stop, that is, they fail by
crashing and do not behave maliciously.

All algorithms and considerations below are on per-data-
item basis. Therefore, we will often use shortcuts and say
“all nodes” meaning “all nodes that have the replica of the
same data item”, “all writes” meaning “all writes applied to
the same data item”, and so on.

In this paper, we use one-copy serializability as the crite-
rion for consistency: the system is consistent if the concur-

rent execution of operations on replicated data is equivalent
to a serial execution of those operations on non-replicated
data [2]. In the case of partial writes, this criterion is sat-
isfied if (a) neither two write operations nor read and write
operations can be performed concurrently, and (b) a write is
always applied to the most recent replicas of the data and a
read always returns the most recent version of the data.

Finally, we will use the term coterie [8]. Let V be a set of
nodes that have a replica of the data item. A coterie over V is

apairofsets w’= {wl,w~}and l?= {rl,rl} such
that their elements are subsetsof V; winwj # 0; r. fnuj # 0;

wi~wj; r.grt(l<i,j<k;l< s,t<l). WiscaWda
write coterie and R is called a read coterie. The elements of
W and R are called write and read quorums over V.

4 General Protocol

We assume that all nodes agree on a coterie rule which
defines a coterie over an arbitrary ordered set of nodes.
Given two sets of nodes V and S, coterie-rule (V, S)
is true if S includes a write (read) quorum over V,

and false otherwise. We also assume that there is a
quorum function that, given a set of nodes V and a node
name, yields a list of nodes representing some quorum
over V. It is desirable for better load sharing that the
quorum function yield different quorums for different node
names. The algorithms in this section use the procedure
multi cast (V, message) to sendan identical message
to a set of nodes V. We do not make any assumptions about
either the implementation of this procedure or the existence
of a multicast facility for the network.

Because read operations cannot cause inconsistency, we
concentrate on writes here. The read protocol is similar to
the write protocol except it does not update any replicas.
From now on, unless stated otherwise, quorums will mean
write quorums. The protocol consists of three asynchronous
procedures: write (and read), propagate, and epoch checking.
Each node maintains the following state a version number
which is increas+ any time a write is applied to the replic~
an epoch numbeu a stale-data flag, a desired version number

which is meaningful only if the state-data flag is set; and a list
of node names representing a current epoch (the epoch list) 1.

Originally all nodes have identical replicas; version numbers
and epoch numbers are all O; stale-data flags are all O (none
of the replicas are stale); and epoch lists include all nodes.
The protocol as described here does not address the deadlock
problem. For ways to handle deadlocks see for example [2].

4.1 Write Protocol

An algorithm for the write operation in pseudo-code is given
in the Appendix. The coordinator sends out a request for
permission to some quorum over its epoch list. Each node
that receives the request. obtains a lock for its replica and
responds with its state. Upon receiving all responses, the co-
ordinator faces the following cases:

1. The coordinator has collected a set RESPONSEs con-
sisting of responses other than RPC. CallFailed that in-
cludes some quorum over the epoch list from a response with

the maximum epoch number. (This is the branch taken in
the common case of absence of failures.) If RESPONSES

1As an implementation detail, sets of nodes can be encoded very tightly
as, for instance, a binary vector with the i-th element set to 1 if the i-tb node
is included and Ootherwise.

228

include a response with the stale-data flag set such that the
desired version number from this response is greater than
all version numbers from the “non-stale” responses (which
means that the coordinator failed to contact an up-to-date
replica of the data), then the coordinator tries to execute the
write on the other nodes in the system (see Case 2). Other-
wise, it performs the write on the non-stale replicas with the
maximum version number (among those that responded) and
marks the other ones stale. Along with the update data to
“good” replicas, the coordinator piggybacks the list of nodes
it is marking stale thus initiating the propagation of the up-
date. Along with the “mark-stale” signal sent to replicas be-
ing marked stale, the coordinator piggybacks the desired ver-
sion number equal to the version number that the up-to-date
replicas will have after performing the current write opera-
tion. The two-phase commit protocol [2] is used to ensure
all-or-nothing execution. If the whole action performs suc-
cessfully, the coordinator returns to the user. Otherwise it
tries to execute the write on the other nodes in the system
(see Case 2 below).

2. Otherwise (i.e., the coordinator failed to collect a quo-
rum of tIOII-RPC. Cal lFailed responses), the coordinator
sends the request for permission to all nodes (except per-
haps those polled before). After receiving all responses,
it checks if it has been able to obtain a quorum of non-
RPC. CallFailed responses over the epoch list from the
response with the maximum epoch number 2, and whether
this quorum includes a “non-stale” response with the version
number greater or equal to the desired version numbers of all
“stale” responses. If this is the case, the coordinator performs
the write on the non-stale replicas with the maximum version
number (among those that responded) and marks the other
ones stale. Similarly to Case 1, the coordinator also sends
the list of stale nodes to “good” replicas, and the desired ver-
sion number to the nodes being marked stale. If no quorum
of nOn-RPC. Cal lFailed responses is obtained or some
“stale” response has the desired version number greater than
the version numbers of all “non-stale” responses, the coor-
dinator aborts the operation and returns “failure” to the user.
There is no reason to wait for possible epoch change because
such an operation can succeed only if it can obtain a quorum
as well.

Note that if the coordinator has found only one “good”
replica, then this replica is given full responsibility for the
update propagation. Thus, if this replica fails before it com-
pletes the propagation to at least one other replica, the data
object will be unavailable for the consequent write opera-
tions. In order for a single node failure to make the system
unavailable, the following combination of events must hap-
pen: only one “good” replica has been found by the write
coordinato~ the failure occurs while no propagation proce-
dure is finish@, and the failed node is the one responsible

2Various optimization are possible to minimize the number of nodes
with which the coordmatormust communicate and the number of nodes from
which it must wait for responsesbefore deciding whether to proceed with the
next step.

for the propagation. The likelihood of such combination of
events is very low. Nonetheless, if one desires to completely
avoid it, there is a way to do that. In short, it requires that the
list of “good” replicas is recorded in every node participating
in a write operation. Then, the coordinator of a (success-
ful) write operation always knows the list of “good” repli-
cas. If the number of “good” replicas contacted is less than
a predefine safety threshold, the coordinator includes addi-
tional “good” replicas in the setof nodes on which it performs
the write. Surprisingly, no permission from these additional
replicas is needed, so there are no additional rounds of mes-
sage exchange involved. This approach provides the uncon-
ditional resilience to any number of simultaneous node fail-
ures less than the safety threshold. We will report a detailed
treatment of this problem elsewhere. Here, we just note that it
is not unusual for the fault-tolerant systems to have this sort
of vulnerability window. For example, in the Harp system
[12], the vulnerability window occurs on every write during
the time between the moment when the operation is commit-
ted at the primary node and the moment when at least one
backup node learns that the operation has been committed.
In the dynamic voting protocol [9] the vulnerability window
is also possible, although very unlikely.

4.2 Propagation Protocol

A node begins the propagation protocol upon receiving
a non-empty list of stale replicas. The algorithm design
(pseudo-code is given in the Appendix) reflects the fact that
many nodes may receive requests to propagate their data
whereas it need be done only once for each stale replica. The
duplicate conditional statements are caused by the desire to
minimize unnecessary locking.

To each node from the stale list, the coordinator of the
propagation operation sends a propagation offer contain-
ing its version number. The target node responds with an
“already-recovering” signal if propagation is already under-
way with some other source nodq an “i-am-current” signal if
it has already been brought up-to-date or the version number
from the propagation offer is less than the desired version
number of the target replicw or a “propagation-permitted”
signal otherwise. In the last case, the target node locks its
replica prior to responding.

On receiving permission, the coordinator locks its replica
and propagates missing updates to the target node. The con-
crete way of doing this depends on the data organization in
the system. After propagation is completed (or fails), both
the coordinator and the target node unlock their replicas.

In this protocol, the source and the target nodes lock their

replicas to perform the propagation. Hence, the propagation
can interfere with write operations. This is done only for sim-
plicity of presentation. In reatity, various logging techniques
can be employed to avoid using the same lock for propaga-
tion and write operations.

229

4.3 Epoch Checking Protocol

To avoid accumulating failures, it is desirable to have a
relatively steady (although low, since failures are infrequent)
rate of epoeh checking operations. The fist question to ask
is which node is to initiate them. A simple solution is to
elect a site responsible for initiating all epoch checkings.
A new election would be started by any node noticing that
epoch checking has not run for awhile. (See [7] for election
protocols.)

The algorithm for epoch checking is given in pseudo-
code in the Appendix. The initiator sends a request to all
nodes. Each node responds with its state. Upon receiving all
responses, the coordinator checks if it has been able to obtain
a quorum of responses (XIOt counting RPC. CallFai led)

over the epoeh list from a response with the maximum epoeh
number. If this is the ease, the coordinator constructs a new
epoch list that includes all nodes that responded, and checks
if the new list is different from the current epoch. If the new
list is different, the coordinator sends the new epoch list and
epoch number to all members of the new epoch. Atomic
commit [2] is used to ensure all-or-nothing execution as well
as the atomicity of the epoch change with regard to the read
and write operations. The coordinator also determines what
replicas are out-of-date, marks them stale and initiates the
propagation procedure at the nodes that are current.

Note that in the absence of failures epoeh checking does
not interfere with reads and writes. Interference may occur
only when epoch changing is actually needed, i.e., if any
failures or repairs have occurred since the previous epoch
check.

4.4 Proof’ of Correctness

We are going to prove that the protocol above indeed provides
one-copy serializability. As mentioned in section 3, it is
sufficient to show that (a) neither two write operations nor a
read and a write operation can perform concurrently, and (b)
a write is always applied to the most recent replicas of the
data and a read always returns the most recent version of the
data. As a preliminary note, it is easy to see that nodes with
the same epoch number all have the sameepoch lists of which
they all are members: the epoch checking operation always
sends the same pair (epoch number, epoch list) to atl nodes
from the new epoch list, and the pair is updated atomically at
each node. So, we will say interchangeably that a node has
epoch number e, or a node is a member of epoch e, or it is a
member of epoch list e. Similarly, we will say “quorum from
epoeh e“ meaning a quorum of nodes with epoeh number e

over the epoch list stored at those nodes, We will call the
nodes that are not marked stale non-stale nodes.’ Note that
non-stale nodes are not necessarily current, We will split the
proof into several lemmas.
Lemma 1. At all times, only nodes with the maximum epoch
number can form a quorum over their epoch.

Proof’. By induction on the maximum epoch number e

present in the system. (i) If e = O, the lemma is obvious
(all nodes are in the epoch e). (ii) Assume the lemma is
correct for some e z O. Then, there does not exist a set of
nodes with some epoch number 1< e such that it includes a
quorum over epoeh 1.Let the next epoch checking operation
create a new epoch with epoch number e + 1. The epoch

checking operation succeeds in forming a new epoch only if
it successfully writes a new epoch number and epoch list on a
set of nodes that includes a quorum over some earlier epoch.
By the inductive assumption, it can only be epoeh e. Then,

due to the intersection property of quorums, any quorum of

nodes over epoch e would have to include at least one node
with epoch number e + 1. Thus, no quorum of nodes with
epoch number e over epoch list e exits. Because an epoch
checking operation never writes earlier epoch numbers on
any nodes, the sets of nodes with epoch numbers less than
e can only shrink. Hence, after the epoch checking operation
completes, it is still true that no quorum of nodes with epoch
number less than e over the corresponding epoch exists. So,
the only epoch that may contain a quorum is epoch e + 1. ❑

Lemma 2. Write operations as well as read and write
operations cannot perform in parallel.
Proof. Due to Lemma 1, only one epoch may contain
quorums at any time. Hence, during the time when epochs
do not change, any operation has to leek a quorum of the
same epoch. But by the intersection property, any two write
quorums as well as read and write quorums have at least one
node in common. Thus, the lemma is correct during the time
when epochs do not change. In addition, because changing
the epoch involves locking at least a quorum of some existing
epoeh (which can only be the same epoeh in which reads and
writes can succeed, by Lemma 1), changing the epoch cannot
be done in parallel with any read or write. Therefore, read or
write operations certainly cannot perform in parallel during
epoch changing. In fact, they cannot perform during that time
at all. ❑

Lemma 3. Writes are always applied to and reads always
return the most recent version of the data.
Proof. We will give the proof for writes only. The proof
for reads is similar. We showed in Lemma 2 that writes
are serializable. Therefore, one can use induction on the
sequential number of the write operation. (i). Before the l-st
write, the lemma is trivially correct (all replicas are current).
(ii) Assume that the lemma is correct before the i-th write
and consider the state of the system after this write. We need
to show that the (i + 1)-st write will apply to the current
replica. Case 1: no epoch change occurred between the i-th
and (i+ 1)-st writes. Then, the (i + 1)-st write must collect a
quorum of the same epoch as the i-th write. Hence, these
quorums will have at least one node in common. By the
induction hypothesis, the i-th write correctly identifies the
current replicas of the data and marks all other replicas from
the quorum stale. Because the replicas marked stale by the
i-th write are given the desired version number equal to the
the version number the current replicas would have after the

230

b

Figure 1: The grid for N = 14.

i-th write, the former replicas can accept propagation ftom
the current replicas only. Hence, by the time the (i + l)-
st write arrived, the common node is either current or is
marked stale and has the desired version number equal to
the version number of the current replicas. If the common
node is not stale, it has the greatest version number and is
correctly identified by the (i + 1)-st write as curren~ if the
common node is stale, the (i + 1)-st write can succeed only
if the quorum it collected includes a non-stale replica with
the version number greater or equal to the desired version
number of the common node. Because the desired version
number of the common node is equal to the version number
of the current replicas, arty non-stale replica with a version
number not less than that is current.
Case 2: The epoch change occurred between the i-th and
(i+ 1)-st writes, After the epoch change, all nodes from the
new epoch are either current or marked stale. To succeed, the
(i+l)-st write must collect a quorum over the new epoch that
includes at least one non-stale replica. Because the (i + 1)-st
write is the first write to occur in the new epoch, any non-stale
replica is current. ❑

5 Example: Dynamic Grid Protocol

The grid protocol [3] arranges all nodes having a replica of
the data item into a logical m x n grid (see Figure 1). To
succeed, a read operation must collect permissions from a set
of nodes such that one node is selected from each column of
the grid. The write operation must collect permissions from
a set as above plus from all nodes from some column. For
example, in the grid in Figure 1, a set of nodes {1, 6, 3,7,

11, 4} is a write quorum because it includes a set {1,6, 3,
4} of representatives from each column and a set {3,7, 11}
that covers atl nodes from some column. It is easy to see

that the set of above sets satisfies the definition of coterie,
so those sets are indeed read and write quorums. All we
have to do to make this protocol dynamic is design a rule to
construct the grid given an arbitrary set V of ordered nodes,

come up with a coterie rule and quorum function, and stick
them intotheprotocol from section 4. As atirst step, we show
how a grid with m rows and n columns can be constructed
given an ordered set of nodes V. Let N be the number of
nodes in V. The following are desirable (and contradicting)
properties of the grid: (1) m + n is to be as small as possible.
This is the size of the write quorums. The fewer nodes it
includes, the better load sharing and message tmffic. (2) ;
must be as close as possible to some k which is a parameter
of the system. This ratio determines relative performance
and availability of read and write operations. Increasing k,
one makes reads more efficient and writes less available [3].
In practice, it is desirable to keep it around 1 and use k just
to choose between cases like 5 x 6 and 6 x 5 grids. (3) If
mxn~lV, wewantmxnto beassmrdl as possible
because the unused (m x n – N) positions in the grid are
equivalent to unoperational nodes with regard to collecting a
set of representatives from each column. (4) If m x n < N

we want m x n to be as big as possible, because (N – m x n)

nodes in the resulting grid will not be used.
The various tradeoffs introduced by these requirements

deserve a separate study ([11] is an example of research in
this area). All we are concerned about here is to propose a
reasonable rule that constructs the grid unambiguously, so
that all nodes agree on the same grid given the same V. We
construct the grid in which m x n is always greater or equal
to N; requirement (1) takes precedence over the requirement
that m x n be the smallest possible maintaining ~ close
to 1 takes precedence over the requirement that m x n be
minimal (we allow m and n to differ by at most 1); when
choosing between n x (n + 1) and (n + 1) x n grids,
the rule chooses the former. The DejineGrid subroutine
below returns dimensions of the grid m, n and the number
of unoccupied positions b. It uses the fact that, among all
m,nsuchthatmx n = N, m + n is minimum when
m=n=o.

DefineGrid (

input: integer N;

output :

integer m, n, /* dimensions of

the grid * /

b /* number of unoccupied

positions */) ;

m := 13/77];

n := [1/Fl;

if m*n < N then

m := m+l;

endif;
b := m*n – N;

end;

It is easy to see that, for the parameters returned by DeJine-
Grid, b is always less than n. We assume that the unoccupied

231

positions are all in the bottom row and right-justified. The
nodes from V are assigned positions in the grid in the increas-
ing order (columns first, seeFigure 1). Now we are ready to
give the coterie rule that, given sets of nodes V and S, tells if
S includes a quorum from the coterie over V. The algorithms
IsReadQuorum and IsWriteQuorum first determine parame-
ters of the grid defined by V. Then, IsReadQuorum cheeks
if S includes a representative from each column of the grid.
IsWriteQuorum does the same plus checks if S covers com-
pletely the nodes from one of the columns. IsWriteQuorum

algorithm is shown below. IsReadQuorum can be obtain by
disregarding the part that involves the variable COLUMNS.

IsWriteQuorum (input: sets of nodes

v, s;
output : boolean reply) ;

/* we ~~~ume that SC v. */

(m, n, b) : = DefineGrid (lV\) ;

begin

set of integers: COLUMN-COVER;

array: COLUMNS [1: n]

of sets of integers;

COLUMN-COVER : = 0;
for all j from 1 to n

COLUMNS [j] := 0;

endfor;

for each node s from S do

/* Calculate coordinates (i, j) of the

position that the node s occupies in

the grid. Assume that the coordinates

start from (1,1) */

k := ordered-number (V, s) ;
/* The function ordered–nufier above

returns the position number that the

node s occupies in the ordered set of

nodes V (starting from 1) */

i := quotient((k-l), n) + 1;

j := remainder((k-1), n) + 1;

COLUMN-COVER :=

COLUMN-COVER U {j};

COLUMN[j] := COLUMN[j] U {i};

endfor;

if COLUMN-COVER = {1, . . ., n} and

there exists j such that

(COLUMN[j] =

{1, m} if j <= n-b,

or {1,/ m-1} otherwise)

then

reply := true;

else

reply := false;

endif;

endbegin;

end;

00
o@

Figure 2: The grid for N = 3.

For simplicity, we will assume that quorum function returns
randomquorttms (recall thatthechoice ofquorum function
affects loadsharing only).

6 Availability

We now give an analysis of the write availability provided
by the dynamic grid protocol as compared to the static
one. We omit the analysis for read availability which
is completely analogous. We will use the sire model of

availability [9] because a similar model is used in [3] for the
static gridprotocol with whichwecompare ourresults. llte
assumptions inthe site model are [13]: (l) communication
links are reliable, so only sites can fail; (2) the failures
and repairs at the various nodes are independent Poisson
processes with rates J andp respectively; (3) no failures
or repairs can occur during arty operation (operations are
instantaneous). In addition, we assume that (4) epoch

cheeking operations run frequently compared to failures and
repairs (after any failure or repair, epoch checking always
runs before the next failure or repair) 3. Finally, for fairness
of comparison, we assume in this seetion that, like the static
grid protocol in [3], our protocol is to support total writes
only. Hence, update propagation is not nedxi as all replicas
participating in a write operation receive the new value
regardless of how current they were before the operation.

The analysis uses Markov chains and goes along the lines

of [9]. Initially, all N nodes are in the latest epoch. As nodes
fail and get repaired, the epoch cheeking operation, according
to the site model assumptions, instantaneously updates the

latest epoch. Due to the assumption (4) of the site model
of availability, only one failure may occur between two
consecutive epoch checking operations. Because any grid
constructed in our protocol that contains at least four nodes
tolerates a single failure, the above process of epoch changes
continues successfully unless the system comes to the point
when there are only three nodes in the latest epoch and one
of them fails, Subsequent epoch checking operations will fail
to collect a quorum over the latest epoch until all three nodes
become simultaneously available again, (The grid for IV = 3
is shown in Figure 2. One can see that all three nodes are
needed to collect a quorum.) So, no matter how many other

3~e last ~ssurnption replaces the more restrictive assumption that write

operations arrive frequently, which was used in [9] to analyze the availabilky
of the dynamic voting protocol. Our assumption is less restrictive because,
while an overall rate of writes is higher than that of epoch checking, the
former is very irregular and beyond control of the system.

232

E
2,3,0 (N-3

2i Zp

1.

1,3,0 (N-3

1.
3P

L

0,3, 0
(N-3

. .

. .

. .

. .

P

2

.
2P

L

2U

Figure 3: The state diagram for the dynamic grid protocol.

1
.s

20 II 4x5 I 250.82 X 10-”

24 II 4x6 78.23 X 10-0 I
It ,

I 30 II 5x6 I 135.90 x 10-b

Table 1: Unavailability of conventional and dynamic grid
with p =0.95

nodes get repaired, the epoch cannot change and the system
stays unavailable. Once all three nodes from the latest epoch
are repaired, the new epoch can be formed to include all other
nodes that are up at the moment. The state diagram is shown
in Figure 3. State (z, y, z) is the state in which the latest
epoch contains y nodes; x of the y nodes from that epoch are
up; %of the N – y other nodes are up. The system is available
if it is in one of the states in the upper row. We use the
classical global balance technique (see, for example, [15]) to
solve the diagram, i.e., to find the probabilities of the system
being in particular states. Then, the availability of the system,
which is equal to the probability that the system is in one of
the states in the upper row of the diagram, is calculated as the
sum of the individual state probabilities. For compatibility
with [3], the diagram hasbeen solved for the sameprobability
that a node is up p = 0.95 which is achieved when
p/A = 19/1. Table 1 shows the best write unavailability

(i.e., 1- availability) achieved by the conventional grid
protocol for various number of nodes taken from [3] (it

can vary depending on the dimensions of the grid) and the
unavailability provided by our protocol. The improvement is
severat orders of magnitude and is achieved while preserving
the good load sharing and message traffic characteristics of
the conventional grid protocol. Additional traffic caused by
periodic epoch checkings should not be noticeable because
epoch checking is an infrequent operation.

7 Conclusion

There are two main results in this paper. First, we propose a
mechanism that allows dynamic adjustment of quorum sets
v’% quorunm are Mined based m! a logical network struc-
;w. Tiitis, UIL teci-mque to improve availability of replica
control protocols, previously applicable only to the voting
protocols, has been generalized to become applicable to more
efficient structured coterie protocols as well. Second, our
protocol incorporates the way to efficiently support partial
writes, i.e., the writes that update only a portion of informa-
tion in the data item.

Although structured coterie protocols are the direct con-
cern of this paper, the dynamic voting protocol cart also ben-
efit from the proposed approach. In particular, our asyn-
chronous epoch management approach separates read and
write operations from the epoch checking operation. Thus,
work is decoupled from reads and writes and the rate of epoch
checking becomes steady. Also, the proposed approach al-
lows reads and writes in the dynamic voting protocol to com-
municate with only quorums of nodes rather than all nodes in
the normal case, therefore improving load sharing and mes-
sage traffic in the system.

Acknowledgements

We would like to thank Tom Anderson, Irina Barn, and Clif-
ford Neuman for useful discussions of the issues presented
in this paper. In particular, C. Neumart suggested that the
desired version numbers be taken into account in deciding
whether the quorum of responses contains the most recent
replica. This suggestion improves performance of the write
protocol. He also noted that the write quorums in the grid
protocol need include only the part of a grid column that cor-
responds to physical nodes.

References

[1]

[2]

[3]

[4]

D. Agraval and A. El Abbadi. An efficient solution to
the distributed mutual exclusion problem. In Proc. of

ACM Symp. on Principles of Distributed Computing,,

pp. 193-200,1989.

P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.

Addison-Wesley, Reading, Mass., 1987.

S. Y. Cheung, M. H. Ammar, and M. Ahamad. The Grid.
protocol: a high performance scheme for maintaining
replicated data. In Proc. qf the IEEE 6th Int. CotIL on

Data Engineering, pp. 438-445,1990.

A. El Abbadi, D. Skeen, and F. Cristian. An efficient,,
fault-tolerant protocol for replicated data management.
In Proc. of the 4th ACM SIGACTISIGMOD Symp. on.

Principles of Database Systems, pp. 215-229,1985.

233

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

A. El Abbadi and S. Toueg. Maintaining availability in

partitioned replicated databases,ACM Trans. Database

Syst. 14(2), pp. 264-290, June 1989.

D.K. Gifford. Weighted voting for replicated data. In
Proc. of the Seventh ACM Symposium on Operating

Systems Principles, pp. 150-159,1979.
H. Garcia-MoIina, Elections in a distributed computing
system. IEEE Trans. Computers, C-31(1), pp. 48-59,
January 1982.

H. Garcia-Molina and D. Barbara, How to assign votes
in a distributed system. J. of the ACM, 32(4), pp. 841-
860, October 1985.

S. Jajodia and D. Mutchler. Dynamic voting algorithms
formaintainingthe consistency of areplicated database.
ACM Trans. Database Syst. 15(2), pp. 230-280, June
1990,
A. Kumar. Performance analysis of a hierarchical quo-
rum consensus algorithm for replicated objects. In Proc.

of 10th Symp, on Distributed Computing Sys., pp. 378-
385, IEEE, 1990.
A. Kumar and K. Malik. Generalizing and optimizi-
ng hierarchical quorum consensus algorithms for repli-
cated data. Graduate School of Management, Cornell
University, Tab. Report, October 1991.
B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L.
Shrira, and M. WMiams. Replication in the Harp file
system. In Proc. of the 13th ACM Symp. on Operating

Systems Principles, pp. 226-238, October 1991.

J.-F. PMs. Voting with witnesses: A consistency
scheme for replicated files. In Proc. of fhe IEEE Znr.

ConJ on Distributed Computing, pp. 606-621,1986.
K. Trivedi. Probability and statistics with reliability,

queueing, and computer science applications. Prentice-

Hall, Englewood Cliffs, N.J., 1982.

Appendix. The algorithms for write,
propagate, and epoch checking operations

Write (input: update-data)

/* This algorithm is run by the coordinator. The

actions taken by the other nodes are given within

the comments. */

quorum-list := quorum-function (my-epoch-list,

my-node-name) ;

multicast (quorum-list, ‘ ‘write -requ,est~ ~) ;

I* each node that receives the write-request

obtains the lock for its replica and responds

with a tuple of the form

(node, version, dversion, stale, elist, enumber) ,
where the elements in the tuple are the node name,

version number, desired version number, stale data

flag, epoch list, and epoch number respectively. */

receive RESPONSES [1 :n] ; /* a set of
non-RPC. Call Failed responses in the form of (node;,

%?TSiOni, dvevsioni, staiei, e[isti, enumberi) , i = 1,. .,, n. * /
/* Find a response with the maximum epoch number.

/
m := an index j such that

enumber j = maxi= l,..., n {enumberi };

if coterie- rule (elistm, {nodel, ... ,noden}) then

/’ find the greatest version number among

responses from non-stale replicas and the greatest

desired version number among responses from stale

replicas. */

max-version := lIldXi=~ ..,.. n{versionilstalei = O};
max-civerslon := ~ay:-l,.. ,,m{dversioni l~~a~ei s 1};

ii max-dversion > max-version then

/* RESPONSES do not contain the response from a

currelnt replica */
HeavyP rocedure:

else

/* GO12D and STALE are a set of the current

replilcas and a set of replicas to be marked stale

respectively */

GOOD := {nOdei I.ta[ei s O

and versioni = max-version; isl,...,n};

STALE := {nodeg; i=l,,.., n } \ GOOD;

try-atomically /* ensures all-or-nothing

execution *I

multicast(GOOD. (“do-update”, STALE)):
/* Upon receiving this message, each node from

the GOOD set performs the write and increments its

version number. If the action is committed, the
nodes from the GOOD set unlock their replicas and,

if STALE is not empty, start the propagation

protocol. */

multicast(STALE,,

(“mark-stale’ ‘, max-version + l));

I* Upon receiving this message, each node sets its

stale--data flag to 1 and updates its desired

versic>n number to be equal to the version number

from the message. */

if-failed

HeavyProcedure;

end-try-atomically;

endi f;

else

HeavyProcedure;

encli f;

end;

HeavyE~rocedure

mul.ticast (all-nodes-that--have-a-replica,

‘%write-requesttt):

receive RESPONSES[l:k]; /’* a set of

non-RE’C.CallFailed responses in the form of (nodei,

version, i,dversioni, stale~, elisti, enurnberi) , i = 1,. .,, k. */

m := an index j such that.

enwnberj = mexi=l,...,k {enwnberi}

max.-version := maXB=~,,..,k {VeT9iOnil$tC/ei s O};

max-dversion := ~xi=l ,...,k{dversioni lstale: = 1};

if coterie-rule (efistm, {nodel,nodek}) and

max-version >= max-dversion then

GOOD := {nodeilddei=o and

Versloni = max-version; I = 1,..., k};

STALE := {nodei; izl ,...,k } \ GOOD;

try-atomically

multicast(GOOD, (“do-update”, STALE))
/* The actions of a node upon receiving

3 ‘do-updatet ‘ and ~tmark-stale~~ messages are

described earlier. */

multicast (STALE, (“mark-stale”,
max-version + 1));

if-failed

abort:
end-try-atomically;

else

abort

end.i f;

end;

234

———

Propagate(input: STALE-NODES)

while STALE-NODES #a do

foreach node E STALE-NODES do

send-message (node, (‘~propagation-offerp ‘,

my-version-number));

,)’ zacn noue that r~reives this message, runs

PropagateResponse algorithm below *I

receive response;

case (response) :

V‘i-am-currentt ~ :

STALE-NODES := STALE-NODES \ {node};
, ,already-recoverin9’ ‘ :

pause(some-time); /* delay and repeat the

propagation offer later to make sure the recovery

was successful. */
,,propagation-permitted’ ‘ :

perform propagation; I* The specific way

of doing propagation depends on data organization

in the system. At the end of the propagation, both

the coordinator and the target node unlock their

replicas. */

endcase;

endforeach:

endwhile:

end;

PropagateResponse (input: v I* the version number

of the source replica */)
/* This algorithm is executed by a node upon

receiving a propagation-offer message. Assume

each node has a locked-for-propagation bit,

originally O. */

if locked-for-propagation = 1 then

reply(“already-recovering’ ‘) ;

else

if local-replica is locked then

lock (local-replica) ;

if (stale-data = 1 and

desired-version-number <= v) then

locked-for-propagation := 1;

reply (“propagation-permitted’ ‘);

else

unlock (local-replica) ;

reply (‘ ~i-am-current’ ‘

endi f;

else

if stale-data = 1 and

desired-version-number

lock(local-replica) ;

if stale-data = 1 and

;

<= v then

desired-version-number <= v then

locked-for-propagation := 1:

reply ($ ’propagation-permitted’ ‘) ;

else

unlock (local-replica) ;

reply (‘~i-am-currentt ‘) ;

endif;

else

reply (t~i-am-current~ ~) ;

endif;

endif;

endif;

end;

CheckEpoch
/“ The epoch checking operations must be mutually
exclusive. For simplicity, the corresponding

locking is not shown. This algorithm is run by the

initiator of the epoch checking. The actions taken

by the other nodes are given in the comments. */

multicast (all-nodes-that-have-a-replica,

“epoch-checking-request’ ‘);
/* each node that receives the

epoch-checking-request responds with a

tuple of the form

(node, version, dversion, stale, elist, enumber), where the
elements in the tuple are the node name, version

number, desired version number, staie data flag,

epoch list, and epoch number respectively. */

receive RESPONSES[l:k];
/* The shove is a set of n<,n-RpC.CallFailed

responses in

the form of (nodei,version8,dversion8, staiei,

eliati, enumberl), i=l,k. *I

/* find a response with the maximum epoch

number. */

m := an index j such that

enumberj = IXUW=I,... ,k{fmumberi }:

if coterie-rule (elistm, {nodel,. ..,nodek}) then
NEW-EPOCH := {nodel,..., nodek};

if NEW-EPOCH # e[istm then

new-epoch-number ::= enumberm +1:

max-version : = IIISXg=l,,..,k {Ver8iOni Ista[ei = O};

max-dversion := rnaxi=l ,... ,k{duersiotai Iatdei= 1};
if max-version >= max-dversion then

GOOD := {nodei Iversiorai = max-version and

atalei ==0; i=: l,..., k};
STALE := NEW-EPOCH \ GOOD;

try-atomically /* ensures

all-or-nothing execution and atomicity with regard

to read and write operations */

multicast (NEW-EPOCH, (“new-epoch”,
NEW-EPOCH, new-epoch-number,

GOOD, STALE));

/“ Upon receiving this message, each node updates

its epoch list and epoch number to be equal to

NEW-EPOCH and new-epoch-number respectively. The

node also checks if it is Zl member of the GOOD set.

If the action is committed and the STALE set is not

empty, the nodes from the GOOD set start the

propagation protocol. *I

multicast(STALE,

(“mark-stale”, max-version));

end-try-atomically;

endi f:

endif;

endif:

end:

235

