
Random DFA% can be Approximately

Learned from Sparse Uniform Examples

Kevin J. Lang
NEC Research Institute

4 Independence Wayj Princeton NJ 08540
kevin@@aeach.nj .nec.com

Abstract

Approximate inference of finite state machines

from sparse labeled examples has been proved

NP-hard when an adversary chooses the target

machine and the training set [Ang78, KV89,

PW89]. We have, however, empirically found

that DFA’s are approximately learnable from

sparse data when the target machine and

training set are selected at random.

Figure 1: A 512-state Random DFA

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copvright notice and the

title of the publication and its date appear, and notice is given

that copving is bv permission of the Association for Computing

MachinerV. To copy otherwise, or to republish, requires a fea

andlor specific permission.

COLT’92-71921PA, USA

@ 1992 ACM O-89791 -498 -8192 /000710045 . ..$!505O

1 A Greedy Learning Algorithm

Trakhtenbrot and Barzdin described the following poly-

nomial time algorithm for constructing the smallest

DFA consistent with a complete Iabeled training set

[TB73]. The input to the algorithm is the prefix-tree

acceptor which directly embodies the training set. This

tree is collapsed into a smaller graph by merging all

pairs of states that represent compatible mappings from

string suffixes to labels. The algorithm contains two

nested looDs. In the outer looD. each node i is visited

in breadth:first order starting ~~ the tree’s root. In the

inner loop, each node j between the root and node i -1

is evaluated for compatibility with node i by comparing

the labels in the subtrees rooted at i and j. If every
corresponding label is the same, the transition from i’s
parent to i is altered to point at node j instead. The
node i and its deecendents are then inaccessible and can
be discarded. An upper bound on the running time of
this algorithm is m. n2, where m is the size of the initial
tree and n is the size of the final graph.

This contraction procedure for complete labeled trees

can be generalized as follows to produce a (not nec-

essarily minimum) machine consistent with a sparsely

labeled tree. In a sparsely labeled tree, the absence of a

labeling conflict between the subtrees rooted at a pair

of nodes i and i does not mmrantee that the two nodee

correspond to ~he same st~te in the smallest consistent

machine. However, one can be greedy and merge the

nodes anyway. To maintain consistency with the train-

ing set, state labels from the subtree rooted at i must be

copied into the subgraph rooted at j before the subtree

at i is discarded.

Implementing this label copying process correctly re-

quires careful attention to details (see the appendix),

but the conceptually important thing is that the result-

ing merger of different parts of the training set increases

its effective density and constrains succeeding choices
of which states to merge. This can be good or bad de

pending on whether the algorithm’s greedy initial state

merging choices are correct. If they are not, the re-

sulting merger of unrelated sets of labels can cause the

training set to look random and lead to an explosion

in the size of the hypothesis. Conversely, if the initial

45

http://crossmark.crossref.org/dialog/?doi=10.1145%2F130385.130390&domain=pdf&date_stamp=1992-07-01

100% Q 00 000 uO’w-

0

99.9999% -
Oj

I J
Training Set Density: 1% 2% 3“/. 4%

J

Training Set Density: 17. 2% 3% 4%

choices are correct there can be a snowballing of con-
straints leading to a highly accurate hypothesis. Both
of these effects are visible in the experimental results of
the next section. Because the algorithm’s initial choices
are so important they should be based on as much evi-
dence as possible. This is why both loops of our imple-
mentation run through the nodes in breadth-first order
starting at the root.

2 Approximate Learning of Random
DFA’s over the Uniform Distribution

Here we de8cribe a learning experiment in which ran-

domly generated DFA’s were approximately identified

from positive and negative examples drawn from a uni-

form distribution. Each of 1000 learning trials went as
follows. We generated a target machine of nominal size

512 by first selecting random destinations for the 1280

transitions of a 640-state DFA and then discarding all

states that were not reachable from the starting state.

As discussed in the next section, we rejected the ma-

chine if its depth wasn’t 16. Otherwise, we randomly

declared each of its states to be an acceptor with prob-

ability 1/2 (see figure 1). We then selected a training

set size ranging from 200 to 200000 and randomly drew

that many strings without replacement from the set of

4194303 binary strings not longer than 21 bits. We

labeled these strings according to the target machine

100% -*
.

99.9999% .
, 1

99.999%
I

99.99%

I

g 99.9”4

(r
c
0.— 99% ,
1%
g

g 90%

:
0 50% ~. J
Hypothesis /Target Size: 1.01 1.1 2 11

Figure 2: These three scatter plots show the tradeoffs

between generalization, hypothesis size, and training set

density that were measured during a learning experi-

ment on randomly generated 512-state target machines.

and fed the resulting training set into the learning algo-

rithm, yielding a hypothesis whose generalization was

measured on the remaining binary strings of length not

greater than 21.

Scatter plots of the size and generalization of the hy-

potheses appear in figure 2. Evidently, the performance

of the learning algorthm went through three distinct

stages as the density of the training set was increased.

When the density was very low, the algorithm totally

failed to detect the structure of the training set; each

hypothesis was as large as it would have been if the

training strings had been labeled randomly, while the

predictions of the hypotheses were no better than ran-

dom guesses. In this stage, additional training data in-

creased the size of the hypotheses but did not lead to

better generalization.

At a training set density of 1.5 percent the algorithm

entered a second performance stage in which additional

training data led to smaller hypotheses with better gen-

eralization. The gradual improvement of this stage

ended with hypotheses that were were still 10 percent

too large but were able to classify new strings with an

accuracy of about 99.9 percent.

The third stage began when the training set density

reached about 3 percent. The performance in this stage

was an order of magnitude better than in the previ-

ous one: the hypotheses were essentially the correct

size, and their generalization rates ranged from 99.99

to 99.999 percent. In this stage further increases in the

density of the training set had little effect on perfor-

mance, so the oDtimal amount of training data was the

3 percent requi~ed make the jump from-the second to

the third stage. In the next section we shall see that

this threshold density scales favorably with increasing

problem size.

46

l’” I I I

1e+07

10
Figure 3:

2

1
Scaling of Random DFA Learning

1

j~J ;

-
e

identification o

k-o 4

[

/~

~6---------f2’e.’Fy’f----------6

.

I
1 ..1 1 I 1

1000 3000 10k 30k 100k 300k
number of strings in training set

2.1 How Performance Scales with Target Size

The tree contraction algorithm of Trakhtenbrot and
Barzdin will identify any finite state machine from the
labels on the complete set of all strings not longer
than d + 1 + p, where d is the depth of the machine
and p its degree of distinguishability.l In the worst
cased=p= n — 1, but Trakhtenbrot and Barzdin
proved that in the average case p = log. logz n and
d z Clog. n, where C is a constant that depends on

a. Thus an average DFA can be exactly identified from

a uniform complete sample of size a2nc log2 n – 1.

Because the constant C is loose for small a, we ob-
tained a tighter bound on d experimentally: roughly

three fourths of a sample of several thousand n-state

degree-2 DFA’s had depth not greater than 210gzn – 2.

We also found that p very rarely exceeded 4 for machines
containing up to 10000 states. For experimental clarity
we restricted our attention to n-state target machines
of exactly 210gz n – 2 depth.2 We also pretended that
p ~,a exactly 4 so that the size of a uniform complete

sample would always be 2* 2210~2n-2+1+4 – 1 = 16n2 – 1.

For each n in the set {32, 64,128,256,512, 1024} we per-

‘iThe degree of distinguishability of a DFA is the smallest

integer i such that for every pair of non-equivalent states in
the machine there exists a suffix not longer than i that sends
exactly one of the two states to an accepting state.

2Other depths yield similar but shifted learning curves.

formed 2000 learning trials in which the greedy state-

merging algorithm was applied to a different sized sub-

set of a uniform complete sample that had been la-

beled by a different randomly generated n-state target

machine.3 Each hypothesis was evaluated by measuring

its generalization to the unseen portion of the labeled

uniform complete sample. Each dot in figure 3 repre-

sents the median generalization in a window of width

200 that was passed over the set of 2000 trials for a

given value of n .4 Thus, the curves in the figure show

the tradeoff between training set size and generalization

that is achievable with a confidence of 1/2.

The key feature of each curve is the S-shaped piece in the

middle which corresponds to the stage-3 generalization

cloud in the scatter plot of figure 2. The left and right

boundaries of this piece represent transitions from low

to high generalization and from high generalization to

exact identification. We are interested in how these two

transition points scale with increasing problem size.

3The transition diagram of a target machine of nominal
size n was obtained by first constructing a random degree-

2 dlgraph on ~ n nodes and then extracting the subgraph
reachable from an arbitrarily selected root node. The graph
was discarded if its depth wasn’t 210gz n —2. The average size
of our target machines were 31,9, 63.9, 127.4, 254.8, 510.7,

and 1020.5 states.
4There were only 750 trials for machines of size 1024.

47

Roughly speaking, when thesizeof the target machine

was doubled the amount of training data required for

good generalization incressed by a factor of 3. Since

the size of a uniform complete set of strings increased

by a factor of 4, we see that as the problem was scaled

up the fraction of a complete training set that was re-

quired for good generalization decreased. The calcula-

tions of section 4 suggest that if the problem could be

made arbitrarily large the required training set density

would approach zero. This scaling behavior for approxi-

mate learning of random DFA’s may be contrasted with

[Ang78] where it is proved that in the worst case, exact

identification of a DFA requires a training set containing

all but a vanishingly small subset of a uniform complete

set of strings.

Our experiments suggest that exact identification from

sparse data is not possible even in the average case.

Each time we doubled the size of our random target

machines the number of training examples required for

exact identification with confidence 0.5 increased by at

least a factor of 4 (see figure 3), so exact identification

of random DFA’s using our learning algorithm requires

at least a fixed fraction of a complete set of strings.

3 Trellis Machines

Let us now consider the class of fixed-width layered feed-

forward finite state machines, or “trellis” machines for

short. We are interested in the task of identifying ran-

domly generated depth-d trellises from labeled subsets

of the strings of length d. We originally expected the

absence of short training strings to cause this inference

problem to be harder than the one described in sec-

tion 2, but it turned out to be much easier after we

constrained our greedy learning algorithm to produce

layered hypothesis machines. Roughly speaking, when
this version of the algorithm combines a collection of
raw nodes into a hypothesis state, the merging of the
sets of suffixes that had been associated with the nodes
causes an increase in the effective density of the training
set when the next layer of the tree is processed. Suc-
cessive layers of the target machine are therefore pro-
gressively easier to identify, and the sample complex-
ity of the problem is dominated by the need to have a
few common suffixes for each pair of nodes in the ear-

liest layers of the tree. This begins to occur when the

size of the training set is on the order of the square
root of ad, the number of strings of length d. The re-
quirement for training data actually grows faster than
this because the suffix labeling functions associated with
the early nodes of a trellis machine become more corre-
lated with increasing d. The informal calculations de-

scribed below suggest that the number of training ex-

amples needed to exactly identify a randomly generated

trellis with a given level of confidence is asymptotically

k . (aw/(w – l))d12, where w is the width of the target

machine, a is the size of the input alphabet, and k is a

constant that depends on the details of the target ma-

chine’s architecture but not on d. While exponentially

I
d-i

I

su~es (i)

*w (i-l)
aw node

I ~~,!,+ Z I

I /“x’I’x A\ I
t/,-\l/~.\l

Yv

w(1)

w(o)

Figure 4: The computational state before processing the

i ‘th layer while learning a trellis grammar.

large in the size of the target machine, this is a van-

ishingly small subset of the complete set of strings of

length d.

3.1 A Simple Performance Model

We shall now give a sketch of a calculation for estimat-

ing the probability of exactly identifying a randomly

generated trellis from a uniform sparse training set of

size x using a version of the greedy state merging al-

gorithm that only merges states which lie in the same

layer, In this abstract we shall describe the calculation

without justifying its assumptions; we believe that the

calculation is essentially correct because its predictions

are consistent with our experimental results. We begin

by defining the function

(SufIixes(i, z) = merge ‘1
x d-i

-,a
a.w($– 1)’ at)

which gives the expected number of training string suf-

fixes associated with a node in layer i of the hypoth-

esis, assuming that the learning algorithm has already

combined the nodes in every previous layer into the tar-

get machine’s true states (see figure 4). The function

merge(n, s, t) = -t — t (1 — ~)n is the expected size of a

set formed by merging n independent size-s subsets of

a set of size t. w(i) denotes the number of states in the

i-th layer of the target machine.

48

Overlap(i, 2) =
Suffixes(i, X)2

ad-i

is the expected number of common elements in the two

sets of suffixes associated with a pair of nodes in layer

i, assuming that the nodes in all previous layers of the

hypothesis have been correctly merged.

P~,~ (i) =
d w(j) – 1

n
j=i+l

w(j)

is the probability of a random suffix of length d– i map-

ping two different states in layer i of the target machine

to different output labels. This will happen when the

two paths through the machine defined by the states

and the suffix do not meet in any layer from i + 1 to d.

Then, l’p.i,tA.(i, z) = - -

(KKM 1 – (1 – Pd,fl(~))Overlap(i’3),

is the probability of not erroneously

Overlap(i, z)
ad-i

)

merging a pair of

layer i nodes that actually correspond to d%e~ent-target
ma,chine states, conditioned on the correct processing of
all previous layers. The first argument to the max func-

tion is a model of the discrimination process as a se-

quence of Overlap(i, Z) independent trials, each with a

P&fl (i) chance of distinguishing between the two nodes.

This model breaks down in the final layers of the ma-

chine because the number of possible suffixes becomes

small. We note that any pair of non-equivalent nodes

must assign different labels to at le~t one string; the

second argument to the max function is the probability

of finding this string among the common suffixes.

Player (it ~) = Ppairwise t) ~
(“)+(w(i)-l)aw(i-1)

Assuming that we have already identified layers 1

through i of the target machine, Player (i, x) is the

probability of making no mistakes while combining the

a . w(i – 1) raw nodes in layer i of the hypothesis into

the set of w(i) true states. The probability of identifying

the whole machine is then

d

We have compared the predictions of this model with

statistics collected from 5,000 learning trials in which

sparse training sets of various sizes were used to identify
trellis machines with a = 4, w = 16, and with d ranging

from 8 to 12. The results of this comparison can be

seen in figure 5. A similarly good match between theory

and experiment was observed for target machines with

a = w = 5, and d ranging from 5 to 9.

1.0

0.0

trellls grammars; alphabet=4, width=l 6

depth = 8

‘o

10K 20K 40K 10OK 200K
number of training strings

Figure 5: Does the trellis model match reality?

3.2 Sample Complexity of Random Trellises

We can now derive an approximate formula for the av-

erage sample complexity of trellis machines with re-

spect to our learning algorithm by inverting the function

pide~~(~) to obtain the function Examples(b). Recall

that Pid.nt (x) = ~f=l Piaye, (~, Z). Because successive
layers in the fixed-width portion of a trellis machine are

progressively easier to identify, for a given trellis archi-

tecture we can choose a fixed k such that for large d

and Z. = Examples(l), for every i such that k c i < d,

the term Plag.r (i, co? in the above product is as close

as we want to 1. Thus, an approximation to piden~ in

the vicinity of zo can be obtained by truncating the

product to its first k terms. We claim (but have not

proved) that a reasonable approximation to the scaling

behavior of Examples(6) can be obtained by inverting

this truncated product. This yields the bound

Examples(6) ~ ~rn~~k Examples(i, 6*)
.-

where Examples(i, $) is the sample complexity of the

i-th layer of the target machine. This function can be

expressed in closed form. First, we rewrite the definition

of pdifl (i) aS kl(i) (~) ‘-k’(i)-i by collecting the kz(i)

terms corresponding to the fixed set of layers above i
that are not of width w into the constant kl(i), Then,
assuming that i is small enough relative to d that our

first estimate of PpairWi3e is the relevant one, we have

Examples(i, $) =

49

For small z, log(l + x) = x, so for d >> w this equation
reduces to

()
d/2

Examples(i, 6) % Ics(i, 6) ~

where ks(i, 8) is an expression that doesn’t depend on

d. We have checked the validity of this rough deriva-
tion by inverting the full equations for PM,~~ (z) numer-
ically. For each of several values of a and w that we have
tested, the scaling factor associated with incrementing

d appears to asymptotically approach ~-.

4 Locating the Threshold to Good

Generalization for Random Targets

The transition from low to high generalization observed

in our learning experiments on random DFA’s (see fig-

ure 2) is easy to understand when the target machine’s

nodes have been organized into layers based on their

distance from the root, as in figure 8. This jump in gen-

eralization is associated with a similar transition in the

relationship between training set density and the num-

ber of correctly identified layers (see figure 6). An elab-

oration of our trellis performance model shows that the

effective density of a training set increases aa one succes-

sively identifies a sequence of target machine layers that

are not growing too rapidly in width and do not contain

too many backwards connections. This beneficial effect

does not occur in the expanding first half of a random

DFA, but if the middle layer of the machine can be suc-

cessfully identified then things will get so much easier for

a while that several more layers are likely to identified aa

well. The final layers of the machine are then hard again

because backwards connections drain away most of the
training set. Fortunately, the same thing happens dur-

ing testing, so these layers are not important for good
generalization, Thus the sample complexity of approx-
imately learning a random DFA is dominated by the
number of examples required to identify the machine’s
middle layer. The tree-like structure of machine’s first
half makes it easy to estimate this data requirement.
The first three equations here are essentially the same
as in our analysis of trellis machines.

p~&fid= (Pp=$r)npaim

P pajr = 1 – (1 – Pdifl)”veriap

overlap = suffixes2/universe

We approximate the number of pairwise state differenti-
ations that must occur by the following rough argument.
The depth of the middle layer is logz n – 1, so it contains
about 210g~‘-1 = n/2 candidate nodes (actually fewer),
each of which must be compared with an average of half
the roughly n/2 nodes (actually more) that will remain
in the hypothesis after we have processed the middle
layer. Thus the number of comparisons is about

0
Training Set Density 1% 2% 3% 4%

Figure 6: The number of correctly identified layers in

512-state target machines plotted aa a function of train-

ing set density.

npairs w n2/8

Because the first half of the target machine is nearly a

tree, very little state merging has occurred before the

middle layer and so the number of suffixes associated

with a middle-layer candidate node is just

strings 2. strings
sui%xes *

Zlog, n-1 = ~

These suffix samples are subsets of a complete set of size

universe = 2. 2(210&‘+3-(10gz ‘-1)) _ 1 ~ 32n

Combining these equations gives

[
p~&fid % 1 – (1 – Pdifl)(* stringS’/n’) n’/81

d8n3]0~2(1 – 2s1% pidMid/n2)
strings w

log~(l – ~difr)

Plugging in P&fl = ().5 and l’idMid = 0.5 We see that the

middle layer can be identified with confidence 1/2 from

a training set of size

strings w
d

–8 logz(l – 2-8ina) . n3f2

after which more layers will be probably be identified as

well and we will end up with a hypothesis with good gen-

eralization. The transition densities predicted by this

argument are plotted as small squares in figure 3.

50

5 Learning Randomly Labeled Strings

Pitt and Warmuth proved that in the worst case it is

NP-hard to find a DFA that is consistent with a given

set of strings and is within a polynomial factor of the size

oft he smallest such machine. To study the average-case

difficulty of this problem we have applied the algorithm

of section 1 to randomly labeled sets of strings with

several degrees of sparseness. Figure 7 shows the size of

the resulting DFA’s, divided by a lower bound on the

average size of the smallest consistent machine, The

bound waa obtained by a counting argument equating

2’, the number of ways of labeling a set of z strings,

wit h n2n nan/n!, an estimate of the number of different

n-s bate DFA’s. Evidently it is possible to get within a

factor of 2 of this bound.

The dotted line in the figure shows the expected size

of the smallest DFA consistent with a randomly la-

beled complete set of strings. Recall that Trakhten-

brot and Barzdin’s algorithm merges a node with an

earlier node whenever the subtrees rooted at the two

nodes are labeled in the same way. Thus by comput-

ing the number of different subtree labelings that are

expected to occur in each layer of the tree we can de-

ter mine how many nodes will remain after every pair

of compatible nodes has been merged. The calcula-

tion goes like this: if Ways(i) = 2“’-’+’-1 is the num-

ber of ways of labeling a subtree of depth d – i, and

Draw(t, n) = t – t (1 – l/t)n is the expected size of a set

created by independently drawing n random elements

with replacement from a set of size t, then Uniq(i) =

Draw(a-Nodes(i–l), Ways(i)) is the expected number of
dif~erent subtree labelings associated with the raw nodes

of layer i, Prev(i) = Draw(~~~~ Nodes(j), Ways(i)) is

the expected number of different subtree labelings as-

sociated with accepted nodes in previous layers of the

tree, and Nodes(i) = Uniq(i) (1 – Prev(i)/Ways(i)) is

the expected number of nodes remaining in layer i after

all nodes whose subtree labelings are compatible with

those of previously accepted nodes have been eliminated

by merging. The size of the contracted tree is then

~~=o Nodes(i).

6 Summary

We have described average-case learning experiments

in which target machinea and training sets were both

drawn randomly from uniform distributions. We found

that a variant of Trakhtenbrot and Barzdin’s tree con-

tri~ction algorithm 5 can learn random n-state DFA’s of

depth 2 logs n – 2 with confidence 1/2 and generaliza-

tion 1- ~z~l..s from a set of ~ –810g2(l – 2-sjna). n3i2

training strings drawn randomly from the uniform dis-

tr ibution over the set of 16n2 – 1 binary strings not

longer than 2 logz n + 3. A slightly different algo-

—5 The algorithm can also be viewed as a variant of Vee-
lenturf’s method for constructing Moore machines from in-

put/output string pairs.

performanw on randomly labeled strings

20
u experimental results —
5g theoretissl prediction ‘---

1.01
4 6 8 10 20 40 60 80 1

1s92(number of strings)
‘o

Figure 7: Performance on Randomly Labeled Strings

rithm can exactly identify randomly generated fixed-

width layered feedforward machines with high probabil-

ity from training sets whose size asymptotically scales

with target machine depth like (aw/(w – l))dlz, where

w and d are the width and depth of the target and a

is the size of the input alphabet. For both of these tar-

get classes, the required fraction of a complete set of

training strings approaches zero as the size of the target

machine increases.

Acknowledgements

The author thanks Les Valiant, Eric Baum, Satish Rae,

Bruce Maggs, Lee Giles, Mark Goudreau, and Cliff

Miller for helpful discussions.

References

[Ang78] D. Angluin. (1978) On the Complexity of Min-

imum Inference of Regular Sets. Information and Con-

trol, Vol. 39, pp. 337-350.

[KV89] M. Kearns and L. Valiant. (1989) Cryptographic

Limitations on Learning Boolean Formulae and Finite

Automata. STOC-89.

[PM88] S. Park and K. Miller. (1988) Random Number

Generators: Good Ones are Hard to Find. Communi-

cations of the ACM, Vol. 31, No. 10, pp. 1192-1201.

[PW89] L. Pitt, M. Warmuth. (1989) The Minimum

DFA Consistency Problem Cannot be Approximated

Within any Polynomial. STOC-89.

[TB73] B. Trakhtenbrot and Ya. Barzdin’. (1973) Fi-

nite Automata: Behavior and Synthesis. North-Holland

Publishing Company, Amsterdam.

[V78] L. Veelenturf. (1978) Inference of Sequential Ma-

chines from Sample Computations. IEEE Transactions

on Computers, Vol. 27, pp. 167-170.

51

(de f.”e-,tmct”re dfa-state

Figure 8: Another view of a 512-state Random DFA

Appendix

Here is a Scheme implementation of the greedy learning
algorithm of section 1. The tricky part is determining
whether the subtree rooted at an outer loop node is
mergeable with the subgraph rooted at an inner loop
node. Because the subgraph can contain cycIes and
other non-tree features, the conformation of the subtree
to the shape of the subgraph can induce labeling con-
flicts within the subtree. Thus one cannot pre-check the
legality of a potential merge by a simple walk starting at
the two nodes; our solution is to optimistically perform
a destructive merger of the subtree and subgraph while
keeping backup copies of modified nodes so that the
work can be cheaply undone if a labeling conflict is de-

tected. Cycles can also cause unexplored tree branches
to be spliced into regions of the graph that have already
been traversed by the program’s outer loop. After a
successful merge any such branches must be added to
the outer loop’s breadth-first search queue.

Pa.e.c
children ; a 1,.C, .“dexed by .nPut alPhabet
state-label ; a qmkl, o. () ,f unknown.
Uxmn Lmg.cha. ; ho., t-. get from Pa..nt to elf.

)

(define (pe.fom-g.eedy-t. ee-.ontratilon rmt)

(let ((=earch-qwue (make-queue])

(unique-nodes - ()))

(add-item–to-queue search-queue root)

; outer lC-CP v.s.ts state, I. bread. h-fm.t order,

(.terate b.eadth-fi.$t-.earch-step ()

(let ((Cu!nmde (get-next-. tm-ln-we.e ,ea,.h-qu@”e)))

; Inner loop t.iea to merge a state w.th prev.o.sly accepted ones.

(Iterate find-node-to-rterge-with ((me.ge-...dideies u.ique-rmde=))

(if (null? merge-. and>dates)

; lf e.eiy atten@ed merge fa,ls, the state is unique, so add

(block ; >ts ch.ld.e. to the search queue a“d exit Inner loop.

(set Lmuz.e-.odes (append, unique-ncdea (llst c.mode) I)
(dolist [x (.h>ldrer, Cu.node) J

lube. x (add-. tem-to-queu. sea.ch-,p. tie X))))

; ‘Xherwise, try merging the state with the next candidate.
(let ((c.ndde,t. (cer me.ge-candidates)))

(inltlal..e-ba~ ~p-table) ; Not.: ‘chu t~le FZIM th,.

(et l.st-of-splmes , ()) ; list are global .eec. woes.

(if (eq? z succeeded (.ttempt-to-me.qe-stat.a cur”cd.
candidate))

; VLS, t mew ohild.en of previously accepted “odes.

(dolist (x l.st-of-spl.tea)

(when (memq (car x) ..ique-”des)

(add-item-to-queue .ea.ch-queue (cdr x))) I

(block ; El.. undo side effects of failed m-erg. and

[.:ve.t–ba~ed-up-ndesl ; proceed w.ththe seamh.
(f,nd-node-tmrge-with (cdx mez--ca..litite$)))

1)))

; End of inner 100p. Thxs p.nt is xe.sch.d wh.a the mrrent StaLe
; ha. ken rmeq.d .Ith a. ea.lxer state o. has be. found Unique.

(“hen (not (que.e-anpty? search–queue))

(breadth-first-march-step)) I)

; End of C,”tex lCOP

root J)

(define (attem@-tc. -merge-states curzmde candJ&te)

; The tra.s.t ion f.cm the parent of the curte.t seat.

; >. .lt.red to point to the mexge ~ndidat. instead.

(back.p (Went cur”cde))
(set (nth (ch.ld,e. (pa.e.t curnode)) (i..~ng-aar .Un@e))

Carldmat e)

(catch f..l-tag (fold-t.ee-into-gr.ph ..n-mde ..r.di..iate fa.1-taq))

{clef me (f old-tree-into-g.aph t.ee-mxle g.aph-”cds e,tort-add.eas)

; This pzmedure destructively cople. labels and t.ams.r..a.s fan

; the tree into the graph. It makeq backUP Gqies of mod. f , ed “ode,.

(when [not (null? (.state-lah-el tree-mxle)))

(if (null? (state-label graph-mode))

; If tk current g.aph nod. i. unlabeled, adopt t... mode label

(block

(baektip g,aPh-mxJe)

(set [state–label gxaph-mde) (state-label tree-node) I J

; Bazl out iamed..tely if g..ph and t.- .&. l&la differ.
(when (mot (q? (,tate-lek.el g,aPh-IItie) (,tate-lab?l tree-w.ie) >)

(throw atort-address , failed))))

(dotimes (i alphabet-size)
(let ((~raph-child (nth {children graph-.cde) i))

(c.e.-ch.ld (nth (children tree-node) i)) I

(when (not (“”11? t,ee-.h,ld))

(If (mill? gr+.h–child)

; If the graph lacks a branch, splice im MI.

(block ; c.,re,po.da.g branch f ,cm the tree.

(backup graph-ncde) (bacXup tree-child)
(Set (.th (ohildren g.aph-node) i]-child)

(... (P:rem tzee-chila) graph-ram)

(Push l.st-of-.plices (cons graph-node tree-child)) I

; Gtherwl se, COnt inue walking the t .ee and t h. graph.
(f Old-tree-int-o-giaph tree-child gr.ph-.hild atire-addres S)))))

, succeeded)

52

