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Abstract

We consider learning in situations where the
function used to classify examples may switch
back and forth between a small number of dif-
ferent concepts during the course of learning.
We examine several models for such situations:
oblivious models in which switches are made
independent of the selection of examples, and
more adversarial models in which a single ad-
versary controls both the concept switches and
example selection.

We show relationships between the more be-
nign models and the pconcepts of Kearns
and Schapire, and present polynomial-time al-
gorithms for learning switches between two
k-DNF formulas. For the most adversarial
model, we present a model of success patterned
after the popular competitive analysis used in
studying on-line algorithms. We describe a
randomized query algorithm for such adver-
sarial switches between two monotone disjunc-
tions that is “l-competitive” in that the total
number of mistakes plus queries is with high
probability bounded by the number of switches
plus some fixed polynomial in n (the number
of variables).

We also use notions described here to provide
sufficient conditions under which learning a p-
concept class “with a decision rule” implies be-
ing able to learn the class “with a model of
probability.”

1 INTRODUCTION

The standard problem considered in machine learning
theory is that of learning a fixed concept from some
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class C. In this paper we examine a generalization in
which the concept may switch between a small number
of different concepts during the course of learning. For
example, imagine learning what type of food a person
likes where examples are different foods, and classifi-
cation is positive if the food is eaten. In such a case,
the learner’s observations will likely be different depend-
ing on whether the person is hungry or not hungry, or
whether it is morning or evening. Instead of having a
fixed concept, a better description of the situation may
be that there are two concepts c1 and C2, and classifica-
tion occasionally switches between one and the other.

This type of situation is similar to that considered by
Helmbold and Long [HL91] in which a concept may drift
over time, but there are several important differences
between our focus and theirs. We restrict the “active
concept” to switch between only a small number of con-
cepts instead of drifting through the entire class, but we
allow the switches to occur more rapidly and drastically.
For example, in our case the concept might switch on av-
erage every third example, so each “run” of examples is
much less that the sample size needed to learn a concept;
just looking at data more recent than some cutoff point
need not produce a large set consistent with any indi-
vidual target. Our main goal is to produce polynomial-
time algorithms for simple classes, though we will also
discuss somewhat the use of a minimum disagreements
oracle.

Experimental work on learning interleaved functions has
been done by E. Levin [Lev91]. Ar et al. [ALRS] have
examined a similar problem of identifying a set of poly-
nomials over a finite field where each point is assigned
a value by one of the polynomial.

We consider two main models for how concept switches
are made. The more benign one is the oblivious adver-
sary model. Here, examples are selected from a fixed
distribution and an adversary decides when to switch
the active concept. However, the adversary must do so
in advance, choosing the entire path of the active con-
cept before any selections from the distribution have
been made. In this paper, we will in fact suppose the
target is switching between only two concepts. We
say that we learn a pair of target concepts if we find
c-close hypotheses for each one. For this model, we
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give (section 6) a polynomial-time algorithm to learn
disjunctions so long as with high probability (1) both
concepts are represented a poly-fraction of the time on
any sufficiently large sample, and (2) the average “run
length” (the number of examples in a row classified by
the same concept) is at least 2 + a for some a >0.

We also consider, in section 3, a more malicious model
we call the strong adversary model, in which an adver-
sary controls both the selection of examples and the
swit thing between concepts, and may do so based on
the entire past conversation with the learner. Our style
of analysis of this model is motivated by “competi-
tiveness” models of on-line algorithms (e.g. [BLS87],
[MMS90], [BDBK+90]). We imagine that the adver-
sary pays a cost of 1 for each switch, and present a
“l-competitive” randomized algorithm that uses mem-
bership queries for the class of monotone disjunctions.
Specifically, with high probability the total number of
mistakes plus queries made by the algorithm is at most

p(n) + s where p is a fixed polynomial and s is the
number adversary switches. Note that without queries,
learning in this model contains as a special case the
problem of learning disjunctions with worst-case false-
negative errors (one of the concepts could be “false”).

In addition to the above problems, we also consider
(section 4) the related problem of learning when each
example is independently classified according to one of
a small number of concepts, according to probabilities
that favor one of them. For example, there might be
two concepts c1 and C2, and each example has a 60%
chance of being classified by c1 and a 40% chance of be-
ing classified by C2. This situation might occur if there
is a relevant variable that is hidden from the learner,
and its value is independent of the visible variables and
biased in one direction (see [KS90], [KSS92]). We call
such a situation a mixture of two concepts, and our goal
is to approximate one or both of them. One of our moti-
vations for studying mixtures is that we use algorithms
for learning in this model in a critical way in our algo-
rithms for the switching concept models.

The mixture model is similar to the Angluin and Laird
[AL88] noise model, except that here the “noise” is sys-
tematic in that it is consistent with some other con-
cept in the class. It could also be thought of as a
weaker version of Sloan’s “malicious misclassification”
model [S1088] and actually is a special case of Kearns
and Schapire’s pconcepts [KS90], t bough the notions of
success are somewhat different. In fact, we show how
Kearns and Schapire’s result on learning probabilistic
decision lists of decreasing probabilities can be applied
to learn mixtures of k disjunctions with a “model of
probability,” and actually retrieve the concepts when
k = 2 so long as the two probabilities differ by at least
some a > 0. We also use notions of mixtures to provide
sufficient conditions where learning a p-concept class

1All the results given for learning disjunctions without

queries hold for k-CNF and k-DNF formulas as well, by stan-
dard transformations.

with a model of probability is as easy as learning the
class with a decision rule (Section 7).

2 NOTATION AND DEFINITIONS

Let V be a set of n variables {sl, ..., x~ }. An example
x is an assignment of O or 1 to each xi E V, and let
X be the set of all examples. We will often just write
~i = 1 or ~i = O to mean ~(~i) = 1 or ~(~i) = O when
the example is clear from context. A labeled example is
a pair (z, i) where z c X and 1 c {O, 1}. A concept is a
boolean function over examples and a concept class is a
collection of concepts. For a disjunction c, define R(c)
to be the set of all variables disjoined in c. So, R(c) is
the set of relevant variables.

A p-concept c (defined by Kearns and Schapire [KS90])
is a function over X with values in [0, 1], with the
value of C(Z) interpreted as a probability. An exam-
ple z classified by c is given label 1 with probability
C(Z) and O with probability 1 – C(Z). We will denote
p-concepts by bold letters, to distinguish them from
boolean-valued functions. A pconcept h is an “c-good
model of probability” of c with respect to a distribu-
tion V if Pr=~n[lh(x) – c(z)[ < c] ~ 1- c. Thus, the
value of h must be near that of c on most points x.
An algorithm learns a p-concept class “with a model of
probability” if for any p-concept c in the class and any
distribution D, given access to examples from V classi-
fied by c, with high probability it finds such an h. Note
that the learner only sees the boolean-valued classifica-
tion of an example Z, and not the real value c(z).

A miztum MIX(cl, . . ..ck. pl, pk), pk) where cl,..., c~
are concepts and pl, . . . , pk are probabilities that sum
to 1, is the following oracle. Given example z, one of
the concepts ci is chosen according to the probabilities

pi, and then Ci (z) is returned as the classification. Note
that for each example z, the probability that z is clas-
sified positive is simply ~i Ci(Z)pi. Thus, a mixture
oracle is a type of pconcept.

For simplicity, for k = 2, we use the shorthand
MIX(C1, C2,v) to denote MIX(CI, Cz; 1 – v, v) (we do it
this way since we are thinking of v as less than 1/2
and c1 as the “main” concept). We define the class
MIX(C, v~) for Z/b < ~ to be the set of all mixtures

MIX(C1, c2, v) such that cl, C2 c C and v c [~ – u~, PO].
We say that we PAC-learn the class MIX(C, ~b) if given
access to a MIX oracle in the class and a distribution
D over X, and given c, 6>0, with probability at least
1 – 6 we can find e-close hypotheses to both concepts.
We will give algorithms that run in time polynomial in
n, l/c, 1/6, and l/(~ – ~b). For mixtures of k > 2
concepts, we will only look at learning the “majority”
concept (i.e., the one, if any, with Pi > 1/2).

A switching concept oracle is like a mixture, except we
introduce a time-dependency. In the oblivious adver-
sary switching model, an adversary specifies in advance,
before examples are drawn from the distribution V, a se-
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quence{ci} oftarget concepts. Then, asequence{zi}of
examples is drawn from D and each example Z* is clas-
sified by the corresponding target concept Ci. In our
algorithms we will only examine switches between two
concepts, and will require that the adversary satisfy the
following properties. (1) We are given a lower bound
~1 >0 such that in any sufficiently large sequence of ex-
amples, at least a /3( fraction are classified by each con-
cept, and (2) we are given a ~u < 1/2 such that in any
sufficiently large sample, the average run length of any
concept is at least l//3U. The first property ensures that
a sufficient number of examples of of each concept are
seen, and the second ensures that the adversary is not
swit thing at almost every other example. This model
allows considerable leeway in specifying switching pat-
terns.

In the strong adversary model, the adversary need not
be oblivious, and in addition it both selects when to
switch the concepts and chooses the examples. There
is no distribution. Learning in this model proceeds in
rounds much like the standard on-line learning models.
In each round, first the adversary decides whether to
switch the active concept. Then, the learner asks to
receive an unlabeled example or makes a membership
query if queries are allowed. In the former case, the
learner then makes a prediction and is told if it was cor-
rect; in the latter, the learner is given the classification
of the query. We then begin a new round. Note that in
this model, the adversary may decide to swit ch based on
the interaction so far, but cannot switch, for instance,
between receiving a membership query and responding
to it. Our goal in this model is to bound the number of
mistakes plus queries made by the learner based on the
number of switches of the adversary.

3 LEARNING SWITCHING
CONCEPTS WITH QUERIES

In this section, we consider learning under the strong
adversary swit thing model, but to compensate, allow
the learner to make membership queries. As noted ear-
lier, without queries this problem is at least as hard
as the problem of learning disjunctions with worst-case
false-negative errors, for which some evidence of intrin-
sic difficulty has been given by Kearns and Li [KL88].

Our analysis is patterned after the popular “competi-
tive analysis” model of online algorithms (e.g. [BLS87],
[MMS90], [BDBK+90]). We will charge the adversary
a cost of 1 for each switch, and we will charge the al-
gorithm for the total number of mistakes plus queries
made. Note that if there are two concepts, an algo-
rithm that knows both exactly need only make 1 mis-
take per switch. It just predicts according to its current
concept until a mistake is made and then switches to
the other; we call this the “standard steady-state” algo-
rithm. In analogy to the on-line algorithms literature,
we will say an algorithm is t-competitive on a sequence
if the number of mistakes plus queries is bounded by
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p(n) + ts, where p is a polynomial and s is the num-
ber of adversary switches. We say a randomized al-
gorithm is t-competitive for an adversarially-switched
class if it is t-competitive for any pair of concepts cho-
sen, with high probability over the random choices of
the algorithm. We present here a l-competitive random-
ized algorithm for learning a pair of monotone disjunc-
tions in the strong-adversary switching model. Specifi-
cally, given 6 > 0, with probability at least 1 – 6 the
number of mistakes plus queries of the algorithm is
0(n2 log(n/6)) + s. The algorithm’s running time per
round is polynomial in n and log(l/6).

We begin with a high-level description of the algorithm.
In its first stage, the algorithm makes a large number of
queries, selected randomly according to a specific dis-
tribution. With high probability it learns one concept
exactly and learns the other exactly as well if it has
been used for classification a fair fraction of the time.
Of course, it is possible that one concept has been used
only very infrequently for classification, so one cannot
hope to always learn both.

In the second stage, the algorithm predicts according
to the first concept c1 learned, and whenever its pre-
diction is wrong, makes a query, hoping to gain infor-
mation about the second concept C2. We show that
with high probability, after making sufficiently (poly-
nomially) many queries to C2, the algorithm will both
recognize this fact—so it can stop making the queries—
and exactly learn C2. We also show that except for mis-
takes and queries associated with the queries to C2, the
algorithm makes at most one mistake and one query
for every two switches of the adversary, which makes it
l-competitive.

For convenience, let (zi) denote the example that sets
only ~i to 1, and similarly define (~i, Zj) as the example
that sets only Zi and ~j to 1. The first stage of the
algorithm is as follows.

Algorithm Query-Learn, Stage One:

Given: 6>0.

1.

2.

3.

4.

Make m = kn2 log(n/6) queries (k is a sufficiently
large constant) each selected independently accord-
ing to the following distribution:

Each example (zi) is selected with probability &.
Each example (xj, Zj) (i #j) is selected with prob-

ability ~-.

For each i calculate f+ (z~) = (number of queries
(z,) that were classified as 1)/(~).

If no index i has f+(zi) E [~, ~], then let h be

the disjunction of all Zi such that f+(z~) > 1/2.

Output h.

Otherwise, pick i such that .f+(z~) E [$, ~].

Let h be the disjunction of all Zj such that query

(zi, ~j) WaS never cJassitied as negative.



Let h’ be the disjunction of all xj such that either
all queries (xj ) were classified S.Spositive, or else

.f+(zj) >0 and z~ $! R(h).

Output both h and h’.

Lemma 1 For any pair of strong-adversary switched
monotone disjunctions and any 6 > 0, with probabil-
ity 1 – 6 Algorithm Query-Learn, Stage One will output
either one or both of the target concepts.

Proof: Algorithm Query-Learn, Stage One makes m
queries. Since each query is selected independently from
a fixed distribution, the only relevant choice of the ad-
versary is the number ml of queries for which c1 is used
for classification. This can be seen by thinking of the al-
gorithm as having two random tapes, one used when the
target is c1 and the other when the target is CZ. Let us
first suppose that the adversary chooses ml in advance,
and without loss of generality let us say ml/m z 1/2.

For each xi e Ii!(cl ), the expected value of j+ (Z~) is at
least ml/m ~ 1/2. (The expected value is 1 if z~ G

R(cz) as well.) Similarly for each xi @ R(CI ), the ex-
pected value of ~+(zi) is at most I–ml/m s 1/2. Cher-

noff bounds imply that with probability l–ne–o(mim) >
1 – 6/4, no f+(zi) for xi c R(cl) will be less than 1/4,
and no f+ (xi) for xi @-I?(c1 ) will be greater than 3/4.
Thus, with high probability, if the algorithm exits in
Step 3 then h = c1. Notice also that if ml > 7m/8, then
with high probability (another 1 – 6/4) each xi E I?(c1)
haa .f+(zi) > 3/4, and all others have .f+ (xi) < 1/4, so
the algorithm will exit in Step 3. Thus, we only need to
analyze Step 4 for ml s 7m/8.

If the algorithm continues to Step 4, then with high
probability the variable xi chosen such that ~+(zi) E
[1/4, 3/4] is relevant to exactly one of the two concepts
(if it was relevant to both, then with high probability

f ‘(q) is very near 1). Let’s say that ~i is relevant
to c1. In that case, for each Xj ~ R(c2), the query
(z,, Zj) will never be answered negative. So, hypothesis
h will contain all variables in R(c2). In addition, if

zj @ R(c2 ), then the query (xi, Zj ) will be answered
negative if it is asked when classification is according
to C2. For ml ~ 7m/8, this occurs with probability at

least 1 – [1 – ‘*I ‘Is which is at least 1 – i$/4n for

sufficiently large k. So, with high probability h = C2.

Given that this occurs, with high probability h’ = c1.
The same analysis holds if xi was relevant to C2.

So far we have been assuming that ml was chosen in

advance, but we can make all failure rates sufficiently

small (6/m) that for all values of ml simultaneously, the

chance of failure is at most 6. That is, if we think of

the algorithm aa having two random tapes as described

above, then even if the adversary determines ml after

seeing the entire contents of the tapes, it still can only

foil the procedure with probability 6. z

The second stage of the algorithm is as follows.

Algorithm Query-Learn, Stage Two:

Given: concept c1, 6>0. (If we are given both concepts,
we just run the standard steady-state algorithm).

1.s+0

2. Repeat untiJ S = km log(n/8):

(a) Predict according to c1 untiJ a mistake is made.

(b) Make a query (~i), with ~n;hosen uniformJy

at random from {xl, ZZ, .. . .

(c) If the answer to the query is not the same as
Cl((zi)), then S - S+ 1.

3. Let hs be the disjunction of the foJJowing variabJes:

s VariabJes zi @12(cl ) such that query (z~) was
classified as positive at Jeast once, and

. VariabJes Zj G R(cI ) such that query (xi) was
always classified as positive.

4. Run the standard steady-state aJgorithm on c1 and
h2.

Lemma 2 For any pair of strong-adversary switched
monotone disjunctions (cl, C2) such that c1 is given to
the learner, with probability 1–6Algorithm Query-Learn,

Stage Two will make at most 0(n2 log(n/6)) + s mis-
takes plus queries where s is the number of switches of
the adversary.

Proofi If c1 = C2, the algorithm stays in step 2(a) and
the claim trivially holds. So, assume c1 # C2, so that
there is at least one variable in the symmetric difference
RAG. For i = 1,2, we say that a query is a ci-
query when the adversary uses concept Ci to classify it.
Also, a cz-query x is “informative” when the answer is
different from c1(z). The counter S in step 2 counts pre-
cisely the number of informative c2-queries made. Since

[RARE ~ 1, if a cz-query is made in step 2(b),
there is at least a l/n chance that it is informative. So,
if we consider a sequence of 2kn2 log(n/6) c2-queries se-
lected according to the distribution of step 2(b), with
high probability both (A) at least kn log(n/6) are infor-
mative, and (B) within the first kn log(n/6) c2-queries,
informative queries (zi) have been made at least once
for each xi E R(cl )AR(c2). (The probability of failure

is O(n . (6/n)O(~)).) This implies that even if the ad-
versary could see in advance the entire list of random

choices the algorithm would make when performing c2-

queries, with high probability either the algorithm pro-

ceeds to step 3 and by (B) the hypothesis h2 created
in step 3 exactly equals C2, or else the adversary does
not allow the algorithm to go to step 3 by not letting it
make 2kn2 log(n/&) c2-queries.2

2The reason for the care here is a subtlety, which can
be illustrated by the following game: imagine performing a
random walk on a line, but where an adversary can stop you
at any time t < 100. One might like to say: “if the adversary
allows you to make 100 steps, then with high probability y you

will have made about 50 steps to the right.” However, this
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Thus, it remains only to show that the number of mis-
takes plus queries made in step 2 is bounded by the
number of adversary switches plus a constant times the
number of c2-queries. To see this, consider a sequence

(ml, ql, mz, qz, ...) of mistakes and queries, Each mis-
take mi is made while the classification is according to
C2. SO, if qi is a cl-query then the adversary must have

switched to c1 for qi and then back to cz before m~+ 1,
and we can charge both qi and mi+l to the switches.
If qi is a c2-query, then we charge qi and mi+l to the
query, plus we perhaps need to pay for mistake ml. So,
the number not “paid for” by adversary switches is at
most 1 plus twice the number of c2-queries. Since with
high probability we make only 0(n2 log(n/6) c2-queries,
this achieves the bounds claimed. ■

The above two lemmas prove the following theorem.

Theorem 3 Algorithm Query-Learn, Stage One, fol-
lowed by Query-Learn, Stage Two is l-competitive for
the class of strong-adversary switched disjunctions.

4 LEARNING CONCEPTS FROM A

MIXTURE

In the mixture model MIX(C1, C2,v), each example se-
lected from ‘D is classified by c1 with probability 1 – v
and by C2 with probability v. This is similar to Angluin
and Laird’s noise model [AL88] in which there is a single
target concept, but each example haa fixed probability
v of being classified by its complement. It is also a spe-
cial case of Sloan’s malicious misclassification (MMC)
model [S1088] in which with probability v, an adversary
may decide the example’s classification.

Angluin and Laird describe an algorithm to learn the
class of monotone disjunctions in their noise model that
proceeds essentially as follows .3 Take a large sample of
data, and for each variable xi that is seen set to 1 rea-
sonably often, calculate the fraction of examples with
xi = 1 that are positive. Then produce as hypothesis
a disjunction of all those whose value is near the maxi-
mum. This algorithm may fail, however, when applied
to 2-mixtures. For example, consider c1 = XI V.. .Vxn/2,
C7,‘xnf2+-l V.. .VXn, V = 0.2 and a distribution D
as follows. With probability 0.1 the example sets to 1
only a random xi c R(cI ), with probability 0.8 the ex-
ample sets to 1 only a random xj c R(c2), and with

is false because the adversary’s strategy might be to stop
the game after your first step to the left (so if you do make
100 steps, at least 99 were to the right). What is true, which
can be seen by considering the more powerful adversary that
can see your entire sequence of 100 coin tosses in advance,
is that with high probabtit y either the adversary stops you
before t = 100 or by t = 100 you will have made about 50
steps to the right.

31n Sloan [S1.88] it i5 claimed that Angluin and Laird’s

algorithm can be applied directly to the MMC model. How-
ever, Sloan [Slo] has recently discovered a bug in the transfor-
mation, and currently there is no known poly-time algorithm
for learning disjunctions in the MMC model.

the remaining 0.1 probability, the example sets to 1 one
random xi c R(cl ) and 100 random xj c R(c2). one
can calculate that for each ~i c I?(c1 ) the probability
an example with xi = 1 is positive is 0.9, but for each
Xj E R(c2), the probability is about 0.94. So, taking the

OR of the variables of highest value does not produce
a good hypothesis (if you let h be the disjunction of all
xi, then the probability h labels an example correctly is
just 0.34, and if you take h to be the disjunction of the

Zj c R(c2) the probability is lower).

Instead, our approach is the following. Consider a pair
of variables Zi c R(cl ) and xj E R(c2). For such a
pair, every example seen satisfying X~Xj will necessarily
be positive. So, if we first create a 2-DNF h12 of all
pairs xixj such that no example setting both to 1 has
appeared negative, then filtering D through hlz(x) = O
will yield a distribution under which no example sat-
isfies both c1 and C2. Under this filtered distribution,
the Angluin-Laird style analysis can be applied, and the
concepts learned can then be OR’ed with h12. In fact, a
generalization of this procedure is used by Kearns and
Schapire [KS90] to learn the class of “p-decision lists
with decreasing probabilities,” and it turns out we can
directly use their theorems to get the results we need.

4.1 MIXTURES AS PROBABILISTIC
DECISION LISTS

We show here that mixtures of disjunctions can be writ-
ten as a special kind of probabilistic concept called a
“probabilistic decision list (p-DL) with decreasing prob-
abilities,” introduced by Kearns and Schapire in [KS90].

p-DL’s are probabilistic analogs of standard deci-
sion lists [R1v8’71. A l-p-DL c is given by a list

(xii, r~),...,(xin, rn ) where the Zi, are distinct variables,
and each rj c [0, 1]. For any example x, c(x) is defined
to be rj where j is the least index such that xi, = 1.
In other words, the n variables are tested one by one
in the order specified by the list, until a variable ZiJ is
found which is 1 in the example x. The corresponding
real number rj is the probability that x is positive. A
k-p-DL is defined in the same way, except that it has
entries of the form (t, r) where t (called a term) can be a
product of up to k variables. That is, c(x) is the r-value
of the first entry whose term t is satisfied by x.

A k-p-DL with decreasing probabilities is one with rl ~
> r,, where s is the number of entries in the k-p-DL...._

To see how we might view a mixture of monotone dis-
junctions as a p-DL with decreasing probabilities, con-
sider the 2-mixture MIX(C1, C2, v), for v < 1/2. The
probability c(z) that an example z is labeled 1 by MIX
is given by the following rules:

1. If z satisfies (cl A C2), then c(x) = 1.

2. Otherwise, if x satisfies c1 then c(x) = 1 – v.

3. Otherwise, if x satisfies cz then c(x) = v.

4. Otherwise, c(x) = O.
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These rules translate to a 2-p-DL in a natural way. Rule
1 gives rise to entries (-t, 1) for each term t in the 2-DNF
expansion of (cl A CZ). Rule 2 gives rise to entries
(t, 1 – v), for each t E R(cl), and similarly for rule 3.
Finally rule 4 gives rise to the entry (1, O).

One can convert backwards from this 2-p-DL to the dis-
junctions c1 and CZ, if v < 1/2. We have cl(z) = 1 iff
c(z) = 1 or c(z) = 1 – v. Also, CZ(Z) = 1 iff c(z) = 1
or C(Z) = v. Kearns and Schapire define the projection
of a p-concept c as a boolean-valued function rc which
is 1 exactly when C(Z) ~ 1/2. Thus, for v < 1/2, c1 is
simply the projection of the p-concept c corresponding
to the mixture.

In fact any mixture of k monotone disjunctions can be
written as a k—p-DL with decreasing probabilities.

Theorem 4 A mixture of k monotone disjunctions can
be written as a k-p-DL with decreasing probabilities.

Proof: Consider a mixture of the monotone dis-
junctions c1, c2, . . . , Ck, with corresponding probability ies

P1)P2, ...! Pk all greater than O. Construct a k-p-DL as
follows. Let S = {S1, S2,..., S2~_1 } be the collection
of all non-empty subsets of the index set {1, 2,. ... k}.
Fori= 1,2,..., 2k – 1, define Pi = EjESt(Pj), and

Ti = the set of terms in the DNF expansion of the CNF

AjE~, (C~). For each i create a list Li consisting of an
entry (t, Pi) for every t c Ti. Merge all the lists L~ into

a single list, and sort it in order of decreasing Pi. Fi-
nally, add the entry (1, O) at the end of the list. This is
the final k-p-DL.

By definition, this is a p-DL with decreasing probabili-
ties. We must show that it models the k-mixture. Sup-
pose that the first entry satisfied by an example x is
(t, Pi) for some i. Thus, z satisfies the conjunction of C3
for j G Si; also for any set Sj that strictly contains S~,
the probability-sum Pj must be greater than Pil and
would have occurred earlier in the list. Since we as-
sumed that (t,Pi) is the first entry in the list that z
satisfies, it follows that z does not satisfy any Cj for ~
not in Si. Hence z is labeled 1 in the mixture if and
only if it is classified by some cj for j E Si. SO the
probability that it is labeled 1 is exactly the sum of the
probabilities of these functions cj, which is Pi. ■

4.2 LEARNING DISJUNCTIONS FROM A
MIXTURE

Consider the 2-mixture MIX(C1, C2, v) of monotone dis-
junctions. First, note that information-theoretically, it
is impossible to learn when v = 1/2. For instance, sup-
pose the example distribution D is such that only the
two examples (ZI ) and (22) occur, each with probability
50%. In this case, the mixture of c1 = Z1 and C2 = X2
produces the same distribution on labels as the mixture
of c1 = (xl V Z2) and C2 s O. So without loss of
generality, we will assume v < 1/2.

Recall that if h is the 2-p-DL with decreasing proba-

bilities corresponding to this mixture, then we can ex-
press c1 and C2 in terms of the real-valued function h:
cl(z) = 1 iff h(z) > 1/2, and CZ(Z) = 1 iff h(z) = 1 or
h(z) = v. Kearns and Schapire [KS90] present an al-
gorithm (which we call Learn-p-DL) that learns a p-DL
that is an c-good model of probability of a target p-DL
with decreasing probabilities. We show below how we
can use their algorithm to solve our problem of learning
monotone disjunctions from a mixture.

We claim that the following algorithm will PAC-learn
both monotone disjunctions c1 and cz from a mixture.

Since it is not realistic to require that v be precisely
known, we will only assume that v is bounded away
from both 1/2 and O.

Algorithm Learn-2-Mixture:

Given: Access to an oracle MIX(C1, cz, v), a vahze Vb =
1/2–7 forsome~ >0, SUch that V 6 [~,~b], and~, 6>0.
Let 6’ = min{y/2, 6}.

1. Invoke Learn-p-DL with access to MIX, and param-
eters (~’, 6), and obtain a p-DL h.

2. Output hl = h, changing entries (t, r) to (i, 1) for
r > 1/2, and to (t, O) for r < 1/2.

3. Output hz = h, changing entries (t, r) to (t, 1)
when r G [1 – E’,1] U [c’, 1/2 – d], and to (t, O)
otherwise.

Theorem 5 Algorithm Learn-2-Mixture PA C-learns
monotone disjunctions from a %mixture MIX(C1, C2,v)
given a bound Vb = 1/2 – y such that v E [7, Vb], in time
polynomial in (l/e, 1/6, 1/7).

Proof: It is clear that the algorithm runs in time
polynomial in l/c, 1/6, l/y. Let 1 be the p-DL corre-
sponding to MIX. Consider hypothesis hl. We claim
it is an 6-approximation to c1. Suppose for some x,
hl (x) # cl(z). Then it must be the case that either
cl(z) = 1 and hi(z) = O, or cl(z) = O and hi(z) = 1.
In other words, either 1(z) z 1/2+ -y and h(z) < 1/2,
or l(z) s 1/2 – y and h(z) z 1/2. In both cases,
Ih(z) – I(z)l is at least y > c’, but the algorithm
Learn-p-DL guarantees that the probability of this is at
most c.

Let R be the region { l}U[~, 1/2–7] and R’ be the region
[1 - c’, 1] U [c’, 1/2 - c’]. Then if for some z, h2(z) #
CZ(Z), it must be that either l(z) E R and h(z) @ R’ or
I(z) @ R and h(z) G R’. In both cases, Ii(z)–h(z)l > /,
which can only happen with probability < c. ■

More generally, we show that the “majority concept” (if
there is one) is learnable from a k-mixture, for the class
of monotone disjunctions.

Theorem 6 The majority concept of a k-mixture of
monotone disjunctions can be learned given a bound
Y >0 such that the probability associated with the ma-
jority concept is at least 1/2 + y. The running time
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being polynomial in the usual parameters (l/c, 1/6, n)
and also in l/~.

Proof: Suppose 1 is the k-p-DL with decreasing prob-
abilities corresponding to the mixture. Then, from the
construction of the k-p-DL (Theorem 4), it is clear that
for every entry (t, r) such that t satisfies the majority
concept c1, the r-value must be at least pl ~ 1/2 + ~.
Also, for any term t that does not satisfy c1, the corre-
sponding entry (t, r) must have r < 1/2. This implies
that for any z, cl(z) = 1 exactly when l(z) > 1/2+ ~.
Invoke Learn-p-DL on this mixture, with parameters
(min{y/2, ~}, $), to obtain a k-p-DL h. Then by exactly
the same argument as in Theorem 5, the projection of
h is an e-approximation to c1. ■

4.3 LEARNING WITH A MINIMUM
DISAGREEMENT ORACLE

Let MD(C) be an oracle that given a set of labeled ex-
amples finds a concept in class C with fewest disagree-
ments on that sample. Angluin and Laird [AL88] show
how one can use such an oracle to learn a class C in
their random misclassification model with polynomial

sample size. Sloan [S1088] extends their result to the
malicious misclassification model. Thus, Sloan’s result
immediately implies that given MD(C) we can learn the

“majority concept” in any MIX(C1, cz, v) for c1, CLIc C
and v < 1/2. We show here that if v is also bounded
away from O, then we can learn the minority concept as
well.

Theorem 7 Given access to an oracle MD(C) and
v~ E (O, 1/2), we ca; learn MIX(C, v~) in time poly-
nomial m +,;, ~y~~ and log(lCl).

The proof is given in the appendix.

5 FINDING A CONSISTENT PAIR

OF MONOTONE DISJUNCTIONS

IS NP-HARD

A related problem to the mixture model is the follow-
ing. Given an arbitrary set of labeled examples, can one
determine whether there exist two concepts in a class C
such that each example is consistent with at least one of
them? One immediately notices that this is not so in-
teresting, however, since the trivial concept pair TRUE
and FALSE always satisfies this requirement. But, what
if both concepts are required to be nontrivial? In that
case, even for the simple class of monotone disjunctions,
this problem becomes NP-hard. Note that this problem
is not the same as asking whether there exists a 2-clause
CNF formula consistent with a set of examples, since in
that case we would require that all positive examples be
positive for both clauses. In our problem, by contrast,
we only require that each positive (negative) example
be positive (negative) for at least one of the two dis-
junctions.

Theorem 8 The following decision problem is NP-
complete: Given a set S of N example-label pairs, is
there a pair of non-empty (i. e., not identically FALSE)
monotone disjunctions c1, CZ, such that for each (x,1) G

S, either 1 = cl(x) or 1 = C2(X) ?

The proof appears in the appendix.

6 LEARNING CONCEPTS

SWITCHED BY AN OBLIVIOUS

ADVERSARY

In section 4, we showed how to efficiently learn in a
situation where for each example, one of a small number
of target concepts is chosen to classify it according to
fixed probabilities, so long as the probability associated
with one of the concepts is greater than 1/2, We now
turn to the oblivious adversary switching model, which
is easier in that the learner haa some time-dependence
information, but harder in that there may no longer be
any “majorit y“ concept.

Recall that in this model, an adversary specifies in ad-
vance, before examples are drawn from the distribution
‘D, a sequence {ci } of target concepts. Then, a sequence
{z’} of examples is drawn from a distribution and each
example xi is classified by the corresponding target con-
cept c;.

Note that a special case of an oblivious adversary is
an adversary that switches according to a Markov pro-
cess: For inst ante, in the case of two concepts, there is
a certain probability @ < 1/2 that the target concept
switches from one example to the next, and upper and
lower bounds on ~ are available. This is an oblivious
adversary since the probability @ is independent of the
selection of examples from the distribution D.

We will use the fact that if a sufficiently large sequence
of m examples is selected from D, and a predetermined
subsequence (not necessarily consecutive) of size pm

(p< 1) is classified by c1, then the empirical probability
estimates used by the mixture algorithms are with high
probability very close to those that would be obtained
if the m examples were taken from a mixture where
the probability of classification c1 is p. This will allow
us to apply all the previous algorithms and results for
mixtures to samples where a predetermined fraction of
examples is classified by a particular concept.

We will only consider PAC-learning from an oblivious
adversary switching between two monotone disjunctions
c1 and C2.

If we take a large sample from the oracle, and it so
happens that the fraction of c1–classified examples is
significantly different from 1/2, we can simply use the
mixture algorithms to learn both concepts. However,
when the c1—fraction is close to 1/2, we need a more
sophisticated strategy.

Our strategy is to filter out examples from a large se-
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quence S to create a sufficiently large new sample S’
such that: (a) The c1–fraction in S is significantly dif-
ferent from 1/2, and (b) The distribution D is not dis-
turbed. We can then treat this new sample S’ as if it
came from a mixture, and since it is a “good” sample,
we can learn at least one of the concepts. To create S’,
the algorithm guesses that a variable z~ is relevant to
one concept, say c1, and not to the other. It then cre-
ates a sample lV~ of all negative examples with t~ = 1.
If xi is indeed in R(cI ) – R(c2), all examples in IVi must
be C2–classified. Unfortunately, li~ is not a represen-
tative sample from D (it is biased toward z~ = 1), so
we cannot learn a good approximation to C2 from this
sample. So, the algorithm creates a new sample Si con-
sisting of the immediate successor of each example in IVi
in the original sequence S. Since examples are chosen
randomly from a distribution, this “successor” sample
Si is representative of D. Also, since the average run
length of any one concept is guaranteed to be be at least
l/@ti >2, we can expect that a significantly larger than
1/2 fraction of the examples in the sample Si will be
C2–classified. Thus Si will be a good sample, and the
mixture algorithms can then be used to learn at least
one of the concepts. The difficulty, of course, is that
a variable Zi E I?(c1) – R(c2) is not known. So the
algorithm performs this procedure with all n variables,
and uses a test to determine which of the different Si
samples is good.

Once an approximation hl is found to one of the con-
cepts, say c1, the algorithm takes a new, sufficient y
large sample and filters out all examples z for which
hl (x) = 1, so that (almost ) any example that is clas-
sified positive is C2–classified. This fact enables the
algorithm to learn a good approximation h’ to C2 under
the condition hl (z) = O. Italso learns h12, a good ap-
proximation to c1 A C2 under the original distribution.
Finally, it returns hlzv(ahl h’) as a good approximation
to C2.

We give our algorithm below, followed by a proof sketch.
We use rrz(c, 6, n) to denote the number of examples of
a 2-pall c needed by Kearns and Schapire’s Learn-p-DL
algorithm, in order to produce with probability (1 – 6),
a 2-pall which is an c-good model of probability of c.
m is polynomial in 1/6, I/c, and n. If S is a sample of
ml examples classified by c1 and m2 examples classified
by C2, each selected according to D, we call the 2-pDL
MIX(C1, C2, m2/(ml + mz)) the 2-pDL associated with
s.

Algorithm Switch-Lea rn: Given: 6>0,6> 0,~1 >

O,@” < 1/2. Let Cl = min{(l/2 – 6ti)/8, /3~/2, c2/200},
and )et 61 = 6/(lOn)

1.

2.

3.

Collect a sequence S of *m(c~, 61, n) examples.

Run Learn-p-DL on S to obtain a 2-pDL, h that is a
cl-good model of probability of the pDL associated
with S.

Let hlz = h, changing entries (t, r) to (t, O) for
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4.

5.

6.

7.

8.

r < (1 — cl), and all others to (t, 1). h12 is our
hypothesis for c1 A C.Z.

Take a random sample T of (1/6~) log(l/6) exam-
ples. Let q be the number of examples x G T such
that h(z) E [cl, 1 – cl]. If q/lTl < 5C1, then return
hl = h2 = h12.

Otherwise, for each xi, let Ni = {x c Slx~ =
1, and x was classified negative}. If for all i,

lNil < ~[S\ then return FAILURE,

For each xi such that lNi I ~ ~ [S1, do the fol-
lowing:

(a) Create a “successor” sample Si by including in
Si all examples in the sequence S that imme-
diately follow an exampJe in Ni.

(b) Run Learn-p-DL on Si, to obtain a 2-p-DL hi
that is an cl-good model of Si.

Tde a random sample T of 0(1/61 log(n/c$)) ex-
amples. Let A = ~(1/2 – @u).

If for some i, hi(~) c [1/2– A/2, 1/2+ A/2] occurs
for a smaller than 3c1/2 fraction of z g T, then let
hl = projection of hi. Otherwise return FAILURE.

Take a sample S1 of (l O/c)m(cl, 61, n) examples.
Let S’ be the set ofz c S1 such that hi(x) = O. If
IS’I < (e/10)lSll, then return hl, and h2 = h12.

Otherwise. run Learn-mDL with error ~arameter c1
on S’, to obtain a 2-pall h’. Let h’ = ‘h’, changing
entries (t, r) to (t, 1) if r > c1, and to (t, O) other-
wise. Return hl, and h2 = h12 V (mhlh’).

Theorem 9 For any oblivious adversary with param-
eters @l and @u switching between two monotone dis-
junctions, for any c, 6 > 0, algorithm Switch-Learn,
PA C-learns both disjunctions, in time polynomial in
1/6, 1/6, l/fh, and 1/(1/2 – BU)

Proof Sketch: We make use of the fact that all sam-
ples which are given to the Learn-p-DL algorithm are
sufficiently large, so that they can be treated as if they
came from some mixture of c1 and C2. Let c be the
2-pDL associated with the sample S in step 1. We are
guaranteed by the definition of an oblivious adversary
that the fractions of examples classified by c1 and C2
are at least @l, so that (cl A C2)(Z) = 1 iff C(Z) = 1, and
(cl A C2)(Z) = O iff C(Z) <1- P(. Because Cl ~ /3,/2,
this implies that in step 3, h12 is an cl-approximation
of c1 A C2 since h12(z) # (cl A C2)(Z) would imply that
Ih(z) –c(z)I > c1, which occurs in at most an c1 portion
of the distribution.

In step 4, we test whether there is a significant por-
tion of the distribution for which c1(z) # C2(z). Note
that c1(z) # C2(Z) exactly when C(Z) E [,B1,1 – /?r]. By
Chernoff bounds, if Prc~(x) c [/31/2,1 – ,fll/2]] z 6f1,
then with high probability h(z) G [cl, 1 – cl] occurs
for a smaller than 5c1-fraction of the examples in T.



So, if the observed fraction is less than 5c, we can as-
sume the above probability is at most 661. Since h is an
c1(S &/2)-good model of probability of c, this implies

that C(Z) E [Pl, 1 – /3~] occurs with probability at most
761. Thus c1(z) and C2(Z) differ on at most 7C1 portion
of the distribution D. So by our choice of c1, hlz is an
c-approximation to both hl and hz.

If the fraction q/ ITI is at least 5el then by a similar
argument we know with high probability that there is
at least a probability 361 that c1(z) # C2(Z).

If the algorithm reaches step 5, therefore, we may
assume without loss of generality, Prz[q(z) =
1 and CZ(Z) = O] ~ 361/2. So for some variable
z~ G I?(C1) - R(C2), z~ = 1 and C2(Z) = O on at least

3cl/(2n) portion of the distribution D. Since the def-
inition of an oblivious adversary guarantees that each
concept occurs least ~1 fraction of the time, it follows
that over the sample S, with high probability, we will
see at least an 3/3~cl/(4n) fraction of negative exam-
ples that have xi = 1. Thus in step 5, at least one of
the sets IVi will be large enough. (The chance of re-
turning FAILURE in that step will be very small) Also,
this means that in step 6, for at least one of the z~,
all the negative examples in iVi are cz-classified (since
Zi E J?(c1) – R(c2)). Each time we select an example
to be classified by C2, there is a fixed probability that it
will belong to iVi. Since we are guaranteed that at most

a PU fraction’ of cz-classified examples have their suc-
cessors classified by c1, with high probability at most a

(~+@ti)/2 fraction of the examples in Si are cl-classified.
So, the sample Si will be a “good” sample.

The algorithm now tests to see which S~ is a “good”
sample in that the fraction of examples classified by
each cj is sufficient y far from 1/2. It does this by first
learning a 2-p-DL hi from the sample Sj. To see that
the test works, suppose the cl-fraction in S~ is between

1/2 – A/4 and 1/2+ A/4, where A = ~(1/2 – ~ti).
Then the pDL c associated with the sample will have the
property that C(Z) c (1/2 – A/4, 1/2+ A/4) iff cl(c) #
C2(Z). At this point in the algorithm, we know that
Pr=[cl(z) # C2(Z)] z 3C1, so c(z) c (1/2 – A/4, 1/2+
A/4) on at least 361 portion of the distribution. Now,
the 2-pall h is an cl-good model of c, so for at least
2C1 portion of the distribution D, h(z) must be in the
interval (1/2 – A/2, 1/2+ A/2), since otherwise It(z) –
h(x) [ > A/4 > c1 occurs with probability (over D) more
than c1. Thus if in step 6, out of 0( ~ log(l/6)) random

examples we see less than a 3C1/2 fraction of examples
x such that h(z) E [1/2 – A/2, 1/2 + A/2], with high
probability S does not contain greater than (1/2 – A/4)
fraction of the minority concept. The hypothesis hl will
be then be an cl-approximations to, say, c1 (as argued
for mixtures).

Conversely, if a sample Si is a good sample, i.e., contains
at most a 1/2– A = (~+ flti )/2 fraction classified by the
minority concept, then the corresponding 2-pDL c has
no entries at probabilities strictly between 1/2 – A and
1/2 + A. Since hi is an cl-good approximation of c, the

chance that hi(z) is in the interval [1/2 – A/2, 1/2 +
A/2] is at most c1, so the test will with high probability
produce less than a 3el /2 fraction of examples x for
which h(z) E [1/2 – A/2, 1/2 + A/2]. Thus the chance
that the algorithm returns FAILURE in step 6 is very
small.

We now have found the first concept. Steps 7 and 8 deal
with finding the second.

In step 7, the algorithm takes a new large sample S1
and removes all examples $ for which hl (z) = 1. If
Prm[hl(z) = O] z ~/5, then with high probability at
least an c/10 fraction of examples will remain. So, if
fewer than that many are seen, we may assume hi(x) =

O on at most an e/5 portion of the distribution. Since
hl is an c1 s c/5-good approximation of c1, this also
implies that the probability that c1(z) = O is at most
2~/5. Thus hlz is an c-approximation to C2.

If the algorithm does not stop in Step 7, then simi-
larly we may assume that the probability of hl (z) = O
is at least c/20. Since hl is an c2/200-approximation
to c1, this impIies that the conditional probability
Prz[cl(z) = llhl(z) = O] ~ c/10. Since h’ is an cl-
good model of the underlying p-DL, the probability that
h’(z) # C2(Z) (under hi(z) = O) is at most

Pr[cl(z) = llhl(z) = O] +

Pr[h’(z) = l,c1(z) = 0,c2(z) = O I hi(z) = O] +

Pr[h’(z) = O,cz(z) = 1 ] hi(z) = 0]

< 6/10+61+61.

So, h’ is a 3c/10-close approximation to cz under
hl (z) = O. It is then easy to show that this implies
that hlz V (=hl A h’) is an c-approximation to C2 under
the original distribution D. ■

7 WHEN IS LEARNING A MODEL

OF PROBABILITY AS EASY AS

LEARNING A DECISION RULE?

In addition to the notion of learning with a model of
probability (see Section 2), Kearns and Schapire [KS90]
define a weaker notion of learning a pconcept class
with a decision rule. A “decision rule” is a standard
{O, 1}-valued concept. Let Ro(c, h) be the probabil-
ity that decision rule h misclassifies an example c cho-
sen from D and labeled according to c. An algorithm
learns a pconcept class C with a decision rule if for all
c E C, distributions D, and c, 6 > 0, with probability
1 – 6 the algorithm outputs a decision rule h such that
RD(c, h) s Rp(c, fic) + c. (Recall, mC is the projec-
tion of c.) We call such an h an c-good decision rule.
Kearns and Schapire note that if one can (polynomi-
ally) learn C with a model of probability, then one can
(polynomially) learn C with a decision rule by produc-
ing the projection of the learned model of probability
(with some appropriate changes to c). We examine here
the question: under what conditions does the converse
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hold?

We use the language of mixtures to provide sufficient
conditions. Say that C is closed under mixture with
C’ if for any c E C, c G C’, and v z O, the p-concept
MIX(C, c’, v) is in C.4 In particular, we will be con-

cerned with classes closed under mixture with {T, $’}.

Theorem 10 Let C be closed under mixture with
{T, F}. If C is (polynomially) learnable with a decision
rule, then C is (polynomially} learnable with a model of
probability.

The condition of being closed under mixture with {T, Fj
is satisfied by many natural p-concept classes such as
p-DL’s (with decreasing probabilities) and the “nonde-
creasing functions” mentioned in [KS90]. Before prov-
ing Theorem 10, let us first state a simple lemma.

Lemma 11 If h is an e-good decision rule and CY>0,
then:

pr~e~ [c(z) @ [+%, $+gl andh(~)# TC(Z)]< ~/CK

Proofi Suppose z is such that c(x) @ [~, ~] and
h(x) # Tc (z). Then the probability the label assigned
by c is h(z) is at most ~ – ~, whereas the probability the

label equals Tc(z) is at least ~ + ~. Soj the difference is
at least a. Thus, if the probability of this event exceeds
e/&, then h is not an c-good decision rule. z

For p-concept c and probability p, let us define mc,p(z)

to equal 1 if c(z) ~ p and O otherwise.

Proof of Theorem 10: We are given c and 6 and
for convenience reduce E if necessary so that 2/c is inte-
gral. Let A be the algorithm to learn C with a decision
rule. The idea of the conversion is to use A to create
2/~ decision rules ho, hl, . ,., h(z1e)_ 1, where hi is an ap-
proximation to xc,c~fz. The model of probability h will

be the function h(z) = ci/2 where i is the greatest in-
dex such that h~(z) = 1. Note that if C(Z) = p then
mc,g(z) = 1 for ail g ~ p. So, if each hi actually were
equal to nc,ci12, then for all z, Ih(z) – C(Z) I would be

at most e/2.

Concept ho is simple: hO = T. For i > 1, define pi =
ci/2 and qi = ~ – ]p~ – ~]. Define p-concept Ci to be

MIX(C, Z’, 1 – ~) if pi < 1/2, and MIXIC, F, 1 – ~) if

p; > 1/2. These quantities are chosen so that if C(Z) =
Pi+~ (a need not be positive), then ci(~) = l/2+a/2q~,
as can be seen by the following calculation. If pi s 1/2,
SOpi = 1 – qi, then for C(Z) = Pi + a we have ci(~) =

(1–gi+~)~+l(l–&) = ~+~. If pi > l/2, then

pi = q~, so Ci(z!) = (W + @)* = + + ~“ Note that
we can run algorithm A on target concept Ci by feeding

4A mixt me of two p-concepts is the obvious extension
of a mixture of two “standard” concepts. With probability
1 – v, example z is labeled 1 with probability y c(z), and with
probability v, it is labeled 1 with probability c’(z).

to A examples x chosen from D, with the classification
assigned by c replaced with probability 1 – ~ by 1 or O

respectively depending on whether pi ~ 1/2 or pi > 1/2.

For each i >0, let hi be the outcome of running A on ci
as described above, with confidence parameter c$e/2 and
error parameter c3/4. The confidence parameter implies

that with probability at least 1 – $ all the hi are c3/4-
good rules, and let us assume that this is indeed the
case. Define lli(~) to be the event that Ci(z) @ [1/2 –
c/4, 1/2 + e/4] and h~(z) # rc, (z). So, by Lemma 11,
for each i we have PrCe~ [E~(Z)] < 62/2, which implies
that with probability at least 1 – e, none of the events
Ei(s) occur. By our previous calculation, if c(~) @ ~~ –

c/2,pi -i- c/2] then ci(x) f! [1/2 – ~, 1/2+ ~], which

implies Ci (z) @ [1/2 — ~/4, 1/2 + e/4]. This means we
must have h~(z) = TC, (z) for &(c) not to occur. So,
with probability at least 1 – c, for each i such that pi <
C(Z) – e/2 we have hi(z) = 1 and for each i such that

pi > C(X)+ 6/2 we have hi(z) = O. Since there is some
pi between C(Z) – e and C(C) – c/2, with probability
at least 1 – c the greatest index i such that hi = 1 is
between C(C) – c and c(x) + e/2. Thus, h is an c-good
model of probability. E

8 REMARKS AND OPEN

PROBLEMS

In the strong-adversary switching model, we believe we
also have a “2-competitive” algorithm for learning with
queries when the adversary may switch between 3 dis-
junctions. That is, the number of mistakes plus queries
made is at most a fixed polynomial plus 2 times the
number of switches. We conjecture that a “(k – l)-
competitive” strategy is possible when there are k dis-
junctions.

The problem of learning disjunctions (in polynomial
time) in Sloan’s malicious misclassification model re-
mains open. One intermediate goal might be to learn
the majority concept in a mixture of n disjunctions,
where the majority concept has probability p > 1/2+ a
for some known a >0.
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APPENDIX

Proof of Theorem 7: Let c1, C2 be the two target
concepts where v = Pr(c2) e [~ – vb, vb]. Sloan [S1088]
shows we can e-approximate c1, and we can make the
error rate of the hypothesis so small that with high
probability no difference between it and c1 is seen in
the following discussion. Therefore, we may assume for
convenience that we have c1 exactly (this makes the al-
gorithm only polynomial in 1/6 and not log(l/6)). For
any two concepts c and c’, let SD(C, c’) be the symmet-
ric difference of c and c’, and let d(c, c’) be the prob-
ability measure of SD(C, c’). Let d = d(cl, CZ) and let
rn be some sufficiently large quantity polynomial in the
parameters given in the statement of the theorem.

Sample from D until a set S of 2rn examples (x,/) have
been found such that 1 # c1(z). If a’ > c then with high
probability we will have found 2m such examples after

4m/(c( + – v~)) selections from D, so if we do not find
2m we can output c1 as a hypothesis for cz. Now, select
a set T of m new examples from D. Finally, let h2 be
the output of MD(C) on sample set S UT. We claim
that with high probability, h2 is c-close to C2.

Concept C2 is correct on all examples from S, and with
high probability is incorrect on at most [d(l – v) + y]m
of the examples from T for small constant ~ (Hoeffding
bounds). Now, let h be a hypothesis with error greater
than e with respect to C2, and let c1 be the measure of
that error in SD(C1, C2) and let e2 be the measure in
X – SD(C1, CZ); so cl +62 = c. So, we expect h to make
2m(e1/d) z 2mcl errors on set S and m[v(el + 62) +
(1 – v)(d – Cl + C2)] errors on set T. Rearranging terms,
we have:

E(number of errors of h)

~ m[d(l – v) -1-(CZ – cl)+ 2vcl + 2c1]

~ m[d(l – v)+cl + Cz]

= m[d(l – v)+ e].

With high probability, for v < ~/2 and m sufficiently
large, the number of errors is greater than the error
rate of cz.

So, with high probability any given hypothesis h with
d(h, CZ) > e will have more disagreements on S U T than
C2. For sufficiently large m, the probability is so close
to 1 that with high probability all such hypotheses in C
will have more disagreements than C2 (i.e., the standard

Occam argument). Thus, with high probability we learn
C2. w

Proof of Theorem 8: For convenience, we identify an
example with the set of variables that are assigned 1 in
the example. For instance, (xi, xj ) denotes an example
~ that sets the variables xi and xj to 1, and sets all

others to O. Also, ((xl, Zj ), 1) denotes an example-label
pair, where 1 c {–, +}.

First, we note that two monotone disjunctions c1, cz are
consistent (in that at least one classifies each example
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correctly) with a set S of example-label pairs, if and
only if the following two conditions hold. First, for each
positive example (z, +), at least one variable set to 1
in z is relevant to one of c1 or C2. Second, for each
negative example (x, –) either all variables set to 1 in
z are irrelevant to c1, or all variables set to 1 in z are
irrelevant to cz.

We exploit these constraints in reducing 3-SAT to this
problem. Consider any 3-CNF formula F over the vari-
ables V1, V2.. .Vm. With each variable vi we associate two
variables Zi, vi, and with each negated variable ~vi, we
associate the two variables ~m+~, Ym+i.

For each variable vi, we create the following four labeled
examples:

(A) ( (xi, zm+i), +)

(B) ( (vi, Yna+i), +)

(c) ( (~i, vi),-)

(D) ( (~~+i, ~m+i), -)

In addition, for i # j(i, j c {1,2, ....rn}). we create the
following negative examples:

(E) ((~i,~j),–), ((~i,~rn~j), –), ((~tn+i, ~j), -),
((~m+i, ~m+j), -)

(F) ((Yi, Yj), –), ((yi, y~+j), –), ((Yrn+i, yj), -),

((Ym+i> Ym+j )1 –)

Finally, for each clause in the formula F, we create a
positive example containing xi if vi is in the clause,
and Xm+i if -v; is in the clause. Thus for a clause
(v1 V (=v3) V V4), we create the positive example

((~1, %n+3, ~4), +).

It is easy to see that if there is a satisfying assignment
a for F, then the following two disjunctions will be con-
sistent with the examples constructed:

c1 = ( v ‘i) v ( v Gra+i),

a(Vi)=l a(7Ji)=0

C2 = ( v ~~+i) V ( V vi).

a(u, )=l a(v~)=O

For the other direction, assume that the set of examples
is consistent with two non-empty monotone disjunctions
c1 and C2. Let R(cl ) and R(c2) denote the correspond-
ing sets of relevant variables.

We claim that only one of the sets R(cI ) or R(c2) con-
tains z-variables. Consider a particular Zi, say Z1. Since

(ZI, z~+l) is a positive example (A above), at least one
of {xl, Zm+l } must belong to at least one of R(cI ) or

R(c2). Without loss of generality, say Cl c R(cl). Then
R(cz) cannot contain any xj or xm+j for j # 1, since the
examples (Zl, Zj ) and (q, ~m+j ) are negative examples

(E). Next, suppose R(cz) contains one of ZI or iv~+l.
Then because of the negative examples (E), none of the
variables ~j or xm+j for j # 1 can belong to R(cI ). Thus

the variables xj, ~m+j do not belong to either R(c1 ) or
R(cz). However, the positive examples (A) make this
impossible, so it cannot happen that R,(c2) cent ains xl
or Zm+l. Thus only R(cl ) contains z-variables, without
loss of generality.

Consistency with the positive examples (A) requires
that for each i, at least one of {~i, ~~+i } belong to
R(cl). We claim that R(cI ) cannot contain both Zi
and xm+i, for any i. Suppose the contrary, i.e., that
R(cl ) contains both Zi and ~m+i, for some i. Then the
negative examples (C) and (D) enforce that neither yi
nor ym+i belong to R(c2). However, since (yi, ym+i) is
a positive example (B), at least one of {yi, Ym+i } must
belong to R(cl ). Then because of the negative examples
(E) and (F), none of the variables {~j,~na+j, yj, g~+j},
for j # i can belong to R(c2). Also, as argued above,

R(c2) cannot contain any x-variables. Thus R(c2) is
empty, which we assumed is not the case. So our as-
sumption that R(cl) contains both xi and ~m+i must
be wrong.

Thus without loss of generality, R(cl ) contains exactly
.} for each i, and R(c2) does not con-one Of {Zi, Zm+$

tain any z-variables. Since the positive examples corre-
sponding to the clauses cent ain only x-variables, it must
be the case that for each such positive example, at least
one variable assigned to 1 in that example must belong
to R(cl).

Then a satisfying assignment for F is defined by a(vi) =
1 if ~i E R(cl), and a(vi) = O if ~m+i c R(c1). ■
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