
About logical clocks for distributed systems

M i c h e l R A Y N A L

I R I S A

C a m p u s de B e a u l i e u

35042 R e n n e s - C ~ d e x , F R A N C E

r a y n a l ~ i r i s a . f r

Abs t r ac t

Memory space and processor time are basic resources when executing a program. But beside this
implementation aspect (this time resource is necessary but does not belong to the program semantics),
the concept of time presents a more fundamental facet in distributed systems namely causality relation
between events. Put forward by Lamport in 1978, the logical nature of time is of primary importance
when designing or analyzing distributed systems. This paper reviews three ways (linear time, vector
time and matrix time) which have been proposed to capture causality between events of a distributed
computation and which consequently allow to define logical time.

Key words : distributed systems, causality, logical time, happened before, linear time, vector time,
matrix time.

1 I n t r o d u c t i o n

To be executed a program needs some memory space and some processor time. But t ime cannot be re-
stricted to this resource aspect. As put forward by Lampor t in a famous paper [9], t ime establishes causal
dependencies on the events produced by a program execution. So in a distributed system composed of n sites
connected by communicat ion channels, first : events on each site are totally ordered (events are sendings of
messages, receipts of messages or internM events i.e. events not involving messages) ; second : for each mes-
sage the sending event precedes the corresponding receiving event. The transitive closure of these precedence
relations (sometimes cMled "happened before") defines a causM dependence relation : "---~" on the set of
events produced by a distributed execution ; this relation is a partial order. In the figure 1 (a point represents
an event, and an arrow a message transfer) for example we have a ~ b. The set of all events x such that for
a given event b we have x --* b is called the causality cone of b, in short cone(b). Finally two events x and
y, such tha t neither :e --* y nor y --+ ~, are said to be independent or concurrent, in short x 11 Y (see figure 1).

In this paper we review t imestamping mechanisms tha t allow to associate dates to relevant events. More
precisely these dates must rely on a logical global t ime in order to be able to compare related events produced
by distinct sites and must be consistent that is to say obey the monotony property : if a --~ b then the date
associated to b must be, with respect to the logical global time, after the date associated to a.

This review presents 3 t imes tamping mechanisms. The first one is the well known linear time, proposed
by Lampor t , tha t uses ordinary integers to represent t ime ; the second one uses n-dimensionnal vectors of
integers and the third one uses n x n matrices. In order to ensure the monotony property all the t imestamp-
ing mechanisms, that build a representation of time, obey a common pat tern made of da ta structures and
of a protocol (rules to manage these da ta structures).

i) Da ta structures to represent logical time.
Each site is endowed with local variables that allow it :

41

Si te 1 ..
v

Si te 2

Si te 3 =
&

X

c o n e (b) \ ~ : ~

/ y

Figure 1: A distributed execution

• on the one hand to measure its own progress ; that is done with the help of a logical local clock
(updated by rule R1).

• on the other hand to have a good representation of the logical global lime ; this representation
(updated by rule Rg) allows it to timestamp events ; that is a local view of the global time.

il) A protocol ensuring that the logical local clock and the local view of the global time of each site are
managed consistently with the causality relation "---*". That is done by the two following rules.

• R 1 : before producing an event (sending, receiving or internal) a site has to increase its logical
local clock (because it is progressing).

• R2 : for the date (that is to say a t imestamp with respect to the logical global time) of a receiving
event be after the date of the corresponding sending event, every message m piggybacks the value
of the logical global time as perceived by the sender at sending time ; this allows the receiver to
update its view of the global time. Then it execute R1 and can t imestamp the receiving event.

For each of these timestamping systems we first show how the fundamental monotony property is ensured
(i.e. implementation of rules R1 and R~), and then some properties of the associated time representations are
given. (Actually properties attached to each of these timestamping mechanisms are immediate consequence
of the monotony property on the way they represent time with integer, vector or matrix).

As this paper is essentially a survey, we are faced to the problem to quote original proposals. This is a
very difficult task ; the references used are the ones known by the author ; if they are not the right ones,
please let him know. However -as events in a distributed computation !- very similar proposals can be
indepedent.

2 T h e l i n e a r t i m e

2 .1 T h e t i m e s t a m p i n g m e c h a n i s m

This time representation is the well-known one, proposed by Lamport in 1978 in his seminal paper [9]. Time
domain is the set of integers. Each site Si is associated an integer variable hi holding increasing values. The
logical local clock of Si and its local view of the global time are here mixed up and represented by the only
variable hi. Rules R1 and R2 defining the consistency protocol are the following ones :

42

• R1 : before producing an event (sending, receiving, internal) :

hi := hi + d (d > O)

(each time R1 is executed d can have a different value).

• R2 : when it receives the t imestamped message (re, h) the site Si executes first the update :

hi := max(hi, h)

and then RI, before delivering the message m.

2 . 2 P r o p e r t i e s

In addition to the monotony property it is possible to use this t imestamping mechanism to build a total
order "t-before" on the set of events, consistent with the causality relation "--}". The t imestamp of an event
is then composed of its occurrence date and of the identity of the site that produced it. So if we consider
two events x and y t imestamped respectively by (h,i) and (k,j) the total order is defined by :

z t-before b ~ (h < k or (h = k and i < j))

This total order is due to Lamport [9] ; it is generally used to ensure liveness properties in distributed
algorithms.

If we consider that the increment value d is always l, we have the following very interesting property.
Let e be an event t imestamped h. Then h-1 represents the minimum logical duration, counted in units of
events, required before producing the event e [5] ; we call it the height of the causality cone associated to
the event e, in short height(e). In other words h.1 events have been produced sequentially before the event
e regardless of the processes that produced these events. (In figure 2, 6 events precedes b on the longest
causal path ending in b).

1 2 5 6 7
S i t e 1 ~ -- 7 - ~ "-

x \
Si t e 2 1 2 7

"

Si t e 3 1 5 6 7

a y

Figure 2: Lamport ' s clocks progress

3 V e c t o r t i m e

3 . 1 V e c t o r c l o c k s

Here the logical global time is represented by an n-dimensionnal vector. Each site Si is endowed with such
a vector vti[1..n]. The idea embedded in such a vector is the following one, on a site Si :

43

• vti[i] describes the logical time progress of the site Si, considered alone ; that is the logical local clock of
Si. This variable holds increasing values locally generated. (Such a local variable can only be increased
by rule R1).

• vti[j] represents site Si knowledge of site Sj local time progress. It is a local image of the value of
vtj [j] ; it is updated by rule Re.

• the whole vector vtl constitutes the Si local view of the logical global time used to timestamp events.

The two rules R1 and R2 are the following ones for each site Si :

• R1 : before producing an event :

vii [i] := vtl [i] + d (d > O)

• R2 : each message m piggybacks the vector clock vh of the sending site at sending time. When receiving
such a message (m, vh), the site Si first updates its knowledge of the local times progress :

1 < k < n : vti[k] := max(vt i[k] ,vh[k])

and then it executes R1.

The date associated to an event is now the value of the vector clock of the producing site at the time the
event is produced. Figure 3 shows an example of vector clocks progress with the increment value d=l .

Such clocks have been introduced and used by several authors. Parker et al. used in 1983 a very rudi-
mentary vector clocks system to detect inconsistencies of duplicated data due to partitionning [13]. Liskov
and Ladin proposed a vector clock system to define highly available distributed services [10]. But the theory
associated to these vector clocks has been developped in 1988 independently by Fidge [5,24], Mattern [11]
and Schmuck [20]. Similar clocks systems have also been proposed and used by Strom and Yemini [21] to
implement an optimistic recovery mechanism, and by Raynal to prevent drift between logical clocks [15].

(1,0,0) (3,2,3) (4,2,3)
Site 1 ~ - - -

Si te 2 (0,1,0)(0,2,0) (4,

S i t e 3 (0,0,1) k J ~
a

(2,0,0) / (5 : 2 , 3)

i) -

(0,2,410,2,5)(o.2)
I y - _

Figure 3: Vector clocks progress

3 .2 P r o p e r t i e s

These properties have been established in [5,11,20]. Moreover it has been shown in [23] that dimension of
vectors cannot be less than n.

46

A n i n t e r e s t i n g i s o m o r p h i s m .
Let us define the following tests on vectors :

vh < vk ¢=:¢, vh < vk and 3 ~ : vh[:e] < vk[~:]

vh ll vk ~ n o t (vh < vk) a n d n o t (vk < vh)

If we consider the partially ordered by "--~" set of events, that are produced by a distributed execution and
t imestamped by the vector clock system we have the following property. Let two events x and y t imestamped
respectively by vh and vk, then :

x---~y ~ vh < vk

z l ly ¢=* v h l l v k

In others words there is an isomorphism between the set of partially ordered events produced by a distributed
computation and their timestamps. If we consider occurrence sites of events, the independence test can be
simplified. So if z and y are t imestamped respectively by (vh,i) and (vk, j) we have :

z--.* y ~ vh[i] < vk[i]

x II U ~ vh[i] > vk[i] a n d vh~] < vk[j]

These clocks have a wide variety of applications. The reader can consult the following references. They are
used to implement distributed debugging [5], causal ordering communication [19], causal distributed shared
memory [1] and definition of global breakpoints [6]. Similar ideas have been used [8,21] to define consistent
checkpoints for optimistic recovery.

E v e n t c o u n t i n g v e c t o r c lock.
If in the rule RI we considerer always d=l, then we have the following result : vti[i] counts the number of
events produced by the site Si.

So if we consider an event e t imestamped vh we have :

vh[j]

E vh[j] - 1

= number of events produced by the site Sj that causally
precede e
= total number of events that causally precede e.
We define this number to be the weight of the causality
cone of the event e.

In the example of figure 3, the t imestamp (4,3,3) associated to the event b indicate that 4 events located
on $1 precede b and that the weight of the cone associated to b is 9. The weight of cone(e) is the minimum
number of events that must have occured before e.

3 . 3 T o w a r d s a c o n c u r r e n c y m e a s u r e f o r d i s t r i b u t e d c o m p u t a t i o n s

A simple and easily computable concurrency measure can be defined in the following way. Let e be an
event. We define the concurrency measure associated to e as (the denominator is only used to obtain a value
ranging between 0 and 1) :

cm() = n • h igm() - weigm of con ()
1) height(e)

45

This measure claims that the computation needed to produce an event e is maximally concurrent (balanced
and parallel) if cm(e)=O ; on the opposite if cm(e) - I the computation is entirely sequential (of course to
measure the concurrency of a complete execution of a distributed program we can add a fictitious event that
follows causally the last events produced by each site).

Such a measure is easily computed if we equip the underlying system with a Lamport ' s linear clock and
a vector clock mechanisms. The height associated to an event is obtained from its Lamport ' s t imestamp and
the weight of the associated causality cone from its vector t imestamp. Others measures based on vectors
can be found in [25].

4 M a t r i x t i m e

4 . 1 M a t r i x c l o c k

In this case the logical global time is represented by an n × n matrix. So each site Si is endowed with a
matr ix mti[1..n, 1..n] whose entries have the following meaning.

• mti[i, i] is the logical local clock of Si, increasing as the computation of the site Si progresses.

* mt~[k, l] represents the view (or knowledge) the site Si has about the knowledge by St about the logical
local clock of Sl. The whole matr ix mti constitutes the Si local view of the logical global time.

In fact the row mti[i, .] is nothing else than the vector clock vt~ [.] ; so this row inherits the properties of the
vector clock system.

Rules R1 and R2 are similar to the preceding one:s for each site Si :

* R1 : before producing an event :

: = i] + d (d > O)

R2 : each message m piggybacks a matr ix time mL When it receives such a message (m, mt) from a
site Sj, the site Si executes (before R1) :

1 < k < n: mti[i, k] := max(mti[i , k], mt[j, k])
1 <_ k, 1 < n : mti[k, 1] := max(mti[k, 1], mr[k, 1])

Such a clock system has been proposed in 1984 by Wuu and Bernstein [22] ; joined to a log system it allows
to discard obsolete information (see the properties). A similar mechanism has also been used by Lynch and
Satin in 1987 for a similar purpose [18].

4 . 2 P r o p e r t i e s

In addition to the properties of the vector clocks (when considering mti[i, .]) we have the following one :

min(mti[k, i]) > t :¢,
k

site Si knows that every other site

knows its progress till its local t ime t

It is this property that can allow a site to no longer send an information with a local t ime < t or to discard
obsolete information ; to exploit this property, as said previously, the matr ix time mechanism has to be used
jointly with a log mechanism.

46

5 O t h e r l o g i c a l t i m e s

In [2] Awerbuch presents the synchronizer concept ; such a device allow to run a synchronous distributed
algorithm on an asynchronous distributed system. In other words a synchronizer is an interpreter for syn-
chronous distributed programs. Synchronous means here that the distributed program progresses logically
step by step (for sites and channels) ; this progress relies on a global time assumption. From the point of
view of synchronous distributed programs such a global time pre-exists and participates in their semantics.
Developments about synchronizers can be found in [14, chapter 3]).

• In distributed discrete event simulation a virtual t ime (the so-called simulation or model time) does ex-
ist and the semantics of a simulation program relies on such a time : its progress ensure that the simulation
program has the liveness property. Designing a distributed simulation run-time consists in ensuring that the
virtual t ime progresses (liveness) in such a way that causality relations of the simulation program are never
violated (safety). Several implementations are possible for such run-times [7,12,17]. The logical t ime built
by a synchronizer or by a distributed simulation run-time drives the underlying program (a synchronous
or a simulation program). It has not to be confused with logical times presented previously. With the
previous representations of logical t ime (linear, vector or matr ix time) the aim is to be able to t imestamp
consistently events in order to ensure some properties such as liveness, consistency, fairness, etc ; so in this
case logical time is only one means among others to ensure some properties. For example Lamport 's logical
clocks are used in the Ricart-Agrawala's mutual exclusion algorithm [16] to ensure liveness ; this time does
not belong to the mutual exclusion semantics. In fact other means can exist to ensure properties such as
liveness ; for example instead of a logical t ime the Chandy and Misra's mutual exclusion algorithm manages
a directed acydic graph to ensure liveness [4]. On the other hand the time provided by a synchronizer or a
distributed simulation run-time does belong to the underlying program semantics ; this latter logical t ime
is nothing else than the logical counterpart of the physical t ime offered by the environment and used in
real-time applications [3].

6 R e f e r e n c e s

[11

[2]

[3]

[41

[5]

[6]

[71

AHAMAD M., HUTTO Ph. W., JOHN R. Implementing and programming causal distributed shared
memory. Proc. l l t h IEEE Int. Conf. on Dist. Comp. Systems, Arlington USA, (May 1991), pp.
274-281

AWERBUCtt B. Complexity of network synchronization. Journal of the ACM, vol.32,4, (1985), pp.
804-823

BERRY G. Real time programming : special purpose or general purpose languages. IFIP Congress,
Invited talk, San Francisco, (1989)

CHANDY K.M., MISRA J. The drinking philosophers problem. ACM Toplas, vol.6,4, (1984), pp.
632-646

FIDGE L.J. Timestamp in message passing systems that preserves partial ordering. Proc. l l t h
Australian Comp. Conf., (Feb. 1988), pp. 56-66

HABAN D., WEIGEL W. Global events and global breakpoints in distributed systems. Proc 21th
Hawai ACM-IEEE Int. Conf. on System Sciences, (1988), pp. 166-175

JEFFERSON D. Virtual time. ACM Toplas, vol.7,3, (1985), pp. 404-425

47

[8]

[9]

[10]

[11]

[12]

[131

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

JOHNSON D.B., ZWAENEPOEL W. Recovery in distributed systems using optimistic message
logging and checkpointing. In processing 7th ACM Symposium on PODC, (1988), pp. 171-181

LAMPORT L. Time, clocks and the ordering of events in a distributed system. Comm. ACM, vol.21,
(July 1978), pp. 558-564

LISKOV B., LADIN R. Highly availabh' distributed services and fault-tolerant distributed garbage
collection. Proc. 5th ACM Symposium on PODC, (1986), pp. 29-39

MATTERN F. Virtual time and global st!ares of distributed systems. Proc. "Parallel and distributed
algorithms" Conf., (Cosnard, Quinton, Raynal, Robert Eds), North-Holland, (1988), pp. 215-226

MISRA J. Distributed discrete event simulation. ACM Computing Surveys, vol.18,1, (1986), pp.
39-65

PARKER D.S. et al. Detection of mutual inconsistency in distributed systems. IEEE Trans. on Soft.
Eng., vol.SE 9,3, (May 1983), pp. 240-246

RAYNAL M., HELARY J.M. Synchronization and control of distributed systems and programs.
Wiley &c sons, (1990), 124 p.

RAYNAL M. A distributed algorithm to prevent mutual drift between n logical clocks. Inf. Processing
Letters, vol.24, (1987), pp. 199-202

RICART G., AGRAWALA A.K. An optimal algorithm for mutual exclusion in computer networks.
Comm. ACM, vol.24,1, (Jan. 1981), pp. 9-17

RIGHTER R., WALRAND J.C. Distributed simulation of discrete event systems. Proc. of the
IEEE, (Jan. 1988), pp. 99-113

SARIN S.K., LYNCH L. Discarding obsolete information in a replicated data base system. IEEE
Trans. on Soft. Eng., vol.SE 13,1, (Jan. 1987), pp. 39-46

SCItlPER A., EGGLI J., SANDOZ A. A new algorithm to implement causal ordering. Proc 3rd
Int. Workshop on Dist. Algorithms, Nice, Springer-Verlag 392, (Bermond, Raynal Eds), (1988), pp.
219-232

SCHMUCK F. The use of efficient broadcast in asynchronous distributed systems. Ph .D . Thesis,
Cornell University, TR88-928, (1988), 124 p.

STROM R.E., YEMINI S. Optimistic recovery in distributed systems. ACM TOCS, vol.3,3, (August
1985), pp. 204-226

WUU G.T.J., BERNSTEIN A.J. Efficient solutions to the replicated log and dictionnary problems.
Proc. 3rd ACM Symposium on PODC, (1984), pp. 233-242

CHARRON-BOST B. Concerning the size of logical clocks in distributed systems. Inf. Proc. Letters,
vol.39, (1991), pp. 11-16

FIDGE C. Logical time in distributed computing systems. IEEE Computers, (August 1991), pp.
28-33

RAYNAL M., MIZUNO M., NEILSEN M.L. Synchronization and concurrency measures for dis-
tributed computations. Research Report, IRISA-INRIA Rennes, (October 1991), 20 p.

48

