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Abstract
Automatically generated anticipation is a largely overlooked com-
ponent of response in character motion for computer animation. We
present an approach for generating anticipation to unexpected inter-
actions with examples taken from human motion capture data. Our
system generates animation by quickly selecting an anticipatory ac-
tion using a Support Vector Machine (SVM) which is trained offline
to distinguish the characteristics of a given scenario according to a
metric that assesses predicted damage and energy expenditure for
the character. We show our results for a character that can anticipate
by blocking or dodging a threat coming from a variety of locations
and targeting any part of the body, from head to toe.
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1 Introduction
Anticipation behavior has been largely overlooked in computer-
generated characters, especially in interactive settings such as vir-
tual environments and electronic games where such motions must
be computed automatically. While responding after an interaction
has received considerable attention and is necessary to uphold the
physical realism of contact resulting from an interaction, anticipa-
tory response before an interaction is an important component for
making characters appear alert to their environment and concerned
about their own well-being. In this paper, we introduce a novel
technique for generating anticipation that selects from a database
of possible motion capture examples of anticipation based on the
specific conditions of an impending interaction. To accomplish this
task, we employ a supervised learning method which is trained on
the best anticipation to use for a given scenario computed by weigh-
ing the potential damage sustained relative to the amount of effort
required to carry out a particular anticipatory act.

As our testbed we focus on making a character anticipate and block
a threat coming from a range of directions, heights, and speeds. We
focus our domain on a character which starts from an idle, standing
state (rather than anticipating interactions starting from any arbi-
trary state.) However, we do not make any assumptions about the
activities that the character can do in regards to anticipation. In-
stead, we add a large variety of anticipation clips (examples) to a
database, including actions such as taking protective steps, duck-
ing, or lifting a leg off the ground to protect against a threat. In
contrast to previous research [Metoyer et al. 2007] which builds a
model of anticipation drawn from psychology, we rely on human
performance in the form of anticipation examples to produce life-
like anticipatory actions and focus our effort on the construction
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of a reliable method for automatically selecting which example to
employ based on a trained model of how to minimize damage and
expend the least amount of energy in doing so.

2 Related Work
Several researchers have introduced techniques that generate re-
sponses for motion capture-driven characters reacting to unfore-
seen influences [Oshita and Makinouchi 2001; Zordan and Hodgins
2002; Yin et al. 2003; Shapiro et al. 2003; Mandel 2004; Zordan
et al. 2005; Arikan et al. 2005; Komura et al. 2005]. In general,
previous methods for responding to an interaction take into account
the physical components related to the impact, either in the form
of a simulated collision, as in [Faloutsos et al. 2001; Zordan and
Hodgins 2002; Mandel 2004; Zordan et al. 2005], or by modify-
ing dynamic parameters of the character motion, such as joint ve-
locities [Oshita and Makinouchi 2001; Arikan et al. 2005] or mo-
mentum [Komura et al. 2004; Komura et al. 2005]. The result of
creating these kinds of changes is character motion that gives the
impression of responding physically following the impact.

To our knowledge, our previous research effort [Metoyer et al.
2007] is the only one reported on anticipation for character re-
sponse. In that paper, we use insights drawn from psychological
literature to infer the proper behavior mechanisms to employ for
anticipatory action and develop heuristic rules that are consistent
with psychological findings. Our previous results included antici-
pating impacts to the head and upper body. In contrast, here, we
employ examples of anticipation taken from motion capture which
are more natural-looking. In addition, we introduce a novel mecha-
nism for learning the conditions leading up to an interaction based
on a measure of expected damage and use supervised learning to
choose the best anticipation action for a given situation.

Figure 1: System flow diagram

3 Overview
Our system combines a selection routine, which decides the antic-
ipation action to employ from a library of examples, with an in-
terpolation synthesis step which blends from the current motion to
the anticipation motion, taking into account balance. The selec-
tion routine uses a Support Vector Machine (SVM) to choose the
best anticipation action based on information provided about the
upcoming interaction. In an offline process, we train the SVM to
classify using a specialized performance index which weighs the
expected damage against the amount of energy expended. At run-
time, the SVM classifies the input conditions and passes the antic-
ipation motion example clip to the interpolation synthesis process



for balance adjustment and blending. Following the system flow
diagram in Figure 1, we assume the character starts in idle standing
balance (upper left.) When an interaction (or threat) is recognized,
the system selects the anticipatory clip to employ using the SVM.
Next, in the interpolation synthesis step, a transition to the example
motion is generated, making adjustments to balance by controlling
the center of mass across the transition. After the anticipation is
complete, we compute a dynamic response [Zordan et al. 2005] if
there is contact and finally return to the idling motion with a final
blend.

4 Assessing damage
One important question we raise in this research is what is the func-
tional effect of anticipatory action. Unlike Metoyer et al. [2007], we
attempt to answer this question as a means for assessing how to an-
ticipate a given scenario automatically. We do this by quantifying
the effect an anticipation has on a given interaction according to a
predicted damage assessment. To assess the success of a particular
anticipation from our database for a given scenario, we simulate a
version of the interaction, including the anticipation to be tested,
and measure the amount of “damage” the character sustains. By
simulating several such what-if scenarios, we can compare a num-
ber of anticipation actions for a given test interaction. In doing so,
we can make a conclusive statement about the best anticipation ac-
tion to take from our anticipation database according to our damage
assessment. In practice, it is impractical to run many simulations
before selecting the anticipation, especially in an interactive set-
ting, such as a virtual environment or electronic game. Instead, we
use this simulation process to produce a training set over which to
learn the bounds of specific characteristics (features) that will make
a particular anticipation successful over another.

Figure 2: Vulnerability diagram by body part

The proposed damage metric is a key element in the success of our
approach. In particular, we assess damage based on the amount
of impulse applied to different body parts, where the sensitivity
to damage is assigned as a weight according to the vulnerability
diagram shown in Figure 2. Based on this weighting, a small to
moderate impulse to the lower arm will cause less “damage” than
similar or larger impulse applied to the chest. In many cases, con-
tact is made with several parts of the body and each contribute to
the amount of damage assigned to a given scenario. While damage
alone is enough to rank anticipation actions, it does not differentiate
between a dramatic leap and a subtle lean which both may prevent
contact from a potential blow. Thus, in addition to damage, we add
a second term to our assessment which accounts for the amount of
work or energy needed to achieve a given anticipation. With this
term, the metric can differentiate the lean from the leap and would
give preference to the lean if the damage were comparable (because
the work/energy required would be much less.)

To relate the raw damage and energy terms, we introduce a single
weighting value, h, which we refer to as the “brawn” factor because

it dictates how much pain a character is willing to sustain, based on
how much effort (work) the character is willing to expend to avoid
that pain. And we can summarize our damage assessment metric
by combining the terms as such:

damage = ∑
i∈B

((1−h)viIi +hWi) (1)

where B = {1, ...,m} for m bodies, vi is the vulnerability rating (Fig-
ure 2.) Each body’s impulse, I =

∫
Fexternaldt, is computed for all

simulated contact forces felt by that body in the specific simula-
tion of the given interaction. We compute the mechanical work for
each body, W =

∫
FinternaldS, from the motion trace S taken from

the anticipation example clip and Finternal based on body mass es-
timates times acceleration computed numerically from the motion
trace. While this term is not an accurate measure of the actual en-
ergy exerted by the human, it is a very reasonable indicator of the
relative amount of energy present in each example motion. Note,
the work terms only need to be computed once for each action in
the database. The brawn h is used to normalize the maximum ex-
pected value of the work term to that of the impulse term. Also, this
factor provides a single intuitive number for the animator to tune.
We set the value to 0.1 for all of our results in this paper.

5 Supervised learning
We employ a Support Vector Machine (SVM) [Boser et al. 2002]
to classify the conditions leading up to an interaction and select the
specific anticipation action from our database. The SVM works by
training in an offline process and then performs selection quickly
during runtime. We use SVM to select among possible anticipation
actions based on specific conditions (or features) sampled when an
impending interaction is (supposedly) recognized by the character.
Our SVM is built from training data that binds the features of an
interaction with the best anticipation example to employ according
to our damage metric.

Intuitively, SVM works by finding partitions in the space of input
data. Formally, SVM is used to fit functions which maximize
the error margin between samples found in a training set. Let
T = {(x1,α1), ...,(xl ,αl)} be a set of training observations where
xi ∈ Rn are the samples of the feature vector with n dimensions
and αi are the corresponding anticipatory actions (labels) chosen
to be best by exhaustive search. The SVM is created by solving the
following optimization problem [Boser et al. 2002]:

minw,b,ξ
1
2 w>w+C ∑ l

i=1ξi
subject to αi(w>φ(xi)+b) ≥ 1−ξi ,

ξ ≥ 0.

Training examples of feature vectors, xi, are mapped to a
multi-dimensional space with separating partitions found with
maximal margins by varying weights, w, and probability es-
timates, b. Cost C > 0 is a weighting penalty for errors
terms ξi. φ(xi)>φ(x j) is defined to be kernel function K(xi,x j)
and, for our purposes, we a use polynomial kernel K(xi,x j) =

(γx>i x j + t)d ,γ > 0 with γ, t,d as user-defined kernel parame-
ters. In our implementation, we employed the library LibSVM
(���������	����
�
�

�������������������	�������	��
��������������������� !��"$#%� ) which in-
cludes useful defaults for the user-defined terms.

We choose SVM over other approaches, such as K-nearest neighbor
(KNN), because of the speed of prediction given the complexity of
our training vector. While KNN can be sped up using spatial parti-
tioning, the larger the dimension the more difficult it is too partition
effectively (in order to be efficient in finding close neighbor exam-
ples.) SVM, in contrast, finds the partition automatically and, at
run-time, is very fast to compute - which is important for real-time



applications such as games and virtual environments. In addition,
Faloutsos et al. [2001] employ SVMs for character animation in the
training of preconditions for various behavior controllers and while
his problem is different, he reports higher accuracy for SVM over
KNN for his application.

Figure 3: Training flow diagram

Training. For each observation added to the training set we follow
the flow diagram in Figure 3. That is, to compute a single observa-
tion the system simulates the test interaction in turn for each motion
example in the anticipation repository, assessing the damage metric
and keeping track of the best action to take based on the minimum
damage from all the simulations. We run this process from random
starting points, i.e. by varying the threat and character state for
each test interaction. While it is too slow to run such an exhaustive
search (including many simulated interactions) online, this training
is done offline and only once per database.

Our feature vector is a hand-selected set of characteristics taken
from the test interaction at the time the character ‘recognizes’ the
threat. In particular, we include the feature attributes which de-
scribe the state of the threat at the time of recognition, namely its
relative position, heading, and speed. In addition, in the results
in this paper, we provide two additional pieces of information that
we use as input for initializing the ball threat: the expected time
to impact and the target body part. While this information could
be computed by predicting the ball’s path of travel and finding the
intersection between that trajectory and the character’s movement,
we preempt this prediction and provide the data directly to ensure
the information is accurate. Finally, we encapsulate the state of
the character in the feature vector simply, with a lookahead of the
global position and facing direction for the predicted time of con-
tact.

6 Balance Adjustment
To generate animation given the anticipation action, we propose a
simple but effective interpolation synthesis technique that accounts
for balance. The problem here is to concatenate the motion the
character is currently following with the anticipation motion in the
example. To be successful, the transition should not introduce any
unwanted artifacts. The most straightforward solution is to align the
anticipation motion globally to the character’s current position and
facing direction and then to blend the root position and orientation
as well as the joint angles. However, this would likely introduce
unnatural foot sliding since there is no guarantee that the feet are in
the same configuration before and after the transition.

To overcome this issue, we apply a balance adjustment step. Our
specific routine is somewhat related to previous approaches for bal-
ance filtering [Tak et al. 2000; Metoyer et al. 2007] but is unique
because we approximate a purposeful weight shift. That is, the sys-
tem shifts the weight to one foot, based on the foot in the anticipa-
tion example that is carrying more of the weight. Then, we use the
newly selected “support foot” as the fixed root position for blending
and use the inverse kinematics (IK) routine described by Metoyer

et al. on the other leg to keep the foot on the ground. The goal
is to make the character lean in the direction of one foot and slide
the other foot into place - the effect is a quick adjustment of weight
that is largely imperceptible and, we believe, quite natural for sit-
uations where double support is followed by a sudden anticipatory
movement.

To accomplish balance adjustment, our algorithm moves the center
of mass smoothly toward the support foot, running an optimization
step (BFGS) to place the pelvis, and using IK to reposition the legs
while keeping the feet fixed. With the center of mass over the sup-
port foot, the system performs the blend to the selected example by
aligning the support foot in the example motion with the current
motion. During blending, the center of mass is returned smoothly
to the unmodified position for the anticipation example. While we
do not move the non-support foot explicitly in the balance adjust-
ment process, the weight is shifted to the foot which is used as the
(fixed) root for the interpolation blend, and the non-support foot is
therefore allowed to move as the blend takes place. We found it
important for visual quality to use IK on the non-support leg and
keep the foot on the ground, both avoiding lifting the foot and from
potentially passing through the ground.

7 Implementation and results
To realize our approach, we had to make several engineering and
design decisions including how to construct our database and how
to implement the various components. For our anticipation library,
we include a set of examples which we capture methodically as
blocks and anticipations protecting from several directions, target-
ing various areas of the body (legs, pelvis, trunk, head) and with two
varying degrees, mild and exaggerated. In the capture, the subject
was asked to imagine a threat approaching from each of eight direc-
tions. To ensure that the directions were consistent, a second person
stood outside of the capture region and acted out a throwing motion
to cue the subject. After each direction, the subject reset to a home
position and the ‘thrower’ moved to the next location in prepara-
tion for the next direction. In total, we include sixty examples of
anticipation which are segmented and mirrored (left-to-right) total-
ing 120 in the final repository.

Our observation set for training the SVM included over 8200 exam-
ples to produce pleasing results - computed in about 60 cpu hours
on modern processors. The simulation of interactions for training
calculated impulses using a tracking controller [Zordan and Hod-
gins 2002] and an ODE physical simulation (see www.ode.org)
with ODE’s collision handler. Even with this many examples, in-
frequently the SVM would choose undesirable results. To minimize
pathological anticipations such as a lucky dodge of the head which
results from a block using the legs, we apply a mask to the training
data which limits the anticipations that are tested to those targeting
a specific body part or its immediate neighbor.

To create the animations shown in the video, our system interpo-
lates to the anticipation example by ‘slerp’-ing quaternions, with
a simple ease-in/ease-out (EIEO) time-based weighting across the
transition. With the blended motion to the anticipation in place, the
interaction itself is finally computed. If the interaction results in a
contact (e.g. the SVM did not choose an anticipation that dodges a
ball completely,) we incorporate a version of Zordan et al.’s [2005]
technique for responding to unpredicted impacts. This subsystem
utilizes the ODE simulation to react physically to collision forces
and then generates a smooth transition by interpolating between the
anticipation and simulated motion. After a short duration, the sim-
ulation is blended back to the idle behavior or, at the animator’s
discretion, to a reaction example as described in the original imple-
mentation.

Results. We show in the accompanying video a variety of examples
(See Figure 4) where the character is able to successfully dodge an



Figure 4: Animation filmstrips. Two examples of anticipation from our system (view left to right).

incoming ball as well as believably anticipate and physically react
to threats which the character is unable to avoid completely. In
addition we show a set of animations where we make other mod-
ifications to test the limits of the system, namely: we modify the
starting state to begin from a fighting motion taken from a different
source (actor); and we add an example where the dynamic response
returns to a new reaction example. The dynamic response is too
slow for real-time currently, but without it, the system runs interac-
tively using an AMD Athlon64 CPU with 2 Gigabytes of memory
(with hardware rendering.)

8 Conclusions
In this paper, we present an approach for generating anticipation us-
ing human motion capture examples. We employ supervised learn-
ing to select the example based on the given scenario and train our
learner on observations where damage and energy are factors in de-
termining the most suitable anticipation for the conditions of the
scenario. To limit our scope, we focus our attention on a specific
testbed where a standing character responds to a threat approaching
from a variety of trajectories.

As described, there are a number of limitations with our current ap-
proach. Foremost, we assume that the character is starting in stand-
ing balance and while we do allow the character’s state to vary, the
range of starting states for most of our animations is fairly narrow.
This issue is due to the fact that the anticipation we generate is
computed using interpolation synthesis and to generalize to a larger
set of starting states we would need to improve this component of
the system in order to uphold the quality of the motion generated.
Regardless, our contributions for damage assessment and fast selec-
tion using SVM will likely be beneficial for more general systems.
In addition, in some animations, the character appears omnipotent
or "super-human." Adding delays, noise, and/or failed attempts at
anticipation would fix this problem and fit nicely within our exist-
ing framework. Finally, we point out that the vulnerability rating
will need to change based on the threat, for example comparing a
ball to a knife, the expected sensitivity of different body parts is
drastically different.

Even with these limitations, this work represents a large step for-
ward in the state of the art for automatically generating anticipation
action for characters and we look forward to further advances in
this exciting topic in the near future.
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