
13

How Much Anonymity does Network
Latency Leak?

NICHOLAS HOPPER, EUGENE Y. VASSERMAN, and ERIC CHAN-TIN

University of Minnesota

Low-latency anonymity systems such as Tor, AN.ON, Crowds, and Anonymizer.com aim to provide
anonymous connections that are both untraceable by “local” adversaries who control only a few
machines and have low enough delay to support anonymous use of network services like Web
browsing and remote login. One consequence of these goals is that these services leak some in-
formation about the network latency between the sender and one or more nodes in the system.
We present two attacks on low-latency anonymity schemes using this information. The first at-
tack allows a pair of colluding Web sites to predict, based on local timing information and with
no additional resources, whether two connections from the same Tor exit node are using the
same circuit with high confidence. The second attack requires more resources but allows a ma-
licious Web site to gain several bits of information about a client each time he visits the site.
We evaluate both attacks against two low-latency anonymity protocols—the Tor network and
the MultiProxy proxy aggregator service—and conclude that both are highly vulnerable to these
attacks.

Categories and Subject Descriptors: C.2.0 [Computer Networks]: General—Security and protec-
tion; K.4.1 [Computers and Society]: Public Policy Issues—Privacy; E.3 [Data]: Encryption

General Terms: Security, Measurement

ACM Reference Format:
Hopper, N., Vasserman, E. Y., and Chan-Tin, E. 2010. How much anonymity does network
latency leak? ACM Trans. Info. Syst. Sec. 13, 2, Article 13 (February 2010), 28 pages.
DOI = 10.1145/1698750.1698753 http://doi.acm.org/10.1145/1698750.1698753

1. INTRODUCTION

The goal of every anonymous communication scheme is to allow users to com-
municate while concealing information about who communicates with whom.
The notion of anonymous communication schemes was first introduced by
Chaum [1981], who proposed sending messages through a “Mix server” that

This research was partially supported by the National Science Foundation under CAREER grant
CNS-0546162.
Contact author’s email: hopper@cs.umn.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1094-9224/2010/02-ART13 $10.00
DOI 10.1145/1698750.1698753 http://doi.acm.org/10.1145/1698750.1698753

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:2 • N. Hopper et al.

mixes together messages from several senders before forwarding these mes-
sages to their destinations, concealing the relationships between senders and
receivers. Since then, a wide variety of anonymity schemes have been proposed,
yet all practical, deployed schemes rely to some extent on this idea of forwarding
messages through “mixing” relays.

Current, widely used anonymity schemes can be categorized as either high-
or low-latency. High-latency systems like Mixmaster and Mixminion [Moeller
et al. 2005; Danezis et al. 2003] deliver messages after a significant delay—
around 4 hours, on average—with the goal of ensuring anonymity against a
strong adversary that can see all network traffic and control some nodes par-
ticipating in the anonymity scheme. In order to ensure security against this type
of adversary, these schemes implement countermeasures that increase delay,
such as pool mixing, and consume additional bandwidth, such as cover traffic.
There is a wide range of literature [Kesdogan et al. 1998; Dı́az and Serjantov
2003; Dingledine et al. 2007] on how to further strengthen such high-latency
systems against various types of attacks.

In contrast, low-latency protocols, such as Tor [Dingledine et al. 2004],
I2P [jrandom et al. 2007], AN.ON [Federrath et al. 2006], Crowds [Reiter and
Rubin 1998], Anonymizer.com, and various commercial proxy aggregators, ac-
tively seek to limit processing delay and bandwidth overhead. Providing low-
delay anonymity enables anonymous use of more interesting application ser-
vices such as remote login and Web browsing, but this functionality comes at the
cost of reduced anonymity guarantees. In particular, most of these services are
easily defeated by a global passive adversary using relatively straightforward
attacks, such as packet counting [Serjantov and Sewell 2003]. Furthermore,
using these same attacks, an adversary that controls fraction f of the nodes in
the system can trace fraction f of the connections made to colluding servers
and fraction f 2 of all connections running through the system [Syverson et al.
2000]. Thus, these systems focus on offering security against a “local” adversary,
such as a small coalition of malicious servers that see only their own network
traffic.

A local adversary is thus extremely limited, since he is unlikely to have access
to any traffic of interest before it exits the anonymity service and arrives at his
malicious servers. A natural question to ask is: What information, outside of
the actual bits of data packets delivered to the adversary, does a low-latency
anonymity service leak, and to what extent does this leakage compromise the
anonymity offered by the service?

Several recent works have explored the impact of the local adversary’s access
to information about the timing of events in a low-latency anonymity scheme,
such as packet arrival times. An example of this is the “circuit clogging” attack
variant of Murdoch and Danezis [2005], which relies on the observation that
a sudden increase in the load of a Tor server will increase the latency of all
connections running through it. Murdoch and Danezis show how a corrupt Tor
node and Web server can exploit this property to determine the nodes in a Tor
circuit, that is, the nodes that forward a given connection through the network.
In the attack, the corrupt Tor node regularly sends packets on a loop through
each Tor server, measuring the time the packets spend in transit. Then, when

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:3

the malicious server wishes to trace a connection, it modulates its throughput
in a regular, on/off burst pattern. By correlating the delay at each Tor server
against the timing of these burst periods, the attacker learns which nodes are
in the circuit. Since the estimated number of Tor users (on the order of 105

as of June 2008) is less than the number of possible circuits (on the order
of 108), seeing two connections that use the same circuit nodes is a strong
indicator that the connections are from the same user. Thus, at a minimum,
timing information can leak the linkage between Tor connections.

In this article, we make use of a similar observation: Malicious servers acting
as local adversaries can observe the network latency of a connection made over
a low-latency anonymous connection. While it has been suggested before that
this information might be a potential avenue of attack [Back et al. 2001], we are
not aware of any work (other than our preliminary work [Hopper et al. 2007])
reporting on the feasibility of performing an attack using this information,
or even suggesting a concrete attack mechanism. As a consequence, it was
not known whether leaking this information had any adverse effect on the
anonymity provided by schemes like Tor. We address this issue by reporting
on a series of experiments that measure the extent to which this information
leakage compromises the anonymity of clients using a low-latency anonymity
scheme:

—A passive linkability attack. When latency “noise” is introduced in the form
of additional delays due to forwarding and mixing with other streams, it is
not clear how to use latency or round-trip time (RTT) information to identify
anonymous clients. We observe, however, that if a client attempts to connect
to two malicious servers (or make two connections to the same malicious
server) using the same anonymous connection, then the server–client RTTs
of these connections (minus the RTT from the last node to the server) will be
drawn from the same distribution, whereas other clients connecting to the
server will have different RTTs.

Based on this observation, we develop an attack on Tor that allows two
colluding Web servers to link connections traversing the same Tor cir-
cuit. The attack requires no active probing of the Tor network and has
very minimal bandwidth requirements. It can use either standard HTTP,
the most commonly mentioned Tor application, or persistent HTTP for
higher accuracy. Thus, it can be seen as a “lower cost” alternative to circuit
clogging.

We report on an implementation and test of this attack in three scenar-
ios: Using several hundred randomly chosen pairs of clients and randomly
chosen pairs of servers from the PlanetLab wide-area testbed [Chun et al.
2003], communicating over the deployed Tor network with the Privoxy proxy,
our results suggest that we can classify pairs of connections with an equal
error rate of roughly 17%. Using many of the same nodes but with the more
sophisticated Polipo proxy interface to Tor, our results suggest that we can
classify pairs with equal error rate of only 8%. Finally, we also test the attack
against a single-hop open proxy service, and find that Tor is more vulnerable
to this attack.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:4 • N. Hopper et al.

—Analysis of noise-free anonymity leakage. Suppose that an anonymity service
could impose no delay at all on a circuit, so that the only difference between a
client connecting to a server normally and over the anonymity service would
be that in the latter case, the client’s IP address is somehow missing. This
would represent the best possible case for an attack based solely on RTT
information.

Of course, many hosts on the Internet will be essentially indistinguishable
by RTTs since they are located on the same subnet; without a more detailed
study, it is difficult to estimate the number of such equivalence classes. As
a preliminary study, we performed a large scale survey that measured the
latency to nearly 14,000 servers with distinct routable IP address prefixes.
Our results show that discovering the RTT between an unknown host and
a random Internet host yields roughly 3.5 bits of information about the net-
work location of the unknown host, or equivalently, reduces the number of
likely hosts by a factor of 23.5 ≈ 11.3. Learning additional RTTs yields in-
creasingly less information, but our data shows that with 9 RTTs, at most 4 of
our 14,000 network locations will be probable matches and, on average, less
than 2.

—An active client-identification attack. Finally, we show how latency informa-
tion can be used to extend the reach of the Murdoch-Danezis clogging attack,
allowing a malicious server to take advantage of repeated visits from a client
to gradually locate the client, up to RTT equivalence. As with the clogging
attack, our attack requires minimal resources—one corrupted Tor server,
plus access to a “latency oracle” that can be used to estimate RTTs between
Tor servers and nodes in the RTT equivalence class of a suspected client’s
location—and uses only standard protocols.

We show that a latency oracle can be implemented with a “network coor-
dinate system” [Ng and Zhang 2004; Dabek et al. 2004; Costa et al. 2004],
which could be implemented using publicly available resources such as the
ScriptRoute [Spring et al. 2003] service or traceroute.org.

We evaluate our attack using 995 runs with randomly chosen client/server
pairs from the PlanetLab wide area testbed, using randomly chosen circuits
among the currently deployed Tor nodes (as of Feb.–Mar. 2008). Our results
suggest that a malicious server with a repeating visitor can uniquely identify a
client’s network location after an expected 50 visits to the Web site. If the client
simply connects to a periodically reloading Web page, this translates into an
attack that locates the client in roughly 8 hours, on average.

We also evaluate our attack against a single-hop TCP proxy service to isolate
the effects of encryption and multiple-hop relays. Our results suggest that, on
average, 41 repeat visits via this service would suffice to uniquely identify a
client’s network location.

We stress that both of our attacks are tested under real-world conditions
against the deployed Tor network using a standard protocol (HTTP), and very
little has been done to optimize these attacks for speed or accuracy. It is our
expectation that we could make improvements in both of these categories by
using less widely supported tools, such as persistent HTTP over Tor. This would

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:5

improve the performance of the attack, while simultaneously limiting its scope;
we leave further investigations along these lines for future work.

These results have serious implications for the design of low-latency
anonymity schemes. In particular, they suggest that, without new ideas for
path selection, adding delay to a connection may be unavoidable for security
considerations. In turn, this has implications for design decisions: For example,
if latency must be uniformly high, then TCP tunneling over such services will
provide extremely low bandwidth; if the latency of circuits can be masked with
noise in the short term, then circuit lifetimes may need to be shortened.

The remainder of this article is organized as follows: In Section 2, we give an
overview of Tor, review the details of the Murdoch-Danezis attack, and survey
related work. Section 3 presents our methodology for measuring the latency of
an anonymous connection. We present details of our passive linking attack and
its evaluation in Section 4. Section 5 presents the results of our analysis of in-
formation leakage by RTT data, estimating the average amount of information
leaked by the RTT between two nodes. Section 6 discusses our client location
attack against a single-hop proxy, while Section 7 extends the attack to Tor, and
Section 8 discusses additional details about implementing our attack without
direct access to RTT data. Finally, we discuss countermeasures and future work
in Section 9.

2. BACKGROUND AND RELATED WORK

2.1 The MultiProxy Service

As a means to test the wider applicability of our techniques, beyond those re-
ported in Hopper et al. [2007], as well as isolate the effects of using a proxy
rather than directly accessing a server, we tested our attacks against both the
Tor anonymity scheme, and the MultiProxy service. MultiProxy is a simple ap-
plication that downloads a list of open TCP proxies from multiproxy.org. Then,
whenever the user requests a connection to server S, MultiProxy chooses one
of the proxies on its list and connects to S through the proxy. We did not eval-
uate the MultiProxy application directly, opting for the simpler route of down-
loading the proxy list and directly choosing proxies from the list when needed
by one of our tests.

2.2 An Overview of Tor

Tor is a low-latency and bandwidth-efficient anonymizing layer for TCP
streams. Its growing popularity and the availability of a test-bed deployment
have proven to be a fertile ground for research on implementing and attacking
low-delay anonymity schemes.

Tor works similarly to a circuit-switched telephone network, where a com-
munication path, or circuit, is first established, over which all communication
during a given session takes place.1 Anonymity is achieved by establishing that

1Note that this analogy is not perfect: Tor’s signalling is in-band, whereas traditional telephony
networks have out-of-band signaling circuit construction.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:6 • N. Hopper et al.

circuit through three nodes: an entry node, an intermediary (middleman), and
an exit node. Only the entry node knows the identity of the client contacting
it, in the form of its IP address. The middleman node knows the identities of
both the entry and exit nodes, but not who the client is or the destination he or
she wishes to reach over the circuit. If the Tor server is an “exit” node, which
provides a gateway between the Tor network and the Internet, it is responsible
for making application-layer connections to hosts on the Internet, and serves as
a relay between potentially nonencrypted Internet connections and encrypted
Tor traffic. Thus, it knows the destination with whom the client wishes to com-
municate but not the identity of the client. In this manner, no single node in
the Tor network knows the identities of both communicating parties associ-
ated with a given circuit. All communications proceed through this encrypted
tunnel.

Circuits are established iteratively by the client, who gets a list of Tor nodes
and long-term keys from a directory service, selects a Tor node from that list
(preferably one with high uptime and bandwidth), negotiates a communication
key and establishes an encrypted connection. To avoid statistical profiling at-
tacks, by default each Tor client restricts its choice of entry nodes to a persistent
list of three randomly chosen “entry guards.”2 The circuit is then extended to
additional nodes by tunneling through the established links. Link encryption,
using ephemeral Diffie-Hellman key exchange for forward secrecy, is provided
by SSL/TLS. To extend the circuit to another Tor node, the client tunnels that
request over the newly formed link.

Traffic between Tor nodes is broken up into cells of 512 bytes each. Cells
are padded to that size when not enough data is available. All cells from the
client use layered (or “onion”) encryption, in that, if the client wishes for a mes-
sage to be passed to example.com via Tor nodes A, B, and C (C being the exit
node), the client encrypts the message with a key shared with C, then again
with a key shared with B, and finally A. The message is then sent over the
previously established encrypted tunnel to A (the entry node). A will peel off
a layer of encryption, ending up with a message encrypted to B (note that
A can not read this message, as A does not have the key shared between
the client and B). A then passes on the message to B, who peels off another
encryption layer, and passes the message to C. C removes the final encryp-
tion layer, ending up with a cleartext message to be sent to example.com.
Messages can be any communication that would normally take place over
TCP.

Since there is significant cryptographic overhead (such as Diffie-Hellman key
exchange and SSL/TLS handshake) involved with the creation and destruction
of a circuit, circuits are reused for multiple TCP streams. However, anonymity
can be compromised if the same circuit is used for too long, so Tor avoids reusing
the same circuit for prolonged periods of time, giving circuits a client-imposed

2In fact, each node may have more than three entry guards, to resist denial of service attacks; if
less than three of its entry guards are available, a client finds a new guard node and appends it to
the end of the list; first hops are always chosen randomly among the first three currently available
guards on the list. Our attack does not depend on this behavior.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:7

maximum lifetime, after which new streams will not use the circuit.3 We note,
however, that existing streams are not migrated across circuits and may con-
tinue to use a circuit beyond this lifetime.

2.3 Attacks Against Tor

Timing-based attacks. There have been a number of attacks mentioned in
the literature that exploit the low latency of anonymity systems such as Tor.
Several of these seem to have first been proposed, without implementation or
evaluation, by Back et al. [2001], including an earlier, more expensive, version
of the Murdoch-Danezis clogging attack based on flooding nodes and looking
for delay in the connection, and using network delays as a potential method to
identify senders.

Murdoch and Danezis [2005] describe an attack that allows a single ma-
licious Tor server and a colluding Web server (or other service provider), to
identify all three nodes of a Tor circuit used by a client for a given session
(ideally, only the exit node’s identity should be known to the service provider).
However, this system does not identify the client directly, only its entry node
into the Tor network.4 The attack works as follows: When a client connects to
the malicious Web server, that server modulates its data transmission back to
the client in such a way as to make the traffic pattern easily identifiable by
an observer. At least one Tor server controlled by the adversary builds “tim-
ing” circuits through each Tor server in the network (around 2,100 as of June
2008 [tor 2008]). These circuits all have length one, beginning and terminating
at the adversarial Tor node. By sending traffic through timing circuits to mea-
sure latency, the adversary is able to detect which Tor servers process traffic
that exhibits a pattern like that which the attacker Web server is generating.
Since Tor does not reserve bandwidth for each connection, when one connection
through a node is heavily loaded, all others experience an increase in latency.
By determining which nodes in the Tor network exhibit the server-generated
traffic pattern, the adversary can map the entire Tor circuit used by the
client.

Øverlier and Syverson [2006] discuss locating Tor hidden services. Hidden
services allow a server to offer a service anonymously via Tor, by maintaining
an open circuit to an “introduction point,” which the client contacts through a
circuit ending in a “rendezvous node,” that the server also contacts through a
fresh circuit. Their attack makes use of a malicious client and a single malicious
Tor node. The main idea is to make many connections to the hidden server, so
that it eventually builds a circuit to the rendezvous point using the malicious
Tor node as an entry point. The malicious Tor node uses a simple timing analysis
(packet counting) to discover when this has happened.5

3This value is configurable. In the version used in our tests—0.1.1.26—and all versions up to
0.2.0.26 released in May 2008, the maximum circuit lifetime is 10 minutes.
4The client can be directly identified only if its entry node is also corrupted, but the success of this
attack requires corrupting a proportionally large number of Tor nodes.
5Tor introduced “guard nodes” for hidden services to mitigate this attack.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:8 • N. Hopper et al.

In another attack against Tor hidden services, Murdoch [2006] shows how
to identify them based on clock skew, enabling us to estimate the load of
a given Tor node (as temperature rises when CPU load increases), as well
as the rough physical location of the node (as the temperature is generally
higher during the day than at night, with a clear pattern visible if clock skew
is measured over at least one 24-hour period). This attack may allow us to
uniquely map a hidden service to a Tor node, if that node is in a geographi-
cally unique location compared to other Tor nodes. More importantly, this at-
tack counters the reserved-bandwidth defense (used to make it harder for Tor
nodes to determine other nodes’ throughput), as CPU load indirectly measures
throughput of a node (based on how busy it is). A node can defend against
this by constantly running the CPU at 100%, but this may not be universally
acceptable.

Syverson et al. [2000] suggest that an adversary may deanonymize any
stream for which that adversary controls the entry and exit nodes. The prob-
ability of this occurrence in the short term (transient client connections) is
c(c − 1)/r2, where c is the maximum number of nodes corruptable by the ad-
versary in a fixed period of time, and r is the number of available Tor routers
in the network. An adversary can determine if he or she controls the entry and
exit node for the same stream by using a number of methods mentioned later
in the text, including fingerprinting and packet counting attacks.

Other attacks within Tor’s threat model. Hintz [2002] shows how to deter-
mine the remote Web site that a given stream is connecting to by fingerprinting
the pattern of traffic carried by the stream. This attack requires maintaining
an up-to-date catalog of Web site fingerprints, and comparing observed connec-
tions against this catalog. The fingerprint may be stable for certain Web sites
where either the format or the content does not change much over time. This
attack is particularly detrimental when mounted by a malicious entry node,
since it allows for the deanonymization of the client (who is directly connecting
to the entry node) as well as the remote Web server.

The packet-counting attack is a less time-precise version of the attacks
in Øverlier and Syverson [2006]—it relies on time intervals as opposed to times-
tamps. In this attack, discussed in Serjantov and Sewell [2003], Wright et al.
[2003], Back et al. [2001], and Blum et al. [2004], the adversary estimates the
load level of a node by measuring the packet flux across that node (the number
of packets entering and the number emerging). This attack can be used as a
starting point for other attacks mentioned earlier in the text, such as detecting
whether an adversary controls nodes that are part of the same circuit.

Attacks outside the Tor threat model. A well-known class of attacks against
anonymity systems—called statistical disclosure, or long-term intersection
attacks [Danezis 2003; Mathewson and Dingledine 2004]—also use coarse-
grained timing, treating the entire anonymizing network (be it a single mix, a
group of mixes, or another system) as a black box, and correlating traffic that
enters and exits the system to determine communication patterns. This attack
essentially learns about all of the communication relationships between the set

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:9

of nodes it can monitor. Since Tor is mainly concerned with a local adversary
that can only monitor the communications of its own nodes, the attack, while
a serious consideration, is essentially outside of Tor’s threat model.

3. MEASURING LATENCY THROUGH A PROXY

To validate the wide applicability of our attacks, we evaluated them against two
low-latency anonymity networks: the MultiProxy proxy aggregator service and
Tor. Both of these networks slightly complicate the issue of measuring client to
server latency because they are proxy rather than tunneling protocols: When
the proxy (Tor exit node) X receives TCP packets from server Y , it acknowl-
edges them immediately, then relays the data to the client. Thus, the usual
TCP mechanisms for estimating RTT only estimate the RTT from the server to
the proxy, which will not help with our attack. One possible avenue of attack
would be to explore application-level protocols that have explicit acknowledge-
ments, such as IRC [Oikarinen and Reed 1993], but since the most widely used
application protocol in Tor seems to be HTTP, which does not explicitly support
application-level ACKs [Fielding et al. 1999], this would restrict the scope of
our attack. Instead, we use a less-efficient but more widely applicable approach
targeted at Web browsers.

3.1 General, Inefficient Procedure

Our basic attack works as follows: When server Y gets an HTTP request from
a proxy and decides to attack the connection, it responds with an HTML page
with 1,000 tags, pointing to uniquely named
empty image files. This causes most existing browsers to eventually make 1,000
separate connections to Y .6 For each of these connections, Y will get a SYN
packet from the proxy X , and send a SYN/ACK packet; this packet is ACKed
by X , and X notifies the client. (Over Tor, X sends a “RELAY CONNECTED”
cell to the client). When the client A receives the notification, it forwards an
HTTP “GET” request to X , who forwards the request to Y . The time between
the arrivals at Y of the “ACK” and GET packets is a sample from TAX, the
RTT between the client and the proxy. See Figure 1 for an illustration of this
procedure in the context of Tor.

3.2 A More Efficient Procedure

The previous method of serially measuring the latency of a circuit by using ei-
ther an anonymity protocol-specific property of connection set-up or measuring
the time between serving a Web page and getting a request for an embedded
object, is very general in applicability but not very time efficient: If the RTT of
an anonymous connection is t seconds, then collecting n measurements requires
nt seconds. This can limit the sample size quite severely in some instances: For
example, Tor recycles circuits after 10 minutes, so a high-latency circuit might
provide only a few dozen measurements before being recycled. In Hopper et al.

6The amount of concurrency varies, but in the Firefox browser, for example, by default only 24
concurrent connection attempts are allowed; thus optimistically, these requests come in 42 “rounds.”

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:10 • N. Hopper et al.

Fig. 1. Measuring Tor circuit time without application-layer ACKs: The estimate for TAX is t3 −
t1. We abuse notation and write TXY for the one-way delay from X - Y .

[2007], we used this method exclusively and found many such circuits; analy-
sis excluding these experiments suggested that a more efficient timing method
would lead to better results.

If we design our own application-level protocol, this can be achieved by
pipelining. In addition to the general method described earlier in the text, we
implemented a very simple “application” in which the server periodically sends
timestamps to the client, who echoes the stamps back to the server. If the in-
terval between timestamps is ι, this allows collecting n measurements from a
circuit with delay t in time t +nι. We used ι = 0.5 seconds, allowing us to easily
collect several hundred samples of even very slow Tor circuits.

At this point, a natural question to ask is whether this limits the applicability
of the attacks we describe. After all, most Tor users will not access malicious
Web sites using the “timestamp echo” application. However, many Tor users
will connect to Web sites using either Firefox over the simple proxy interface to
Tor, or an arbitrary Web client over the more sophisticated Polipo [Chroboczek
2008] proxy. This is relevant because both Firefox and Polipo support concurrent
connections and persistent HTTP.

Persistent HTTP combined with the redirect functionality in HTTP can be
“abused” in order to provide a nearly identical functionality to our timestamp-
ing application as follows. The client’s first request is answered with links to
k uniquely named images with size 1 × 1, as before. Each image, however, has
a distinct DNS name for the server, so that the exit node must open k persis-
tent HTTP connections to the server. When the proxy requests one of these
images, the server responds with an HTTP/1.1 301 response—“Object Perma-
nently Moved”—with a new URL on the same server encoding the current times-
tamp. This is followed by 19 additional 301 messages, at regular intervals. Each
of these messages is an appropriate response to a GET request for the previ-
ous timestamped message. Although it is not required that a persistent HTTP
client should read these subsequent messages and correctly interpret them, as
long as the interval between messages is longer than the client’s time to process

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:11

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Circuit Time (ms)

C
D

F

Timestamp
Redirect

Fig. 2. CDF of circuit times measured by timestamping and redirection.

the previous redirect and emit a new request then it will appear to the browser
as if the circuit simply has very low latency. Thus, we would expect the browser
to process each of these “301 responses” as soon as it arrives and send a GET
request for the new location right away.

We tested and confirmed that both the persistent Firefox browser (version
2.0.0.1) and the nonpersistent command-line client wget over the Polipo proxy
(version 1.0.4) have this behavior. To confirm that measurements collected with
our timestamp application have similar statistical properties to measurements
collected via redirection, we performed 100 runs of the following experiment.
In each experiment, a PlanetLab node, acting as the client, constructs a Tor
circuit and simultaneously connects to our server over HTTP and the times-
tamp application. The latency of each connection is measured at most 20 times,
and then the connection is closed. In all, the timestamping application col-
lected 1,649 circuit times and the HTTP redirection server collected 1,916 cir-
cuit times. The cumulative distributions of these samples are shown in Figure 2.
We compared 100 random points from each of these data sets using an exact
two-sample Kolmogorov-Smirnov test [Panchenko 2006]; the p-value given the
null hypothesis was 0.797, meaning that if the two samples are IID from iden-
tical distributions, we would expect to see samples as divergent or worse 79.7%
of the time. This gives us good confidence that our timestamping application
produces results with high statistical similarity to an attack exploiting HTTP
redirection.

Given the similarity between the measurement methods, we used the sim-
ple timestamping application to perform all pipelined measurements reported
here, due to two factors. First, our application is much simpler to deploy and
configure for distributed experiments and results in a lower computational over-
head on the PlanetLab testbed. Second, each timestamp generated by our appli-
cation consumes only 4 bytes of bandwidth in each direction, whereas a complete
HTTP request and response consumes roughly 400 bytes of bandwidth; thus,
our application resulted in reduced bandwidth depletion of the Tor network.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:12 • N. Hopper et al.

Fig. 3. Circuit linking scenario: Client A connects via circuit E-M-X to server Y, and client B
connects via N-R-X to server Z. Y and Z collude to determine if A-E-M and B-N-R are distinct (left)
or identical (right) paths.

4. CONNECTION LINKING VIA LATENCY

The scenario behind our connection linking attack has two colluding servers,
Y and Z , both accept connections from the same proxy node X . A truly unlink-
able anonymity scheme should prevent the servers from being able to distin-
guish between the case that (i) two distinct clients have made the requests and
(ii) the same client makes both requests. Conversely, the goal of the servers Y
and Z is to determine whether they are communicating with different clients
or the same client. Figure 3 shows these scenarios in the context of Tor.

4.1 Attack Description

Our attack works as follows: We assume that Y communicates with client A
over an anonymous connection terminating at node X , and Z communicates
with B over an anonymous connection also terminating at node X . If we denote
by TUV, a random variable that denotes the RTT between nodes U and V, and by
TU a random variable that denotes the “queueing” time at node U , then the idea
behind our attack is to take several samples from both TAY − TXY and TBZ − TXZ,
and compare to see if they come from the same probability distribution. In the
simple proxy system, we have TAY = TAX + TX + TXY and TBZ = TBX + TX + TXZ,
while the equivalent Tor circuits involve nodes E and M between A and X , and
N and R between B and X , giving TAY = TAE +TE +TEM +TM +TMX +TX +TXY
and TBZ = TBN + TN + TN R + TR + TR X + TX + TBZ. If A = B, (and thus, over
Tor, E = N , and M = R), then the sample sets should appear to come from
the same probability distribution, and if not, they should appear to come from
different distributions.

We used the Kolmogorov-Smirnov, or K-S, test to compare the sample sets
in both attacks. The K-S test computes the largest difference in cumulative
probability density between two sample sets, and classifies two sample sets as
identical if this value is smaller than some rejection parameter. The K-S test
is nonparametric, that is, it makes no assumption about the distributions of
the sample sets (except that the samples are i.i.d.), and can differentiate distri-
butions based on “shape” and “location,” but generally requires more samples
than a parametric test with a correct model of the data.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:13

The K-S test has a tunable rejection region, giving a trade-off between false-
positive and false-negative error rates, so no single number characterizes the
performance of the attack. Thus, we evaluate the attacks using receiver op-
erating characteristic (ROC) curves: Each point on a classifier’s ROC curve
corresponds to the true-positive and false-positive rates for one setting of the
rejection threshold. This curve illustrates the different trade-offs between false-
positive and false-negative rates for a classifier: A perfect classifier would corre-
spond to the single point in the upper left corner, while a classifier that cannot
distinguish between positive and negative examples will result in (a subset of)
the line from (0, 0) to (1, 1). This trade-off is sometimes summarized by calcu-
lating area under the ROC curve (AUC), where higher values indicate a “supe-
rior” classifier; the perfect classifier has AUC 1.0, while the nondiscriminating
classifier has AUC 0.5. See Fawcett’s tutorial [2006] for a more comprehensive
treatment.

4.2 Evaluation

We tested the effectiveness of this attack using clients and servers from the
PlanetLab wide-area testbed, in three scenarios: First, we tested our generic
connection-timing method against Tor; second, we tested our timestamping
application over Tor; and finally, for comparison, we tested our timestamping
application over the MultiProxy network. Each evaluation consisted of multi-
ple runs, where each run performed the following experiment. First, two ran-
dom PlanetLab nodes were chosen to be the clients A and B, and two random
PlanetLab nodes were chosen to be the servers, Y and Z ; a random exit point
X from the anonymity scheme was chosen and each client established a con-
nection to X . In the MultiProxy case, X was chosen from among the currently
available proxies, while in the Tor case, X was chosen from among the high-
bandwidth high-uptime exit nodes, and A and B independently chose entry
and middleman nodes to build circuits terminating at X . After A and B estab-
lished their respective connections, both clients connected to both servers, and
the servers sampled these circuit times, as described in Section 3. These four
connection times were used in six comparisons: Comparing samples from TAZ
to TAY and TBZ to TBY gave two true positives, while comparing samples of TAZ
to TBZ, TAZ to TBY, TAY to TBZ, and TAY to TBY gave four true negatives. Counting
the number of misclassified streams for various threshold values allowed us to
calculate false-positive and false-negative rates. One important note is that the
current version of Tor recycles a used circuit after 10 minutes. Thus, we set all
of our experiments to stop after 10 minutes as well, regardless of whether the
run had completed.

Linking Tor Circuits with Generic Timing. Figure 4 summarizes the results
of our Tor experiment using generic circuit timing. In all, we collected 640 runs
using this method, with a median sample size after 10 minutes of approximately
250, as shown in Figure 4(a). Overall the results are significantly better than
random guessing. As Figure 4(b) shows, the attack has a reasonable trade-off
between false positives and false negatives, supporting, for instance, a 37%
false-negative rate when the test is tuned to support a false-positive rate of 5%,

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:14 • N. Hopper et al.

Fig. 4. Client linking in Tor with generic timing. (a) shows the cumulative distribution of timing
samples per run. (b) shows the ROC results; the area under curve is 0.89.

Fig. 5. Client linking in Tor with pipelined timing. (a) shows the cumulative distribution of timing
samples per run. (b) shows the ROC results; the area under curve is 0.96.

and achieving equal error rate of 17%; the K-S test has a total area under curve
(AUC) of 0.89. In contrast, if Tor circuits were unlinkable, we would expect any
linking test to have performance similar to the random classifier, which has
an ROC curve consisting of a straight line from the origin to (1, 1) and AUC
of 0.5.

Linking Tor Circuits with Pipelined Timing. While these results suggest
that latency data compromise the unlinkability of Tor connections to some de-
gree, there is definitely room for improved attacks. To determine if more time-
efficient methods of sampling circuit RTT would improve performance, we also
performed a set of 522 runs using our timestamping application to measure
circuit times. For these runs, the performance of the attack was significantly
improved: The equal error rate improved to 8% with AUC 0.96. The full results
are shown in Figure 5.

Linking Proxy Connections. Tor circuits can potentially have a much
higher level of distinguishability than connections over a simple proxy: If the

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:15

Fig. 6. MultiProxy.com linking results with timestamping. (a) shows the cumulative distribution
of timing samples per run. (b) shows the ROC results; the area under curve is 0.70.

variability of queueing latency at the proxy dominates the difference in network
latencies, then it will be difficult to distinguish two clients using the same proxy,
whereas in Tor the potentially idiosyncratic latencies of the different entry and
middle nodes contribute to the uniqueness of a circuit’s timing distribution.
To test the extent to which our circuit linking attack measures differences in
queueing delays versus network latency, we performed a set of 20 runs using
our timestamping application over the MultiProxy network. The results, shown
in Figure 6, confirm that Tor circuit linking works well in part due to the ad-
ditional diversity of Tor circuit times: The area under curve for MultiProxy
connections was 0.70 with an equal error rate of 38%.

5. LATENCY WITHOUT NOISE

The possibility of using latency data in traffic analysis has been mentioned
several times in previous works, apparently originating in an article by Back
et al. [2001]. However, neither this work nor subsequent works seem to have
addressed the basic question of How much information does network latency
leak? Of course the answer is highly dependent on both the network topology—
latency in any topology where all host pairs have the same RTT (e.g., a “star
topology” where all hosts are connected by equal-length wires to a single switch)
would leak no information about a host’s location, while latency in a unidirec-
tional ring would uniquely identify every host—and the protocol in question,
since it is conceivable that so much noise is added to the network latency that
the signal is undetectable. In order to get an upper bound on the amount of
information that can be leaked under the current Internet topology, we mea-
sured the amount of information about a host that can be gained given a precise
estimate of its RTT to a randomly chosen host. Thus, this evaluation represents
a “best-case” scenario for the adversary wishing to locate clients using latency
information.

More precisely, we imagine the following scenario: Starting from a set of
potentially distinguishable candidate network locations {C1, C2, . . . , CN }, the

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:16 • N. Hopper et al.

Fig. 7. Probability assigned to candidate locations 1 to 13,874 after revelations 0 to 14, for one
experiment. Note that the probabilities are plotted on a logarithmic scale.

environment uniformly picks a “victim” location V , that the adversary will try
to guess. Since V is chosen uniformly, initially the adversary has H0 = log2 N
bits of uncertainty about the location of V . Then, the environment uniformly
chooses a “beacon” location B1 and reveals B1 and a small sample T1 from
the distribution on latency between B1 and V to the adversary. The adver-
sary can sample the latencies between B1 and all of the Cis and update
his “belief” distribution Pr[V = Ci] appropriately. His new uncertainty is
H1 = ∑

i − Pr[V = Ci|T1] log Pr[V = Ci|T1], and the information gained by
this revelation is H0 − H1. As we repeat this process with randomly chosen
B2, B3, B4, and so on, the adversary updates his beliefs accordingly and be-
comes increasingly certain about the location V . The information leakage from
m measurements is then H0 − Hm, and if Hm is small, then there is a small set
of candidate locations that are likely for V .

To measure the information leakage of network latency on the Internet, we
performed a large-scale survey in August 2007. Using the routeviews database
of routable IP prefixes and reverse DNS queries, we identified 13,874 DNS
servers in distinct subnetworks. We then measured the RTT to these servers
from 14 randomly chosen PlanetLab hosts (at distinct sites). These hosts served
as the beacon locations in the previously described scenario. At the same time,
we took additional latency samples from the beacon hosts to 200 victim nodes
chosen uniformly at random from the set of candidate nodes. We used the non-
parametric Mann-Whitney-Wilcoxon (MWW) statistic for distribution shift and
Bayes’ Rule to compute the probability Pr[V = Ci|T].

Figure 7 shows the result of one such experiment. In this figure, the right-
hand axis ranges over candidate locations {C1, . . . , C13874}, the left-hand axis
ranges over beacon hosts {B1, . . . , B14}, and the vertical axis at point (Ci, Bj) de-
picts at logarithmic scale the quantity Pr[V = Ci | T1, . . . , Tj]. The figure shows

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:17

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropy (Bits)

C
D

F

No Data

T1

T2

T3

T4

T5

T6

T7

T8

T9

Fig. 8. Distribution of entropy of probability distribution Pr[V = Ci | T1, . . . , Tj], for j ∈ {0, . . . , 9}.

that initially the distribution is uniform across all candidate locations, and with
further measurements, the victim’s location becomes increasingly likely while
other candidates become increasingly unlikely.7

Figure 8 summarizes the results for all 200 victims. We see that, on average,
the information gain from the first revelation is 3.5 bits, with decreasing infor-
mation gain from subsequent revelations. Overall, all 200 experiments resulted
in less than 2 bits of uncertainty after 14 revelations, with median uncertainty
0.35; The median information gain after 3 revelations was 8.2 bits, and the
median information gain after 6 revelations was 11.5 bits. We note that in
Hopper et al. [2007], we used a different methodology to estimate the informa-
tion gained from a single RTT, based on the MIT King data set [Gil et al. 2005],
and arrived at a similar first-hop estimate of 3.6 bits.

Recall that when clients are identified with a network location, there will
always be large sets of nodes that are essentially indistinguishable within this
location. For example, typically all of the hosts within a routable IP prefix will
be within a few routing hops of each other. Since there are currently about
200,000 routable IP prefixes, we estimate conservatively that there are at most
218 distinguishable locations in the current Internet. Our study covered only
the 14,000 prefixes for which we could identify reverse DNS servers located
within the prefix, in order to avoid random scanning of IP addresses. Within
this sample set, on average, 9.4 RTTs are enough to identify one location. In

7In this figure, a second candidate location is assigned a higher probability than the others. For
the experiment, the victim was a host with a “.ru” domain name, the country code for Russia, while
the other probable location was a host with a “.ua” domain, the country code for the Ukraine.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:18 • N. Hopper et al.

Fig. 9. MultiProxy client location: Client V connects to server S through proxy P ; A connects to
S through P as well.

order to estimate how this figure changes when considering the entire Internet,
we randomly sampled 256, 512, 1,024, 2,048, and 8,192 of these locations, and
measured the average number of RTTs needed to identify a location within
these sets. We found that the average increase in RTTs required when the
number of locations doubled was 0.44, and that, on average, 9.3 RTTs were
sufficient to identify one of 8,192 locations. We can thus extrapolate a loose
estimate of 9.3 + 0.44 × (18 − 13) = 11.5 RTTs (on average) to identify an
Internet location.

6. MULTIPROXY CLIENT LOCATION VIA LATENCY

The previous results make it clear that knowing the latency between a client
and several hosts will allow an adversary to identify or significantly reduce the
set of possible locations of that client. In the context of an anonymity scheme, we
translate this to a scenario in which a client wishes to access a server pseudony-
mously, for example, by participating in a discussion forum or using a Web mail
service such as hotmail or gmail. Each time the client accesses the server,
some information about its network location may leak, and the goal of the
malicious server is to identify the client’s probable network location with in-
creasing confidence using as few of these linkable anonymous connections as
possible.

In the context of a proxy aggregation service, this is relatively straightfor-
ward. As shown in Figure 9, when the client V connects to the server S through
a proxy P , we can employ the timing methods of Section 3 to sample from the
distribution TVS = TVP + TP + TPS. These samples include the queueing delay
from P as well as the network latencies TPS and TVP. In order to sample from
TP , the malicious server uses a collaborating client A to connect through P ,
obtaining samples from TAS = TAP + TP + TPS. Using these samples, the server
computes an estimate for the distribution TVP. If this estimate is accurate, in
that it has high mutual information with the correct distribution, it can be
used in place of the “revealed” time T1 from the previous section to update the
adversary’s beliefs on the network location of the victim.

To compute the probability distribution on T1, we record the measured RTT
TAP from each sample taken from TAS. Then, for each candidate RTT τ , we use
the MWW test to compute the probability Pr[TVP = τ |TVS, TAS − TAP]. Comput-
ing the entropy of this distribution tells us how much uncertainty the attacker
has about TVP given the observations, or how much information is lost by this
method of measuring TVP. We note that this method of computing information

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:19

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropy(Bits)

C
D

F

(a) (b)

2,000

1,800

1,600

1,400

1,200

1,000

800

600

400

200

1,8001,6001,4001,2001,000800600400200
0

0

Actual Ping Latency (ms)

E
s
ti
m

a
te

d
 P

in
g

 L
a

te
n

c
y
 (

m
s
)

Fig. 10. Results of MultiProxy client location. (a) Maximum likelihood estimates vs actual ping
times (b) cumulative distribution of entropy.

gain is different from the method employed in Hopper et al. [2007], in which a
specific set of candidate nodes were evaluated and discarded if their estimated
RTT did not lie in a confidence interval around the observed RTT; the present
method gives a “modular” accounting of the information lost by the use of an
anonymity scheme regardless of the set of candidate nodes.

6.1 Evaluation

We measured the information loss due to use of a single-hop proxy by perform-
ing an experiment using the PlanetLab network testbed and the MultiProxy
aggregation service in January 2008. Our experiment collected data from 50
runs. In each run, random PlanetLab nodes were selected for the attacker, vic-
tim, and server, and a random open proxy was chosen from among the available
nodes on the MultiProxy list. Then, the attacker and the victim both used our
timestamp application to connect to the server through the proxy, and up to
1,000 timestamps were recorded for each connection, with the run terminating
ending 10 minutes after initiation. At the conclusion of a run, we computed the
conditional distribution on TVP and also recorded the true RTT between the
victim and the proxy.

Figure 10 summarizes the results of these experiments. The average number
of timestamps recorded per connection was 817 with an average connection RTT
of 787ms. The average entropy was 1.12 bits, with a median value of 0.9. Thus,
on average, an attacker loses very little information about the client’s location
behind a single-hop proxy. Furthermore, since the uncertainty is computed in-
dependently of any other data from the attack, runs with high uncertainty as
to the Proxy-Victim latency can simply be discarded. Since 28% of the runs
had essentially no uncertainty regarding the Proxy-Victim latency, discarding
high-entropy runs will only increase the number of connections required by a
factor of 3.57. Given our estimate that 11.5 RTT measurements are sufficient to
uniquely determine the client’s network location, this yields an estimated upper

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:20 • N. Hopper et al.

Fig. 11. Tor client location: Client V connects to malicious server A via circuit E-M-X; A determines
E-M-X and connects to A via E-M-X.

bound of 3.57 × 11.5 = 41 visits required. In the next section, we consider how
Tor’s multiple hops and cryptographic overhead impact our attack.

7. TOR CLIENT LOCATION VIA LATENCY

The basic scenario of our client location attack, when extended to Tor, is shown
in Figure 11. In this attack, the adversary consists of three logical entities,
AServer, a malicious Web server; AClient, a node posing as a Tor client; and
ATor, a corrupted Tor server capable of carrying out the Murdoch-Danezis at-
tack. The attack starts when the victim node V connects to AServer over a
Tor circuit consisting of nodes E, M , and X . AServer and ATor collude to carry
out the Murdoch-Danezis clogging attack and learn the Tor nodes in the cir-
cuit E − M − X . Thereafter, AServer and AClient collude to gain information
about V ’s network location. The goal of the attack is, after several repeti-
tions with different circuits, to identify V ’s network location with increasing
precision.

7.1 Attack Description

The basic idea of our client location attack is to try to measure—using a Tor
connection—TVE, the RTT between the victim V and the Tor entry node E. The
attacker then estimates, for several candidate victim nodes C, the RTT TCE.
Using these estimates, the attacker updates his beliefs about the victim node,
and the attack is repeated. After several iterations, the attacker should have
high confidence in a few candidate network locations for the victim.

In Section 4, we describe our technique for sampling the RTT of an entire
Tor circuit, TVX. Since TVX = TVE + TE + TEM + TM + TMX + TX , the circuit
time contains some information about TVE, but does not directly measure the
time of interest. In order to do this, we leverage the information gained in the
Murdoch-Danezis attack: Specifically, when V connects to AServer via Tor, we
assume that AServer and ATor collude to discover the circuit nodes E − M − X
that V uses for the connection. Initially, this attack will only reveal the nodes
in the circuit rather than their order, but since any given client uses only three

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:21

Fig. 12. Results of Tor client location. (a) Maximum likelihood estimates vs. actual ping times,
victim to entry node (b) cumulative distribution of entropy per run.

entry nodes, and as the server, AServer knows which node is the exit node, after
several iterations it will be easy to infer the circuit order; before such time,
the attacker can carry out the attack under both possible orderings and then
eliminate the incorrect data later.

Given this information, AClient can open a connection to AServer using the
same circuit nodes E − M − X . We measure the RTT of these connections
as well, obtaining several samples from both TVX and TAX. As in the previous
section, these samples, along with the knowledge of the AClient-entry node time
TAE can be used to compute a probability distribution on the value TVE. If this
distribution has high entropy, we can wait for another circuit using entry node
E to improve our estimate of TVE.

7.2 Evaluation

To measure the extent to which Tor circuits obscure the victim-entry node la-
tency, we performed an experiment using the deployed Tor network in February
and March 2008. Our experiment consisted of 995 runs, where in each run, we
randomly selected PlanetLab nodes to act as AClient, AServer, and V . Then, a
random Tor entry node, middleman node, and exit node were selected to act
as E, M , and X . Both AClient and V built circuits using these nodes and then
connected to the timestamp application on AServer using the constructed circuit.
We collected up to 1,000 timestamps for each circuit, terminating the experi-
ment after 10 minutes, and also measured the RTT from AClient to E. At the
end of the run, we used these timestamps to compute a conditional probability
distribution for TVE as in the previous section, applying a “bandpass” filter that
eliminated ping times with less than 1

8 the probability of the most likely ping
time, and then computed the entropy of the TVE distribution. Note that since
we are mainly interested in measuring the effects of latency, we do not perform
the Murdoch-Danezis attack in our experiments.

Figure 12 summarizes the results of these runs. The total number of runs
used was 995, and an average of 1,261 (adversary and victim) timestamps were

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:22 • N. Hopper et al.

Fig. 13. Relative spread vs. information loss.

collected per circuit, with an average circuit RTT of 5,597ms. The median in-
formation loss was 2.46 bits of entropy, with 23% of runs resulting in less than
1 bit of information loss about the victim latency TVE.

To test the reason for the high variability in information loss, we computed
the correlation between several properties of the circuit and the information
loss. We found that the “relative spread,” the difference between the 25th-lowest
circuit RTT and the lowest circuit RTT expressed as a fraction of the lowest
circuit RTT, accounted for 48% of the variation in information loss. Figure 13
shows the relative spread versus the information loss. Since the relative spread
is a function of the delay of all nodes in a circuit and the number of samples, this
highly suggests that information loss is independent of entry node. Thus, our
experiments suggest that, on average, the number of Tor circuit measurements
required for a given expected information gain is roughly 1/.229 = 4.37 times
the number of direct RTT measurements required. Combined with our estimate
of 11.5 RTTs required to identify a client’s location, this yields an estimate of
approximately 4.37 × 11.5 = 50 server accesses to identify a client’s network
location when no prior information is available.

8. ESTIMATING CANDIDATE RTTS

Once we have estimated the RTT from the victim to the Tor entry node E,
the next step in our attack compares this measurement to the RTT between
candidate nodes and E. So far we have evaluated the attack as if these are
known quantities. If we control either the candidate or E, we could compute
this directly via ping, but doing so would make it easy for us to determine the
victim, and is outside the Tor threat model. Thus, for the overall attack to work,
we need a method to obtain (or at least estimate) the RTT between two hosts
without the explicit cooperation of either. We measure the ability to do so using
network coordinates.

Network coordinate systems were originally introduced in the context of
peer-to-peer networks, for predicting which hosts will provide better routing
or download service. The basic idea behind such systems is for each node to

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:23

Fig. 14. Frequency (z) of coordinate distance (x) vs. ping time (y) pairs.

measure its RTT to several other nodes; using these RTTs, the entire network is
embedded into a coordinate space such that given the coordinates of two nodes,
it is possible to predict the RTT between them. A number of such systems ex-
ist [Ng and Zhang 2004; Dabek et al. 2004; Costa et al. 2004; Ledlie et al. 2007],
using various coordinate systems and embedding algorithms. We chose to use
the Vivaldi [Dabek et al. 2004] embedding algorithm, with four-dimensional
Euclidean coordinates, due mainly to ease of implementation. The primary dis-
advantage of using network coordinates is that in order to be accurate without
the cooperation of the candidate nodes, several nodes must be used for the ser-
vice; however, several freely accessible resources provide RTT measurements
from a group of hosts to arbitrary Internet hosts, including ScriptRoute [Spring
et al. 2003] and traceroute.org.

To assess the correspondence between network coordinates and ping times,
we performed the following experiment in February 2008. We chose a set of 100
random PlanetLab nodes and 1,500 Tor nodes. The PlanetLab nodes were di-
vided into 50 attacker nodes and 50 victim nodes. Then, we measured the ping
times between all attacker PlanetLab nodes, the ping times from the attacker
nodes to all of the Tor nodes and all of the victim nodes, and fit a coordinate
system to these times. For evaluation, we also measured the ping times be-
tween the victim nodes and the Tor nodes. Finally, we compared the coordinate
distances from victim nodes to Tor nodes with measured ping times between
these nodes.

Figure 14 illustrates the relationship between the victim coordinate dis-
tances and the measured ping times. We computed the frequency of each pair
of measured RTT and predicted RTT, to produce an empirical probability dis-
tribution; the figure shows a sharp spike in probability following the x = y

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:24 • N. Hopper et al.

line, indicating that network coordinates computed in this way strongly pre-
dict RTTs with little information loss.

Several alternate possibilities exist for the implementation of this step that
we did not evaluate empirically. One example is the King technique [Gummadi
et al. 2002], which measures the latency between hosts A and B by asking the
name server responsible for A’s reverse DNS entry to do a recursive look-up for
B’s reverse DNS entry; Gummadi et al. [Gummadi et al. 2002] report that this
technique has accuracy competitive with the GNP [Ng and Zhang 2004] network
coordinate system and found that over 90% of name servers will carry out such
recursive queries. Another possibility that we did not empirically evaluate is
“asking” the entry node E to ping the candidate nodes by trying to extend a
circuit from E to a service other than Tor running on a (node proximal to a)
candidate node. If the attacker runs the same service on a corrupted node D
and asks E to extend a circuit to D at the same time, then the time difference
between error messages for the two requests should be a good estimator for the
difference in RTT.

9. DISCUSSION

Limitations. One limitation of our client location attack is that we assume
that a user repeatedly accesses a server from the same network location. This
assumption may sometimes be invalid in the short term due to route instability,
or in the long term due to host mobility. It seems plausible that the attack can
still be conducted when circuits originate from a small set of network locations,
such as a user’s home and office networks, but the attack would be of little use
in case of more frequent changes in network location.

Another limitation of the client location attack, but not the linking attack,
is our reliance on the Murdoch and Danezis [2005] attack. The authors showed
that their attack worked against 13 of 15 nodes that they evaluated in the
much smaller Tor network from 2004, and had a duration of 6 minutes. As
it turns out, our attack based on redirection can be made to work as long as
the attack completes within a tolerable time period: The persistent streams
opened by Firefox/Polipo will not be migrated by the Tor client, and the very
first redirection response can contain the data bursts generated by the attack
as a long sequence of unrecognized extension headers. However, it is not clear
that any duration is sufficient to conduct the attack against the much larger and
more heavily loaded Tor network of 2008. More research is needed to determine
if this is the case.

Other Applications and Extensions. We evaluated our attacks in the con-
text of both simple proxies and the Tor anonymity scheme, but we expect
that they should be generalizable to other low-delay anonymity protocols.
For example, peer-to-peer designs such as Crowds [Reiter and Rubin 1998],
MorphMix [Rennhard and Plattner 2002], and I2P [jrandom et al. 2007], with
lightly loaded relays and multiple entry points, should yield cleaner RTT mea-
surements, allowing the attacker to locate clients with higher precision. We
are uncertain how the attacks presented here will interact with low-delay
mix cascades, such as AN.ON; in principle, some network latency information

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:25

should leak, but we lack empirical data on the distribution of the noise in this
scheme.

As we previously mentioned, we believe the speed and precision of our at-
tacks can be increased by using a different measurement procedure when ap-
propriate application-layer protocols are utilized. Examples of protocols that
can be exploited to yield application layer acknowledgements beyond persis-
tent HTTP [Fielding et al. 1999] include IRC [Oikarinen and Reed 1993] and
SIP [Rosenberg et al. 2002]. There is still room for evaluation of alternative
methods of implementing RTT oracles and perhaps for a more sophisticated
testing procedure that avoids the expense of querying the RTT oracle for every
pair of Tor entry node and candidate location. Finally, it would be interesting
to study the impact of various Tor parameters on our attacks, such as circuit
lifetime, circuit length, and path selection.

Our attack may also be applicable to a recently proposed defense mechanism
for hidden services, although it has not been tested. In particular, Øverlier and
Syverson [2006] have described an attack on Tor hidden services that exploits
the ability to make many requests to a hidden service so that eventually the
hidden service connects to a malicious Tor router as the first hop. They rec-
ommend using a small set of trusted entry guards as first hops to prevent the
attack. However, using essentially the same techniques, a malicious Tor node
and hidden service client should be able to recognize when it is the second hop
router and obtain very precise estimates of the hidden server’s RTT to each of its
guard nodes. These estimates can be compared against candidate locations, as
in our client location attack, and if there are sufficiently few and widely spread
candidates compared to the number of entry guards, it should be possible to
locate the hidden server. Thus, even if Murdoch-Danezis attacks are infeasible,
one layer of entry guards should not be considered sufficient to protect a hidden
server’s location.

Finally, several systems have recently been developed to geolocate an In-
ternet client given its RTTs from a set of landmark nodes [Wong et al. 2006;
Gueye et al. 2006]. In cases where candidate clients cannot be associated with
IP addresses, it may be possible to apply these techniques to our attack, leaking
information about the client’s physical location.

Mitigation. There are a number of techniques and best practices that can
reduce the attacker’s probability of success in the client location attack. For
example, onion routers can minimize the success probability of the Murdoch-
Danezis attack by allocating a fixed amount of bandwidth to each circuit, inde-
pendent of the current number of circuits, and doing “busy work” during idle
time; this may be an undesirable trade-off between anonymity and efficiency
but will prevent the client location attack from succeeding. Other mechanisms
that mitigate the Murdoch-Danezis attack by increasing the time required can
defeat client location with general timing, but as discussed earlier in the text,
will not prevent client location using persistent HTTP with redirection. It is
conceivable that there may be an adverse interaction between the conditions
necessary for the Murdoch-Danezis attack to succeed and the conditions nec-
essary for our attack to succeed; this could be determined by experiments that

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:26 • N. Hopper et al.

vary the network load on Tor while also carrying out our attack in full. If such
an interaction exists, it could be possible to engineer a low-latency anonymity
network such that conditions are always unfavorable for one part of the
attack.

Outside of such considerations, Tor nodes can prevent being used as RTT or-
acles by refusing to extend circuits to nodes that are not listed in the directory;
they can drop ICMP ECHO REQUEST packets in order to raise the cost of esti-
mating their network coordinates; and if Tor node administrators have control
over their DNS or reverse DNS hosts, they can ensure that recursive look-ups
from “outside” nodes are disabled. Tor clients and their network administra-
tors can likewise drop ping packets and deny other attempts to learn their
network coordinates to the necessary accuracy. Such attempts do not prevent
the measurement of circuit RTTs, nor, due to the variety of ways to measure
internet RTTs and the abundance of “nearby” hosts on most networks, do they
prevent the mapping necessary to peform the attack; they do, however, make
this mapping slightly less convenient.

Both client location and circuit linking can be prevented by adding sufficient
delays to make the RTT and timing characteristics of Tor servers independent
of the underlying network topology; this can be accomplished by delaying the
forwarding of data at the client. Alternatively, we can note that in our evalua-
tion, about half of the circuits we sampled already had enough timing noise to
essentially defeat the client location attack. Given the limited time period over
which a Tor circuit is available for sampling, it may be an effective counter-
measure for each node to introduce high-variance random delays in outgoing
cells. Selecting delays from an identical distribution at each Tor node would also
make the timing distributions from different circuits look more alike, possibly
thwarting the circuit-linking attack.

Of course, if the only way to thwart attacks based on latency and throughput
is to add latency and restrict throughput, this would have serious implications
for the design of low-latency anonymity systems and the quality of anonymity
we can expect from such schemes. We believe that our attacks are effective
enough to motivate searching for other possible countermeasures. One inter-
esting possibility is to make the Tor path selection algorithm latency aware, by
incorporating some notion of network coordinates into directory listings. Clients
could then construct circuits with the explicit goal of having an RTT close to
one of a small number of possibilities. Doing so could help reduce the high aver-
age circuit RTTs we observed (5 sec), reduce the effectiveness of latency-based
attacks, and allow clients to explicitly trade-off some anonymity for better ef-
ficiency. However, more research is clearly needed to understand the security
implications of such an approach.

ACKNOWLEDGMENTS

The authors wish to thank Roger Dingledine, Aaron Johnson, Yongdae Kim,
Jon McLachlan, Cat Okita, Ivan Osipkov, Paul Syverson, and Peng Wang for
helpful comments and discussions about this work.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

How Much Anonymity does Network Latency Leak? • 13:27

REFERENCES

2008. TOR node status information. https://torstat.xenobite.edu/.
BACK, A., MÖLLER, U., AND STIGLIC, A. 2001. Traffic analysis attacks and trade-offs in anonymity

providing systems. In Proceedings of Information Hiding Workshop (IH’01). Springer-Verlag,
Berlin, 245–257.

BLUM, A., SONG, D., AND VENKATARAMAN, S. 2004. Detection of interactive stepping stones: Algo-
rithms and confidence bounds. In Proceedings of the 7th International Symposium on Recent
Advances in Intrusion Detection (RAID’04). Springer, Berlin.

CHAUM, D. L. 1981. Untraceable electronic mail, return addresses, and digital pseudonyms.
Comm. ACM 24, 2, 84–88.

CHROBOCZEK, J. 2003–2008. Polipo–A caching web proxy. http://www.pps.jussieu.fr/ jch/software/
polipo/.

CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETERSON, L., WAWRZONIAK, M., AND BOWMAN, M. 2003.
PlanetLab: an overlay testbed for broad-coverage services. SIGCOMM Comput. Commun. Rev.
33, 3, 3–12.

COSTA, M., CASTRO, M., ROWSTRON, A., AND KEY, P. 2004. PIC: Practical internet coordinates for dis-
tance estimation. In Proceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS’04). IEEE, Los Alamitos, CA, 178–187.

DABEK, F., COX, R., KAASHOEK, F., AND MORRIS, R. 2004. Vivaldi: A decentralized network co-
ordinate system. In Proceedings of the 2004 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications (SIGCOMM’04). ACM, New York, 15–
26.

DANEZIS, G. 2003. Statistical disclosure attacks: Traffic confirmation in open environments. In
Proceedings of Security and Privacy in the Age of Uncertainty (SEC’03). Kluwer, The Netherlands,
421–426.

DANEZIS, G., DINGLEDINE, R., AND MATHEWSON, N. 2003. Mixminion: Design of a type III anonymous
remailer protocol. In Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP’03).
IEEE, Los Alamitos, CA, 2.

Dı́AZ, C. AND SERJANTOV, A. 2003. Generalizing mixes. In Proceedings of Privacy Enhancing Tech-
nologies Workshop (PET’03). Springer-Verlag, Berlin.

DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. F. 1999. Anonymity bibliography.
http://freehaven.net/anonbib.

DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. F. 2004. Tor: The second-generation onion router.
In Proceedings of the 13th USENIX Security Symposium. USENIX, Berkeley, CA.

FAWCETT, T. 2006. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 8, 861–
874.

FEDERRATH, H. AND KÖPSELL, S. 2006. JAP: Java anonymous proxy. http://anon.inf.tu-dresden.de/.
FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-LEE, T. 1999.

IETF RFC 2616: Hypertext transfer protocol – HTTP/1.1. http://www.ietf.org/rfc/rfc2616.txt.
GIL, T. M., KAASHOEK, F., LI, J., MORRIS, R., AND STRIBLING, J. 2005. The “King” data set.

http://pdos.csail.mit.edu/p2psim/kingdata/.
GUEYE, B., ZIVIANI, A., CROVELLA, M., AND FDIDA, S. 2006. Constraint-based geolocation of Internet

hosts. IEEE/ACM Trans. Networking 14, 6, 1219–1232.
GUMMADI, K. P., SAROIU, S., AND GRIBBLE, S. D. 2002. King: Estimating latency between arbitrary

Internet end hosts. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measure-
ment. ACM, New York, 5–18.

HINTZ, A. 2002. Fingerprinting Web sites using traffic analysis. In Proceedings of the Privacy
Enhancing Technologies Workshop (PET’02). Springer-Verlag, Berlin.

HOPPER, N., VASSERMAN, E. Y., AND CHAN-TIN, E. 2007. How much anonymity does network latency
leak? In Proceedings of the 14th ACM Conference on Computer and Communications Security
(CCS’07). ACM, New York, 82–91.

JRANDOM. 2007. I2P. http://www.i2p.net/.
KESDOGAN, D., EGNER, J., AND BÜSCHKES, R. 1998. Stop-and-go MIXes: Providing probabilistic

anonymity in an open system. In Proceedings of the Information Hiding Workshop (IH’98).
Springer-Verlag, Berlin.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

13:28 • N. Hopper et al.

LEDLIE, J., GARDNER, P., AND SELTZER, M. 2007. Network coordinates in the wild. In Proceedings of
the 4th USENIX Symposium on Network Systems Design and Implementation (NSDI). USENIX,
Berkeley, CA.

MATHEWSON, N. AND DINGLEDINE, R. 2004. Practical traffic analysis: Extending and resisting sta-
tistical disclosure. In Proceedings of the Privacy Enhancing Technologies Workshop (PET’04).
Springer, Berlin, 17–34.

MOELLER, U., COTTRELL, L., PALFRADER, P., AND SASSAMAN, L. 2005. IETF draft: Mixmaster protocol
version 2. http://www.ietf.org/internet-drafts/draft-sassaman-mixmaster-03. txt.

MURDOCH, S. J. 2006. Hot or not: Revealing hidden services by their clock skew. In Proceedings
of the 13th ACM Conference on Computer and Communications Security (CCS). ACM, New York.

MURDOCH, S. J. AND DANEZIS, G. 2005. Low-cost traffic analysis of Tor. In Proceedings of the 2005
IEEE Symposium on Security and Privacy. IEEE, Los Alamitos, CA, 183–195.

NG, T. E. AND ZHANG, H. 2004. A network positioning system for the Internet. In Proceedings of
the USENIX Conference. USENIX, Berkeley, CA.

OIKARINEN, J. AND REED, D. 1993. IETF RFC 1459: Internet relay chat protocol. http://www.
ietf.org/rfc/rfc1459.txt.

ØVERLIER, L. AND SYVERSON, P. 2006. Locating hidden servers. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy (SP’06). IEEE, Los Alamitos, CA, 100–114.

PANCHENKO, D. 2006. Lecture Notes of 18.443, Statistics for Applications. MIT Open Courseware
Projec. http://ocw.mit.edu/OcwWeb/Mathematics/18-443Fall-2006/CourseHome/index.htm.

REITER, M. K. AND RUBIN, A. D. 1998. Crowds: Anonymity for Web transactions. ACM Trans. Inf.
Syst. Secur. 1, 1, 66–92.

RENNHARD, M. AND PLATTNER, B. 2002. Introducing MorphMix: Peer-to-peer based anonymous
Internet usage with collusion detection. In Proceedings of the 2002 ACM Workshop on Privacy in
the Electronic Society. ACM, New York, 91–102.

ROSENBERG, J., SCHULZRINNE, H., CAMARILLO, G., JOHNSTON, A., PETERSON, J., SPARKS, R., HAN-
DLEY, M., AND SCHOOLER, E. 2002. SIP: Session initiation protocol. IETF RFC 3261.
http://tools.ietf.org/html/rfc3261.

SERJANTOV, A. AND SEWELL, P. 2003. Passive attack analysis for connection-based anonymity
systems. In Proceedings of 8th European Symposium on Research in Computer Security
(ESORICS’03). Springer, Berlin.

SPRING, N., WETHERALL, D., AND ANDERSON, T. 2003. Scriptroute: A public Internet measure-ment
facility. In Proceedings of the USENIX Symposium on Internet Technologies and Systems (USITS).
USENIX, Berkeley, CA, 225–238.

SYVERSON, P., TSUDIK, G., REED, M., AND LANDWEHR, C. 2000. Towards an analysis of onion routing
security. In Proceedings of the Workshop on Design Issues in Anonymity and Unobservability.
Springer-Verlag, Berlin, 96–114.

WONG, B., STOYANOV, I., AND SIRER, E. G. 2006. Geolocalization on the Internet through con-
straint satisfaction. In Proceedings of the USENIX Workshop on Real, Large, Distributed Systems.
USENIX, Berkeley, CA.

WRIGHT, M., ADLER, M., LEVINE, B. N., AND SHIELDS, C. 2003. Defending anonymous communication
against passive logging attacks. In Proceedings of the 2003 IEEE Symposium on Security and
Privacy. IEEE, Los Alamtios, CA.

Received February 2008; revised July 2008; accepted October 2008

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 13, Publication. date: February 2010.

