
Multi-Core + Multi-Tasking = Multi-Opportunity?
Karl Nyberg

Grebyn Corporation
P. O. Box 47

Sterling, VA 20167-0047
1-703-406-4161

karl@nyberg.net

ABSTRACT
In this paper we look at the opportunity provided by the
introduction of multicore chips to leveraging Ada’s multitasking
capabilities, with an eye to expanding the influence of Ada in this
environment. The Sun Microsystems Sun Fire T1000 running
Solaris is used as a platform for investigation of Ada in a
multicore environment. Some sample applications are described
and evaluated. Guidance on developing multi-tasking
applications is also given. Opportunities for the Ada community
to leverage this hardware shift to expand Ada’s scope of
application are presented.

Categories and Subject Descriptors: C.1.4
[Parallel Architectures] Multi-Core Processors; D.1.3
[Concurrent Programming]: Parallel programming.

General Terms: Measurement, Performance, Design.

Keywords
Multi-Core, Tasking, Parallel Execution.

1. INTRODUCTION
For many years, the semiconductor industry has been increasing
clock speed on delivered chips to provide greater performance. It
seemed that the industry was about to run into physical limitations
of the underlying semiconductor material being used to continue
this trend when manufacturers began considering the creation of
chips that contained multiple (albeit slower, to manage power
consumption and heat dissipation [1, 2]) computing cores as a
way to continue increasing overall performance.
This paper looks into exploiting the opportunity provided by a
paradigm shift to multi-core computing by leveraging the use of
Ada’s built-in tasking mechanism and expanding the influence of
Ada in this environment. The technical focus is specifically on
the Sun Microsystems Sun Fire T1000, containing an 8 core
Niagara 1 CPU with quad strands, effectively creating a system
with 32 virtual CPUs. Opportunities are identified for the Ada
community to leverage the shift to parallel programming to
increase the extent of Ada’s use as well as identification of
impediments to such increase in the Ada community.

2. CHASING PERFORMANCE

2.1 Prior Approach – Increase Clock Speed
2.1.1 Commodity Hardware
The chip wars of the end of the twentieth century and the
beginning of the twenty-first were all about speed. Some times
there were tweaks (64 bit CPUS, additional on-die memory, etc.),
but generally it was faster, faster, faster and who had bragging
rights to the fastest chip.
2.1.2 Serial Languages - Single-Threaded
Applications
Faster chips allowed single-threaded applications written in serial
languages to continue to achieve “acceptable” performance by
technology refreshes. This allowed industry to sweep problems
with application performance under the rug by continually
upgrading hardware as demands increased. This is not to say that
there aren’t multi-threaded applications (such as operating
systems, database engines and other transactional systems), even
in serial languages, just that such applications weren’t necessarily
multi-threaded applications at heart.
2.1.3 Commodity Programmers
By allowing clock speed increases to solve performance
problems, industry has been able to utilize commodity
programmers – those with an ability to think linearly and serially,
rather than in a parallel manner. These programmers have come
to depend on future clock speed improvements to increase
performance and have hit a performance wall as such
improvements have subsided.

2.2 New Approach – Increase Computations
2.2.1 Special Purpose (for a while) Hardware
Not everybody is going to want to pay the premium for a
multicore chip, especially when their underlying application (be it
a commodity operating system or other application) doesn’t take
sufficient advantage of the capability of the equipment to justify
the expense. However, as time progresses and operating systems
and applications evolve to take advantage of the technology, and,
as production volumes and commoditization kicks in to reduce
prices, the “popularity” of such chips will be more widespread.
2.2.2 Concurrent Languagesand Multi-Threaded
Applications
For Ada, multi-tasking through the use of multiple parallel
processors is not a new idea [3]. In fact, concurrent variants of
other programming languages (C, Fortran, Pascal, Modula II)
have also existed for a number of years. However, for some of
these languages, the addition of concurrent features has only been
optimized for special purposes hardware [5]. Even Java has a
comparable level of feature support for concurrency to that of
Ada [6], although it doesn’t seem to be widely applied.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda 2007, November 4-9, 2007, Fairfax, VA USA.
Copyright 2007 ACM 978-1-59593-876-3/07/0011…$5.00.

79

Oftentimes, parallelization is accomplished indirectly through the
use of “add-on” capabilities and libraries, such as OpenMP [7].

2.2.3 Thread-Aware Programmers
Academia [8] is just beginning an NSF-funded curriculum study
targeting parallel programming. Some parts of industry [9] thinks
it will be five to ten years before a parallel programming model
emerges and that the tools necessary for multicore programming
is “still in the dark ages” [10].

3. SUN FIRE T1000
The Sun Fire T1000 is one of Sun Microsystems’ “Cool Threads”
line of systems. The machines are centered around their multi-
core Niagara chip, designed to minimize power consumption
requirements and maximize a new metric, coined “SWAP”
(Space, Watts and Performance). The machine runs standard
Solaris and has had a version of Linux ported to it, comes with a
single CPU chip containing up to 8 cores, one floating point unit,
four gigabit Ethernet connections, and a fully loaded 1U rack
mount system with two disk drives consumes only 142 watts.
In order to introduce the new product to the marketplace, Sun ran
an “Open Performance Contest” [11] wherein it provided
evaluation systems for 60 day periods, and awarded systems
based upon a set of evaluation criteria to individuals, companies,
and universities based upon those evaluations. A system priced at
$14,465 was awarded based upon our evaluation [12] developed
with an Ada application.

4. SAMPLE APPLICATIONS
I had hoped to find more, but simple searching and sorting [13]
and the game of Life [14] weren’t highly motivating, so these
simple replacements for UNIX utilities wd (“word count”) and
sum (checksum) were created. The tables below show the
execution times (as reported, user time, system time and elapsed
time), with performance relative to the single task implementation
and the serial implementation (the identical Ada code for
calculating results, implemented in a loop rather than via tasks).
It is instructive to note that the sum command, requiring a greater
amount of computation than the wc command, was able to
effectively have a greater utilization of the available CPU with
increased tasking although both results show the overall
limitations due to interleaved file system operations.
4.1 The UNIX “wc” Command
Tasks User

Time
System
Time

Elapsed
Time

Relative
to 1 task

Relative
to serial

1 1002.0 5.0 1007.0 100.00 30.78

2 1059.0 5.0 534.0 199.25 58.43

3 1069.0 6.0 359.0 299.44 86.91

4 1078.0 6.0 278.0 389.93 112.23

5 1077.0 6.0 219.0 494.52 142.47

10 1128.0 6.0 121.0 937.19 257.85

15 1185.0 6.0 85.0 1401.18 367.06

20 1291.0 7.0 73.0 1778.08 427.40

25 1395.0 7.0 64.0 2190.63 487.50

30 1530.0 8.0 56.0 2746.43 557.14

32 1576.0 8.0 56.0 2828.57 557.14

4.2 The UNIX “sum” Command

5. PRACTICAL CONSIDERATIONS
There are a number of practical considerations in development of
multi-tasking applications. They probably apply just as much in a
multi-core environment as anywhere. These have to do with
implementing functionality, exception management (or the lack
thereof), memory management and task scheduling.

5.1 Implementing Functionality
The applications described in this paper have been made parallel,
resulting in multiple instances of what is effectively the same
algorithm being applied in either a linear or recursive fashion.
This homogeneity of tasks has allowed the desired functionality to
be developed in a serial fashion (thus focusing on the application
and not upon the tasking interactions) and then distributed across
multiple processors. Development of an application with non-
homogeneous tasks would of necessity have to be performed in a
different manner.

5.2 Exception Management
One of the inevitable problems that occur during the development
of a tasking-based application is the raising of an exception within
one or more of the tasks. Failing to provide an exception handler
for the subsidiary tasks causes these tasks to become non-
responsive. Using a debugger, manual tracing and / or a “catch
all” exception handler within each task will help to identify the
location of the problem and resolve this situation.

5.3 Memory Management
With multiple tasks operating, it is necessary to control access to
variables within the program. This could be considered a
drawback to the serialized implementation followed by recasting
in a parallel environment when the temporal scope of variables is
not adequately addressed. We found it sufficient to move such
variables into the scope of the task under execution. In other
instances it may be necessary to utilize capabilities provided by
protected types. Given our limited sort of “pattern” during this
effort, it is difficult to speak with any more certainty on this issue.

Tasks User
Time

System
Time

Elapsed
Time

Relative
to 1 task

Relativ
e to

serial

1 130.0 5.0 135.0 100.00 100.00

2 130.0 6.0 68.0 200.00 198.53

3 130.0 6.0 46.0 295.65 293.48

4 130.0 6.0 34.0 400.00 397.06

5 130.0 5.0 27.0 500.00 500.00

10 135.0 5.0 14.0 1000.00 964.29

15 143.0 6.0 10.0 1490.00 1350.00

20 172.0 6.0 9.0 1977.78 1500.00

25 201.0 6.0 9.0 2300.00 1500.00

30 234.0 6.0 9.0 2666.67 1500.00

32 243.0 6.0 8.0 3112.50 1687.50

80

5.4 Task Scheduling
Another situation under which tasks become non-responsive is
due to an unfair scheduling in the operating system. If one task
were to perform an I/O operation and thus be thrown out of a
ready-to-run queue, other tasks that are performing computations
could effectively “hog” the underlying CPU. In our applications,
we never saw this behavior in part because we never ran with
more subsidiary tasks (32) than we knew we had underlying
processors as our goal was to maximize the use of the CPU for
computationally intensive applications.

6. OPPORTUNITY
The Ada tasking model maps quite nicely (some would say
“intuitive” [15]) for application execution in multi-core
enviornments. The opportunity afforder by the introduction of
multi-core systems is not unlike the paradigm shift to a software
economy over twenty years ago with other hardware changes [16,
17]. Care should be taken to implement the application in such a
way as to utilize not only the underlying computational power in
the available system, but other capabilities (memory, file
processing, etc.) in order to fully maximize utilization of the
investment in the system.
Other efforts have targeted Ada to both general purpose and
application specifichardware, particularly in the parallel
programming / concurrent applications domain [18, 19]. Ada is
already making some inroads into applications with parallel /
concurrent opportunities, such as astrophyscis [20], but would be
a natural fit for other areas such as non-defense embedded
systems (communications systems, routers, etc.) as well as high
performance computing [21].

7. CHALLENGES
The use of Ada has been hindered by many issues during its
lifetime. Some of these have included: poor performance of early
compilers, the defense “taint”, lack of “coolness”. Even today,
just looking at the sponsors and presenters at recent SIGAda
conferences, the industry is primarily contractors and academics –
a community selling to one another. Most of the software that is
written in Ada is for limited quantity, albeit large scale,
deployment. There may be hundreds of Boeing 777s or 787s, but
there are nothing like the nearly 5 billion (yes, Billion) devices
running Java software [22].

8. ACKNOWLEDGMENTS / DISCLOSURE
The author would like to acknowledge Sun Microsystems, who
contributed the computing equipment for this effort, and in which
the author maintains an investment.

9. REFERENCES
[1] http://www.webservices.org/weblog/patrick_leonard/the_mul

ti_core_dilemma – The Multi-Core Dilemma
[2] http://www.devx.com/enterprise/Article/34588/1954 - Do

Newer Processors Equate to Slower Applications?

[3] – Linnig, Michael and Forinash, Donna, “Ada Tasking and
Parallel Processors”, ACM 0-9079329-9/89/0010-0426.

[4] White, James B. III “Performance Issues of Scientific
Programming in Ada 95”, Annual Internaction Conference
on Ada, Proceedings of the conference on Tri-Ada ’97, St.
Louis, MO, 1997. ACM 0-89791-981-5.

[5] – Brosgol, Benjamin – “A Comparison of the Concurrency
Features of Ada 95 and Java”, SIGAda ’98, p. 175 – 192,
November 1998, Washington, DC.

[6] – Marowka, Ami – “Parallel Computing on Any Desktop”,
Communications of the ACM, September 2007, Vol 50, No.
9, p 75 – 78.

[7] http://http://news.uns.purdue.edu/x/2007b/070807PaiComput
er.html

[8] http://www.eetimes.com
[9] – via http://www.eetimes.com – keynote from Multicore

Expo in Santa Clara, March / April 2007.
[10] http://www.sun.com/tryandbuy/prm/perf/winners.jsp - Sun

Open Performance Contest Winners.
[11] – http://www.grebyn.com/t1000 - Grebyn Corporation’s

T1000 Evaluation.
[12] – Cohen, Norman; “Parallel Quicksort: An Exploration of

Concurrent Programming in Ada”, p II.2.61 – II.2.68.
[13] – Levine, Gertrude – “The Game of Life with Ada Tasks”,

Ada Letters, Nov/Dec 1997, Volume 17, Num. 6, p. 19 – 31,.
[14] – Sanden, Bo I. “Intiutive Multitasking in Ada 2005”,

Crosstalk Aug. 2006.
[15] – Welbourne, Porter “Software economy in a rapidly

changing hardware environment”, Journal of Medical
Systems, Volume 8, Numbers 1-2 / April 1984.

[16] – Stephen Zeigler et al, “Ada for the Intel 432
Microcomputer”, IEEE Computer, pp.47 – 56, June 1981.

[17] – Schonberg, Edith; Schonberg, Edmond; “Highly Parallel
Ada – Ada on an Ultracomputer”, p 58 – 70.

[18] – Goforth, Andre; Collard, Philippe; and Marquardt,
Matthew - “Performance Measurement of Parallel Ada: An
Applications Based Approach”, Ada Letters Special Edition,
Volume X, Number 3. p 38 – 58.

[19] – Stift, Martin J. “Astrophysical Software Engineering in
Ada”, Institut fur Astronimie, Turkenscahnzstr 17 A-1180

[20] – Collard, Philippe; Goforth, Andre; Marquardt, Matthew –
“Ada As A Parallel Language for High Performance
Computers: Experience and Results”, ACM – 089791-409-
0/90/1200-346. p. 346 – 351.

 [21] – Schwartz, Jonathan -
http://blogs.sun.com/jonathan/entry/i_believe_in_network_cl
ients

81

