Check for
Updates

SIGPLAN Notices 22

* Floating Point

(ML,FE1,FE2,71,72,23) Multiply. Float-
ing point numbers symbolized by "FE1" and
"FE2" are multiplied by each other and the
product is returned as the value.

If the result exceeds the maximum al-
lowed the value is "Z1", and if less than
the minimum the value is "z2".

* Floating Point
(DV,FE1,FE2,71,72,Z3) Divide. The
floating point number represented by "FE1"
is divided by that represented by "FE2"
and the result returned as the value of
this function.

If the result of this operation ex-
ceeds the allowable range the value is "Zz1",
if below the minimum then the value is "z2".

CGRFELFETE) IR R crests

floating point number represented by "FE1"

1971 November 10

is greater than that represented by "FE2",

then the value of this function is T, oth-
erwise it is F.

>/ Floating Point Less
(LT,FEL,FE2,T,F) Than. If the float-
ing point number represented by "FEl1l" is
less than that represented by "FE2" the
value of this expression is T, otherwise
it is F.
*(FPMACH, FE1) ?loating Point Fo Mach-
ine Representation.
The value of this function is the internal
machine representation as an octal number
of the floating point number symbolized by
IIFElII .

* Internal Representation

(MACHFP,0) to Floating Point. The
value of this function is the number in
floating point format which is represent-
ed internally in the machine by the octal
number symbolized by "0".

CHARACTER AND BIT DATA TYPES FOR FORTRAN--~A PROPOSAL TO ANSI SUBCOMMITTEE X3J3

Boston Fortran Language Standards Group: Kenneth Ahl, John Barrington, John Hillier,
Evelyn Mack, and Walter Whipple (Hartford Data Center, Control Data Corporation,
Glastonbury Professional Plaza, 124 Hebron Avenue, Glastonbury, Connecticut 06033,
telephone 203/633~0296., November 1971.

I. OBJECTIVES

A fundamental consideration which must be decided upon when contemplating

Scope.
Three

Binary and Hollerith data types in FORTRAN is the overall approach.
alternatives present themselves immediately:

1. Handle Hollerith data "under the guise of a name of one of the other
types'" with a few modifications to legitimize widespread non-standard
practices. '

2. Extend all the applicable concepts of FORTRAN to new data types (such as
CHARACTER and BIT)for Hollerith and Binary data while introducing as few
new concepts as possible.

3. Implement a whole new language facility specifically tailored to the
manipulation of strings.

Each of these approaches is feasible and each has desirable aspects along with

drawbacks.,
The first approach minimizes changes to existing compilers and programs. It is
undoubtedly the most efficient of the three for machine computation. However,

it is inherently machine and compiler dependent as well as cumbersome for the
user. If any degree of installation compatibility is to be preserved it can be
very wasteful of core storage.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1316873.1317450&domain=pdf&date_stamp=1971-10-01

SIGPLAN Notices 23 1971 November 10

The second approach will require extensive changes to existing compilers and
programs. Addressing will require shifting and masking for word oriented
machines. Since the current standard FORTRAN makes no provision for the
manipulation of aggregates of array elements as vectors or strings (except in
1/0 statements), the language syntax will have to be extended. However, this
approach is highly machine and compiler independent and would provide efficient
utilization of core storage. It could be implemented by a logical extension of
the same rules that have worked so well for FORTRAN arithmetic.

The third approach will require a completely new compiler section to handle the
new syntactical forms. Due to the powerful string operators it would be
reasonably efficient. It would be machine and compiler independent but would
require a completely different body of knowledge on the part of the programmer.

In the discussion which follows, where the different approaches dictate distinct
options, the alternatives are presented in the same order used above.

Summary. Sections II through IV of this proposal deal with the various
possibilities for character and binary facilities in the FORTRAN Language. It
is intended that this portion constitute a working paper rather than an exposi-
tion of the desired modifications. In this way, the reasons for each change
may be outlined and considered independently of other features. The fifth
section, on the other hand, is intended to convey the opinion of the Boston
FORTRAN Language Standards Group on the most desirable way to incorporate the
manipulation of character and binary data in FORTRAN. The bibliography at

the end is not intended to be exhaustive but to indicate those sources the
group found useful,

Disclaimer. The opinions and concepts expressed in this proposal are solely
those of the authors and the Boston FORTRAN Language Standards Group. No
endorsement or approval by their employers, customers, or professional
organizations should be inferred. As an independent group of professionals,

no affiliation with the American National Standards Committee, the Association
For Computing Machinery, the ACM Special Interest Group on Programming Languages,
or any other professional organization exists. While the assitance of Control
Data, MITRE, Raytheon, and New England Life is gratefully acknowledged, no
approval or knowledge of the group's activities is implied.

II. STORAGE CONSIDERATIONS
Concepts

Knowledge of machine variable storage is important to the FORTRAN user since he
must be aware of the layout of variable blocks and because he usually is under
a maximum storage constraint most influenced by data storage.

Storage Unit. At the present time the FORTRAN user hasaword oriented structure
into which he places character or binary information with a packing factor
dependent on his machine. Under the guise of a name of one of the other types
of variables, short strings are stored and manipulated in a cumbersome, non-
standard way. However, retaining the basic storage unit, the word, is appealing
since all machines have such an entity. If one character per word were used,

SIGPLAN Notices 24 1971 November 10

the results would be machine independent at the cost of storage inefficiency

on most machines. With clever programming of auxiliary routines, it is possible
to perform most of the functions for which other alternatives arc recom-

mended. If, however, distinct types for character and binary data are
introduced with an appropriatec structure for each, then the syntactical forms for
operations on numeric types may be extended. With this approach, one defines

a character element as a storage unit capable of containing onc or more
contiguous characters with no defined relationship to a word. Similarly, the
bit can be defined as a storage unit capable of containing one or more contiguous
characters with no defined relationship to a word. Similarly, the bit can be
defined as a storage unit capable of containing one or more contiguous bits

with no defined relationship to a word. On any given machine, the storage units
of bit, byte (used here to define that amount of storage exactly sufficient to
contain one character), and word would have a fixed relationship which could
introduce bit-strings and character-strings of variable length as the basic
storage units, Such a structurc might also be dynamic in nature to allow
concatenation to occur in place.

Storage Layout. Packing and alignment with word boundaries are important
considerations because they are a source of deviation between machines., With

a word based structure, packing is performed by the user in a machine dependent
density. Each storage unit is aligned, by definition, at a word boundary.

With binary and character elements, however, packing is autoniatically dense

and machine independent while alignment is either left to the user or automatic.
If left to the user, full word quantities may not be properly aligned. With
automatic alignment (that is, padding of partial words) some difficulties

may be experienced by differences in the amount of padding betwcen machines.

In order to facilitate equivalencing, it would seem desirable, in any case, to
avoid padding between variables of the same type. The same considerations
exist with string typing, although an end-of-string marker might be desirable.
Such a marker would prevent the implied concatenation of contiguous strings,
however, and it would be advisable to handle string length as another piece

of information to be stored with the string origin. Some means of achieveing
a word-byte-bit synchronization for seleted variables could improve execution
time at the expense of storage.

Storage Assignment. Assignment of memory under the first two alternatives
would probably be sequential as the declarative is encountered, while the
third alternative would probably assign pointers to a separate dynamic array.
Sequential assignment is necessary if FORTRAN syntactical forms for numeric
data are to be used or extended for character and binary data. If special
language features are to be implemented for strings, then there is no reason
to require a sequential assignment or even to require static allocation. Of
course a static sequential assignment might make dump reading easier. Some
sort of micro (parameter) substitution would be valuable in FORTRAN, partic-
ularly for use in code which is dependent upon the relationships of different
storage centities. With the use of '"llollerith under the guise of" ... micro
substitution would permit somec form of machine compatibility with maximum
packing. Under the other alternatives, it would not be of particular utility
for producing standard code., Of course it would always be useful for varying
dimensions if some rudimentary expression evaluation at compile time were
permitted.

Standardization Problems. A variety of loop-holes through which non-conforming
code may appear to be conforming is possible and many compilers provide

diagnostics to help detect the presence of such loop-holes. Under the proviso
that "you can do anything if you know better' it might be wisc not to prohibit

SIGPLAN Notices 25 1971 November 10

such loop-holes in the standard. Variables in common, equivalence statements,
subroutine parameter lists, and arrays present the opportunity for mixed mode
operations without the appropriate mixed mode conversion, This problem is
particularly serious with character, bit, and string data because it permits
non-conforming code. However, since the problem is not restricted to character
and binary data types, it should be considered for the language as a whole
rather than be treated here.

Declaratives

Type Statement. The type statements now contained in FORTRAN are adequate for
Hollerith under the guise of a name of one of the other types. However, if
character and binary data are to be recognized as unique data types, it is
necessary to add appropriate declaratives such as CHARACTER and BIT. 1If a
more extensive capability is to be implemented, character string and binary
string types should be permitted. The character and character-string types
would be composed of single bytes. The present Hollerith usage could be
retained for use on machines requiring non-standard bytes for external media.
Conformity between installations would be aided by a standard character
represcntation. Binary and binary-string types should allocate one or more
contiguous bits,

Byte length may be variable depending on the machine or fixed to some standard.
For common word lengths, a six bit byte is most likely to pack into a small
number of words. For instance, it fits into one word for machines having

6, 12, 18, 24, 30, 36, 42, 48, 54, and 60 bit words, while it fits into two
words for machines with 3, 9, 15, 21, 27, 33 bit words; etc. and into three
words for machines whose word length is a power of 2. A seven bit byte, on

- the other hand requires seven words for even packing, except for 7, 14, 21, 28,
35, 42, 49 bit words which are not common. Present practice has been to insert
a padding bit to pack five 7-bit characters into 36 bits. The 8-bit byte
suffers from an inability to pack evenly into machines with words of length
12, 15, 18, 30, 36, and 60, On 15-bit machines, 8-bit bytes are especially
bad, since 15 bytes pack into 8 words. However, the wide usage of 9-track
tapes and 8-bit byte addressing machines as well as the rather large
representation in the market by IBM makes the 8-bit byte at least as attractive
as a 6-bit byte. An unspecified byte length gets around the packing problem,
as hardware manufacturers usually pick the optimum for each machine. Both 7
and 8 bit bytes permit the full ASCII character sets. Most manufacturers are
offering 8-bit capability on their newer machines,

Equivalence Statements. No change is contemplated for equivalence statements
except that some form of a string specification would seem desirable, perhaps
with a new declarative. This declarative would define a word, group of words,
or string to be equivalent in every sense to an arbitrary group of characters.
The format of this declarative is not immediately apparent.

Common Statements. Common statements present alignment and mixed mode problems
that have already been discussed under standardization problems. Dimension
statements present alignment problems. Data statements nmust suit the syntax
of the variable being preset. Most present compilers have suitable forms,
provided that the appropriate constants are available.

SIGPLAN Notices 26 1971 November 10

Length Attribute., Some forxm of variable length attribute has been suggested for
the FORTUAN language and the IBM syntax of name*length could be used with the
following possible interpretations.

Name type Unit for length
(Number of bits in a storage unit; default, one bit
Binary
(Maximum number of bits in the strings;
or (default one bit.
Character (Number of bits in the character; default, eight,
(Maximum number of characters in the string;
or (default one character.
Numeric (Number of bytes in the data type.

or (Number of significant figures for the data type.

Note that in the case of numeric data, the first unit implies storage in a byte
oriented array, rather than a word oriented array. A real number could be used
for length, with a length in bits following a period to imply bit storage of the
value instead of byte storasce, In thoe creos of numeric data, aliorment micht be
forced or roquired to sult arithumctic processes on a given computer. Such
numeric declarations would be useful for machine optimization. The second unit
for numcric data types would probably guarantec a minimum up to the maximum

established by the implementation.

Lambird has proposed that in the casc of character data, th? length
be variable up to the limit imposed by the initial dec}aratlon.

He further proposed functions and subroutines to redefine and
retrieve the length.

IIT - ARITHMETIC

A. Character Constants

Character constants have been considered to be of threec possible forms:

1. 'cec...c!
2. ‘'cc...c'C (as 'dd...d'B is for bit strings)
3. nHce...c

Advantages of the first is that it is already employcd in most implementa-
tions. In format statements, it is not necessary to count the number of
characters (as is necessary in 3.), as long as the total number of
characters is less than the record size. The form is compatible with the
bit-string constant suggested below, Example 'JOUN'

Bit-string constants can be represented in a compatible format, for
example: 'dd...d'B or '10110111'B,

SIGPLAN Notices 27 1971 November 10

In addition to the use of B to denote binary data, 0 could be used to
indicate octal or H used to indicate hexadecimal. In all cases blank
would be allowed and would be equivalent to the digit zero.

For spgcial applications, it might be desirable to right adjust the data
in a field. This could be indicated by a field width following the
type designator.

'ABC'C10
1771012

! ABC'C
'0077'0 = '000000111111'B

Statements where used: DATA, FORMAT, character expressions.

B. Variables and Arrays

1. Hollerith Variables

The Hollerith variable is the character data under the guise of a
name of one of the other types presented in the present standard.

2. Character Variables
These are single characters each occupying one character-storage
unit. A character variable is a datum containing (g

jone
a variable number

of characters dependent upon the proposal form selected.
They are defined by a CHARACTER type statcment.
Example: CHARACTER CH,LETTER,DIGITS
The value of a CHARACTER variable may be defined by:
a) DATA statement
DATA CH/'J'/,DIGITS/'2'/
b) Assignment statement

'Kl
CH

LETTER
DIGITS

¢} Input list as specified in section 1V
d) Function or Subroutine reference: CALL SUBR (CH,DIGITS)
e) Common
3. CHARACTER Arrays
Character arrays can be represented as strings or arrays of strings.
A string in this connotation is a connected scquence of characters.
Each character is defined to occupy onc character-storage unit (byte)

Character arrays are specified by an array declarator in a DIMENSION
or CHARACTER statement,

SIGPLAN Notices 28 1971 November 10

a) For a CHARACTER declarator:

CHARACTER A, B,X
DIMENSION A(27), B(27,10),X

X is a single character variable, A has a length of 27 characters,
and B is an array of 10 elements each of length 27 characters.

b) For a string declarator:

CHARACTER *27 A,B(10)
CHAPACTER A*27,B%27(10),X

The *27 indicates the length attribute, that is, the number of
character variables in an element..

Multiple Elemcnt Syntax

The following discussion treats only the character data type, since
multiple element syntax is not applicable to Hollerith data and is implicit
in the definition of string.

Character data must be able to be referenced more than one character at
a time. Proposals for accomplishing this are:

a) Equivalencing arrays
b) Element lists (also called implied DO loops or partial arrays)
c) Subarray definition

Let X be a character of length 8 with elements Y and Z of length 6 and 3
as follows:

IERRTEDRRFRRARRNANIR
. 2

a) Equivalencing arrays:
CHARACTER X(8), Y(68),7(3) _
EQUIVALEHCE (X(2),Y(1), (X(6),X{1)) ‘

The entire array could be referenced by use of its name without subscripts.
Alternatively, the array name could be followed by empty parentheses, null
subscripts, or asterisk subscripts to mean the entire array.

b) Element List

The element list, or partial array, can be proposed in three forms,
each of which would have defaults designated for missing parameters.
The defaulted parameters could be merely null or replaced by an
asterisk.

1. Use of a colon to separate the starting character and the length.
Employing the above sketch

X(2:6) is the same as Y
X(6:3) is the same &= 2

SIGPLAN Notices 29 1971 November 10

2. Use of double period to specify start and final

X(2..7) is the same as Y
X(6..8) is the same as Z

3. Implied DO loops in form similar to present usage

(X(1),1=2,7) is the same as Y
(X(1),I=6,8) is the same as Z

If C were dimensioned (10,10) as type Character many forms for
referencing the entire array would be possible, such as:

o . C€(1:10,1:10) €(1..10,1..10) ((c(1,J),T=1,10)J=1,10)
()

c() C(:,2) C(C.y.)

C(*,*)

C(*)

Elenent lists would be a generally useful feature in FORTRAN in
places other than I-0 lists and DATA statements,

Form 3 above is rather clumsy. Forms 2 and 3 cannot be applied to
other than the leftmost subscript. The advantages of forms 1 and
2 are illustrated by the following examples of partial arrays.

1) DIMENSION A(10,10) The 3 characters starting
. « A(5,5:3) ... at 5,5 '
2) DIMENSION A(10,10) The characters from 5,5 to 7,5 .

« « « A(5..7,5).

3) DIMENSION A(10,10) The characters from 5,5 to 7,5 .
s e o A(S,S:7,5)

This form would be allowed 'in: Data statements, I/0 lists, arguments, and
assignment statements.

The use of : in the above is only for example. The separator could be any
character including comma.

c) Subarray definition:

The subarray definition is similar to the equivalencing arrays paragraph,
but employing special syntax for subarray definition:

CHARACTER X (8)
SUBARRAY Y(6) :X(2), Z(3) :X(6)

with the same referencing as in paragraph a).

D. Expressions Involving Characters

1, Comparison

In the current standard, llollerith data may not be comparcd or concatenated.
These operations can be done for either Hollerith data, or the new CHARACTER
data type by defining either intrinsic functions, COMPR or CONCAT, or

3SIGPLAN Notices 20 1971 November 10

opcrators, (A .EQ.B) or (A-B). The .EQ. appears to be generally accept-
able. The A-B will produce problems if mixed mode expressions are allowed.
(Sce follewing subsection.) The relational operators (.LT., .GT.,etc)
could be used in a collating scquence sense.

2. Concatenation and string operations

A serious problem occurs with String expressions: the generation of
temporary rcsults., If the length of a temporary cannot be predicted,

then the compiler cannot efficiently allocate storage. Such temporaries
could be gencrated as a vresult of a function attempting to rcturn a string
result, or by the concatenation of several strings.

There are several solutions to this problem, none of them completely
satisfactory:

1) Do not allow functions, intrinsic or otherwise, to return strings as
a result. This includes a prohibition on concatenation.

2) Provide some means of statically allocating storage for intermediate
and function results, such as allowing function names to appear in
Dimension statciients to assign sufficient storage for the return of
a string result.

3) Require FORTRAN to dynamically allocate core at execution time when
necessary.

The first is restrictive, the second both irnoses restrictions and wastes
sterage in cach temporary, while the third is neither cfficient nor FORTRAN
like. Also, sclection of the first requires that all string operations

be done by Subroutine where results can be returned to user defined areas,

E. Assignment Statements

A=B wherc A and/or B may be arrays should be permitted.

The interpretation would be:

If the length of A is the same as the length of B, each element of B will be
moved to the corresponding element of A, If A is shorter, the remainder

of B should be ignored. If A is longer, it might be filled by null entries
(zero, blanks, . False.)

F. Mixed Mode Ixpressions and Statements

There are several ways of treating Character variables when used in arithmetic
context. One suggestion is that the arithmetic value of a string be the ASCl1l
value of the first character. Another possibility is to convert strings to
and from integer mode as required, this would be defined only for strings
containing characters with the format of integer constants., It is also
possible to not define such operations.

Bit strings represent a different problem. One solution is to define no
conversion between bit strings (arrays) and other data types and declare that
the bit pattcrn shall simply be transferred between variables.

SIGPLAN Notices 31 1971 November 10

Consider mixed mode statements of the form:
I1=2¢ and C=1

where I is an integer variable and C is a CHARACTER variable. Two interpreta-
taions are possible:

1) ASCII collating sequence using intrinsic or implied functions

I
C

L]

ASCII (C)
TICSA (1)

either defined for the first character of C only, or possibly for all
characters resulting in an array of integers, one element per character,

2. The FORMAT-statement type of I conversion:

I = BCDBIN (C)
C = BINBCD (I)

defined as right-adjusted, blank-filled numeric to BCD for as many characters
as arc converted if C is long enough, (a suggestion).

The first of these two alternatives might be preferred for the implicit mixed-
mode conversion because the BINBCD function violates the proposed rule that
a function may not return a character string as a result.

Another objection to the second form is that it is defincd for a very limited
subset of the total character set, the numerals. CHARACTER data is gencerally
used to permit format-free processing of input and output data. For this, the
entire character set and a conversion to a standard collating sequence are
highly desirable. When character operations have determined the field to be
numeric, then some form of Encode/Decode or rerecad may be used to perform a
nuneric, formatted conversion.

G. String Functions § Subroutines

Even though there may be problems passing arguments to subprograms on a word
oriented machine, it would be a serious limitation to restrict the use of
CHARACTER/BIT variables, constants, or expressions in calls to subprograms.
(It may be necessary to pass a pointer to the starting character.)

From the earlier discussion of string expressions, it appears that it would
be unwise to try to define character functions which can return a value of
more then a single character, unless some means of dcclaring a function
dimension were added to FORTRAN. However, since the need for such a facility
exists for all types of functions, not just character and bit functions, it
will not be considered further here.

In passing arguments (as well as in I/0 lists), the extra information (pointer
to first character) may make it desirable to pass Character arguments in a
manner different then that of other data types. This is not a problem since

the Actual and Dummy arguments can be required to be of the same type. However,
this feature will make it difficult, if not impossiblc, to continue to handle
character data under the guisc of some other data type.

SIGPLAN Notices 32 1971 November 10

IV, INPUL/OUTPUT CONSIDERATIONS

A. Formats
Formatted I/0 will require changes in the FORMAT statement to incorporate
CHARACTER and BIT data types. CHARACTLER data can continue to use the 'A'
descriptor, or a new type (e.g. '"C") could be defined. BIT data will probably
require a new data type (e.g. "B').

The new descriptors would have a repcat count associated with them, and
possibly a width., Unless we consider that the data is stored in strings, the
width specification is probably rot tco meaningful. We could specify that

the string length defines 'g' for the string, CHARACTER and BIT data would
assume 'g' equal to onc in the absence of a STRING declaration, This equiva-
lent 'g' would then interact with the width in the samc manncer as currently
occurs with the "A'" descriptor.

It may be desirable to continue to usc "A'" for CHARACTER data type, but may
cause conflicts if it is desired to continue temporarily the use of Hollerith
under the guise of another type. 7This is espccially true since it may be
desirable to usc "C'" for COMPLEX data. A possible resolution is that since

the width specification is not too meaningful for CHARACTER data, the descriptor
A" would imply CHARACTER and "Aw' would imply Hollerith under the guise of
another type. Alternatively, another letter such as "K' could be used to
designate character data.

No consensus has been reached on the exact format of BIT conversion, whether
the representation should be binary, octal, hex, or even variable,

B. Input-Output lists

There appears to be no reason to restrict or modify the I/0 list for CHARACTER
of BIT data types.

This would include arrays, array clements, variables, and implied DO loops.

It would be desirable to also allow the forms of expressions and constants on
output for all data types.

C. Unformatted Input-Output

Unformatted I/0 of CHARACTER and BIT data should be allowed. There may be
some problems due to non-adherence to word boundaries; but since no machine
compatibility of binary data is assumed or implied in thc standard, the
problem can be solved by the use of additional control words, etc.

D. Encode/Decode

ENCODE/DLECODE have proven to be a reasonable technique for in-core translation
to/from Hollerith data. They are easy to learn, moderately efficient, and
usually easy to implcment.

Since there is rarely any reason to have CHARACTER data unless it is either
input or intended for eventual output, the same basic method of conversion
would appear desirable,

SIGPLAN Notices 33 1971 Nevember 10

ENCODE/DECODE should ideally impose no limit on the string length which can be
used. There should be a definition of multiple record operations. (The
methods used in current implementations are not necessarily the best.)

Because of the inherent inefficiency in ENCODE/DECODE, it would be desirable
to have other methods of doing certain conversions, especially INTEGER to/from
CHARACTER/BIT.

E. Reread

Experience indicates that the REREAD capability is desirable. A format such as
reading from unit zero (or REREAD) will reformat the last record read on any
unit. It is not normally difficult to implement and is useful for readlng
records which could not be read via the original format.

It should be noted that reread coupled with rewrite reduces, but does not
eliminate, the necessity for ENCODE/DECODE. Reread reads the last record from
a core buffer, rewrite writes into this core buffer. Rewrite could be
implemented in the same manner as reread (e.g. by a WRITE on unit zero). It
is less desirable than ENCODE/DECODE for the following reasons. An operation
to generate the record (rewrite) and another to retrieve it (Reread) would be
required, the record size would be limited to an internal work area size, and
there would be no easy way to handle multiple record Read/Write statements.

V RECOMMENDED FEATURES

A. Introductory Remarks

This proposal adopts the second of the three alternatives listed in
Section I, namely to extend the language by adding new data types with
a few changes to the syntax. The new types are:

CHARACTER for character data, and -
BIT for binary data.

Character and Bit strings are implemented as arrays, where the first
dimension could be considered to be the string length.

The proposed Character and Bit additions include the facilities now
available by using '"Hollerith under the guise of a name of one of the
other types', but are independent of the data types now in the language.

A major advantage of the proposed Character and Bit data types is that

most of the syntax necessary for defining and using these types is identical
with that of the existing types. As a consequence, additions to syntax

for the existing types can enhance the new types and vice versa. For
example, the multiple-element syntax proposed in the following section as
an addition for string and substring referencing can be easily extended to
all data types, thereby simplifying the source code required to handle any

array.

The Fortran modifications required to implement Character and Binary data
types, along with desirable extensions to increase their utility, are
presented in Section B. Section C contains examples of the use of the

SIGPLAN Notices 34 1971 Nevember 10

B. Proposed Fortran Modifications

DECLARATIVE, Two new type declaratives, CHARACTER and BIT, are required
with the same syntax rules as any other type declarative. A variable,

array element, or array name of type Character or Bit may appear anywhere

a variable of another type may appear, with the same restrictions regarding
the mixing of variables of different types. One bit of storage shall be
allocated for a single element of type Bit and one byte for a single element of
type Character. Successive allocations of data elements of the same type
shall be continuous, but a word may actually contain any number of charac-
ters or bits as long as the packing factor is transparent to the user,

For Character data, at least the FORTRAN Character set shall be implemented.
Additional characters, representable on the object machine, could be added
to the set of character variables. The relationship between data elements
occupying a bit, byte, and word is undefined, thus the results of mixing
these types in Equivalence statements and subroutine parameters is also
undefined. In statements which allocate storage, the compiler will insert
whatever padding is requircd to achieve alignment of byte and word
boundaries, between different data types.

CONSTANTS. Character and Bit constants will be delimited by single quotes.
A double quote in a Character constant will be interpreted as an embeddcd
single quote. For Bit data, blanks will be interpreted as zeroes. Constants
are followed by a characier to designate the type of the constant (C or
blank for Character data, B for binary, O for octal, and H for hexadecimal).
Octal and hexadecimal constants are merely shorthand notations for Bit
constants. The length of any constant is the number of character or bit
positions it occupies. A Character constant is measured in bytes, a Bit
constant in bits. A Character constant may optionally be followed by a
justification and length specification which permits specifying only the
subfield which contains non-blank characters. Left justification is the
default, with L or R specifiable. The complete specification is:

blank} Jblank blank
L n

'text ...

O =

R
H

MODE CONVERSIONS. Character and Bit data may appear in mixed mode expressions
with data of other types. Conversion of Character data shall occur via the
Integer type for each character. A standard character code is required for
such conversions and it is suggested that the USASCII code be specified for
character-integer conversion. Bit data is handled in the same manner

cxcept that each binary digit is converted to its same value as an integer.
Integers other than zero and one are undefined when converted to Bit.
Conversion to other data types for the purpose of evaluating mixed mode
expressions is done by converting first to Intcger,then to the required type.

CHARACTER AND BINARY EXPRESSIONS. Character expressions are limited

to a constant, variable, array element, array or function reference.

No Character operations are defined. Bit expressions are composed of
binary operands and binary operators which are the same as the logical
operators .AND., .OR.,.XOR. and .NOT., where a Truec logical state is the
same as a binary 1 for the resulting operation,

SIGPLAN Notices 35 1971 November 10

CHARACTER AND BIT ASSIGNMENT STATEMENTS. Assignment statements follow
the existing rules of Fortran, except that an expression may cause more
than one assignment operation if the length of the evaluated expression
exceeds one and the receiving variable is an array name. In other words,
it is proposed that a statement of the form

ARRAY1 = ARRAY2

mean that the elements of ARRAY2 be moved to ARRAY1. If ARRAY1 and ARRAY2
have unequal dimensions, either the excess elements of ARRAY2 would be
ignored or ARRAY1l would be filled out with null data, depending on whether
the declared size of ARRAY2 is larger or smaller than the declared size of
ARRAY1., A null datum could be defined as blank for a Character array,
False for a Logical array, and zero for the other types.

COMPARISON OF CHARACTER AND BIT EXPRESSIONS. The .EQ. and .NE. operators
are defined for the Character and Bit data types. The othex relational
operators are undefined. It is proposed that two arrays may be compared
for equality:

ARRAY1 .EQ. ARRAY2
ARRAYL .NE. ARRAY2

where the assumption would be made that the shorter array is followed by
sufficient null data to make the comparison meaningful.

SYNTAX FOR- SUBARRAYS. 1In the assignment and comparison operations, as
well as in I/0 lists and subprogram arguments, it would be convenient to
be able to reference only part of an array. Further, this feature would
make some of the more obvious choices for implicit Character functions
(such as a concatenation function and a substring function) unnecessary,
since these operations could be coded in-line in one or two statements,

The syntax proposed for subarray reference is one of the two following forms:
a) Array (subscriptsof beginning ... subscripts of end)

Ex: CHARACTER ARRAY (4,6,8)
ARRAY (1,1,6 ... 3,1,6) refers to the three
elements (1,1,6), (2,1,6) and (3,1,6).

b) Array (length : subscript of beginning)

Ex: CHARACTER ARRAY (4,0,8)
ARRAY (3: 1,1,6) ro2fcers to the seme three elements.

The choice of syntax (b) would have the interesting feature of providing
the ability to omit subscripts from left to right with well-defined
results, (with the omission of the length indicating a length =qual

to the product of the omitted dimensions),

Ex. CHARACTER ARRAY (4,6,8)

Reference Length Begins
ARRAY (3 : 1,1,6) 3 1,1,6
ARRAY (: 1,1,6) 1 1,1,6
ARRAY (: 1,6) 4 1,1,6

SIGPLAN Notices 36 1971 November 10

ARRAY (: 6) 24 1,1,6
ARRAY (23 : 6) 23 1,1,6
ARRAY () 192 1,1,1

FORMAT STATEMENTS. Present Fortran format rules apply; however, for
character data types the designator nA implics left justification in a
field of n characters. Since each element is a list item, truncation
cannot occur. Bit data uses the designator nBw for bit strings. w is
the number of bits to be converted to (from) each output (input)
character (e.g. 1 or blank indicates a binary number base, 3 indicates
octal, and 4 indicates hexadecimal).

FORMATED TYPE CONVERSION. A means of in-core conversion betwcen data
types according to a format statcment is desirable. This feature is
already implemented in many compilersas ENCODE/DECODE. Encode has a syntax
similar to the formatted Write (Dccode similar to the formatted Read),

but has an array name instead of a unit nuiber. The array used to contain
the formatted form of the variable list is defincd as valid for type
Character only. The number of characters per internal record should be
-specifiable to allow multiple record capability. The same standard forinat
scanning and editing capabilities now used for formatted, Write/Read would
be used for Encode/Decode.

Ex. CHARACTER ARRAY (200)
DIMENSION MATRIX (20,10)
DECODE (20,100,ARRAY) MATRIX

100 FORMAT (2011)

LENGTH AND OTHER ATTRIBUTES. It is convenient in many areas of Fortran, especially
in Character handling, to be able to recover attributes of variables. In parti-
cular it is useful to be able to set a length attribute and then usc this defined
length later. This aviods the need to pass the length as an argument to a sub-
program.

It may even be desirable to have available an entire symbol table entry including
the name, type, and dimensions of the variable. There are several problems, one
of which is the large amount of core which might be required for symbol table
information. It is therefore proposed that a declaration of the form SYMBOL TABLE
be available on which the programmer could list the symbols to be included; omis-
sion of a SYMBOL TABLE statement would cause the table to be generated for all
variables.

There are some unresolved problems such as, what is the symbol table for an element
of an array? What is the symbol table for a temporary? Is this approach suffi-

ciently efficient?

Among the proposed functions and subroutines are:

LENGTH (symbol) returns length

CALL SETLEN (symbol,len) sets length

CALL NAME (symbol,name) retrieves name of symbol
IDIMS(symbol,0) retrieves number of dimensions
IDIMS(symbol,n) retrieves the nth dimension
ITYPE(symbol) retrieves symbol type (e.g. O= integer

1= real, etc.)

The examples in Section C assume the existence of such a Symbol Table for all
actual parameters in the calling program.

"SIGPLAN Notices 37 1971 Nevember 10

C TLLUSTRATING CHARACTER-STRINC I 09 SURSTRTNGS’ AND MIXFD MODE,
o e e l S T i
C

TCTTTTTMAINTRROG = READ "SCHEDULE CARPS), ‘ASSIGN TIMES, AND PRINT =~~~
C | , |
TTTTTTTTCHARACTER TORATRM (1) v TCOMT (1), TIME (8)4 LENGTH (2)y FROM (2)y
X TO (2)s TRATAO (3)s COMMNT (44)9 BOARD (2)
TTTTTTTTEHARACTERS T TUHOLRS TU2Y 9 MINS (2)
EQUIVALENCE (HOURS (1) TI"EASI))' (MINS (1) HOURS W)y

—¢ _ TINE “= HHMM s —
(o .
1.1 2 R
IPTR = 8§

TR0 rONTINur“’“W‘”"“’““_““"“”‘“"”““"‘
READ (IRDRs 10) CRGTRM.COMT’TIMF LENGTH,FPQM,TO.TRatho COMMNT,

X ROARD A
10 FORMAT ‘IAOIYQIAOIXOSA'IX,QAQIX,?AQZXQ?A ?X’3A9)XO44A!?A)
TR ILLT TN CHOURS TANDTIV INUTES "IF "NOT ALREAPY FILLED "INe~ e

‘cALL ASSIGN (HOURS, MINS)
TUTTTTTUPRINT —(IPTQ,‘“?O)“TIMEQ TRAINC- ('OMMNT9 ORGTRMs FROMy" TO’ LENGTH
20 FORMAY (1Xs =A,?x,3A,1x,44A-1x,1A 1Xe 284#w #,?A. 2x. 2A91X,#M!Nq#)
TR (COMT TWNE e #E#) GO TO 30
40 CONTINUE

e CALL-FX IT~ e e e e e e e e e e e e e e e e i
C ILLUSTRATING CGNCATENATION
SNt L

TN AINCPROGRAM = BB AND CARNL AND TED AND ALICE

{
ooo

i

|

!

“—“—"*”*CHARACTER"TAntEmklp;*10y;'MOVIE'(150).'AN0“"“"W““"““"“““
INTEGER SIZpS (10)se COUNTs TOTaAL

TTCTTT U TCONCATENATING 4 NAVESFROM TARLE, T o
NATA COUNT 74/ . .
T ATA TUUTARLE (RVL) /¥ROBE C /y SIZES (V) /3y
- DATA TARLE (#,2) /¢CARQL¢ 7y SIZES (2) /5/
TTTTTUTIRATA T CTARLET(#y3) /#TEDR T T 4y STZES (3) 73/
NATA TARLE (#44) /#ALICE? 4y SIZES (4) /5/
e ATA -~ AND 7R AND A e 22 S ST

c

_MMWNNM_TOTAll e
ho 109 T - lo COL:N'T

-y OT AL = CONCAT (MOVIEsy TOTALLy TARLE (19 1y SIZES (1))
TOTALY = CONPAT (MCVIE, TOTAL, AN09 5)

_..EM.. 10 C'ONTINLE e e e ot e e o e o e e e e e e« hmes e e a4 et

-,..'.,..--.._._._,.__._pR IN T.._l v VOV T E (l P TOTAL, e e s s i e e e i & Ao e s e o - [

1 FORMAT (1H1s 1504) _
et —— e 22, CALL E,X IT e e e e s ot e o o e oy e s ¢ s o S % 4 o e o ar e as —m ot e e i mm w e i v = e [

END
._.-.C._._-,_...,_. e e e\ e B 1 4 i i A A vo—- S m e it oW v v A+ S Tn et mimm S5 1% me = sl te e m e o . - . — _
o
..,.zcu_.».~ et o o e e st = e e oot —— -
C CCNCATENATICN FUNCYION
-._.c._.___._._ —— e v e vt~ __,___,..__.._.._.._... e e i v et i . — —t Attt —— — mrt s s e w. - wran mene b
c INPUT = A = CHARACTER anINC To WHICH To APPEND.

—Qrmm o A e WHERE -TO S TART “APDENDING IN~AG =
r R = CHARACTERS TO BE APPENDED,

SIGPLAN Notices 38 1971 November 10

R 18~ = NOWCF CHARACTERS TO APPEND " mm = -
c VALUE OF FUNcTION OCNCAT IS NEw 9{75 OF A.

S b P e e
INTEGER FUNCTION CCMCAT (A, Ia, R, IB)

- -_CHARACTER A,(l, . B ‘1) e S e e s wh e min ma m et a4 ek mam aee & A e e e e e
CONEAT = 1B < IA -1

T T AT T A e CONCATY =R (1 o 5 TB) T S s
RETURN

e 1 T

C ILLUSTRATTIONS OF RCUTINES SUCGFSTED BY LAMRIRD
T TFUNCTTON ALF (STRINE) o T
Cees PRESULT 1S TRUE T1F TRE CHARACTFRS OF STRIAG ARE ALPHARFTIC OR HLANK
“Coea TAND FALSE OTHERWISEs ™ '
CHARACTER, STPINC(l)
e QG T O AL A e S
ALF=,TRUE ,
..__.«__.____._no 1 I l " CN(‘TH (QTF ING) - e e e e e e e e et e~ e e e et e e e e e et e = e e+ e et e m s e e
IF(StRING(I) GTe ¢2¢)Go T0 2
TF(STRINC(I) LT #A#)CO To 2
e 1 EONTINUE =~ oo S
RETURN
———-«.-—qz-'.,CONT INUE_»—n—.u.«——.—-———_~>--_._..__...._.___..‘....,_.v.,.A__.__.A..._.-_..._,._._v.._..__.__._.,.__._.....,,.__.....,.A._.Z..A_.._.....v.. e e m e s e ——— e e v
ALF=.FALSF. .
- RETURN S
END

Funcvrcw LENrTH (STRINC. LENC)
Coes MAINTAINS ATTABIE 'CF "STRING LENGTHS ‘TN COMMONS = USES LOCF INTRyM= "
Ceee SIC FUNCTION TO RETURN ADDRESS nr STRING FOR TABLE ARGUMFNT AND
TTCwes TTOLDUNG TO RETURN DECLARED LENGTH OF STRING4 - -
‘CHARACTER STprr¢1)
T T T T T T INT EGER O DN G T T T T T T T T T T e e
' RTIT TACD(18)
*—~—“-"_co~MoN MYABL G LTARL(29yY) = - B —
YADD=L.CCF (STRING) . _
________ D'O"’l“]'"“]"',‘MTAnL T TTT T e e e e
JF(LTARL(101) 4EN.1ADDYGO TO 2 '
——-——-—-—-———~1 CONTINUE R e e R R ekl
LENGTH=0LDLNG (STRING) _ .
__ﬂ____mpETURM ______ e
2 CONTINUE ' ‘
B T8 1 N ch 1 o I Y <1
RETURN
T ""**'"ENTRY Tr\ULNG o e e e T e
Ceee 'HYPOTHESIZES FUNCTION caLL ON (rFT OF Aqs:rNMeNr STATEMENT PASSING
TCeve T ATPARAVETER AND ATVALUE ASSQCIA+ED WITH THE FUNCTION NaMg,
" TADD=UCCF(STRING)
T ‘“—"'00 W £ l“MTAnL T T T T T T T T T T T T T T T e T T T e T e e e e e
rrtLTAeLtl,Is.En.IAonaen T0 S v
"""f""’i“‘(:ONTINUE'" T T T T T e T e e

SIGPLAN Notices 39 1971 Neovember 10

‘MTABL=VNTARL +)

———— L TABL (1 yMTAR) =1ADC— = - : ———
LTABL(ZvMTABL) OLDLNG(STQING)

————— arer —— -_RETURN et im e = e e Amin i be = a an — - —— A e ——— e e s et = e e e e memm e e e e s

€ CONTINUE

oo TR (NULUNG W L Tom) TLENGSOLDLNG (STRYNG) -
LTABL (291) = LENG

o et e = o RETU N —_—— - e e e e i e et i mim et Smnmn a4 m meit = i s s i

END

——-PUNCYTICN OLDI NG (STRING)
INTEGER OLDLNG
~-OLDULNG = IDIMS (SYMROLs 1)
RETURN
- — END —— e o o e e m e e e aes e w4 s

C JLLUSTRATIONS OF RCUTINES SUCGFSTED BY LAMHIRD

T pUNCTION TINDEX (STRING,PATTY "

Coee SEARCHES STRING TO FIND PATT. QFTURNS STAnTING POSITIoN IN STRING
““=Cees 1F FOUNDs OTWERWISE ZERO,
‘CHARACTER STnING(I)oPATTtl)

o D B R B 0 o e ~ I
il= LFNcTH(STnINP)
“JL=LENGTH(PATT) ™ R — ST s E T
IF((TL.EQ.0) ,OR, (JL EQ.O))RETURN

" TT T IE (L, €T T RETURN
NO 1 I=leTlel+)

B 1 ¢ e N T I |
TF(STRING(ILsJLm1) eNE, PATT(JL))GO 701

2" eONTINUE— - T s e e - -
GO TO 3

e QONT TN
RETURN _

e g QN L N i e
INDEX=1 '

——————RETURN] e
END

: FUNP*ICN NUM(STRINC)
“Cedd T"TESTS "TO 'SEE TIF STRING 1S ALL “NiMERIC. T T

CHARACTER Sanhr(l)

CTTTTTTULOGTCAL NUM T T
NUN" TFUF.

TN T LS s LENGTH (S TRINGY e s T
IF((§|RINC(1).LT.*0#).OR (STFING(I).GT ¢q¢))so ro 2

bOTTTTTIY TEONTINGE T
RETURN

[2 COI\TI'\IUF U U UPU R IOU P S - —— —
NUN~.FALSF.

"'_'_'_—""'QETUQN [N - - T T T T - Tmm e
END L B

SIGPLAN Notices 40 1971 November 10

- v G Ay A e o 4 et Gy S T S B P Pom b S e A T W T Tt v e e Tt o S o e e o o .

. SUBROUTINFE MATOUT (ARRAY,N)
QT PRINT CORRELATION IMATRIX 77—~~~
(of WHERE RANK MaY VARY FROM 2 TC gg |
CHARACTER TFNMT (1) /72 (2K X912y FR.3)#/

X,TABLE(30)/# 1 234 5 6 7 8 9101112131415%/
=== ~WRITE (§5%Y ~#YCORRELATION MATRYXa "= =7
LIM=N ' e
TTTYTTTME MINGCIM gy T T T T T T T T _
. FMT(100001)) = 'TABLE(E“M')OOGZ*M)
T WRITE (6100 (T IsYgMy T
100 FORMAT (#£0#s7Xe(2X£91245%)) S
R’ 1o Rt B €3 I
WRITE (69FMT) T, (ARRAY(I,dhyysmieMd
BT T v] 1 €] 2
LIM =2 LIM =M
IR LIV G T 0976070)
RETURN v , e
__-—‘—-“_—.END.————;__————.—_—_4—-—-—;——_-——_—.—‘_——. ————————————— -

VI. BIBLIOGRAPHY

1. Stuart, Fredric "FORTRAN Programming", John Wiley & Sons, Inc. 1970.
An exposition of elementary FORTRAN Programming particularly valuable
for its comparisons of compilers.

2. WUSA standard X3.9-1966," American National Standards Institute,
March 1966. The present standard upon which this proposal is based.
A reformatted concordance version has also been made available to
the group.

3. Frank Engle, Jr., numerous memos: containing comments on
4 - 6 below.

4. Robert J. Lambird, P.E. "String Enhancements to ANSI Standard FORTRAN",
A comprehensive proposal to incorporate strings into FORTRAN which
relies heavily upon functions, a field designator "FLD", and a
concatenation operator as well as a unique syntax for strings.

5. SHARE FORTRAN PROJECT "in-core formatting and character
specifications", November 1966.

6. WATFIV programming manual, Appendix B, "Character variables with
WATFIV", Essentially the same as 5 above.

