
SIGPLAN Notices 41 1971 November i0

REPORT TO SPARC (the Standards Planning and Requirements Committee of ANSI) FROM THE AD
HOC COMMITTEE ON OPERATING SYSTEM CONTROL LANGUAGES

Chairman, OSCL, Millard H. Persteia, System Development Corporation, 2500 Colerade Ave-
nue, Santa Monica, California 90406. 1971 July 6.

I. INTRODUCTION

i.i HISTORY. At the USASI X3.4.2 (Committee on Programming Languages)
meeting of 1967 June 27-28, M. H. Perstein presented a proposal that "X3.4.2
shall initiate action to provide an industry-standard input language for top-
level control of the computing process, ...". The proposal was presented
following a suggestion developed by an internal technical committee at System
Development Corporation, Mr. Perstein's employer.

The proposal did not come to a vote at that meeting, but the chairman of
X3.4.2, P. Z. Ingerman, appointed Perstein a committee of one to investigate
community interest in the matter and to report back to X3.4.2. In addition
to direct mailings to persons who might be interested, Persteim sent a news
release to the industry and professional press. Because of the inept para-
phrasing of the release by one news medium, the propriety of the wide distri-
bution and the use of a news release were questioned at the next meeting of
X3.4.2, despite the specific purpose of determining community interest imposed
on the Perstein committee of one.

At the next meeting of X3.4.2, 1967 August 22-23, Perstein reported that four
favorable responses had been received. At the meeting on 1967 November 1-2,
he reported that there was some interest in evidence, but not enough to form
a comaittee. The question remained open.

At the meeting on 1968 January 22-25, Perstein reported a continuing display
of interest and requested approval of a news release incorporating a strong
letter of support from N. J. Ream, Special Assistant to the Secretary of the
Navy. The release was approved by C. A. Phillips, Chairman of X3. Following
this meeting, Perstein issued the news release and received many assurances
of support in response.

At its meeting of 1968 June 18-19, following some controversy on procedural
and jurisdictional matters, X3.4.2 voted to form an ad hoc committee on
standard operating system control language (X3.4.2F).

The scope and program of work for X3.4.2F were prepared at the 1968 August
14-15 meeting of X3.4.2 and recommended for approval by X3.4. Persteln noted
that he had four volunteers for E3.4.2F, when, as, and\if it be formed.

X3.4 approved the scope and program of work of X3.4.2F with a slight change.
At the X3.4.2 meeting of 1968 October 21-23, Perstein reported ten volunteers,
in addition to himself, were willing to work on X3.4.2F. Ingerman appointed
Perstein Chairman of X3.4.2F.

The first meeting of X3.4.2F was held 1969 February 4-5 with 35 people in
attendance. Much of this meeting was in the nature of a seminar on various
aspects of the need for standards in this area. Work began on the deline-
ation of the functions and the users of an operating system control language.
This was reported to X3.4.2 at its meeting 1969 March 5-6.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1316873.1317451&domain=pdf&date_stamp=1971-10-01

SIGPLAN Notices 42 1971 November i0

Since then, USASI has become ANSI, X3 has been reorganized, with X3.4.2F
reporting to SPARC, and its name changed to OSCL. Although the reorganization
did not dissolve X3.4.2, it has not met since 1969 March 6.

i. 2 SEMANTICS.

1.2.1 Operating Szstem ' Control Language (OSCL). This is the language
for controlling the operating system. There must exist, in order for the term
to be meaningful, an operating system to be controlled by OSCL or some sort of
artificial language. Such systems exhibit a very broad range over the spectrum
of sophistication. Somewhere in the middle part of the range there must lle a
set of OSCL functions of broad general interest which is narrow enough to be
meaningful but broad enough to be useful. If the user approaches a bare machine,
one endowed with electricity but devoid of software, he must control the operation
of the system hy manipulating console switches and loading and unloading peripheral
equipment in the proper sequence as well as providing a program to control all
aspects of the desired computation. This is probably the low end of the sophis-
tication range. At the other end is the elaborate hardware and software system
which approaches the capacity of humans. This is a system in which the mani-
pulation of the system may be very loosely defined and in fact may be arrived
at by a conversation between the user and the system to agree on the level of
control. Here at the high end, the control language may devolve to the
vernacular and may approach natural language in freedom and complexity.

In another sense the spectrum of operating systems control languages covers a
range of systems which may be categorized as small to large in size. This range
of systems is orthogonal to the sophistication range and the combination of the
two ranges leads to a set of systems which vary in at least two dimensions. It
is clear that the OSCL requirements of the very small sized systems are probably
quite different from the very large sized systems.

It is not clear just where, over these ranges, are the boundaries, within which
the proper sphere of control language is to be drawn. Nevertheless, OSCL is the
language for controlling a computation system which includes, for the purpose
of such control, software characterized by some point in the vast range of
sophistication and designed to interpret and respond to such language.

Several aspects of such a language may be candidates for standardization. Such
standardization cannot be contemplated until the semantics of control of compu-
tation systems can be categorized and defined. It may be that further study
will be able to decide what parts of the responses to a control lar~uage may also
be standardized.

In order to approach this area intelligently certain hypotheses may be posed.
These hypotheses, described below in 1.2.2, 1.2.3, and 1.2.4, form the basis
which the committee feels must exist if a standard is to be developed.
Unless these hypotheses can be clearly validated, standardization cannot exist.

1.2.2 Elementary Funct!ons. There is a feeling in the committee that
there exists a set of units of work or of response which represent the repertoire
of the computation system. It is not proposed that theme elementary functions
be quantized or indivisible, but rather theme are hypothesized for convenience
only.

SIGPLAN Notices 43 1971 November iO

It is assumed that there is a three step process involved in breaking down the
universe of control function into elementary functions. The test of this
hypothesis is that the process can actually take place. The steps envisioned
are:

i. The universe of function can be broken down into specific
functions done in response to a single OSCL command.

. That there are some responses which occur for more than one
command. All the set intersections are considered as can-
didates for a single elementary function each. All the set
differences are equally candidates.

. For purely esthetic reasons these sets may be further sub-
divided. In this case the separability of the sets will
have to be maintained.

Each of the sets arrived at at the end of step 3 is defined to be an elementary
function. It is a further requirement that the set of elementary functions
shall be bounded and in fact the total number should be relatively small.

That this can be done for an existing system seems obvious on the surface.
That it can be done for all existing systems (or even a fair number of these)
is not at all clear. The real test is whether this operation can be extra-
polated from existing systems to satisfy the needs of a wide range of users
of computation systems.

1.2.3 Functional Grou P . In the context of operating systems it is
possible to hypothesize the existence of a related group of elementary
functions to be invoked when the user issues a single command. The proof of
this hypothesis must rest on the ability to be able to transform non-command
type control functions such as keys, buttons and other physical action devices
into the same context as more usual commands.

It is further assumed that it is possible to structure the semantics of commands
into the familiar action symbol (sometimes called a verb) and a set of contextual
modifiers (usually called operands).

1.2.4 Structure of Commands. This topic refers to the syntax of
commands. The hypothesis to be tested here is that when the set of functional
groups is known semantically, there can be developed a syntax to incorporate
all of them. This includes all of the usual periphery of such syntaxes such
as command words, parameters, internal delimiters, terminators and character

s e t s .

If the hypothesis 1.2.3 is proved correct, then this hypothesis can be tested
by producing at least one potential structure which satisfies the hypothesis.

1.3 CONCLUSIONS. We have concluded that there is a need for a standard.
We have also concluded that there is a clear need for further work on OSCL.
We propose that a formal study cu~mittee be formed.

It is the strong feeling of the current committee that a standard is much
needed and that work should proceed with deliberate speed to do the necessary
groundwork. After the study work has been completed, it is expected that there
will be a recommendation for one or more standards in this area.

SIGPLAN Notices 44 1971 November IC

There are a large number of potential OSCL candidates. In fact the current
committee did not have sufficient resources to complete exhaustive surveys
of OSCLs. None of the OSCLs surveyed so far is considered sufficient as a
basis for a standard, and it may be that a more complete survey will not alter
this conclusion.

1.4 RECOMMENDED SCOPE OF THE STUDY COMMITTEE. The committee should be
charged with codifying and organizing the existing information about operating
systems control language with the goal of recommending specific standardization
aceivlty. Based on the work of the last two years, the study con~nittee must
extend into those areas not yet considered. In particular, the requirements
and peculiarities of networks of operating systems must be fully exposed.
The interactions of Data Descriptive Languages and Data Base Control Languages
with OSCLs must be examined. The relationships of privileged users to the
integrity and reliability of the system may well have implications with respect
to the OSCL and should be studied. The interactions of hardware and OSCLs must
be considered.

1.5 RECOMMENDED PROGRAM OF WORK OF THE STUDY COMMITTEE. Conside# the
elementary functions that operating systems might perform. Consider those
functions illuminated by existing surveys and as many others as are deemed
necessary to truly represent all functions that a system might perform for
users. Since many alternative sets of elementary functions will be considered,
it will be necessary to evaluate different sets to find the most appropriate
set.

Is it possible to subset the collection of elementary functions and treat these
subsets as whole sub-languages of OSCL? Is there some set of nucleus functions
which are mandatory in any OSCL?

Define a way to describe these elementary functions with a minimum of
ambiguity and inconsistency. In particular, is there a way of describing
these functions such that various systems can successfully offer the same
functions?

In particular, examine the relationship of the elementary functions of a
Data Base Control Language to the OSCL elementary functions. Also examine
the report of the ANSI DDL Study Committee as it relates to OSCL.

Complete the study of the implications of hardware characteristics on
control languages. It is apparent that every system in existence has
external differences. Are these differences purely cosmetic or does the
fundamental underlying system have a real impact on the form of OSCL
associated with a system?

Define a method of measuring conformance with the eventual OSCL standard.
Such a measure is probably required in the future so that there can be no
question as to the requirements that conforming systems must meet.

Define and describe the impact that the external media (typewriters, scopes,
etc.) may have on the forms of an OSCL. Consider the necessity or desirability
of device dependent language forms.

Is it possible to divorce certain system responses from the OSCL or should
all responses be categorized and regularized? Definition in this area is
much needed.

SIGPLAN Notices 45 1971 November IO

In light of the above studies can the following hypotheses be proved or
disproved?

i. There exists a s e t of elementary functions.

2. There exists a reasonable set of user-oriented groupings
of these functions.

3. There exists a reasonable user-oriented syntax for COmmAnds
to invoke these groups.

4. There exists a reasonable set of commands following this
syntax.

When all of this study has been accomplished with sufficient thoroughness, is
it possible to recommend that one or more standards in the OSCL domain should
be promulgated and specifically in which areas?

Determine the impact on users of having to convert to the eventual standard
OSCL. This should be estimated for various size systems from a very small to
a very large and for a wide variety of applications areas.

. LANGUAGE/FUNCTION SURVEY

2.1 WHAT WAS SURVEYED (HISTORICAL). In an a t t e m p t t o satisfy point 1
of the program of work and to determine if an existing control language might
be suitable for a standard, the committee developed surveys of the following
operating systems and their control languages:

i. GECOS III
2. EXEC VIII
3. Honeywell Mod 40S
4. MULTICS
5. PDP - i0 Monitor
6. 360 OS (TSO)
7. 360/DOS
8. 360/TSS
9. Sigma 5/7 BTM

These surveys may be found in their entirety in Section 6.4.

The control langauges of these particular operating systems were chosen as
candidates for the survey because it was felt they presented a reasonable
sampling of .existing systems and were familiar to the surveyors. In addition
the majority support both the batch and interactive modes of control in both
uniprogramming and multiprogramming environments.

2.2 HOW SURVEYED. An attempt was made to standardize the method of
surveying each operating system by having the surveys follow a common outline.
General information was provided for the following sections:

i. User/System Interface
2. The Internal Components of the System
3. Initial State of the System
4. Syntax of the Control Language
5. Normal Behavior of the System
6. Interruption of Normal Behavior
7~ Privileged Use
8. System Functional Diagram (Beech Tree)

SIGPLAN Notices 46 1971 November iO

The section entitled "Normal Behavior of the System" contains the lexical
structure of the command language. Subsections are provided for:

i. Process Management
2. Program Management
3. File Management
4. Control Language Modification
5. Enquiries

Each subsection contains the pertinent individual commands. Although in most
cases no attempt was made to specifically identify associated parametric data,
the general functions performed by each command were specified as well as their
modes of operation (interactive, non-lnteractlve or both).

In an attempt to provide accuracy and comprehensiveness, each survey was,
where practical, prepared by an individual who was familiar with the system
being surveyed either through vendor or user association. In general the
surveys are a summary of information contained in manuals or other customer

documentation.

Although the surveys are reasonably comprehensive in scope and content, each

is an independent document. It was Im~ediately obvious to the committee that
some means of crossreferencing the data contained in them was necessary. After
several methods had been investigated a systems and functions matrix was devised
which correlated a composite list of functions against the functions provided by
eight of the operating systems surveyed. The resultant matrix revealed some
rather interesting information. This will be covered in Sections 2.4 and 2.5.

2.3 WHAT WAS NOT SURVEYED AND WHY. There were two limiting factors
governing the breadth of the systems surveyed. First it was necessary that
there be someone who had the time and energy to make the survey. Second the
co~nittee felt that the larger systems would provide the most information
about OSCL.

As a result only existing systems that were well documented, reasonably large,
and known to the surveyors were chosen. Of course the surveys were not exhaus-
tive in this area as a number of manufacturers' OSCLs were not included. Network
systems, sensor based systems and elaborate multiprocessing systems were also
omitted.

2.4 COM~ONALITY OF FUNCTIONS. Prior to applying the data contained in
the surveys to the systems and functions matrix, a complete function list was
produced. This function list was subject to several iterations during the
earlier conunittee meetings and the list used for the matrix was somewhat
abbreviated from earlier versions.

After all of the surveys were applied to the matrix the following points
were noted:

i. There was a good deal of commonality of functions among the
systems surveyed especially in regard to commands relating
to program and file management.

. There were a number of functions contained in the systems
surveyed which were not reflected in the functions list.
Apparently earlier versions of the functions list would have
been more suitable for the matrix.

SIGPLAN Notices 47 1971 November iO

2.5 DIVERSITY OF LANGUAGES. Regardless of the commonality of functions
demonstrated by the matrix, there was considerable diversity in the language
implementation methods of the functions within operating systems both syntac-
tically and lexically. In general the surveys and matrix pointed out that there
are a finite number of functions for which an operating system can provide control
regardless of its complexity. However, within the industry today there is an
a l m o s t i n f i n i t e v a r i e t y o f ways of combin ing and i m p l e m e n t i n g t h e s e f u n c t i o n s
f rom a l a n g u a g e s t a n d p o i n t .

. TYPES OF USERS OF COMMAND LANGUAGES

3.1 NON-PROGRAM ORIENTED USERS.

3.1.1 Primitive Users. In this category are grouped all those users
of systems who do not have any control over the system. In this'sense, they
are zero function users or non-users. Nevertheless, they represent by far
the largest body of system users. These are the kind exemplified by the
watcher of the ticker tape display. He is aware of the system and is cog-
nizant of its output from minute to minute, but does not have any control
over what is contained in the display.

Another of this type is the race track goer who watches the Tote Board. Here
he will react to the displayed information which is dynamic but will not be
able to directly affect the values shown.

3.1.2 Circumscribed Users. In this category are included all those,
who although they make inputs to the system and receive outputs, in no way
affect the progress of the system. As an example of this category, consider
the airlines reservation clerk, The clerk inputs data, receives answers
from the system, but nothing the clerk can do will cause the system to alter
its processes. In cases like this the users are reacting with the data con-
tained in and Controlled by the system rather than the system itself.

Another instance of this category is the payroll clerk. In many cases he
feeds the data bank of the system and receives in return s!,mmaries and listings
showing the current state of his payroll. In no way can he directly affect
the operation of the system running the payroll packages, and even may not be
allowed to alter the progress of the payroll programs themselves.

A last example of this kind of user is the desk calculator. Here the control
that the user exerts is over the application package providing the desk calcu-
lator facility and not the operating system. This user as with others in this
category is isolated from the operating system which exists behind his appli-
cation. In fact this type of user is unconcerned with the operating system
and its controls and will not be able to tell when the character of the
operating system changes, so long as his package of applications stil~ runs.

3.2 PROGRAM ORIENTED USERS. Under this broad category are included all
those who are aware of the operating system. These are the users who have some
degree of control over the operating system. They may be distinguished from the
preceding categories in that they are somehow program oriented. They think in
terms of programming and programming systems, and are to some degree aware of the
underlying hardware. This general group has some well defined sub-categories.

3.2.1 General Use. This class of user is characterized by the fact that
he does a wide variety of operations on the operating systems. He uses several
of the programming facilities including the high level languages to achieve

SIGPLAN Notices 48 1971 November iO

solution to his problems. He may also use application packages for specific
purposes. In general, however, he may be categorized as applying the resources
of the operating system to solve his problems and arrive at answers to his
questions.

3.2.2 Application Programmer. This category of user may use more than
one application package as well as almost all high level languages to construct
new programming sub-systems to be used by circumscribed users. He makes free
use of the control language of the system to create these packages. The only
real distinction between this category and the general use category is that
this user is an indirect one. This user is not writing programs to solve his
own problems but to construct the tools for the solution of someone else's
problems. It is expected that this category of user may be more sophisticated
than those in the general category. It may be the case that certain parts of
the control of the system is permitted to him and not to the general users.

3.2.3 Operations Use. This is a broad category of user engaged prlm=rily
in keeping the operating system running for others. Prlmary among these is the
familiar system operator. The traditional concept of the system operator is
being replaced in part by a whole range of specialists. Among these are the
systems administrator, the Data Base Manager, the Security Officer, and others.
This category is characterized by the fact that these users are not solving
problems by using the operating system. They do not tend to use high level
languages to any great extent. They do tend to modify the system to provide
better or more reliable service. They also tend to be the principal people
engaged with the physical handling necessary around the outsides of the system.
As a geoeral rule, many of the functions performed by this category of users
is quite distinct from other program oriented categories. Yet frequently these
users tend to 'wear two hats' and only perform these operations functions part
of the time. At other times they are quite likely to be general users.

3.2.4 Systems Programming. Although in many senses this category is a
logical extension of the applications programmer, it is separated in this case
because there is a unique element to this category. These are the users who
are expected to modify the operating system itself. Included in this category
is the classical systems programmer who constructs operating systems or parts
of them. Also included is the system maintenance user, the trouble shooter,
the system debugger or fixer. These users, although they do everything that an
applications programmer might do, have additional power to affect the system at
a more profound level. The access these users have to the insides of the
operating systems makes them at once both very dangerous to the reliability of
the system and at the same time essential to its continued existence.

Another reason for separating these users from all others is that they must to
some degree be dependent on the internal details of the operating system and
its underlying hardware. In this, they can not be entirely system independent.
This category of user is probably so close to the syste~ that their functions
are shaped by the system they deal with.

. HARDWARE CONSIDERATIONS

4.1 HARDWARE STUDIES. Although considerable discussion of the hardware
implicatlons of OSCL was undertaken, very little concrete was realized. The
committee did undertake to recommend a 'break-ln key' standard and the balloting
and final text of that recommendation is i n c l u d e d in Section 6.

SIGPLAN Notices 49 1971 November IO

4.2 WHAT REMAINS TO BE STUDIED IN THIS AREA. It was the opinion of the
committee that further work in investigating the impact of new hardware upon
OSCL as well as the impact of OSCL upon existing hardware must be undertaken.
The committee did not have the time nor the expertise to undertake such study
in depth. It is not clear that such a study can ever be completed. New
hardware devices will continue to appear and each of these may have an impact
on OSCL.

One of the areas of particular concern is new media as input for OSCL. In the
past most commands have been entered by card readers and typewriters. It is
certain that new media such as displays and audio input devices will have some

effect on command structure.

5. RECOMMENDATIONS

5.1 NEED FOR A STANDARD. Although many different progrAming languages
exist for the legitimate purpose of writing computer solutions to problems in
a great diversity of application areas, it is not reasonable to expect that a
large number of control languages need exist. The purpose of'OSCL is single,
to control the operations of the system. The advantages of being able to
move from system to system without having to relearn control language is akin
to the ability to use COBOL on any system without having to learn a completely
new langauge.

The need for a standard is pressing and its attainment should be possible. In
order to get to the standard, work should proceed with the necessary preliminaries.

5.2 SCOPE OF OPERATING SYSTEM CONTROL FUNCTIONS. It is the feeling of
the committee that there are several capabilities which are not necessarily
germane to the executive control of a computer system. We recommend that the
study group-should examine but not feel constrained to include the following
features as part of OSCL:

i. editing of documents, programs, or OSCL procedures,

2. formatting of output data or control of output devices, and

3. data base creation, manipulation, or interrogation.

5.3 NO CANDIDATE. There appears to be no candidate among surveyed OSCL's
to be selected as the basis for the standard. All the languages have good and
bad features. Therefore, we are not recommending a candidate language.

5.4 NO MULTIPLE STANDARDS. We urgently recommend a single standard for
OSCL. Any user once having mastered the necessary knowledge of OSCL should not
be required to learn another language.

As far as can be determined, the only possible excuse for multiple standards
might occur if the differences in user media (i.e., decks of cards v_.s, scopes)
might make it impossible to achieve a single standard.

5.5 PIECEMEAL STANDARDS. To minimize problems of conversion and transition,
every attempt should be made to avoid piecemeal standardization.

