
SIGPLAN Notices 96 1971 November lO

Execute
Execute is implemented in a manner very similar to quad input. The string to be executed is
placed in the input buffer and TYPEIN is called, resulting in a block of code followed by a
pointer to the symbol to the left of the execute symbol. The code is then executed and a
return is made to that symbol. Note that both quad input and execute may be nested to any
depth, as long as there is space to store the generated code.

Saved Workspaces

Upon a) save sommand, portions of tables and various pointers are written on a binary file.
If a file by the specified name exists, it will be used. Otherwise, an at tempt is made to create
a two link permanent file. Two links equals 7680-36 bit words, enough to hold a full work-
space. If unsuccessful, because the user has not been allocated sufficient file space, a temporary
file is defined. Temporary files are released when the terminal session is ended. However, the
user m a y transfer the data to a permanent file prior to logging off. Saved files may be less
than two links by creating the files in advance of the APL session.

An On-Line Proof Checker Operating under APL/360, with Educational Applications in Logic,
Mathematics, and Computer Science.

P. D. Page
CamPus Computing Network
UCLA

One of the long standing problems of Computer Science is the development of programs
capable of checking, correcting, and possibly even prompting or suggesting logical reasoning
in various are~is of human activity. It is a problem with a good chance of solution. The
obvious application for such a reasoning program is formal logic itself, but other application
areas include reasoning about everyday real world problems, proving theorems of mathematics,
and verifying correctness of procedures for solving problems, i.e., "programs" in one sense
or another.

There are several valid starting points of attack on this problem. We have started by developing
a proof checking program that will check the correctness of logical deductions written in a
modern system of formal logic(D. Kalish and R. Montague, "Logic, Techniques of Formal
Reasoning," Harcourt, Brace and World, Inc. 1964). This program has an additional theorem-
proving capability and can construct formal proofs for all o f the standard theorems of pro-
positional and predicate logic. This facility allows the user to make routine "jumps" in his
chain of reasoning without the program making trivial complaints about incorrectness.

At present, the facilities available with this program are as follows:
The proof checking program operates in an on-line interactive mode under the APL/360 System. A
proof to be checked is entered line by line at the terminal. As each line is entered, the program
either accepts the logical statement as a valid consequence of prior proof lines, or rejects the
statement as invalid. When a statement is accepted, it is numbered, formatted and typed out by
the program for later reference. When a statement is rejected, a message is typed stating the
reason for rejection.

The proof checking program automatically determines when a proof is complete and the
assertion has been proved. A message is typed as soon as proof completion has occurred, and
checking terminates.

As indicated previously, this program checks proofs of predicate logic with equality formulated
according to the system of Kalish and Montague. All of the necessary inference rules o f the

30.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1316873.1317456&domain=pdf&date_stamp=1971-10-01

I •

1971 November iO SIGPLAN Notices 97

Kalish-Montague system have been implemented. The basic mode of program operation requires
an annotation, i.e., inference rule name and line references, to accompany each new logical
statement. If the statement entered does not follow from the referenced lines by the given
inference rule, the statement is not accpted.

In accordance with the formalization of the Kalish-Montague System, a new subproof or
derivation may be started at any point in a proof, This subproof may make use of any logical
statement already acepted as part of the larger proof. Subproofs may also contain subproofs;
nesting of subproofs may be continued indefinitely. The proof checking program keeps track
.of these subproofs and provides an indication when each is completed. This subproof
completion message identifies the line containing the assertion which has been proved.

The basic mode of operation is augmented by a number of special problem oriented features.
One of the most convenient features is the ability to enter an annotation without an
accompanying logical statement. In this case, the program automatically deduces and displays
all logical inferences following from the given annotation.

The proof checking program also has the capability of maintaining a list of axioms and theorems
for use in constructing proofs. An axiom or theorem from this list may be recalled and entered
as a line Of the proof by an appropriate annotation.

The final and most powerful feature is an integrated theorem proving mode. A logical state-
ment entered without annotation causes the proof checking program to invoke the theorem
proving mode. This theorem prover is currently powerful enough to generate derivations for
all elementary theorems of the propositional and predicate logic. It can easily verify statements
which follow intuitively from previous logical statements, and thus eliminates the effort involved
in leading the checking program step by step to the same logical consequence.

Though a complete set of inference rules is currently implemented, it will in the future, be
convenient to be able to expand this list to include more powerful derived rules of inference.
At times it may also be convenient to have inference rules which are especially well suited to a
particular theory. The current proof checking program provides a means by which such derived
rules of inference may be easily added.

At present, the input function has been tailored to accept a natural input language, i:e.,
mathematically oriented notation, so as to provide a system for checking proofs in mathematics
(algebra and number theory). Eventually the formal system will be extended so that proofs
of correctness of fairly simple computer programs can be generated and checked.

The program as it now stands has some obvious educational applications. In particular, it is
expected that the current program will be used as an instructional aid by students of symbolic
logic for performing homework problems and other exercises.

Example o f Kal ish-Montague Formal Logic Proof

Tx9 x. ,ghet~(~P ~ P) ~ P

2. ~ P e P
3" ' ~ / ~ P

i

i

2, 4, MP

Modu ponens (MP)

31.

Y

SIGPLAN Notices 98 1971 November i0

Proof Generated Interac t ive ly using the APL Proof Checker

Program Response
START

PROOF CHECKER --- VERSION 1.1A APRIL 1971

1. SHOW (~PeP)uP
2. ~((~P~P)÷P) ASSUMP
3. ~PeP ASSUMP
4. ~P ASSUMP

5. P 3,4,MP
PROOF COMPLETED, CHECKING TERMINATED.

User Input

SIlO W (~P'~P) "~P

3 , 4, HP

Proof Generated by the APL Theorem Proving Functions

PROVE '(~P÷P)÷P'
1. SHOW (~P~P)÷P
2. ~((~P~P)÷P) ASSUMP
3. ~P÷P ASSUMP
4. ~P ASSUMP
5. (~P~P)A~P 2,NO
6. PvP 3,CD
7. P ~,3,MP
8. ~~P ~,3,MT
PROOF COMPLETED SUCCESSFULLY.
PROOF USED 2 . 9 2 SECONDS OF CPU T I M E .

Proof Exhibiting Various Features of the Proof Checker

START -:
PROOF CHECKER --- VERSION 1.1A

•

2.
SIiO;¢ (P÷Q)÷÷~(PA~Q) :
~((p~Q) ÷÷~(P^~Q))

3• SIIOW (P÷Q)÷~(P^~Q) =
4. ~((P÷Q)÷~(P^~Q))
5. P÷Q
6. ~~(P^~Q)

7. P^~Q

8 • P

9. ~Q

LINE DOES NOT FOLLOW.-~

10. Q
SUB-PROOF AT LINE 3 COMPLETED• =

I APL function which invokes checkingj
APRIL 1971

SIIO~I (P-~)÷÷--(PA~Q)
~Assertion to be proved[

ASSUMP
SHOW

IAn obvious assertion is supplied bzl
ASSUMP the proof checker
ASSUMP "
A SS UMP

6 ,DN
6,DN

7,S~-~Input in the 1
7 ,S | abbreviated
7, S | form

5.9,MP
~n invalid deduction is detected[

5,8 ,MP
5,8,MP L

ISubproof completion is .detected J

32

SIGPIAN Notices 99 1971 November I0
, , ,Im

SYNTAX ERROR

11.
12.
13.
14.

1 5 .
1 6 .
17.

18.
19.
PROOF

,SHOW ~(PA~Q+tP~Q)
IN INPU2, OR IMPROPER LINE.~Syntax e r ro r is detected{

SHOW ~(pA~Q)N(p~Q)
SHOW ~(PA~Q)~(P~Q)~ [Beginning of subproofJ
~(~(pA~Q)÷(P÷Q)) ASSUMP
~(pA~Q) ASSUMP{Subproof is indented]
~(p~Q) ASSUMP

P~Q
SHOW P~Q~
~(p^~Q)^~(P~Q) 12,NC
pA~Q 14,NC

SUB-PROOF AT LINE 15 COMPLETED.
SUB-PROOF AT LINE 11 COMPLETED.

~(p^~Q)÷~(P~Q)
COMPLETED,

Theorem prover i s invoked to obtainJ
an obvious con t rad ic t ion

• i
3 , 1 , ~Correction of

v ~ [input (APL)
1, CB

3 ,11 ,CB
3,11,CB

Ctt,~'CKING TERMINATED.= [Proof comp/etion is detected{

- -4 ,
4

÷

÷

Double negation (DN)

4' ̂ @ Simplification (S)
÷

M~,./~,,,.., (MP)

¢.~.÷
÷ ~

Conditional-bicondi6onal (CB)

Example o f a P r e d i c a t e Logic Proo£

Proof Generated I n t e r a c t i v e l y using the APL Proof Checker

Program Response

START
PROOF CHECKER --- VERSION

I •

2 .
3 .
4.

•

6.
7.

1.1A APRIL 1971

SHOW
-(ACX](FCX]÷GCX])~(A[X]F[X]÷~[X]G[X]))
ACX](FCX]~G[X]) ASSUMP
-(~[X]ECX]*aCX]G[X]) ASSUMP

aCx](FCX]÷GCx])÷(A[X]FCX]*ACX]OCX])
ASSUMP

ASSUMP
ASSUMP

show A[X]FCX]÷ACX]GCX]
aCX]FCX]
~aCX]UCX]

User Input

SHOW A[X3(F[X]~G[X])~

(A[X]F[

SHOW ACX]PCX]÷~CX]GCX]

33

SIGPLAN Notices I00 1971 November iO

•

9,

10.

11.

12.

PROOF

T2o z

snow aEx]aEx3
~GCX]

FCX]

FCX]÷GCX]

ASSUMP

6 , U I

3 , U I

G[X] 1 0 , 1 1 , M P
SUB'PROOF A2 LINE 8 COMPLETED,

SUB-PROOF A2 LINE 5 COMPLE2ED.
COMPLE2ED, CHECKING 2ERHINA2ED.

Kalish-blontague Formal P r o o f

z. g/una Ax(Fx ~ Gx) ~ AxFx ~ AxGx)

2. Ax(Fx ~ G x)
3. glun~ AxFx ~ AxGx

4. ^xFx
5" SAne ^xGx

6. Fx [
7. Fx ~ Gx
8. Gx

i

4, UI
2, UI
6, 7, MP

s n o w ACx]aCX]

X 6 , U I

X 3oUI

IOi l loMP

N o t a t i o n :

6 d e n o t e s A or V

V d e n o t e s V or

j ¢

4-*÷
¢
÷

Universal instantiation (UI)

Modus poneus (NIP)

A LANGUAGE MACHINE

Rodnay Zaks
Center for Research in Management Science
University of California, Berkeley

THE META-APL TIME-SHARING SYSTEM

META-APL is a multiprocessor time-sharing system developed at the University of
California, Berkeley, for interactive real-time APL service. Its conceptual design has
deliberately been kept simple and an expeptionally high performance to cost ratio has
been obtained. Most of the functions traditionally performed by software have been
pushed into the hardware-firmware execution unit. The core memory, although fast
(750 nsec) is viewed by the processor strictly as an IO device.

The system was developed in two steps: completion of an APL processor and develop-
ment of an operating-system processor, both processors being micro-programmed and

34.

