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Execute 
Execute is implemented in a manner very similar to quad input. The string to be executed is 
placed in the input buffer  and TYPEIN is called, resulting in a block of  code followed by a 
pointer to the symbol to the left of  the execute symbol. The code is then executed and a 
return is made to that symbol. Note that both quad input and execute may be nested to any 
depth, as long as there is space to store the generated code. 

Saved Workspaces 

Upon a ) save sommand, portions of  tables and various pointers are written on a binary file. 
If a file by the specified name exists, it will be used. Otherwise, an at tempt is made to create 
a two link permanent file. Two links equals 7680-36  bit words, enough to hold a full work- 
space. If unsuccessful, because the user has not been allocated sufficient file space, a temporary 
file is defined. Temporary files are released when the terminal session is ended. However, the 
user m a y  transfer the data to a permanent file prior to logging off. Saved files may be less 
than two links by creating the files in advance of  the APL session. 

An On-Line Proof Checker Operating under APL/360, with Educational Applications in Logic, 
Mathematics, and Computer Science. 

P. D. Page 
CamPus Computing Network 
UCLA 

One of the long standing problems of  Computer  Science is the development of  programs 
capable of checking, correcting, and possibly even prompting or suggesting logical reasoning 
in various are~is of  human activity. It is a problem with a good chance of  solution. The 
obvious application for such a reasoning program is formal logic itself, but other application 
areas include reasoning about everyday real world problems, proving theorems of  mathematics, 
and verifying correctness of  procedures for solving problems, i.e., "programs" in one sense 
or another. 

There are several valid starting points of  attack on this problem. We have started by developing 
a proof checking program that will check the correctness of logical deductions written in a 
modern system of  formal logic(D. Kalish and R. Montague, "Logic, Techniques of Formal 
Reasoning," Harcourt, Brace and World, Inc. 1964). This program has an additional theorem- 
proving capability and can construct formal proofs for all o f  the standard theorems of  pro- 
positional and predicate logic. This facility allows the user to make routine "jumps" in his 
chain of  reasoning without the program making trivial complaints about incorrectness. 

At present, the facilities available with this program are as follows: 
The proof  checking program operates in an on-line interactive mode under the APL/360 System. A 
proof to be checked is entered line by line at the terminal. As each line is entered,  the program 
either accepts the logical statement as a valid consequence of  prior proof lines, or rejects the 
statement as invalid. When a statement is accepted, it is numbered, formatted and typed out by 
the program for later reference. When a statement is rejected, a message is typed stating the 
reason for rejection. 

The proof  checking program automatically determines when a proof  is complete and the 
assertion has been proved. A message is typed as soon as proof completion has occurred, and 
checking terminates. 

As indicated previously, this program checks proofs of  predicate logic with equality formulated 
according to the system of  Kalish and Montague. All of  the necessary inference rules o f  the 
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Kalish-Montague system have been implemented. The basic mode of program operation requires 
an annotation, i.e., inference rule name and line references, to accompany each new logical 
statement. If the statement entered does not follow from the referenced lines by the given 
inference rule, the statement is not accpted. 

In accordance with the formalization of  the Kalish-Montague System, a new subproof or 
derivation may be started at any point in a proof, This subproof may make use of any logical 
statement already acepted as part of the larger proof. Subproofs may also contain subproofs; 
nesting of  subproofs may be continued indefinitely. The proof checking program keeps track 
.of these subproofs and provides an indication when each is completed. This subproof 
completion message identifies the line containing the assertion which has been proved. 

The basic mode of operation is augmented by a number of special problem oriented features. 
One of  the most convenient features is the ability to enter an annotation without an 
accompanying logical statement. In this case, the program automatically deduces and displays 
all logical inferences following from the given annotation. 

The proof  checking program also has the capability of maintaining a list of axioms and theorems 
for use in constructing proofs. An axiom or theorem from this list may be recalled and entered 
as a line Of the proof by an appropriate annotation. 

The final and most powerful feature is an integrated theorem proving mode. A logical state- 
ment  entered without annotation causes the proof checking program to invoke the theorem 
proving mode. This theorem prover is currently powerful enough to generate derivations for 
all elementary theorems of  the propositional and predicate logic. It can easily verify statements 
which follow intuitively from previous logical statements, and thus eliminates the effort involved 
in leading the checking program step by step to the same logical consequence. 

Though a complete set of inference rules is currently implemented, it will in the future, be 
convenient to be able to expand this list to include more powerful derived rules of inference. 
At times it may also be convenient to have inference rules which are especially well suited to a 
particular theory. The current proof checking program provides a means by which such derived 
rules of inference may be easily added. 

At present, the input function has been tailored to accept a natural input language, i:e., 
mathematically oriented notation, so as to provide a system for checking proofs in mathematics 
(algebra and number theory). Eventually the formal system will be extended so that proofs 
of correctness of  fairly simple computer programs can be generated and checked. 

The program as it now stands has some obvious educational applications. In particular, it is 
expected that the current program will be used as an instructional aid by students of symbolic 
logic for performing homework problems and other exercises. 

Example o f  Kal ish-Montague Formal Logic Proof  

Tx9 x. ,ghet~(~P ~ P )  ~ P  

2. ~ P e P  
3" ' ~ / ~ P  

i 

i 

2, 4, MP 

Modu  ponens (MP) 
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Proof Generated Interac t ive ly  using the APL Proof Checker 

Program Response 
START 

PROOF CHECKER --- VERSION 1.1A APRIL 1971 

1. SHOW (~PeP)uP 
2. ~((~P~P)÷P) ASSUMP 
3. ~PeP ASSUMP 
4. ~P ASSUMP 

5. P 3,4,MP 
PROOF COMPLETED, CHECKING TERMINATED. 

User Input 

SIlO W ( ~P'~P ) "~P 

3 , 4, HP 

Proof Generated by the APL Theorem Proving Functions 

PROVE '(~P÷P)÷P' 
1. SHOW (~P~P)÷P 
2. ~((~P~P)÷P) ASSUMP 
3. ~P÷P ASSUMP 
4. ~P ASSUMP 
5. (~P~P)A~P 2,NO 
6. PvP 3,CD 
7. P ~,3,MP 
8. ~~P ~,3,MT 
PROOF COMPLETED SUCCESSFULLY. 
PROOF USED 2 . 9 2  SECONDS OF CPU T I M E .  

Proof Exhibiting Various Features of the Proof Checker 

START -: 
PROOF CHECKER --- VERSION 1.1A 

• 

2. 
SIiO;¢ (P÷Q)÷÷~(PA~Q) : 
~((p~Q) ÷÷~(P^~Q) ) 

3• SIIOW (P÷Q)÷~(P^~Q) = 
4. ~((P÷Q)÷~(P^~Q)) 
5. P÷Q 
6. ~~(P^~Q) 

7. P^~Q 

8 • P 

9. ~Q 

LINE DOES NOT FOLLOW.-~ 

10. Q 
SUB-PROOF AT LINE 3 COMPLETED• = 

I APL function which invokes checkingj 
APRIL 1971 

SIIO~I (P-~)÷÷--(PA~Q) 
~Assertion to be proved[ 

ASSUMP 
SHOW 

IAn obvious assertion is supplied bzl 
ASSUMP the proof checker 
ASSUMP " 
A SS UMP 

6 ,DN 
6,DN 

7,S~-~Input in the 1 
7 ,S | abbreviated 
7, S | form 

5.9,MP 
~n invalid deduction is detected[ 

5,8 ,MP 
5,8,MP L 

ISubproof completion is .detected J 
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SYNTAX ERROR 

11. 
12.  
13.  
14. 

1 5 .  
1 6 .  
17.  

18. 
19. 
PROOF 

,SHOW ~(PA~Q+tP~Q) 
IN INPU2, OR IMPROPER LINE.~Syntax e r ro r  is  detected{ 

SHOW ~(pA~Q)N(p~Q) 
SHOW ~(PA~Q)~(P~Q)~ [Beginning of subproofJ 
~(~(pA~Q)÷(P÷Q)) ASSUMP 
~(pA~Q) ASSUMP{Subproof is indented] 
~(p~Q) ASSUMP 

P~Q 
SHOW P~Q~ 
~(p^~Q)^~(P~Q) 12,NC 
pA~Q 14,NC 

SUB-PROOF AT LINE 15 COMPLETED. 
SUB-PROOF AT LINE 11 COMPLETED. 

~(p^~Q)÷~(P~Q) 
COMPLETED, 

Theorem prover i s  invoked to obtainJ 
an obvious con t rad ic t ion  

• i 
3 , 1 ,  ~Correction of 

v ~ [ input (APL) 
1, CB 

3 ,11 ,CB  
3,11,CB 

Ctt,~'CKING TERMINATED.= [Proof comp/etion is detected{ 

- -4 ,  
4 

÷ 

÷ 

Double negation (DN) 

4' ̂  @ Simplification (S) 
÷ 

M~,./~,,,.., (MP) 

¢.~.÷ 
÷ ~  

Conditional-bicondi6onal (CB) 

Example o f  a P r e d i c a t e  Logic Proo£ 

Proof Generated I n t e r a c t i v e l y  using the APL Proof Checker 

Program Response 

START 
PROOF CHECKER --- VERSION 

I • 

2 .  
3 .  
4. 

• 

6. 
7. 

1.1A APRIL 1971 

SHOW 
-(ACX](FCX]÷GCX])~(A[X]F[X]÷~[X]G[X])) 
ACX](FCX]~G[X]) ASSUMP 
-(~[X]ECX]*aCX]G[X]) ASSUMP 

aCx](FCX]÷GCx])÷(A[X]FCX]*ACX]OCX]) 
ASSUMP 

ASSUMP 
ASSUMP 

show A[X]FCX]÷ACX]GCX] 
aCX]FCX] 
~aCX]UCX] 

User Input 

SHOW A[X3(F[X]~G[X])~ 

(A[X]F[ 

SHOW ACX]PCX]÷~CX]GCX] 
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• 

9, 

10. 

11.  

12. 

PROOF 

T2o z 

snow aEx]aEx3 
~GCX] 

FCX] 

FCX]÷GCX] 

ASSUMP 

6 , U I  

3 , U I  

G[X]  1 0 , 1 1 , M P  
SUB'PROOF A2 LINE 8 COMPLETED, 

SUB-PROOF A2 LINE 5 COMPLE2ED. 
COMPLE2ED, CHECKING 2ERHINA2ED. 

Kalish-blontague Formal P r o o f  

z. g/una Ax(Fx ~ Gx) ~ AxFx ~ AxGx) 

2. Ax(Fx ~ G x )  
3. glun~ AxFx ~ AxGx 

4. ^xFx 
5" SAne ^xGx 

6. Fx [ 
7. Fx ~ Gx 
8. Gx 

i 

4, UI 
2, UI 
6, 7, MP 

s n o w  ACx]aCX] 

X 6 , U I  

X 3oUI  

IOi l loMP 

N o t a t i o n :  

6 d e n o t e s  A or  V 

V d e n o t e s  V or  

j ¢ 

4-*÷ 
¢ 
÷ 

Universal instantiation (UI) 

Modus poneus (NIP) 

A LANGUAGE MACHINE 

Rodnay Zaks 
Center for Research in Management Science 
University of California, Berkeley 

THE META-APL TIME-SHARING SYSTEM 

META-APL is a multiprocessor time-sharing system developed at the University of 
California, Berkeley, for interactive real-time APL service. Its conceptual design has 
deliberately been kept simple and an expeptionally high performance to cost ratio has 
been obtained. Most of  the functions traditionally performed by software have been 
pushed into the hardware-firmware execution unit. The core memory, although fast 
(750 nsec) is viewed by the processor strictly as an IO device. 

The system was developed in two steps: completion of  an APL processor and develop- 
ment of an operating-system processor, both processors being micro-programmed and 
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