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A LANGUAGE MACHINE 

Rodnay Zaks 
Center for Research in Management Science 
University of California, Berkeley 

THE META-APL TIME-SHARING SYSTEM 

META-APL is a multiprocessor time-sharing system developed at the University of 
California, Berkeley, for interactive real-time APL service. Its conceptual design has 
deliberately been kept simple and an expeptionally high performance to cost ratio has 
been obtained. Most of  the functions traditionally performed by software have been 
pushed into the hardware-firmware execution unit. The core memory, although fast 
(750 nsec) is viewed by the processor strictly as an IO device. 

The system was developed in two steps: completion of  an APL processor and develop- 
ment of an operating-system processor, both processors being micro-programmed and 
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communicating through shared core. We will describe here the APL-machine. For further 
details about the total system, its use and possible extensions, see (1). 

The APL machine may rightfully be viewed by the end-user as a dedicated hardware APL 
processor. Its design, however, embodies the integration of  hardware, firmware and software 
concepts. Technological advances in the state of the art have made available micro-processors 
with a high major/minor cycle ratio (9 to 10) which are equipped with micro-instruction sets 
comparable in power to the conventional instruction sets, thus placing a premium on the 
number of  instructions performed between core accesses. In fact, if this number if large 
enough (8 suffices in META-APL) ,  the processor may never  have to wait for core and will 
run at the speed of  its internal registers (90 nsec in META-APL) .  This technological advance 
allows an interpreter for the first time to reside directly in control-storage and still provide 
very efficient language processing. A simple example will make this point clear: during the 
time it takes the processor to perform a (microprogrammed) floating multiply (20 usec), 
it could have walked down 167 levels of  a binary decision tree or performed 237 logical or 

shift operations. 

An APL interpreter being obviously needed to provide the time-sharing facilities and elaborate 
diagnostics, it was decided to implement directly the interpreter in the ROM (Read-Only-Memory) 
control storage of  a micro-programmed processor. 

T H E  L A N G U A G E  P R O C E S S O R :  H A R D W A R E  

Digital Scientific's META-4, a microprogrammed 16 bit-processor, was selected as a suitable 
host for the interpreter. It executes 32-bit micro-instructions in 90 nsec average time. Micro- 
programs are stored in up to 2K of  ROM and this pratical limitation constituted an important 
constraint on the design of  the system: the whole interpreter had to fit within 2,000 instruct- 
ions of  control storage, accentuating the original philosophy to keep the overall design simple. 
Core cycle is 750 ns proper, or 840 ns, accounting for propagation and interface delays. 

The processor is organized around a simple 3-bus structure: data are obtained from the A- 
bus and B-bus and gated to a logical unit, followed by a shift unit. The result is then gated 
via the D-bus to the specified destination register. A typical 3-address instruction is shown 

below in assembly language. 

M E M O R Y - A D D R E S S - R E G  = REGISTER 7 + REGISTER 20 L8 MR; 
- Registers 7 and 20 represent the origin registers on the A and B buses. 
- + is the specified arithmetic operation. 
- L8 (left shift eight positions) is the specified shift-unit operation. 
- MR is an independent modifier-bit which wakes up the memory inter- 

face for the specified memory  read operation. 
- M E M O R Y - A D D R E S S - R E G  receives the resulting data from the 

D-bus. 

The machine is equipped with 32 logical register positions which have been filled with 28 hard- 

ware registers and a 64-word 40 nsec scratch pad. 

To facilitate dynamic memory  allocation, the processor has been equipped with a hardware map: 
128 words x 12 bits. Each process thus has access to a 65K virtual memory,  physical storage 
being allocated in 512 word-blocks, the page size. Care being taken to start map accessing at the 
same time as the priority level is being decoded, the overhead due to map insertion is nil in most 

cases. 

T H E  L A N G U A G E  P R O C E S S O R :  FIRMWARE 
An APL statement,  edited at one of the CRT terminals, is transformed by the "Translator" into a 
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token-string or "internal APL ." The Translator, resident on the Operating System Processor, then 
discards the external APL string. The one-to-one correspondence between external and internal 
APL insures that either string may be simply generated from its translator image. All tokens 
consist of  a descriptor field, identifying the syntactic type of  the token followed by a semantic 
field identifying its content  (variable index number, function index number) or actually holding 
it (operator code or floating point number).  All tokens are one word long, with the exception 
of  numbers which are represented in a 2-word floating-point notation and vectors which have a 
3-word header followed by the vector elements. 

The M E T A - A P L  interpreter processes such internal APL strings dynamically, incrementally and 
decrementally.  Decremental program execution is made possible to the extent  of  a one-statement - 
backup and of  a one-function level backup by deferred assignment of  values to operand calls, the 
intermediate result being pushed on the Stack. To avoid too severe a storage loss, arrays of  large 
size may not be backed up as this turns off  the future. 

The concept of  process is associated with the enti ty in control of  a processor during a computation. 
A process thus has a number of  attributes such as: map or virtual space, virtual processor defined 
by the process capabilities or segment descriptor table. The correspondence being isomorphic, all 
characterizations belong to a common equivalence class that we shall call the process equivalence 
class. In practice, we shall characterize a process by a distinguished element of  its class, the proc- 
ess segment of  its virtual space. A process is brought into existence by a fork instruction in a 
mother  process or by deliberate coupling of  a user with the system, resulting in the creation of 
a master-process. We shall now examine the virtual space organization of  a process. 

The 65K virtual storage allocated to each process is partitioned in four segments: 

1. Program strings: contains all internal APL strings in execution for all processes. 
Area 1 is common to all users and allows simple dynamic sharing of  user programs 
and library APL functions. 

2. System tables: common to all users - do the obvious thing. 
3. Management Table (MT): a stack of address tables (OAT) followed by the Operator 

Push Down Lists (OPDL) at each level. Within each variable token, the identifier 
field constitutes an index number to the appropriate (global/local) OAT. The OAT 
entry points to the actual operand location within the stack segment. 

4. Stack: all temporary results, literal arguments and unevaluated variables ("Operand 
Calls") get dynamically pushed down on or popped from the operand stack. 

Stack and Management Table constitute the process segment. 

In a first phase, the Interpreter operates a left to right parse of  the tokenised APL line, pushing 
Operand Calls, numbers and vectors on the Stack and pushing the operators onto the OPDL. A 
function call is placed at the end of the previous OPDL and starts a new, local, OAT segment, 
followed by a new OPDL, for the function. When an APL execution delimiter is encountered, 
such as end-of-line, the Interpreter enters its right to left execution phase, applying operators 
from the OPDL to operands appearing o n t o p  of the Stack. 

Naturally, the two top elements of  the Stack as well as the top of  the OPDL and all appropriate 
pointers are kept in hardware registers. Further  discussion of  the Stack management and dynamic 
array handling is not within the scope of  this paper. 

THE LANGUAGE PROCESSOR: SOFTWARE 

Since the phsical size of  the ROM limited the interpreter size to 2,000 instructions, it was not 
possible to implement in firmware all of  the numerous and sometimes very complex APL 
operators. A basic spanning set, consisting of  the 17 most frequently used operators was there- 
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fore included in the interpreter and all remaining operators were implemented as library APL 
functions, i.e., APL code using this primitive spanning set (2). The Translator is in charge of 

substituting a system-function call descriptor for this class of APL operators. 

FIRMWARE DEVELOPMENT 
All system firmware is to be developed in three phases: 
Phase 1: simulation on the XDS 940 time-sharing system, with all the facilities inherent to 

a general purpose time-sharing system: file system, editor, on-line debugger, and 

assembly language. 
Phase 2: simulation on META-META, a self-emulator for the hardware processor, residing 

in the processor itself. META-META fetches its insturctions from core and simulates 
by  means of interpretive execution the operation of the corresponding ROM micro- 
instructions, thus allowing core to be used as a simulated control storage, with all the 
flexibility of read-write storage, but at an expense of a significant reduction in ex- 
exution speed. This simulator also provides an on-line debugger and assembly language. 
In addition, it is equipped with all the routines necessary to control the IO devices 
particular to the META-APL system (because of the generality requirement, no IO 
routines are available on the 940 simulator). This microprogram was naturally developed on the 
940. The use of this second simulator may appear to be superfluous in view of the availability 
of the first one on the 940. Let us therefore indicate the important functions that it performs: 

- insuring a thorough hardware check-out by early and continuous use of all of 
the machine micro-operations. 

- providing continuous and on-site access to a simulator with complete IO 

facilities. 
- allowing all programs, even test routines (other than CPU-test) to run on the 

machine interpretively from core for as long as possible before being finalized. 

Phase 3: finalization of the debugged micro-code into ROM patterns. These patterns are easily 
field-alterable and final touch-ups are done directly on the ROM boards._ 

SYSTEM UTILIZATION 
The META-APL system can service up to 64 simultaneous processes. APL has been extended 
to provide each user with the ability to create parallel processes running concurrently with the 
mother process and asynchronously. In a typical situation, one large program will activate 10 
to 16 parallel controlling processes, each connected via a CRT terminal to the experimentee. 
These special processes have highest priority and run under a real-time constraint (response 
time less than 0.1 sec). Simultaneously, the system provides APL service at a lower priority 
for normal program development by other users. 
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