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Figure 1: A patch with calf leather pattern. From left to right different frequency bands of the underling displacement map has been enhanced
on different subdivision resolutions. Last two patches on the right-hand side use low frequencies from a different sample.

Abstract

Subdivision surfaces are methods for creating smooth surfaces out
of coarse polyhedral meshes. Due to their recursive nature they are
ideally suited for adding geometric detail on different resolutions.
When modeling real-world surfaces it is possible to extract the fine
surface details from a material and apply these on dense meshes
in the form of vertex displacements. Material characteristics are a
mixture of features at different scales, which can be recovered by
a frequency decomposition of an input height map. Applying these
sub-bands as displacement in a recursive multiresolution fashion
allows the ability to influence or mix details obtained from one or
more sources.

This paper presents a method for computing multiresolution dis-
placed subdivision surfaces on the GPU that performs in real-time
and provides an interactive control over the obtained results.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations

Keywords: subdivision surfaces, displacement mapping, multires-
olution, real-time rendering

1 Introduction

Real-life surfaces are very rarely completely smooth. Most natu-
ral surfaces exhibit many levels of roughness and coarseness, es-
pecially if they are inspected in detail. Therefore many computer-
generated models of real-life objects which are rendered with per-
fectly smooth surfaces appear sterile and artificial. Over the years
computer graphics has developed several approaches to avoid this
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problem. One of the first methods in this category was bump map-
ping [Blinn 1978], and its improved descendant, parallax mapping
[Oliveira et al. 2000]. Both of these methods do not influence the
actual geometry of the underlying model, but change its rendered
appearance.

On the other hand, a whole area of computer graphics research deals
with subdivision surfaces, a powerful tool for representing objects
with smooth surfaces. Due to their nature, subdivision surfaces can
be either rendered using successively finer approximations or eval-
uated exactly for selected surface parts. Since subdivision surfaces
can be generated from base geometry of any topology, they are very
easy to handle in the modeling process, and have therefore become
the tool of choice in applications which aim at highly realistic ap-
pearance of smooth models.

In this paper we present a method to apply multiresolution geo-
metric detail on subdivision surfaces in real-time. The additional
surface detail can be generated artificially, handcrafted or based on
an analysis of a real surface sample. During the rendering process,
it can be applied automatically in form of multi-band displacement
maps on different subdivision levels of the underlying surface.

As a basis for our work, the next section presents an overview of
subdivision surfaces and the displacement approach as well as a
brief explanation of sub-band decomposition. The novelty of our
work lies in the combination of these techniques and its implemen-
tation on graphics hardware, which are explained in sections 3 and
4. Sections 5 and 6 present our results and conclude the work.

2 Related Work

2.1 Subdivision Surfaces

Mesh subdivision is a technique for generating smooth surfaces
that has been introduced quite some time ago [Catmull and Clark
1978; Doo and Sabin 1978]. The standard subdivision process
starts out with a mesh M (0) composed of vertices, edges, and
faces that serves as the base for a sequence of refined meshes
M (0), M (1), M (2), ..., M (k) which converges to a limit surface for
k →∞. This surface, also called the subdivision surface, possesses
certain continuity properties (i.e. C2).

For a long time the theoretical foundation of the subdivision pro-
cess was not as thoroughly developed as for other modeling tech-
niques such as B-splines and the more general NURBS, and thus it



took a while for subdivision methods to become widely adopted. In
the last decade this has been rectified by the introduction of meth-
ods to analyze and evaluate subdivision surfaces at any point [Reif
1995; Stam 1998], a method for extending subdivision surfaces to
approximate NURBS [Sederberg et al. 1998], the addition of con-
trolled boundaries [Biermann et al. 2000], and a method to derive
NURBS patches from subdivision surfaces [Peters 2000]. A num-
ber of other extensions to subdivision surfaces [DeRose et al. 1998;
Lee et al. 2000; Ying and Zorin 2001; Boier-Martin and Zorin 2004]
have established them as the modeling tool of choice for generating
topologically complex, smooth surfaces.

2.1.1 Evaluation Approaches of Subdivision Surfaces

Many researchers have focused on the problem of fast evaluation
and real-time rendering of subdivision surfaces. In general, besides
the exact evaluation [Halstead et al. 1993; Stam 1998; Zorin and
Kristjansson 2002] three major strategies can be distinguished: (1)
forward differencing, [Pulli and Segal 1996; Bischoff et al. 2000],
(2) precomputed and tabulated basis functions [Bolz and Schröder
2002; Bolz and Schröder 2003] and the most known and widely
used (3) recursive evaluation [DeRose et al. 1998; Biermann et al.
2000]. In our work we use the latter one, since it is more flex-
ible than precomputed basis functions and more stable, than the
numeric method of forward differencing. In addition to that, it is
naturally suited to introduce variations at each recursive evaluation
level. One disadvantage of this approach is the exponential growth
of the geometric data, where usually only a small part is visible at a
particular moment.

In order to reduce the enormous space complexity of the subdivi-
sion process, Pulli and Segal have introduced a strategy for eval-
uating and rendering which they called sliding window [Pulli and
Segal 1996]. This technique uses a fixed memory portion which
contains only a (small) piece of the actual surface. This piece
becomes evaluated with the forward differencing method and ren-
dered. After that the data is discarded, and a next part of the surface
can be processed in the same way. This has been adapted for a
modern-hardware implementation of Loop surfaces [Bischoff et al.
2000]. A similar strategy has been presented for recursive subdi-
vision, where mesh parts become evaluated depth-first [Müller and
Havemann 2000; Settgast et al. 2004]. We take advantage of this
strategy by combining it with a hardware implementation approach.
Shiue et al. have introduced a hardware kernel based on recursive
evaluation [Shiue et al. 2005]. They split the mesh into fragments,
where the neighborhood is spirally wrapped around each vertex. In
their subdivision kernel the neighborhood can be obtained in terms
of the spiral ordering. Our implementation uses quadrangular mesh
patches and benefits from the capabilities of hardware which allows
to reinterpret textures directly as vertex data in video memory.

2.1.2 Catmull-Clark Subdivision Scheme

Catmull-Clark subdivision is a generalization of the bivariate cubic
B-spline surfaces. It accepts any polygonal input domain with con-
vex polygons and even very complex topological shapes. There are
no limitations to the valences (number of incident edges) of the ver-
tices, but all vertices with a valence of four are called regular. Re-
gions containing such vertices converge exactly to bicubic B-spline
patches with C2 continuity. Vertices with other valence are called
extraordinary and the surface regions in their vicinity do not match
a regular B-spline, albeit they still maintain C1 smoothness. By the
recursive evaluation, after the very first refinement step, any gen-
eral mesh is split into quadrangles only. Also only in this step new
extraordinary vertices are introduced at faces different to quadrilat-
erals. In all following recursions, the algorithm proceeds always in
the same manner by splitting each quad into four new pieces and

the number of extraordinaries remains constant.

For our approach we have adapted the Catmull-Clark scheme as
presented by DeRose [DeRose et al. 1998] and implemented it for
the GPU kernel. Section 4 presents the details of our implementa-
tion.

2.2 Displacement Mapping

Displacement mapping is a well known and rather simple method
to apply geometric detail to a surface. It was introduced by Cook in
order to enhance silhouettes of objects [Cook 1984]. Other applica-
tions of this technique can be found in the terrain rendering domain,
where it is often referred as height field mapping.

2.2.1 General Displacement

The general approach of displacement mapping is to shift each
parametrized surface point (u, v) in some direction by an offset
value fetched from a map d(u, v). The most obvious choice for the
direction is the local surface normal vector N(u, v). Let the surface
S be parameterized by X : U ⊂ R2 → S ⊂ R3. Following this
parametric space, a displacement function is defined as

X̂(u, v) = X(u, v) + d(u, v) ·N(u, v) (1)

In the case of discrete meshes the normal N(u, v) can be easily
computed on each vertex vi as an (weighted) average of its inci-
dent face normals. Furthermore, in case of Catmull-Clark surfaces
also an exact limit surface normal can by computed [Halstead et al.
1993].

2.2.2 Displacement of Subdivision Surfaces

Displacement mapping has already been used in combination with
subdivision surfaces in order to achieve mesh compression [Lee
et al. 2000]. It has also been researched in order to manually model
high detailed geometry. Bunnell proposed a method in hardware to
model complex shapes (in [Pharr and Fernando 2005]). An other
approach presented a method to define arbitrary curves along sub-
division surfaces which serve as a path for displacement in order to
generate sharp or semi-sharp creases [Khodakovsky and Schröder
1999]. This method has been extended to cut mesh pieces away by
enabling trimming curves on the surfaces [Biermann et al. 2002].

Velho et al. introduced a way to synthesize shape features on sub-
division surfaces using multiscale procedural displacement [Velho
et al. 2001]. Similar to our approach they displace particular sub-
division levels with variable scales. As a result they can synthe-
size several new classes of objects. A similar approach uses fractal
displacement to generate naturally looking tree bark [Tobler et al.
2002]. Both apply the detail in a pre-processing step and thus do
not benefit from any savings that can be achieved by procedural
rendering.

2.3 Image Pyramids

In our approach we decided to focus on different frequencies of a
specified displacement function. Therefore we construct the lapla-
cian image pyramid which was introduced in the early eighties
[Burt and Adelson 1983]. This algorithm decomposes a source im-
age into individual frequency bands by sub-sampling and smooth-
ing the image with a gaussian filter, super-sampling it into original
size and differencing the result from the previous step. By repeat-
ing this operation recursively the well known laplacian pyramid is
constructed with steps of approximately one octave magnitude.



Figure 2: Displacement of a surface along normals. Left: one-time displacement. Right: Multiresolution displacement. Note that in this
case concave folds are possible (dotted circle).

3 Multiresolution Displacement

The main goal of displacement methods is the generation of more
complex shapes by introducing geometric variation across the sur-
face. Our approach uses the same basic idea whereby we consec-
utively enhance local detail geometry by features obtained from
spectral sub-bands of one or more sample patterns. In this section
we will describe the details of our method.

3.1 Idea Outline

Recalling the recursive subdivision surfaces method, it appears
quite naturally to research the behavior of a surface while some ad-
ditional geometric information might be added into this sequential
process. Since at each step a parametrized and explicit represen-
tation of the mesh is automatically generated, it is an easy task to
perform displacement on its vertices. Doing it recursively induces
a – perhaps uncontrolled – successive surface distortion.

The interesting property of this combination is the fact that the res-
olution of the mesh becomes twice as dense with each step. For
this reason consecutively finer details can be modeled on the net –
or lets say modulated on the net – with growing density.

To achieve multiresolution details it is necessary to examine a given
displacement texture for its coarse and fine characteristics. As it is
known from signals in the frequency domain, their globally promi-
nent characteristics are carried by the low and the fine traits by
the high frequencies. These particular bands often play a key role
for the appearance of an image sample. A repeating pattern of a
tileable texture depends mainly on the high frequencies, while the
low bands might be stretched over many small tiles or might be re-
placed. As a result, especially for human perception, an uniform but
non-repeating field with the same pattern can be generated. Hence
it is interesting to take this fact into account in order to create dif-
ferently sized features on a surface.

Finally also the size of the details play a role during the rendering.
While viewed from the far, only very coarse features are of interest,
in the closeup fine ripples enhance the authenticity of the models’
surface. If an object is inspected in a closeup view, only a limited
portion of its entire shape is currently visible in the view port. Our
approach provides the ability to balance the actual amount of data
provided to the display on-the-fly by an adaptive tessellation. It can
be used to achieve an optimal visual appearance while rendering in
real-time.

3.2 Sub-Band Displacement Maps

Proper displacement maps are usually created by examining an ex-
isting pattern and encoding its fine surface properties into a height
field. Adding these heights to a smooth surface by a one-time shift
results in a proper reconstruction of these details (see Figure 2, left-
hand side). In contrast, our approach is to separate these charac-
teristics and to apply them consecutively to the surface on different

subdivision levels (Figure 2, right-hand side).

We isolate the sub-bands by creating the laplacian pyramid of an
input image (see section 2.3). The result of such an analysis is a
set of displacement maps with a scope of one octave each. In the
spatial domain each band represents features of similar spatial sizes
relative to the entire displacement range. Their sum results in the
original signal back again. Applying the low-frequency bands on
a rather coarse subdivision surface resolution deforms the shape of
the given object more significantly and modulates the prominent
features. A sequential adding of more higher frequency bands on
the increasingly dense net adds the desired detail onto it.

3.2.1 Resolution Matching

An interesting analogy to the subdivision procedure can be estab-
lished in this context, since each sub-band differs from its prede-
cessor by exactly one power of two. This means that an image of
the size (2n) × (2n) can be decomposed in n different bands with
growing density of contained features. Also the subdivision proce-
dure refines a mesh in a power of two manner, thus the density of
the vertices of one quad increases by (2k + 1)× (2k + 1), where k
is the subdivision level.

This analogy can be used to map particular sub-bands to corre-
sponding sub-levels. Of course the minimal reasonable resolution
is that of the mesh, since values for some vertices would have to be
interpolated otherwise. In our implementation the maximal subdivi-
sion level in hardware has been set to 7 due to memory constraints.
Including two previous software subdivision steps, an initial mesh
might be subdivided up to ninth level. This would result in (29+1)2

vertices for a single input quad, which has to be converted by a suf-
ficient large displacement map. Because objects are often covered
entirely by one texture coordinate layer in range [0..1] the size of
the displacement map has to be adapted accordingly.

Note that in order to model realistically looking surfaces, the actual
size of the features in the height field in relation to the objects’ size
in the embedding space requires additional semantic information.
Since this issue cannot be determined algorithmically it is left to
the responsibility of the user to supply input patterns and initial
meshes with properly balanced sizes.

3.2.2 Combining Sub-Bands

Applying the displacement consecutively on each subdivision level
enriches the resulting surface by normal perturbations which are a
consequence of the previous steps. Figure 2, left-hand side, de-
picts this issue. Note that even concave folds can be created by this
sequential approach. While this effect might be desired in some
cases, it can also cause undesired artifacts (i.e. self-intersection) on
the surface.

In order to influence this behavior, certain subsequent sub-bands
can be combined to one. Subdivision steps corresponding to these
frequencies then can be performed without displacement up to the



Figure 3: Left: local scale factor – it nestles to the curvature.
Right: static value – the offset on the fingers is the same as on
the palm.

particular mesh resolution and after that shifts to the vertices can be
applied accordingly to the combined displacement map along the
same normals. Since the addition of the sub-bands does not change
any properties of the pattern — in fact it delivers just a sum of few
particular frequencies — it can be easily done without any impact
on the correctness of the displacement. This extension is especially
useful if two different input patterns should be combined. The main
shape of the surface is modeled by the characteristics of one source
and the finer details are added from a second source along another
set of normals (see Figure 12).

3.3 Applying Displacement

During the recursive subdivision we shift the vertices accordingly to
the offset contained in a particular sub-band. Since the maps rep-
resent planar functions but the surface is usually curved, constant
displacement leads often to undesired effects (Figure 3). Therefore,
we normalize each of the bands to the range of [0..1] and rescale it
back to an appropriate size in consideration of local surface proper-
ties.

3.3.1 Local Scaling

We define these as a local scale factor for each vertex on each sub-
division level. In order to express the local properties, we derive it
from the average edge length L(v) of a vertex. Recall that in terms
of the subdivision the edges are nearly bisected at each refinement
step, such that it can be stated: L(vk) ≈ 1

2
L(vk−1) ≈ 1

2k L(v0) .
This is due to the fact that the density of the mesh changes at each
step by f(k) = 2k . It can be seen as the frequency f of the sub-
division as well as of the image pyramid. Its inverse proportional
delivers fractal-similar scaling of the form 1

f
. Adjusting the offset

by this quantity recovers the features of the original signal, the scale
however reflects the local properties of the surface.

Note that L can be measured in both parametric as well as euclidean
coordinates. While in the first case the resulting measure is global
space dependent, in the second one it depends on the supplied tex-
ture coordinates (refer to [Velho et al. 2001]). Both measures have
their advantages and problems. The global one performs in any
case but it is sensitive to the tessellation and the objects’ dimension
in the embedding space. The parametric one is independent of the
latter and represents an intrinsic objects’ measure, but it can lead to
cracks if texture coordinates are not provided continuously.

Additionally to the local scale factor, in order to allow the user more
control over the resulting surface, we supply an equalizer-like tool
which provides the ability to influence each sub-band individually
by hand. Using this tool more customized surface distortion can be
achieved with a rather convenient method of control.

3.3.2 Preserving Volume

In order to preserve the objects’ volume, the offset d ∈ [0..1] can
be linearly translated by − 1

2
such that it affects the surface in both

directions with respect to its orientation (d ∈
[
− 1

2
, 1

2

]
). Otherwise,

the consecutively added shifts would lead to an expansion of the
entire shape in the positive direction of the normals. Instead of just
taking − 1

2
it can be done more accurately by computing the mean

value of the histograms for each input map separately and the shifts
can be performed with respect to these. After that the zero level of
a displacement map lies obviously in its gray values between [0..1].
Due to the linearity it can be rescaled as mentioned in the previous
section.

3.3.3 Displacement Function

By taking the derived instruments into account the final offset D
which is applied along the unit normal n of a vertex v can be defined
as

D(vk) = C(k) L(vk) d(k, u, v) , (2)

where k is the subdivision and an appropriate sub-band level and C
is an user defined scaling constant for each level. Usually it is just
set to C = 1. If particular sub-bands have been combined, the scale
factor L has to be accumulated over these steps in order to recover
it properly. Finally, the displacement is performed by

v̂k = vk + D(vk) nk (3)

on each vertex according to equation 1.

4 Implementation on a GPU

In todays computer graphics it has become a challenge to im-
plement powerful algorithms for the rather limited programmable
graphics hardware. For geometry processing it also means that es-
sential properties like mesh connectivity have to be stored or calcu-
lated in different manners. This section describes the implementa-
tion of our hardware-subdivision and -displacement method.

4.1 Shader Architecture

In section 2.1.1 we mentioned the depth-first rendering approach
(sliding window) which reduces the memory consumption of highly
tessellated meshes. While our implementation differs in several
ways from the mentioned one, in an essential issue it is based on
the same idea.

4.1.1 Mesh Patches

In our work we have implemented a Catmull-Clark subdivision ker-
nel. Thus, after the first subdivision step in software the resulting
mesh can be decomposed in a series of equally structured patches
defined by the quadrangles (In fact we apply two initial software
steps in order to isolate extraordinary vertices. This is discussed
in the next section). We take advantage of this constellation and
encode each quadrangle into a small texture, where the vertex posi-
tions are stored in the RGB channels. A second texture holds vertex
normals and the (u, v) coordinates are kept each in the alpha chan-
nels of both textures. Since there is no possibility to establish any
connection between particular pieces in video memory, an over-
lapping neighborhood is included in order to maintain continuity
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Figure 4: Left: pure subdivision can be kept continuous with one
vertex overlap. Right: if overlap-normals of the patches are not
consistent, the displaced vertices would not be either.

across patches. For subdivision only one ring of overlapping ver-
tices is sufficient to ensure coherence, such that each quad is stored
in a 4 by 4 texture.

The subdivision kernel is implemented in the pixel shader stage
of the GPU and proceeds on a fixed set of textures located in the
hardware memory. Each one is capable of storing the vertices of a
particular subdivision level. This fix-sized buffer (the sliding win-
dow) is used to subdivide, displace and render basically unbounded
large meshes, since mesh patches can be supplied sequentially. It
is equivalent to successively moving the window along the initial
mesh. It is filled with each patch and all desired operations are per-
formed (including output to the frame buffer), before moving to the
next one. This sequence has to be performed for all – in best case
only for all visible – mesh patches in one frame.

In order to distinguish particular vertex types of the scheme (refer
to [DeRose et al. 1998]) we supply a reusable lookup table with
a chessboard-like pattern for each level. It allows to identify each
vertex type in the regular patch such that the neighborhood can be
determined and an appropriate subdivision rule can be chosen in a
dynamic branch. The calculated results are rendered into the fol-
lowing texture in the sliding window which can be then either pro-
vided to the final rendering pipeline, or again reused as an input for
the next subdivision step.

Since we use SM 3.0 extensions, the entire data flow can be closed
in video memory without the usage of the CPU. This is possible
because the entire texture can be reinterpreted directly as vertex
data and rendered. In order to establish proper connectivity of the
final triangles, we provide an index buffer which is precomputed
for each level and always reused, since vertices in each patch are
arranged in the same scheme. Moreover, overlapping regions can
be excluded from the rendering in this way.

4.1.2 Extraordinary Vertices

Unfortunately there is no possibility to fit extraordinary vertices (re-
fer to section 2.1.2) into the regular pattern. To overcome this we
allow each patch to contain one of these at most. It is stored together
with its 1-ring neighborhood in an additional 1D texture, where the
adjacent vertices are arranged circularly around the vertex (Figure
5). Because the number of extraordinary vertices is constant after
the first subdivision step and they can be isolated by one more step
in software, the algorithm can be prepared to deal with this case.

v1

v2

v3

v4

v5 ... vn

fv1 fv2

fv3

fv4

fv5 ... fvn

v

v1 v2 v3 v4 ... vn fv1 fv2 fv3 fv4 fvn...v

Figure 5: Extraordinary vertex ordering scheme in a 1D texture.

Thus each patch supplied to the hardware contains at most one ir-
regular vertex and furthermore – by properly choosing the orienta-
tion of the patch – it is always located at exactly the same position.
This fact can be used to encode that position into the lookup tex-
ture, such that during the processing of the fragments a hit on this
position can be determined. Here the shader program jumps into an-
other branch and recalls the proper position from the 1D texture. To
compute this position an additional render pass has to be performed
prior to the regular subdivision, such that the irregular vertex and its
neighbors can be obtained from the 1D texture. Then they become
overwritten on the regular patch.

Note that due to hardware resource constraints the extraordinary
algorithm cannot be implemented in a generic program. This has
been resolved by providing a software routine which generates spe-
cific shader programs for each particular valence. This routine is
called once in the preprocessing stage. During the runtime these
shader-programs are executed as additional passes and a context
switch does not have to be performed.

4.1.3 Normals Estimation

The consistency between two overlapping patches is easily en-
sured for the Catmull-Clark subdivision by maintaining the 1-ring-
overlap (Figure 4, left column). However, the introduction of dis-
placements at each subdivision level leads to an additional problem
on the visible boundary of a patch.

If every normal is computed in its local tangent frame the positions
of all 1-ring neighboring vertices have to be maintained identically.
However, the normal of the first invisible row of vertices of a patch
differs from its counterpart in the neighbor-patch due to the lack
of further information behind the first-ring. If displacement is per-
formed, this discrepancy is also propagated to the first-ring vertices
behind the visible patch border and thus it produces a gap between
adjacent patches in the next subdivision step. The root of the prob-
lem is shown in Figure 4, right-hand side.
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Figure 6: Interpolation scheme for an edge-point ẽk (left) and a
face-point f̃

k
(right) by points of the previous level vk−1.

There are two possible remedies: it is possible to ensure consis-
tency if the 2-ring neighborhood around each patch is considered.
Since this represents a significant computational and above all a
huge storage overhead, we resort to the second possible solution:
to use estimated normals for displacement before the subdivision,
such that they remain consistent across overlapping patches.

Of course, a rather good estimation of normals can be done only on



vertex-points of the current subdivision level because of the pres-
ence of the vertex and its 1-ring. If subdivision has not been per-
formed, new face- and edge-vertices are not given yet. Our solu-
tion is to temporarily estimate the missing edge- and face-points
in a rather rough way. Each particular point ṽk (which will be in-
troduced in the just after following subdivision step as vk) is bi-
linearly interpolated by its surrounding points at level k − 1. Then
its normal is computed as a normalized sum of the cross prod-
uct normals of the faces given by the interpolated point ṽk and its
neighbors vk−1

i (see Figure 6). In fact this approximates the normal
on the previous level.

The displacement can be applied just after the subdivision, partic-
ularly after the new vertex position has been computed. Although
this solution has an impact on the correctness of the displacement,
in consideration of the density of the mesh it is negligibly small
and no noticeable drawback can be observed on the visual results.
Finally, this solution provides a further benefit: because the esti-
mation can be done for each vertex without the knowledge of the
properly placed neighbor points (since information from previous
level is used), it can be performed just-in-time directly before the
subdivision in the same shader program. This saves an expensive
switch of render targets in order to compute proper normals, while
exact limit normals can be computed after the last subdivision step
and can be used for the illumination of the final scene.

4.1.4 Displacement Map Continuity

In order to perform displacement on overlapping patches, one fi-
nal issue should be taken into account. While a continuous texture
coordinates layer can be kept over adjacent pieces, texture tiles can
cause holes between patches if the offset values d do not match each
other at the borders. This problem can be resolved by providing ex-
actly tileable textures as displacement maps only.

4.2 Adaptive Subdivision and Displacement

In the decomposed mesh each patch is independent, thus each can
be subdivided and displaced to a certain level. This constellation
implies the possibility of a step-wise adaptive subdivision of the
whole model, such that adjacent patches can be rendered at dif-
ferent resolutions depending on the current camera position. One
can profit from this issue and allow a one-step difference between
neighboring patches without loss of the geometric coherence of the
mesh. Vertices of mesh patches at different levels do not lie on the
same positions, however the last positions at the higher sampled
mesh are known exactly.

p
0

p
1

p
2

Figure 7: Closing a T-Joint between mesh patches. Left: two
patches of different resolution. Right: the vertices of the higher
sampled mesh are forced to the lower level. Points p0, p1, p2 form
a zero area triangle.

Thus, as a straight-forward solution, the border vertices between
two differently sampled meshes can be forced to their positions at
the lower subdivision level. This works quite satisfying for smooth
subdivision, although small micro-holes of pixel-size can still ap-
pear during the rendering. The remedy therefore are zero area tri-
angles [Losasso and Hoppe 2004]. The triangulation of the final

Figure 8: Adaptive subdivision (left) with displacement (right).

rendering does not depend on the actual connectivity of the mesh
but rather is determined by a precomputed index buffer. Just for this
reason, the T-faces can be introduced very easily by including them
into the index-buffer computation routine. A further advantage of
the zero-area-faces is the fact that indeed during displacement it is
hardly possible to keep the borders of differently sampled patches
consistent. Here the T-triangles do a great job by totally closing any
arising discontinuity (see Figures 7 and 8).

The described procedure behaves very well on regular patch junc-
tions, while it is difficult to implement in hardware for extraordi-
nary vertices. Fortunately, the number of these is usually very lim-
ited in a mesh, thus our method does not allow different resolu-
tions on adjacent patches sharing one extraordinary point in order
to avoid those hard cases. In fact - this solution is numerically safe
and provides a completely ’watertight’ mesh.

4.3 Rendering

The final rendering routine is a cycling function containing two
nested loops (Figure 9). In each frame the outer loop cycles over
all patches where in an inner loop each one is subdivided (and
displaced) depth-first to the desired resolution. Once a patch is
fully computed, the resulting geometry-texture is reinterpreted as
a vertex-buffer directly in the hardware and an one-for-all, off-line
precomputed index-buffer is supplied. Here the rendering pipeline
must perform a context switch to change the render target to the
frame buffer and load another shader program for visual output.
This is the actual bottleneck of the system. The frequent context
switches of the shader cause the longest delays in the GPU pipeline,
reducing the overall utilization of the graphics hardware. While not
implemented in our solution yet, this drawback can be reduced by
maintaining multiple subdivision buffers in video memory in order
to cache and reuse results computed in the rendering stage.

Render Loop

Shader Subdivision Kernel

switch HW context to subdivision

supply index buffer

switch HW context to rendering

bind texture as vertex buffer

Draw Patch to Screen

for each patch do

estimate visibility and resolution

for each patch do

patch HW subdivision level n

PS

PS

patch HW subdivision level n+1

Position Texture Level n

Pos. TextureLevel n+1

subdivide 

compute normal

Position Texture Level n

Pos. Texture Level n+1

Lookup Texture Level n+1

subdivide 

displace

adjust borders

overwrite extraordinary

estimate normal

Figure 9: Rendering. Left: outer loop. Right: inner loop. Note
that the additional pixel shader pass is performed on demand if an
extraordinary point has to be computed.
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Figure 10: Evaluation time of traditional software subdivision
(red) and our method in hardware (blue). Note the logarithmic
scale in the right-hand side chart. Time is given in seconds.

Nonetheless, GPU subdivision results in an significant speedup if
compared to traditional software implementation based on half-
edge data structures, especially at higher steps (Figure 10). De-
pending on the hardware, multiple vertices are processed simulta-
neously by the GPU. Also, the fact that the computed data stored in
the texture memory can be directly reinterpreted as geometry with-
out passing it back to system memory allows to process all this in
real-time.

5 Results

Figure 10 shows the comparison of the evaluation time of recur-
sive subdivision performed on half-edge data structures in software
and our hardware accelerated solution up to level 9. Note that the
first two steps before hardware subdivision have been computed in
software to isolate the extraordinary points and to achieve an appro-
priate size of mesh patches.

The test has been done on a Intel Core Duo 2.4 Ghz machine with
2GB main memory. The graphics was supported by an ATI Radeon
X1900 GT GPU with 36 pixel pipelines, 513 Mhz core clock and
256 MB installed video memory, 768 MB texture memory and 660
Mhz memory clock. The model used for the test is a simple unit
cube at original zero level. It is build out of 8 vertices and 6 faces.
After two steps the mesh supplied to hardware is already composed
of 96 faces. The presented timings are given in seconds and show
an average over 80 measured frames.

In terms of the ratio of the compared runtimes can be seen that the
complexity of the hardware does not follow the same increase as of
the software. This appears obvious due to the parallelization of the
GPU. On the third step (which is the first one in hardware) the GPU
is in fact slower than software, while on the ninth step it is almost
6 times faster. The low subdivision steps are slower than the higher
due to the overhead of the initialization and bad utilization of the
pipeline. It is not designed to process very small textures, because
the data and instructions transfer cause a relatively large overhead
if compared to the contained information. Processing of larger tex-
tures would reduce this overhead. Currently we are working on
an improved implementation which resolves this problem and also
takes advantage of recently introduced hardware extensions.

6 Conclusions

We have presented a method for displacing subdivision surfaces on
several resolutions by the means of spectrally decomposed patterns.

In fact, to the authors knowledge, such an approach has not been
attempted yet.

The multiscale displacement approach provides the ability to fine-
tune the visual output on-the-fly in many variations by rather in-
tuitive control. To compare this method to classical displacement,
one issue should be considered as significant extension: Usually
displacement is applied only once on the final tessellation, which
limits this technique to a one-time shift of the surfaces’ vertices.
This does not allow the ability to achieve coarse deformations of
the entire object with additional small features along the deformed
surface. This issue has been extended by the adaption of multires-
olution displacement such that a vertex from the initial mesh can
be moved several times in different directions, each affected by the
previous subdivision steps.

As an additional goal, the entire subdivision and displacement pro-
cedure has been shown to be able to perform in real-time on a pro-
grammable graphics accelerator with very high mesh tessellations.
This work was very much concerned on the issue of real-time per-
formance. More precisely, many limitations had to be taken into
account in order to achieve such an implementation, especially the
issue of keeping the borders of adjacent patches continuous during
several displacement steps. Generally, our prototype achieves inter-
active frame rates with approx. 100.000 vertices (10 fps), which all
become re-computed each frame from approx. 30 initial points on
a moderate hardware. These rates might be significantly increased
by the introduction of caching strategies.

In order to improve the visual quality additional extensions are con-
ceivable:

• In the adaptive approach, the additional detail of finer subdi-
vision levels could be introduced continuously, by scaling the
displacements based on the viewer distance during the change
from one subdivision level to the next.

• The borders that are forced to the coarser subdivision level in
adaptive subdivision could be modified to a linear transition
zone between differing subdivision levels.

The implementation can be seen as a starting point for further opti-
mizations in order to ensure optimal performance on different hard-
ware. Considering the current development of the graphics acceler-
ators, we are working on an implementation which uses new exten-
sions (geometry shader) in order improve our method. We believe
that this technique is very well suited to be used for modeling of
multiscale details even on large meshes.

Figure 11: Tree bark rendered with texture applied.
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