

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Fast High-Quality Noise

Frisvad, Jeppe Revall; Wyvill, Geoff

Published in:
Proceedings of GRAPHITE 2007

Link to article, DOI:
10.1145/1321261.1321305

Publication date:
2007

Link back to DTU Orbit

Citation (APA):
Frisvad, J. R., & Wyvill, G. (2007). Fast High-Quality Noise. In Proceedings of GRAPHITE 2007: 5th
International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia
ACM. https://doi.org/10.1145/1321261.1321305

https://doi.org/10.1145/1321261.1321305
https://orbit.dtu.dk/en/publications/aaaf8543-76a5-49be-8f90-a7fc795df86c
https://doi.org/10.1145/1321261.1321305

Fast High-Quality Noise

Jeppe Revall Frisvad
Technical University of Denmark

Geoff Wyvill
University of Otago

Abstract

At the moment the noise functions available in a graphics program-
mer’s toolbox are either slow to compute or they involve grid-line
artifacts making them of lower quality. In this paper we present
a real-time noise computation with no grid-line artifacts or other
regularity problems. In other words, we put a new tool in the box
that computes fast high-quality noise. In addition to being free of
artifacts, the noise we present does not rely on tabulated data (ev-
erything is computed on the fly) and it is easy to adjust quality
vs. quantity for the noise. The noise is based on point rendering
(like spot noise), but it extends to more than two dimensions. The
fact that it is based on point rendering makes art direction of the
noise much easier.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism

Keywords: Noise, point rendering, GPU.

1 Introduction

We present a fast, high-quality noise computation based on raster-
ization. The noise function we implement is the sparse convolu-
tion noise advocated by J. P. Lewis [1984; 1989]. We have chosen
sparse convolution noise since it has several qualitative advantages
as compared to more commonly used noise functions such as im-
proved Perlin noise. Sparse convolution noise is generally believed
to be expensive to compute, but in this paper we challenge that
consensus by exploiting the programmability of modern graphics
hardware. Our approach has strong relations to van Wijk’s [1991]
spot noise, but we take the concept to the next level by computing
solid noise using three-dimensional spots.

With a few tweaks, the Perlin noise function seems to be the most
efficient way of getting individual noise values of decent quality.
It is, however, not the only way to go. By our implementation of
sparse convolution noise for the GPU, we intend to broaden the
range of noise functions available in a graphics programmer’s tool-
box. The new tool in the box is a way of computing better quality
noise without a heavy efficiency penalty.

Why do we need better noise? If you happen to pick a grid-aligned
2D slice from the standard 3D implementation of improved Per-
lin noise [Perlin 2002], gridline artifacts will be relatively obvious,
since the noise function is forced to return zero at every grid node.
We might be able to fix this problem, but visually the gradient noise
still seems to show a recognizable pattern, especially when grid
aligned. This is perhaps due to the fact that improved Perlin noise
chooses from only a small set of different gradients at each node.

c©ACM, 2007. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in Proceedings of
GRAPHITE 2007, ACM, pp. 243–248+315, December 2007.

(a) 628.1 s (b) 1.2 s

Figure 1: Reference noise (and CPU rendering time in seconds).
From left to right: (a) Pseudo-white noise filtered with a Gaussian
kernel. (b) The same noise filtered with a cubic.

1

0,8

0,6

0,4

0,2

0

0,10,050-0,05-0,1

1

0,8

0,6

0,4

0,2

0

0,10,050-0,05-0,1

Figure 2: Filter kernels. From left to right: (a) The Gaussian kernel
used in Figure 1a. It never falls off to zero. (b) The cubic kernel
used in Figure 1b. It has compact support.

This problem can also be remedied, but we have already proved our
point; it is worth considering different approaches. At the moment
Perlin’s very fast noise function of decent quality seems to be the
de facto standard which everybody uses. There should be an option
of at least one better quality noise function which is still fast.

2 Reference Noise

What noise functions in general try to achieve is a good approxima-
tion of white noise filtered with some Gaussian kernel [Lewis 1989;
Ebert et al. 2002]. But as Perlin points out “this approach would ne-
cessitate building a volume of white noise and then blurring it all at
once. This is quite impractical” [Ebert et al. 2002, p. 340]. To get a
feeling for what good noise looks like, it is nevertheless interesting
to compute this reference noise. A sufficient number of pseudo-
randomly placed impulses with a pseudo-random value in [−1, 1]
gives a good imitation of white noise [Lewis 1989]. Suppose we are
looking at a noise image with the size of 512 by 512 units (pixels)
and that we use a Gaussian filter with standard deviation σ = 16/3.
This gives approximately 16 Gaussian blobs across the width of the
image. The resulting noise image is shown in Figure 1a.

This Gaussian reference noise is quite expensive to compute, since
the filter never falls off to zero, see Figure 2a. This means that

every impulse contributes to every pixel. With hardly any impact on
quality, we choose a cubic filter instead, see Figure 2b. Let r denote
the filter radius (r = 16 in this case to get the same number of filter
kernels across the image as with the Gaussian) and let d denote the
distance from the impulse to the point where we wish to compute
the noise value. Then the cubic filter (which has continuous first
and second derivatives) replacing the Gaussian is

w(d) =

{ (
1− d2/r2

)3
, d2 < r2

0 , d2 ≥ r2 .

Now, for each noise value, we throw away all the impulses outside
the filter radius. This greatly improves the efficiency. The result is
shown in Figure 1b and is hardly distinguishable from the reference.

To have noise in different frequency ranges, we simply change the
filter size r. We refer to the number of filter diameters across the
width of a 2D noise image as the scale of the noise. Using this ter-
minology, the noise in Figure 1 is of scale s = 16. A good quality
measure for the sparse convolution noise is the average number n of
sources under each filter kernel. For example n = 15 gives noise of
decent quality while n = 30 gives noise of excellent quality. How-
ever, as n increases so does the cost of computing noise values. The
two adjustable parameters s and n are convenient to have as input,
and from those we find that the number of pseudo-randomly placed
sources needed for a D-dimensional noise image is nsD .

3 Point Rendering Approach

In the reference approach described above, a filter kernel is centered
at each pixel, and we need to find the distance to each source in
order to know whether it should be included in the noise calculation
or rejected. By calculating the noise the other way around, using a
rasterization approach, we are able to render each source as a point
and obtain exactly the same result.

The advantage of a point rendering approach is that the graphics
pipeline (almost for free) finds the pixels influenced by the filter
kernel around a source. This is much faster than using some kind
of grid or data structure to find the sources under the kernel around
a pixel. At this stage the approach is completely analogous to van
Wijk’s [1991] spot noise.

Each source i has an associated impulse value vi ∈ [−1, 1]. An
average of n1/D sources will influence each pixel and, in this con-
text, a pixel corresponds to a noise value that we wish to compute.
The influence of a source on a pixel is a contribution of the value
viw(d), where d is the distance between the source and the location
of the pixel in the noise space. Approximately half of the sources
influencing a pixel will have a positive value, the other half will
have a negative value. Since we are dealing with pseudo-randomly
placed sources of pseudo-random impulse values, it is reasonable
to assume that we will never end up with more than the average
number of sources contributing one of the extreme values −1 or 1
to the same pixel. Therefore it is also reasonable to assume that the
noise function will attain values in the interval [−n1/D, n1/D].

Knowing an approximate interval for the noise values beforehand,
enables us to compute noise values by the usual clamped alpha
blending. First we split the sources into those with positive val-
ues vi ∈ [0, 1] and those with negative values vi ∈ [−1, 0). We
then give each vertex (a vertex corresponds to a source) the color
|vi|/(2n1/D). This is done to make sure that the final noise values
fit the clamped color buffer. Vertices are rendered as textured point
sprites with size 2r and an alpha texture given by the cubic filter
w(d). Before streaming the vertices to the GPU, we clear all four
bands (RGBA) of the color buffer to the value 0.5.

Listing 1: The fragment shader replacing an alpha texture with
precomputed weights w(d).
uniform float filter_size_sqr;
varying vec2 winspace_vert_pos;

float weight(float t) { return t*t*t; }

void main()
{
vec2 v = gl_FragCoord.xy - winspace_vert_pos;
float dist_sqr = dot(v, v);
float w = dist < filter_size_sqr

? weight(1.0 - dist_sqr/filter_size_sqr)
: 0.0;

gl_FragColor = vec4(gl_Color.rgb, w);
}

The blending function is set such that the value

vi

(2n1/D)
w(d)

is added to every pixel covered by point i. To take into account
that some sources are positive and some are negative, we do as fol-
lows: The vertices corresponding to sources with positive values
are rendered with standard additive alpha blending, while the ones
with negative values are rendered with reversed subtractive alpha
blending.

The range of the resulting noise image is [0, 1] (this interval is ob-
tained subsequently for the reference noises described in the pre-
vious section). The d in w(d) may be off by up to half a pixel
width because we use a texture. Otherwise we obtain the same re-
sult as presented in Figure 1b. Perhaps with lower precision if we
do not have a high precision color buffer available, but now we have
the result in real-time (0.0083 seconds for the image in Figure 1b)
even on old graphics hardware that does not support programmable
shaders.

On newer hardware a better option is to render conventional points
(instead of textured point sprites) and make a simple fragment pro-
gram computing the weights w(d). This removes the minor prob-
lem that d could be slightly off target in the computation of w(d).
The fragment shader is given in Listing 1 and a simple vertex shader
to pass the window space position winspace_vert_pos of each ver-
tex on to the fragment shader is necessary. It is important to notice
that a varying parameter, such as this window space position, is not
interpolated across the fragments covered by a point. This is always
the case in point rendering (except for the texture coordinates in the
case of textured point sprites). Therefore it is important that we use
points rather than triangles or quads.

4 Introducing a Grid

In the 2D sparse convolution noise, the xy part of the fragment
coordinates is used as input for the noise function. This means that
sources must be placed either inside or in proximity of the view
frustum, otherwise they will have no influence on the noise values
we compute. The resulting picture could be referred to as a window
into the image of the noise function. If we feel like moving our
window to have a look at some arbitrary part of the noise image,
we need a quick way of finding the sources to be rendered for this
part of the image. Since we could move our window anywhere, it
is not a good idea to compute locations and values of the sources in
advance.

To compute locations and values of the sources on the fly, we use a
linear congruential pseudo-random number generator:

xi = (axi−1 + c)mod m , (1)

where we use a = 3125, c = 49, m equal to the maximum un-
signed integer, and seed x0 = 1. Another way to write this is

xi =
(
aix0 + (ai−1 + . . . + a0)c

)
mod m (2)

which means that we are able to find the pseudo-random numbers
for some index by implementing a simple function that finds inte-
gral powers of unsigned integers. By choosing m to be the largest
unsigned integer, we do not need to use the modulo operator. This
way of computing pseudo-random numbers was also done for the
4D noise function by Wyvill and Novins [1999].

The exact choice of pseudo-random number generator is not impor-
tant. However, it needs to be fast and it should take an index as
argument. Why an index as argument? Because it makes it easy to
impose a grid on the noise domain (the space from which we get
arguments for the noise function) and let each grid cell have an in-
dex for the generator. Using the index into the generator, we first
get one pseudo-random number (2), but with that in hand, each step
through the generator (1) finds another pseudo-random number, en-
abling us to have any number of pseudo-randomly placed sources in
each grid cell. This means that no matter where we move the frus-
tum (i.e. the window into the noise image), we are able to look up
the sources influencing that particular part of the image by means
of grid cell indices and the pseudo-random number generator.

Another good reason to introduce a grid is that it reduces the cost
of computing a single noise value. If we use a regular grid and let
the width of the grid cells be the same as the diameter of the filter
radius, then any noise value will only be influenced by sources in
four grid cells in the 2D case (2D cells for D dimensions). With
this construction we easily find the cells influencing the window
(the xy-coordinates in the view frustum). A grid cell is rendered
as shown in Listing 2. The listed code could be simplified. In the
simplest 2D case, we can make do with only 3n pseudo-random
numbers to render one grid cell, i.e. three numbers for each source
in the cell. Two for the position and one for the value. The listed
code is slightly more general and finds both a three-dimensional
value and position for the sources. This means that the code in
Listing 2 is also useful for solid noise generation, and this is the
subject of the next section.

5 Solid Sparse Convolution Noise

Noise functions taking two-dimensional arguments do not suffice if
we, for example, wish to do noise-based procedural solid texturing.
To achieve this, we need three dimensional arguments for the noise
function. We cannot render all the noise values enclosed in the view
frustum in one image as we could in the 2D case where the depth
coordinate had no meaning. Instead we use the depth coordinates of
some rendered geometry to pick a slice of the solid noise enclosed
in the view frustum. That is, we render a model and get the posi-
tions on the surface which are seen by the camera as input for the
noise function.

A depth texture could be used to pass the depth coordinate infor-
mation on to the fragment shader. But to get distance calculations
right for the filter, we would have to transform the depth coordi-
nates back to eye space. This is not practical. It just necessitates a
lot of extra computations in the fragment shader. Instead we render
a texture of eye space positions and pass all the xyz information on
to the fragment shader. To avoid scaling, which often results in a

Listing 2: Pseudo-code for drawing the sources in a grid cell.

n is the number of sources in a grid cell;
a = 1/(2n1/3) is the impulse scale;
b is the size of a grid cell;
i is the index of the current grid cell;

seed the pseudo-random number generator by 6ni;
find 6n pseudo-random numbers vjk ∈ [0, 1],

where j = 1, . . . , n and k = 1, . . . , 6;

find the position (x, y, z) of the lower left far corner using i;

draw n/2 points using additive alpha blending:
use (avj1, avj2, avj3) as the color of point j;
use (x + bvj4, y + bvj5, z + bvj6) as the position of point j;

draw n/2 points using reverse subtractive alpha blending:
use (avj1, avj2, avj3) as the color of point j;
use (x + bvj4, y + bvj5, z + bvj6) as the position of point j;

Listing 3: Fragment shader for rendering of sources in three di-
mensions (including interval depth test).
uniform sampler2DRect pos_tex;
uniform float filter_size_sqr;
varying vec3 eyespace_vert_pos;

float weight(float t) { return t*t*t; }

void main()
{
vec3 position
= texture2DRect(pos_tex, gl_FragCoord.xy).rgb;

float depth_test = position.z - eyespace_vert_pos.z;
if(depth_test*depth_test > filter_size_sqr) discard;

vec3 v = vec3(position.xy - eyespace_vert_pos.xy,
depth_test);

float dist = dot(v, v);
float w = dist < filter_size_sqr

? weight(1.0 - dist/filter_size_sqr) : 0.0;

gl_FragColor = vec4(gl_Color.rgb, w);
}

loss of precision, a floating point texture (e.g. GL RGB16F ARB)
is employed.

When the arguments for the noise function are ready, the computa-
tion is almost the same as in the 2D case. However, now a texture
look-up replaces the use of the fragment coordinates and the posi-
tions have three coordinates, see Listing 3.

There is one more problem to be considered. The sources needed
for the point rendering of the noise must now be three dimensional.
Hence, if we use perspective projection, the points change size de-
pending on their distance from the camera. This is taken care of
in a vertex program. A simple calculation leads to the following
formula finding the width wP of a point:

wP =
rw

|z| tan(θfov/2)
, (3)

where r is the filter radius, w is the width of the view port, z is the
depth in eye space, and θfov is the field of view. The vertex shader
is shown in Listing 4.

Figure 3: Visual comparison of noise quality. From left to right:
(a) Improved Perlin noise, (b) Perlin’s simplex noise, and (c) our
implementation of solid sparse convolution noise.

Listing 4: Vertex shader for rendering of sources in perspective.
varying vec3 eyespace_vert_pos;

void main()
{

float tan_fov_2 = 0.624869351909;

eyespace_vert_pos = (gl_ModelViewMatrix*gl_Vertex).xyz;
gl_FrontColor = gl_Color;
gl_Position = ftransform();

// With glPointSize(rw)
gl_PointSize
= gl_Point.size/(abs(eyespace_vert_pos.z)*tan_fov_2);

}

If we do not know, in advance, which grid cells that will influence
the noise values that we want to compute, we have to render all the
grid cells inside and in the proximity of the view frustum. Depend-
ing on the size of the view frustum, this could involve rendering
of sources in a huge number of grid cells, and none of the frag-
ments influenced by a source are eliminated by the traditional depth
test since the fragments must be blended when inside an interval
[z − r, z + r] around the depth coordinate.

Since an interval depth test unfortunately is not available, we make
our own implementation of it in the fragment shader (Listing 3).
And in the next section we propose an additional optimization
scheme for finding the indices of the grid cells that influence the
noise values we want to compute. It is done at the cost of a small
amount of CPU computation, but in return it eliminates the daunt-
ing need to cover the entire frustum with sources. Pseudo-code for
rendering of solid sparse convolution noise is collected in Listing 5.
Both the frame buffer object class by Lefohn et al. and the render
texture class by Harris are employed1. The first for the simple ren-
dering of eye space positions to a texture, the second for the point
rendering to a texture with 16-bit precision alpha blending. The
high-precision alpha blending seems to necessitate a second render
context which the render texture class provides.

Figure 3 presents a visual comparison of our solid noise to im-
proved Perlin noise [Perlin 2002] and Perlin’s simplex noise [Perlin
2001] as implemented by Gustavson [2005]. Our noise does not
have the grid line artifacts which are inherent in noises based on
values or gradients placed on grid nodes.

6 Optimization

As mentioned in a previous section, if we choose grid cells with
a width equal to the filter diameter, only 23 = 8 grid cells can
influence a noise value in 3D. Since we use a regular grid, the index

1Both classes are available at http://sourceforge.net/projects/gpgpu

Listing 5: Pseudo-code for rendering of solid sparse convolution
noise.

draw world space positions to a texture;

find the IDs of the grid cells influencing the noise values;

switch to an off-screen render context;
clear color buffer to (0.5, 0.5, 0.5, 0.0);
enable vertex shader point size control;
enable blending;
enable the position texture;

render the sources in the chosen grid cells:
use Listing 2 for each cell;

disable the position texture;
disable blending
disable vertex shader point size control;

switch back to standard render context

Listing 6: A fragment shader drawing an ID buffer. The IDs point
out grid cells influencing the noise values.
uniform float grid_scale;
uniform float grid_extent;
varying vec3 vert_pos;

void main()
{
// If we want to repeat the grid,
// a modulo should be introduced
vec3 cell_id = floor(vert_pos/grid_scale - 0.5);
gl_FragColor = vec4(cell_id.zyx/grid_extent, 0.0);

}

of the lower left far grid cell is found easily by subtraction of 1/2
from each coordinate and flooring the coordinates to integers.

If we do an extra pass of the geometry, we are able to find this
lower left far grid cell index for all the desired noise values using a
fragment shader. The shader is shown in Listing 6.

The only unfortunate thing about this approach is that we have to
read back the result to the CPU. This is done relatively efficiently
with a pixel buffer object. After reading back the buffer, we sort the
indices and remove redundant indices using the unique algorithm
in the C++ standard library. After this the seven other grid cell
indices must be added to the list of grid cells that will be rendered.
Again the sort and unique algorithms must be used to remove
redundant indices. Even though this optimization involves some
CPU computation, it gives a good speed-up without using any pre-
computations or assumptions about the input for the noise function.
The larger our grid is, the lower is the resolution that we need in this
pass. Thus when the scale s is small this optimization is good. We
use it for all the rendering times given in this paper (if we render all
the sources in the view frustum, rendering times would be close to
a second).

Alternatively, occlusion queries could be employed to determine
whether a grid cell is close enough to the geometry to have an in-
fluence on the noise computation. If this approach is preferred,
the advice of Wimmer and Bittner [2005] must be followed to
achieve performance comparable to the ID buffer approach de-
scribed above.

New GPU architectures supporting geometry shaders and integer
arithmetics allow further optimizations. The rendering of all the
sources in a grid cell is accomplished by submitting only the index
of the cell to the GPU. A point for each source in the grid cell is
then spawned in a geometry shader and the position of each of the
points is determined by the pseudo-random number generator men-
tioned previously (here the integer arithmetic is needed). On the
new GPUs it is also possible to implement the entire noise com-
putation as a noise function in a shader. This approach is prefer-
able (and faster) if we need single noise values rather than an entire
slice of the noise image. The point rendering scheme only gives a
speed up when we need a slice, but in our experience a noise slice
is needed more often than separate values.

7 Several Octaves

Many noise-based applications require several octaves of noise. A
standard example is the turbulence function. Different noise octaves
are easily accomplished by rendering points of varying sizes. In
other words, we combine noises of different scales. As an example,
consider the turbulence function [Perlin 1985]:

turbulence(x) =

fhi∑
f=flo

1

2f

∣∣noise(2fx)
∣∣ . (4)

We evaluate the turbulence function by placing an appropriate num-
ber of sources of each scale sf = 2fs0 in each grid cell. The value
for a source of scale sf should be scaled by 1/2f as in the func-
tion above, and after each octave has been computed a very simple
pass is made to take the absolute value. By additively blending each
octave, we obtain the turbulence function. The only thing missing
is to choose an appropriate number of sources for each scale. As
previously, we use n sources for the first octave. When the scale
is doubled, the size of a source is scaled by 1/2D . Then n(2D)f

sources are needed to have the noise in octave f at the same qual-
ity as the noise in the first octave. This means that the number of
sources m to be rendered for each grid cell is

m =

fhi∑
f=flo

n(2D)f . (5)

Of course, this quickly turns into a huge number of sources. But
using the optimizations discussed above, we are again able to cull
away most of them. Examples using turbulence are shown in Fig-
ure 4.

8 Discussion and Conclusion

Elephant slices of solid sparse convolution noise with n = 30 and
s = 20 are shown in Figure 5. They are computed using the method
presented here with a frame rate around 88 on a Pentium 4, 3.5
GHz, with a NVIDIA GeForce 8800 GTX. As the noise is com-
puted in real-time, it is possible for us to have a look at arbitrary
elephant slices of the noise image. Of course, we can also use the
slice of a noise image to make a bump map, see Figure 4 and 6.
This is done by another pass of the geometry in which the noise
texture gives a noise value for each position on the surface of the
model seen by the camera. Hence, by four texture look-ups we ap-
proximate the noise derivatives (using central differences) in the u
and v directions on the surface and use these for perturbation of the
normal as in traditional bump mapping.

The noise computation presented differs from previous methods
(such as Green’s [2005] implementation of improved Perlin noise)

Figure 4: Examples using the turbulence function. From top left to
bottom right the dolphins are rendered using: No noise, one octave
of turbulence, two octaves, and three octaves.

Figure 5: Elephant slices of the solid sparse convolution noise im-
age (rendering time 0.011 seconds).

Figure 6: Procedural bump mapping using solid sparse convolu-
tion noise.

(a) 0.012 s (b) 0.009 s (c) 0.006 s

Figure 7: Quality/quantity tradeoff. From left to right: Solid sparse
convolution noise using (a) 30 sources per grid cell, (b) 20 sources
per grid cell, and (c) 10 sources per grid cell.

because the desired noise values are rendered to a texture. The
rendering of the texture is, however, sufficiently fast to allow for
real-time changes. In other words, we compute a new slice of the
noise image for every frame. For most applications this is just as
good as having a noise method which is called in the fragment or
vertex shader. The limitation is that xy-coordinates in the posi-
tion texture with arguments for the noise function must correspond
to xy-values in the view frustum. This means that we only have
a window into the noise image. The advantage is that everything
is computed on the fly. No texture data or look-up table is nec-
essary. If we want to evaluate the noise function for independent
arguments, it would correspond to taking a one-by-one picture of
the noise image for each evaluation. This is a less efficient option,
since the same sources will be evaluated over and over again. It
is possible to implement our noise as a function in a shader. This
renders the elephant slices in around 50 frames per second (fps) as
compared to the 88 fps using the point rendering approach.

The video accompanying this paper illustrates that our way of com-
puting noise works in practice. The video shows a rendering of
more than ten fireballs falling into the sea. Everything in the video
(both fireballs, water ripples, and reflection distortion) is procedu-
rally generated using our point-based noise computation. The video
renders in 20-30 frames per second (frame rate depends on how
close the fireballs are to the camera).

We would like to emphasize (as J. P. Lewis did in his analysis of
sparse convolution noise [Lewis 1989]) that the efficiency vs. qual-
ity tradeoff is easily adjusted by changing the number of sources n
in each grid cell (i.e. by making the white noise imitation sparser
or denser), see Figure 7. This is a very attractive feature of sparse
convolution noise. Moreover sparse convolution noise fulfils all the
criteria for good noise which have been described repeatedly [Per-
lin 1985; Ebert et al. 2002; Green 2005], and which are required
of a noise function implementation by the OpenGL Shading Lan-
guage specification [Kessenich et al. 2003]. With respect to perfor-
mance, our noise is not faster than Perlin noise. On a “modeler”
card (NVIDIA Quadro FX Go 1400) Perlin noise is around five
times faster than our noise with n = 20, on a “gamer” card (the
8800 GTX used previously) Perlin noise is around ten times faster.

Finally we would like to mention that, as opposed to gradient-based
noise (like Perlin noise), it is very easy to do art direction of the
noise we present. This nice feature is inherited from van Wijk’s
[1991] spot noise. We have not explored this feature, but by chang-
ing the simple cubic filter kernel to some other procedurally de-
fined kernel or an arbitrary 3D texture constructed by an artist, we
are able to modify the overall appearance of the noise. For future
work it could be interesting to use the distance field of an arbitrary
3D model (perhaps convolved with a cubic filter) to generate solid
noise with an artistic feel that depends on the shape of the model.

Acknowledgement

Thanks to Alexis Angelidis for the elephant model.

References

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing and Modeling: A Proce-
dural Approach, third ed. Computer Graphics and Geometrical
Modeling. Morgan Kaufmann Publishers, San Francisco. With
contributions from William R. Mark and John C. Hart.

GREEN, S. 2005. Implementing improved Perlin noise. In GPU
Gems 2, M. Pharr, Ed. Addison Wesley, ch. 26.

GUSTAVSON, S., 2005. Simplex noise demystified.
http://staffwww.itn.liu.se/∼stegu/simplexnoise/, March.

KESSENICH, J., BALDWIN, D., AND POST, R. 2003. The
OpenGL R© Shading Language. 3Dlabs, Inc. Ltd., February. Ver-
sion 1.051.

LEWIS, J. P. 1984. Texture synthesis for digital painting. Computer
Graphics (Proceedings of ACM SIGGRAPH 84) 18, 3 (July),
245–252.

LEWIS, J. P. 1989. Algorithms for solid noise synthesis. Computer
Graphics (Proceedings of ACM SIGGRAPH 89) 23, 3 (July),
263–270.

PERLIN, K. 1985. An image synthesizer. Computer Graphics
(Proceedings of ACM SIGGRAPH 85) 19, 3 (July), 287–296.

PERLIN, K. 2001. Noise hardware. In Real-Time Shading. ACM
SIGGRAPH 2001 Course Notes, M. Olano, Ed. ACM Press, Au-
gust.

PERLIN, K. 2002. Improving noise. In Proceedings of ACM SIG-
GRAPH 2002, ACM Press, 681–682.

VAN WIJK, J. J. 1991. Texture synthesis for data visualization.
Computer Graphics (Proceedings of ACM SIGGRAPH 91) 25, 4
(July), 309–318.

WIMMER, M., AND BITTNER, J. 2005. Hardware occlusion
queries made useful. In GPU Gems 2, M. Pharr, Ed. Addison
Wesley, ch. 6.

WYVILL, G., AND NOVINS, K. 1999. Filtered noise and the fourth
dimension. In ACM SIGGRAPH 99 Conference Abstracts and
Applications, ACM Press, 242.

