
Networks

Carlos Baquero Francisco Moura
cbm@di.uminho.pt fsm@di.uminho.pt

Computer Science Department at Minho University, Braga, Portugal
http://gsd.di.uminho.pt/

Vector clocks, or their compressed representations, have played a central role in the detection of
causal dependencies between events in a distributed system. When adapting these techniques to a
mobile network, bounding the vector clock size to the number of mobile nodes does not provide a
satisfactory approach. This paper builds on previous techniquesfor efficient causality logging in
mobile networks and presents a lighter logging mechanism. The technique is based on a particular
partial order that is generated by the interleaving of events on mobilehosts that are mediated by the
same support station.

I. Introduction

Mobile computing systems are frequently designed as a net-
work of fixed nodes, mobile support stations (MSS), that give
connectivity to a set of mobile hosts (MH) [1]. The MSSs are
interconnected by a high bandwidth wire-line network where
communication costs are inexpensive. In contrast, the MHs
always communicate with the mediation of a hosting MSS us-
ing a low-bandwidth wireless or phone channel where costs
are at issue. This class of mobile computing systems, although
excluding direct communication among MHs, models a vast
range of existing systems that include wireless networks of
MHs bound to local cells, and nomadic MHs that bind to dif-
ferent MSSs as access points to a wide area network.

Distributed applications that build on this class of mobile
computing systems are often modeled as a set of concur-
rent activities distributed among different MHs. Tracking the
causal relationships among these concurrent activities is a ba-
sic mechanism for the analysis and debugging of distributed
applications and a step towards the design of message deliv-
ery and replica consistency policies. It is well established [7]
that in a distributed system the causal dependency can be fully
characterized by the use of vector clocks [7, 2, 5]. However
vector clocks are very sensitive to scalability issues since the
vector size is bound to the number of activities, which are here
bound to the number of MHs.

Clearly, a dependency tracking mechanism that is bound to
the number of MSSs and avoids expensive communication on
the MH-MSS link would lead to a more scalable and efficient
implementation on this class of distributed systems. With this
objective in mind, Prakash and Singhal have proposed two
alternatives to vector clocks, for mobile computing systems,
namely dependency sequences and hierarchical clocks [6]. In
this paper we build on their work, showing how hierarchical
clocks can be further simplified, and give a deeper insight into
the existent equivalences among the two alternatives.

The organization of the paper reflects its incremental basis,
and we follow, whenever possible, the notation used in Prakash
and Singhal work.

II. System Model

In order to establish a causal ordering among events, we start
by modeling the distributed computation as a set of activities
that execute in a group of MHs. We will be concerned with
only one distributed computation and, at most, one activity per
MH is allowed. Additionally, FIFO communication is required
in the MH-MSS channel.

The causality relation (!) expresses the partial order of
events that emerges from the distributed execution. This rela-
tion assumes that events that belong to the same activity (same
MH) exhibit a total order among them. Events from different
activities are related by message send and receive event pairs.
This relation is the same as thehappened beforerelation de-
fined by Lamport [4] for distributed computations. As this re-
lation is independent from the actual time of event occurrence,
as observed by Schwarz and Mattern [7], it is better described
by the expressioncausesrather thanhappened before. We fol-
low the definition as established in [7]:

Definition II.1 ! is the smallest transitive relation satisfy-
ing:� ei ! ej ; if ei andej are events in the same activity andei occurred beforeej .� ei ! ej , if ei is the event of sending a message andej is

the corresponding event of receiving that message.

Notice that the first condition assumes a total ordering of
events for any given activity. This assumption will have a
prime role in the upcoming analysis.

It is well established that there is a simple one-to-one map-
ping between vector clocks and the causal relation [7].

Definition II.2 ei ! ej iff V (ei) < V (ej), whenV (e) is the
vector clock associated to evente.

Having vector clocks with one entry for each MH would
provide sufficient information to characterize the causal rela-
tion. In contrast, having one entry for each MSS leads to a loss
of causality information since it implicitly serializes events
at the MSSs. Using one logical clock in each MSS leads to
a centralized indexing of the events that occur on the served

Mobile Computing and Communications Review, Volume 1, Number 2 1

MHA �send
��
1
1
1
1
1MHB �send

!!B
BMSS1 � 10 11��5555555 � 20 22��5555555MSS2 �

!!B
B �

!!B
BMHC �receive �receive

Figure 1: Loss of causality information by implicit total order-
ing. Since10 < 20 the send event onMHB appears to depend
on the send event onMHA, when in fact they are unrelated.MSS1=fA;Bg 1� m

��;
;;

;;
;

2� m
��;

;;
;;

;

i
'' 3�MSS2=fCg 1� i 77

2� i 77
3� mAA������

Figure 2: A system with two MSSs and three MHs, show-
ing total event indexing in each MSS. The relationsi andm
depict causality induced byinternal events andmessages, re-
spectively.

MHs (see figures 1 and 2), thus assuming phantom causal de-
pendencies among the events of different MHs, served by the
same MSS. For instance, the send event ofMHB in figure 1
is wrongly assumed as having the send event ofMHA in its
causal past. This intuition was easily proved by counter exam-
ple in [6].

Since this loss of information is not admissible it is nec-
essary to complement the information that is stored in these
reduced version vectors. The relation labeled bym in figure 2
is captured by vector clocks, but the relationi would be lost,
unless some extra information is kept. Relationsi andm indi-
cate, respectively, the causality due to internal events and the
causality that derives from send/receive event pairs.

III. Dependency Sequences as Causal
Histories

This approach complements the loss, due to serialization in the
MSSs, by storing, with each event, a set with the events that
causally precede that event. Since the numbering of events is
local to each MSS in order to register the causality that arises
from messaging among MSSs, each event will actually need
one set of causal predecessors for each MSS.

It is interesting to observe that this is in fact the registering
of a causal history for each event. Building from [7]:

Definition III.1 Let E = E1 [� � � [EN denote the set of
events in the distributed computation, whereN is the num-
ber of MSSs.Ei is the set of events that are serialized by a
given support stationMSSi and occur in one of MHs that it
supports. For a evente 2 E occurring in the distributed com-
putation, thecausal historyof e, denotedC(e), is defined as

MSS1=fA;Bg <1;1><> m
 A

AA
AA

<2;2><> m
 A

AA
AA

i
** <1;3><1;3>MSS2=fCg <1;1><1;1> i 00 <1;2><1;2> i 00 <1;2><1;3> m>>}}}}}

Figure 3: Dependency Sequences. Each vector (here just a
pair) <><> shows the known causal past. Here the1st element
shows the known events fromMSS1 and the2nd the ones
fromMSS2. Each two entries in the vector< : : : ; a; b; : : : >
indicates a range(a� b) of consecutive events.MSS1=fA;Bg f1gfg m

��9
99

9

f2gfg m
��;

;;
;

i
** f1;2;3gf1;2;3gMSS2=fCg f1gf1g i 11 f1;2gf1;2g i 00 f1;2gf1;2;3g m=={{{{{

Figure 4: Causal Histories projected in two sets. The notation
shows a vector of sets with as many sets as MSSs. Each set
depicts the known events as numbered in the respective MSS.C(e) = fe0 2 E j e0 ! eg [feg.

The projection ofC(e) onEi, denotedC(e)[i], is defined byC(e)[i] = C(e) \ Ei.
This definition assumes thatE gathers all events in the dis-

tributed computation. Such events could be distinctively la-
beled by a pair of naturals that identify the MSS that registers
the event and the order in which he is registered in that MSS.

An alternative modeling of the causal history is created by
associating to each eventN sets of causally preceding events,
where each set gathers the events that are registered in a partic-
ular MSS. In this representation the events in each set can be
represented by their ordering index (a natural) since they all
belong the same MSS. The projection, defined above, shows
how to obtain this hashing of the global events.

Causal histories are shown in [7] as a step towards vec-
tor clocks for the representation of a distributed computation
among totally ordered processes. If the events on each MSS
exhibited a true total order, causal histories would have had re-
dundant information and could be simplified to vector clocks.
However, since we need to model the partial ordering of events
in a MSS (due to the existence of multiple MHs in the MSS)
this simplification is no longer possible.

Schwarz and Mattern’s presentation of causal histories
proves that the causal history of two events is sufficient to
characterize the causality relation among them. It also shows
a procedure to constructively create the causal history of every
event in the computation. Informally, the algorithm shows that
internal events and send events inherit the causal history of its
immediate predecessor, and receive events inherit the causal
histories of both their predecessors (see figure 4).

We can now observe that the dependency sequences intro-
duced by Prakash and Singhal are in fact compressed repre-
sentations of causal histories.

Dependency sequencesDS represent each projection of the
causal history as a set of sequences of consecutive events, as

2 Mobile Computing and Communications Review, Volume 1, Number 2

utive eventsep; : : : ; eq are represented by the pair of naturalsp; q. As a consequence, these sequences, have always a even
number of elements.

For example, for the sequence of projections of a given
causal historyC(e) in a system with two MSSs, such as the
one depicted byhf1; 2; 4g; f2; 4; 5; 6; 7; 9gi, the correspond-
ing DC(e) would behh1; 2; 4; 4i; h2; 2; 4; 7; 9; 9ii. This can
also be represented by bit vectors, which have been used in the
implementation of hierarchical clocks (discussed in the next
section).

We demonstrated above the equivalence of sequences and
sets. A classical representation for sets ofN is, as a total
function fromN into a set with two elements, traditionally
denoted asN ! 2 or as 2N . This total function is thus
representable by a binary sequence, in other words a bit vec-
tor, with size equal to the greatest integer that exists on the
represented set. The above example would be represented ashh1101i; h010111101ii.

The algorithm described in [6] for the management of de-
pendency sequences is consistent with the constructive tech-
nique for the creation of causal histories. To informally argue
this equivalence it is necessary to first recall that the MSSs do
not keep information about the internal events on each MH,
only send and receive events are numbered and registered on
the MSSs1.

The algorithm for the management of dependency se-
quences ensures that send events inherit the dependency se-
quence of the last event from that MH, and that this newDS
is sent with the message. Receive events inherit theDS of
the last event from the receiving MH and merge it with theDS that is received with the message, thus ensuring that both
dependencies are combined. It is easy to establish the equiv-
alence of this procedure with the causal history construction
procedure, described in the last section.

Independently of the chosen encoding (sets, sequences or bit
vectors) all the representations implement causal histories and
consequently allow the determination of the causal relation by
the appropriate comparison of the data associated to the events.
The algorithm for the construction of event logs is also easy to
adapt in order to fit each alternative representation. It suffices
to implement the appropriate methods for adding an element
and joining two representations.

IV. Hierarchical Clocks to Interleaving
Clocks

The capability, that dependency sequences exhibit, of storing
with the events enough information to compare them, leads
to the exchange of considerable amounts of data when logging
the system. Hierarchical clocks are presented [6] as an alterna-
tive that exhibits lower data exchange needs while construct-
ing the logs. As expected, this also means that the data needed
to compare two events is found distributed along other events.
This implies, in the general case, communication among MSSs
when comparing events.

1If tracking of internal events proves to be a needed feature,it suffices to
notify them to the MSSs and asks it to number and register the event. While
still avoiding local logging on the MH, this would imply a considerable burden
on the MH-MSS channel.

MSS1=fA;Bg [1]10 m
��4

44
44

[01]20 m
��6

66
6

i
)) [011]33MSS2=fCg [1]11 i 44 [11]22 i 33 [111]23 mBB����

Figure 5: Hierarchical Clocks. These clocks introduce a bit
sequence[: : :] that complements the information logged in the
vector clocks (shown under the sequence). Each MSS hosts
one bit sequence and this sequence indicates, to each event,
which of the other events in that MSS are in fact in his past.k�2� ''k�1� ==

k�
Figure 6: Dependence from two direct causal predecessors.
This is a relation pattern dot does not show up in these models
of MH/MSS networks, thus leading to simplification opportu-
nities in the logging approach.

Our description of hierarchical clocks will keep building on
the notion of complementing the information that is captured
when using standard vector clocks with one entry for each
MSS.

A vector clock with entries for each MSS is able to capture
the causality among communications between MSSs, but as-
sumes a total order on the events seen on each MSS, which we
have seen as not appropriate (figure 1). One way to correct this
implicit serialization of events, from different MHs, is to tag
each event with its local causal history (in other words, with
the projection of the causal history for that MSS). As seen in
the previous section, this causal history can be represented in a
number of ways. Prakash and Singhal use the bit vector repre-
sentation, which comes as a legacy from the initial description
of hierarchical clocks [3] (depicted in figure 5). Hierarchical
clocks were initially presented as a technique for the character-
ization of the causal relation in systems where the processes do
not exhibit a total order2. This new causal relation, denoted
by

�!, has the causal relation! as a special case (when the
partial order restricts to a total order).

We can now argue that hierarchical clocks are not optimal
for an efficient mapping of the system under consideration.
This is a natural consequence of the origin of hierarchical
clocks, as they where designed to describe a system that ex-
hibited a unrestricted partial order3. When a unrestricted par-
tial order is considered, it is necessary to account for situations
such as having an event that causally depends on two causally
unrelated events (figure 6). These cases are well represented
by causal histories and their representations, in particular bit
vectors. However this is ”overkill” for the system under con-
sideration.

MSSs assign a fictitious total order to their MH events, but

2Hierarchical clocks offer a distributed logging alternative to the earlier
concept ofbit-matrix clocks, a clock notation that provided representation for
causal histories.

3By unrestricted partial orderwe mean a partial order that is not subject
to other invariants that further restrict the partial orderdefinition. For instance
a total orderor a interleaving of total orderscannot be said to beunrestricted
partial order.

Mobile Computing and Communications Review, Volume 1, Number 2 3

MSS1=fA;Bg []10 m
��
33
33
33

[]20 m
��
44
44
44

i
(([2]33MSS2=fCg []11 i 66

[1]22 i 66
[2]23 mDD						

Figure 7: Interleaving Clocks. Hierarchical Clocks can be
safely simplified by replacing in each event the bit sequence
with the index, in the MSS, of the last event from its MH. This
can be visually checked by following thei relations in the op-
posite direction.

each MH events are themselves totally ordered. What the
MSS does is centralize the assignment of monotonic indexes
to observed events, thus interleaving the unrelated total orders.
Any representation technique that enables the reconstruction
of each MH total order, from their joint indexing, would suf-
fice. This can be achieved by storing with each event the index
of the last event in its MH, or nil for the first events. We will
name this approach asinterleaving clocks(figure 7), and show
how it adds the missing information to MSS vector clocks.

Other known algorithms for the transitive calculation of vec-
tor clocks also build on the identification of the most recent
predecessors of the incoming event chains [7]. In this case it
suffices to identify one predecessor since each event is pre-
ceded by a single event chain, the one that links events in the
same MH.

The construction algorithm, described bellow, uses a tempo-
rary indexL() that identifies in each MSS the last event from
each of its MHs. For instance in a given MSS and at a given
point in time,L(x) will indicate the index in that MSS of the
last event that concernsMHx.

In contrast the other variables,V () andP , are bound to
events. They represent the logged state (that is shown in figure
7) so that, in the notation[N]� , where� is a vertical vector of
naturals, we haveP represented as[N] and the vectorV () as�. The algorithm is based on the derivation of the new event
state from the last logged event and the temporary indexL().
Definition IV.1 Let V () be a vector clock that tags events on
a group ofN MSSs, andP a natural that indicates the local
predecessor of a given event. LetL() indicate the last event
index for a given MH.� Initially, V (k) := 0 for k = 1; : : : ; N , andL() is initial-

ized to nil.� When a message send request is received fromMHi in a
hostingMSSk, V (k) := V (k) + 1, P := L(i) and thenL(i) := V (k). The message is sent with the new vectorV ().� When a message is received withVm() aimed atMHj
by MSSl, V (l) := V (l) + 1, P := L(j) and thenL(j) := V (l). Next,V () is updated by taking the pair-
wise maximums between the localV () and the receivedVm().

Interleaving clocks when compared with hierarchical clocks
offer a different balance between local and remote state, that

1� MHA
��2�MHB

�� 3� MHB CC
4� MHA

��5�MHB
�� 6� 7�

Figure 8: Interleaving of two MHs on a MSS. Each MH events
follows an independent path along the index.

is to be used when comparing two events. Hierarchical clocks
keep as a bit vector the set of the local causal predecessors
in the same MH, while interleaving clocks just keep the last
local causal predecessor and recursively reach the other local
predecessors. This simplification is possible since the partial
order among events seen by a MSS is a interleaving of total
orders, of MH events, rather than a unrestricted partial order
(see figure 8). The calculation of the set of local predeces-
sors, that would be shown if using hierarchical clocks, can be
determined within the local state of the MSS. A higher use of
recursion in the local computation, with associated time penal-
ties for some traces, is the tradeoff for logging a more compact
representation. Nevertheless, if the local calculation is done
first, then both approaches would engage in the same amount
of communication among MSSs, which is the most expensive
portion, but considerable space would have been spared when
using interleaving clocks.

As with hierarchical clocks, handoffs must be managed by
a convenient state transfer among the two MSSs. The handoff
procedure for interleaving clocks can easily be expected to be
of the same magnitude as hierarchical clocks handoffs.

V. Conclusions

Our analysis of the alternatives for efficient causality logging
in mobile computing networks, originally proposed in [6] fo-
cused on bringing evidence to the underlying concept,causal
histories. Sets, bit vectors and sequences are shown to be al-
ternative representations of the same concept. Once notation is
ruled out, the two alternatives differ by the tradeoffs between
local storage with redundancy, thus enabling local calculation,
versus distributed storage with distributed recursive calcula-
tion of event dependencies.

Dependency sequences are shown to be an implementation
of causal histories and their construction algorithm can be
derived from causal history construction. The choice of the
best representation can now be seen as a separate issue which
opens the potential for hybrid representations and for trans-
lations among representations. Each alternative exhibits dif-
ferent storage tradeoffs for different samples of data, for in-
stance sets are more economic than sequences for causal his-
tories with many isolated events.

We have shown that hierarchical clocks are overly expres-
sive for the modeled context, thus raising simplification op-
portunities. Once established that the modeled partial order is
restricted to a interleaving of total orders it was possible to re-
place the bit vectors (or other set representation) by a single
natural. The extra calculation uses only the local state, which
leads to a very favorable tradeoff between saved space and ex-

4 Mobile Computing and Communications Review, Volume 1, Number 2

VI. Acknowledgment

The authors would like to thank Ravi Prakash, Victor Fonte
and the anonymous referees for providing valuable feedback
that helped to improve this work.

References

[1] B. R. Badrinath, Arup Acharya, and Tomasz Imielinski.
Structuring distributed algorithms for mobile hosts. In
14th International Conference on Distributed Computing
Systems, June 1994.

[2] Colin Fidge. Logical time in distributed computing sys-
tems. InComputer, Issue on Distributed Computing Sys-
tems, number 24(8), pages 28–33. IEEE, 1991.

[3] A. Gahlot and M. Singhal. Hierarchical clocks. Techni-
cal Report OSU-CISRC-93-TR19, The Ohio State Univer-
sity, Computer and Information Science Research Center,
1993.

[4] Leslie Lamport. Time, clocks and the ordering of events
in a distributed system.Communications of the ACM,
21(7):558–565, July 1978.

[5] D. Stott Parker, Gerald Popek, Gerard Rudisin, Allen
Stoughton, Bruce Walker, Evelyn Walton, Johanna Chow,
David Edwards, Stephen Kiser, and Charles Kline. Detec-
tion of mutual inconsistency in distributed systems.Trans-
actions on Software Engineering, 9(3):240–246, 1983.

[6] Ravi Prakash and Mukesh Singhal. Dependency se-
quences and hierarchical clocks: Efficient alternatives to
vector clocks for mobile computing systems.Wireless Net-
works, (3):349–360, 1997. Also in Mobicom96.

[7] R. Schwarz and F. Mattern. Detecting causal relationships
in distributed computations: In search of the holy grail.
Distributed Computing, 3(7):149–174, 1994.

Biographies

Carlos Baqueroreceived his MSc degree in Computer Sci-
ence from Minho University at Braga Portugal, in 1994. He is
currently a Teaching Assistant in Distributed Systems and PhD
candidate at Minho University. His primary research interests
encompass replicated data management in mobile computing
and mobility modeling.

Francisco Moura holds a degree in Electrical Engineering
since 1977 and received his MSc and PhD degrees in Com-
puter Science at Manchester University, UK in 1982 and 1985,
respectively. He is Associate Professor at Minho University
and leads the Distributed Systems Group at the Computer Sci-
ence Department.

Mobile Computing and Communications Review, Volume 1, Number 2 5

