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ABSTRACT 
It has been shown that using phrases properly in the document 
retrieval leads to higher retrieval effectiveness. In this paper, we 
define four types of noun phrases and present an algorithm for 
recognizing these phrases in queries. The strengths of several 
existing tools are combined for phrase recognition. Our algorithm 
is tested using a set of 500 web queries from a query log, and a set 
of 238 TREC queries. Experimental results show that our 
algorithm yields high phrase recognition accuracy. We also use a 
baseline noun phrase recognition algorithm to recognize phrases 
from the TREC queries. A document retrieval experiment is 
conducted using the TREC queries (1) without any phrases, (2) 
with the phrases recognized from a baseline noun phrase 
recognition algorithm, and (3) with the phrases recognized from 
our algorithm respectively. The retrieval effectiveness of (3) is 
better than that of (2), which is better than that of (1). This 
demonstrates that utilizing phrases in queries does improve the 
retrieval effectiveness, and better noun phrase recognition yields 
higher retrieval performance.  

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing – dictionaries, linguistics processing. H.3.3 
[Information Storage and Retrieval]: Information Search and 
Retrieval – query formulation.  

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Information Retrieval, noun phrases, proper noun, dictionary 
phrase, simple phrase, complex phrase, feedback, verification. 

1. INTRODUCTION 
The objective of this paper is to detect various types of multi-
word noun phrases in a query. In this paper, we consider the 
queries that are short and similar to typical web search queries. 
The detected noun phrases are used to interpret the original query 
in order to improve retrieval effectiveness. Noun phrases are 
classified into four categories: (1) proper noun; (2) dictionary 
phrase; (3) simple phrase and (4) complex phrase. A proper noun 
(PN) refers to the name given to a person, place, event, group or 
organization, etc., for example, “Tom Smith”. Dictionary phrases 
(DP) are the noun phrases defined in dictionaries, but not proper 
nouns, for example, “computer monitor”. Both the simple noun 
phrase (SNP) and complex noun phrase (CNP) are the noun 
phrases that are grammatically correct, used in the daily language, 
but not formally defined in dictionaries. We require SNP to 
contain exactly 2 words and CNP to contain three or more words; 
for example “small car” is an SNP and “local movie theater” is a 
CNP. The reason for recognizing phrases in queries, and 
classifying them into the four types, is that noun phrases are 
known to be very helpful for document retrieval [1][4][16][28]. A 
recent paper [20] shows that proper use of these four types of 
phrases yields significantly higher effectiveness in document 
retrieval than just using the individual query words. Zhou, et. al 
[33] reported that the use of concepts, which are equivalent to 
phrases, in biomedical IR also resulted in higher retrieval 
effectiveness than just using individual query terms. Our work 
converts the original query from a set of words to phrases in order 
to improve document retrieval performance. In this paper, we 
utilize the following tools: 

(i) Wikipedia [32] is a comprehensive online encyclopedia. It is 
used to recognize proper nouns and dictionary phrases. 

(ii) WordNet [12] is an electronic dictionary. It is used to 
recognize dictionary phrases and certain proper nouns. 

(iii) Minipar [18] is used to recognize proper nouns. 

(iv) Collins parser [9] is used to recognize SNP and CNP. 

(v) Google [14] is used to recognize some proper nouns and to 
collect documents to provide some statistics. Actually, 
Google is used as a large document collection. Any search 
engine, which has the property of ranking documents that 
have a set of query words in a small window size, ahead of 
documents that either have a proper subset of the query 
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words, or have the words in a larger window, is sufficient for 
our purpose. 

We apply Wikipedia, WordNet, Minipar and Google to detect 
PNs and DPs in the queries. We use a document collection to test 
if these PN/DPs are really used in the real world. They are 
discarded if not found in the documents. Then the SNPs and 
CNPs are searched in the queries. These two types of phrases are 
grammatically correct, used in daily language, but do not have 
entries in dictionaries. Collins parser and some statistical 
techniques are used to detect the SNP/CNPs. This includes 
detecting the shorter noun phrases embedded in longer noun 
phrases. For example, a query “Orlando travel agents” is a CNP. 
“Travel agents” is a SNP. Both need to be recognized. Our 
algorithm is tuned using a set of 400 web queries randomly 
selected from a web query log. It is tested on another set of web 
queries and a set of multi-word TREC query titles. The 
contributions of this paper are 

(i) The evaluation of various tools and their combinations for 
their effectiveness on noun phrase detection task. 

(ii) The analysis of the errors made by each tool. 

(iii) The development of an algorithm that combines 
different tools for noun phrase recognition in short queries. 

(iv) An operational system that yields higher noun phrase 
recognition accuracy than a baseline system. 

(v) Experimental results show that recognizing phrases in queries 
improves document retrieval effectiveness. 

The rest of this paper is organized as follows. Section 2 describes 
the PN/DP recognition algorithm. The SNP/CNP recognition is 
explained in Section 3. Experimental results are reported in 
Section 4. Section 5 reviews the related works. Conclusions are 
given in Section 6. 

2. RELATED WORKS 
Phrases have been used in document retrieval [1][4][16][20]. 
Higher retrieval effectiveness over the individual word method 
has been reported.  
Lima et al [17] studied the proper noun and phrase recognition 
problem. They used the EM algorithm to estimate the parameters 
of a probabilistic context-free grammar (PCFG), given a large 
Web query log and a hand-written context-free grammar. The 
PCFG was utilized to compute the most probable parse for a 
query, which was then employed for phrase recognition. They 
studied on the company names, human names and other short 
Web queries, where company and human names could fit in our 
PN category, and other queries could fit in our SNP/CNP 
categories. 
Mihalcea and Moldovan [24] claimed that the implicit phrases 
were recognized but technical details were not provided. 
Florian, et al [13] presented a classifier-combination framework 
for named entity recognition. Four statistical classifiers are 
combined. Also, additional dictionary data and two more 
classifiers are combined. The best f-scores on the training set and 
the test set are 93% and 88% respectively. Florian’s system 
mostly focuses on named entity (PN) recognition, while ours also 
finds the ordinary phrases (SNP and CNP) because we aim to 
provide general phrases to document retrieval systems. 

Evans and Zhai [10] extracted meaningful short noun phrases 
from documents by using both corpus statistics and linguistic 
heuristics. The performance of their system on the noun phrase 
recognition was not directly reported. Instead, they compared and 
reported the document retrieval results of (1) using and (2) not 
using the recognized noun phrases. The system was tested on 
TREC-1993 queries 51-100. The setup (1) improves the 
precisions at all the document levels over (2), 13% improvement 
at 5-doc level, 6% at 10-doc level and 7% at 15-doc level, etc. 
Lin [19] only uses Minipar and WordNet for conference name 
recognition. We not only add another tool, Wikipedia, but also 
expand the conference name to various types of proper nouns. 
The following aspects of our work appear to be novel: (1) we 
integrate different strategies into a unified algorithm to recognize 
different types of noun phrases, (2) Minipar, Wordnet Wikipedia 
and a large document collection are used jointly to find different 
types of proper nouns. (3) Phrase verification is carried out at the 
statistical level, validating whether a sequence of words is 
commonly used as a whole in the real world. The document 
collection is also used to determine which of two overlapping 
phrases is the desired one. 

3. PROPER NOUN AND DICTIONARY 
PHRASE RECOGNITION 
The PN/DP recognition algorithm recognizes proper nouns (PN) 
and dictionary phrases (DP) in a query. The pseudo code is given 
in Figure 1. 

Figure 1. Algorithm for PN/DP recognition 
From line 2 to line 20, given an n-word query p (w1 w2 … wn), the 
PN/DP recognition starts from p itself (n-word candidate, a string 
of n consecutive words in the original query); if failed, it searches 
in the (n-1)-word sub-phrases of p; this process repeats until 

712



reaching the 2-word candidates. We call the searches among the 
x-word candidates the “level-x” search. A recognized PN/DP is 
called a “level-x potential PN/DP”, because they still need to be 
verified. We do not consider the case of two words, which are not 
in consecutive position, forming a phrase. For example, 
“computer price” is not examined as a candidate given a query 
“computer monitor price”. 

is_wiki_PN(p). In line 6, function is_wiki_PN(p) uses Wikipedia 
to check if a phrase candidate p is a PN. A PN should be defined 
in a dictionary if it is well known, and should have all of its 
content words capitalized. When p is submitted to Wikipedia, a 
definition page should be returned if p is defined. We require that 
the first instance of p in the main body of that page have all its 
content words capitalized, in order to label p as a Wikipedia PN. 
We emphasize the “main body of the page” because the words in 
the page title are usually capitalized regardless of their types. 

is_wiki_DP(p) is similar to is_wiki_PN(p) but the p needs not to 
be capitalized in the Wikipedia text in is_wiki_DP(p). 

is_wn_PN(p). In line 6, this function uses WordNet as another 
dictionary to check if p is a PN. If (1) WordNet recognizes p as a 
defined noun phrase; (2) one of the p’s hypernyms in WordNet is 
a city, province, country, organization, geographical area, person 
or a syndrome; and (3) the content words of p in its WordNet 
definition are capitalized, p is labeled as a WordNet PN. 

is_wn_DP(p) recognizes p as a DP if it is defined in WordNet but 
not qualified as a WordNet PN. 

is_minipar_PN(p). In line 7, this function uses Minipar to check 
if p is a PN. If Minipar gives p a “PN” label, or one of the labels 
of “person”, “country”, “corpname”, “location”, “corpdesig”, 
“fname”, “gname”, “date”, which refer to people, location, 
organization, family name, given name and dates, respectively, 
the p is labeled as a Minipar PN. Minipar is only used to 
recognize PN but not for DP, because it is not a pure dictionary. 
Some of its decisions are made based on grammatical rules. 

is_Name(p). In line 7, this function uses a list of first names, a list 
of last names, and several name-written patterns to detect names 
of persons. This is necessary because the names of the ordinary 
people are hardly defined in dictionaries. In our implementation, 
we use the name lists from the U.S. Census Bureau, because 
currently we only test our algorithm using documents written in 
English. The patterns we adopt are “first name initial, last name”, 
“first name initial, middle name initial, last name”, “first name, 
middle name initial, last name”, “first name, last name”. This 
function is fired if a whole query itself matches any of the 
patterns, while other tools can not recognize any PN/DP in this 
query. During the algorithm tuning, we tried to apply this function 
to parts of the queries. But it gave us many false positives. So we 
decided to only apply it to a whole query. 

is_doc_PN(p). In line 7, this function detects the less-famous 
proper names in a query, such as less well-known people, 
organizations, or locations that are not indexed in dictionaries. 
This is necessary as is_Name( ) only detects names of persons. A 
phrase candidate p is searched in a document collection. If at least 
three instances of p are found in documents, such that (1) All non-
stop words in these instances are capitalized, (2) None of the 
instances is a sub-string of a longer string, which has all the non-
stop words in capitalized form. (3) At least one of the instances is 

not a sub-string of a longer proper noun. Then we say p is a PN 
recognized in a document collection. In our implementation, we 
submit p to Google. The actual pages of the top 10 returned 
documents serve as the document set. 

We need to emphasize that we use Google as a huge document set 
and use it to give essential statistics to our system when making a 
decision. Any document retrieval system, which can return 
documents that have a set of specified words appeared in the 
smallest text window ahead of documents having the set of words 
in larger window sizes, can be used. Using a large text corpus to 
get statistics is common in IR. The system in [6] use locally 
stored static corpus to do statistical computation for document 
retrieval. 

phrase_verification (p). In line 8, this function verifies the 
existence of PN/DPs that are recognized by one of the above 
functions. It is a simplified is_doc_PN(p). To verify a potential 
PN p, This function looks for at least one instance of p in a 
document collection, such that this instance satisfies the condition 
(1) and (2) as described in is_doc_PN(p). The criteria is less strict 
for phrase_verification(p) because p has been recognized by one 
of the above functions. We use the documents returned by Google 
as the document collection. For example, Minipar labels “vista 
window company” as a PN. An instance of this phrase is found in 
a document as “Vista Window Company is proud to …”. A DP 
does not need to be verified by looking for instances in the 
documents, because of the definition of DP. 

pick_one_phrase(p1, p2) function. When PN/DPs overlap, two 
resolving processes are conducted from line 12 to 28. First, from 
line 13 to 18, we resolve the overlapped PN/DPs at the same 
level. The function pick_one_phrase(p1, p2) at line 15 picks one 
phrase from two partially overlapping PN/DPs p1 and p2. This 
function searches all the words of p1 and p2 together in a 
document collection, and counts the occurrences of p1 and p2 in 
the documents. The one with the larger number of count is picked. 
In implementation, we submit all the content words in p1 and p2 
to Google. The top 10 returned documents form a document set. 
For example, in a query “pocket watch chains”, “pocket watch” is 
a Wikipedia DP and “watch chains” is a WordNet DP. The query 
“pocket watch chains” is submitted to Google together to retrieve 
documents. “Pocket watch” has 62 instances while “watch 
chains” has 39 in stances in the returned documents. So “pocket 
watch” is picked.  

At line 19, all the sub-phrases that are contained within the 
recognized PN/DPs are discarded. The intuition is that the words 
in a PN/DP should not be decomposed. 

From line 22 to 28, the overlapping problem between two PN/DPs 
at different levels is solved. For example, a query is “starlite drive 
in movie theatre”, Wikipedia recognizes “drive in movie theatre” 
as a level-4 DP. Is_doc_PN(p) recognizes “starlite drive in” as a 
level-3 PN. The pick_one_phrase(p1,p2) at line 24 solves the 
overlapping problem. It is as same as the pick_one_phrase(p1, p2) 
at line 15. “Starlite drive in” got 26 instances and “drive in movie 
theatre” got 5. The former one is chosen. Line 26 is necessary 
because it is possible that a discarded PN/DP candidate may still 
contain shorter valid PN/DPs. For example, even “drive in movie 
theatre” is discarded; its sub-phrase “movie theatre” can still be 
recognized as a valid DP. 
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At line 29, the whole procedure (line 2 to 28) will run again as 
long as there is candidate labeled as “not checked” at line 26. 

4. SIMPLE AND COMPLEX PHRASE 
RECOGNITION 
Some noun phrases are not PN or DP, yet are grammatically 
correct and are used in the English language. If such a noun 
phrase contains exactly two words, we define it as a “simple noun 
phrase” (SNP). If it has three or more words, we define it as a 
“complex noun phrase” (CNP). For example, “white car” is a 
noun phrase, but probably not defined in any dictionary. This type 
of noun phrases is also useful to improve retrieval effectiveness. 
We adopt Collins parser [9] to recognize them. Collins parser is a 
language parser with phrase structure annotation ability. Brill 
tagger [3] attaches part of speech (POS) tags to the query words, 
because Collins parser needs them. 

4.1 Punctuations and Headwords 
Before the parser processes a query, the query is pre-processed. If 
two words connected by a hyphen, they are either unchanged, 
merged as a single word or the hyphen is replaced by space. The 
one that is the most frequent one in a document set is chosen. 
Other punctuation marks except the apostrophes are removed. 
A headword (HW) of a phrase is the element that determines the 
syntactic function of the whole phrase. In a noun phrase, the head 
is the noun that refers to the same entity that the whole phrase 
refers to [11]. It plays the same grammatical role as the whole 
constituent [28]. For example, “art” is the HW of DP “performing 
art”. Before actually recognizing SNP/CNP, the PN/DPs in a 
query are replaced by their HWs. A PN/DP is sent to Collins 
parser. The parser generates a parse tree. The root of the tree is 
the corresponding HW. The (PN/DP, HW) mapping information 
is stored for future PN/DP restoration. The HW replacement is 
necessary because in some circumstances, the existence of the 
whole PN/DP may cause parsing error. The HW replacement may 
help the parser get the correct parse tree. 

Example 1. In a query "download pieces of me", "piece of me" is 
a PN. The whole query is a valid CNP. Without HW-replacement, 
Collins parser considers "download pieces" and "of me" as two 
phrases. With the HW-replacement, "pieces of me" is replaced by 
its HW "pieces". "download pieces" is parsed as a noun phrase 
(download/NN pieces/NN). After restoring the "pieces of me", the 
whole title is correctly recognized as a noun phrase. 

4.2 Implicit Phrase 
A coordinate structure in texts involves several components that 
are connected by “and” or “or”. This sometimes indicates that 
there are implicit phrases in the text. For example, a query “main 
and contributing factor” has two explicit phrases: the query itself 
and “contributing factor”. But there is also an implicit phrase 
“main factor”. This implicit phrase can not be recognized directly. 
Given a query with coordinate structure, we use a set of 
grammatical rules to find the implicit phrases. 

4.2.1 Noun Phrase in a Coordinate Structure 
Rule1: CONJ: - [Compi CC]n Comp’ 
Rule2: Comp’:- [Modi]m Head 
where CONJ is a coordinate phrase; CC designates either “and” or 
“or”; Compi is an adjective or a noun; Comp’ is a noun phrase 

with at least one modifier, and Head is the headword of Comp’. 
For the noun phrase “main and contributing factor”, its Collins 
parsing structure is shown in Figure 2. The node “CONJ/factor” 
refers to a coordinate structure, which includes a noun phrase, an 
adjective “main”, an “and” and a noun phrase “NP/factor”, while 
the node “NP/factor” in turn includes an adjective “contributing” 
and a noun “factor”. So the Comp1 is “main”, CC is “and”, and 
Comp’ is “contributing factor”, Mod is “contributing”, Head is 
“factor”, and both m and n are 1. 

 
Figure 2. noun phrases in coordinate structure 

When this set of rules is fired, the new phrases are generated as: 
NPi:- Compi NN (i =1, 2, …, n) 

In the example, the new phrase “main factor” is generated. 

4.2.2 Coordinate Structure in a Noun Phrase 
Rule 1: NP  :- CONJ NP’ 

Rule 2: CONJ :- [Compi CC]n Compn 
where NP is a noun phrase containing a coordinate noun phrase 
CONJ, and a noun or noun phrase NP’, CC refers to either “or” or 
“and”; Compi  represents a component noun phrase or adjective 
phrase. In the noun phrase “physical or mental impairment”, NP’ 
is “impairment”, Comp1 is “physical”, CC is “and”; and Comp2 is 
“mental”. The parse tree is shown in Figure 3. 

 
 Figure 3: Coordinate structure in noun phrases 

When this set of rules is fired, new phrases are generated as: 
NPi  :- Compi NP’ (i = 1, 2, …, n) 

In the above example, new simple phrases “physical impairment” 
and “mental impairment” are generated. 

4.2.3 Noun Phrase with Coordinate Structure and 
Prepositional Phrase  
Rule 1: NP :- CONJ PP 

Rule 2: CONJ :- [Compi CC]n Compn 

where NP is a noun phrase which contains a coordinate  noun 
phrase, PP is a prepositional phrase, CC designates “or” or “and”; 
and Compi  represents a component noun phrase. For the noun 
phrase “systematic explorations and scientific investigations of 
Antarctica”, PP is “of Antarctica”, Comp1 is “systematic 
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explorations”, CC is “and”; and Comp2 is “scientific 
investigations”. When this set of rules is fired, new phrases are: 

NPi  :- Compi PP (i = 1, 2, …, n) 
In the example, phrases “systematic explorations of Antarctica” 
and “scientific investigations of Antarctica” are generated.  
In some cases, the coordinate noun phrase itself may satisfy 2 or 
more set of rules, for example “[main and contributing factor] in 
ship loss” satisfies the rule in 6.3, while “main and contributing 
factor” satisfies rule in 6.1. Thus, the new phrases are “main 
factor in ship loss” and “contributing factor in ship loss” as shown 
in Figure 2. 

4.3 Recognize SNP and CNP 
After the punctuations, headwords and coordinate structure in a 
query are processed, the Collins parser is used to recognize the 
SNP and CNP in the query. The pseudo code of the whole 
algorithm is given in Figure 4. 

Figure 4. Algorithm for SNP/CNP recognition 
Generating Collins noun phrases. At line 6, Collins parser 
analyzes a modified query and returns a parse tree. The phrases, 
such as noun phrases, verb phrases and adjective phrases, are 
annotated in the tree. The noun phrases are picked at line 7. 
They are labeled as the Collins NPs. In line 9, the sub-phrases 
of these Collins NPs are also collected as Collins NPs. This is 
to avoid missing some noun phrases that are not recognized by 
the parser. For example, in Figure 3, given a query “best 
compact sedan”, the parse tree on the left is given by Collins 
parser. It captures the whole query as a noun phrase, but does 
not capture the embedded SNP “compact sedan”. The correct 
parsing is given on the right hand side of Figure 5. The 

adjective “compact” modifies the noun “sedan”. The adjective 
“best” modifies the noun phrase “compact sedan”. 

 
Figure 5: Collins parser fails to generate correct parse tree 

The reason why we want to obtain an embedded simple phrase, 
such as “compact sedan” from a complex phrase such as “best 
compact sedan”, is that a relevant document may not contain the 
complex phrase but may contain the simple phrase. Such a 
document can still have a similarity allocated to the simple phrase, 
which is part of the similarity allocated to the complex phrase. 

Verify Collins phrase. From line 10 to l5, if a Collins phrase t is 
verified by verify_collinsP(t), it becomes a “verified Collins 
phrase”. The idea is that: The noun phrases in the parse tree are 
grammatically correct. But the parser can not tell if the phrases 
are meaningful in the real world text. A phrase to be verified must 
(1) not intersect with a recognized PN/DP, or (2) be a phrase that 
contains a recognized PN/DP and additional words. For example, 
“Spider Man tickets” contains a PN “Spider Man” and an 
additional word “tickets”. If a potential noun phrase partially 
overlaps with a PN/DP, we prefer the PN/DP. For example, the 
query “blood pressure level” has two shorter phrases of “blood 
pressure” and “pressure level”. The former is a DP. So “pressure 
level” is discarded and will not go for verification. 
When a two-word phrase p is fed to verify_collinsP(t), the 
function searches p in a document collection to examine the 
existence of p. If an instance of p is found, such that this instance 
plus its boundary words is not a sub-phrase of the query, p 
becomes a verified Collins phrase. For example, to verify “tourist 
bus” in “free tourist bus”, at least one instance of “tourist bus” 
should not have the word “free” before it. 
If p has three or more words, it could be written in various ways. 
For example, “colin farrell wallpaper” can be written as 
“wallpaper of colin farrell”. We verify these phrases as follows: 
(1) Search the exact p in the document set. If p is found, and if 

this instance plus its boundary words is not a sub-phrase of the 
query, p is verified. 

(2) Otherwise, we look for a narrow text window in the 
documents. This window should contain all the content words 
of p. But the ordering of these words in the window can be 
different from that in p. If such a window is found, we label p 
as verified. The more words p contains, the wider the text 
window will be. 

In our implementation, a phrase p is submitted to Google. The top 
20 retrieved documents are used as the document collection. 

Solving the phrase-overlapping problem. From 16 to 28, the 
problem, in which two verified Collins phrases overlap, is 
resolved. From line 17 to 21, two overlapped phrases having the 
same number of words are handled. pick_one_phrase(t1, t2) at 
line 18 counts the occurrences of t1 and t2 respectively as 
described in Section 2, except that it does not care about the 
capitalization of the words. The one with a higher count is 
preferred. From line 22 to 27, the cross-level overlapping problem 
is solved. We adopt a lower level priority strategy: if two verified 
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Collins phrases from different levels overlap, the one at the lower 
level (has fewer words) is preferred, because during the tuning we 
found this is better than picking the higher level phrase. The 
cross-level overlapping solving process does not include the 
original query (|Q|-level) since the original query overlaps with all 
of its sub-phrases. 
From line 29 to 32, a verified Collins phrase is labeled as SNP if 
it has 2 words. Otherwise it is labeled as a CNP. We use Example 
2 as an illustration. 

Example 2: Collins parser labeled the query “sony dvd 
handycam” as noun phrase. Its sub-phrases “sony dvd” and “dvd 
handycam” were also added as Collins NPs. All three pass the 
verification_collinsP(t). “Sony dvd” and “dvd handycam” were 
examined by pick_one_phrase( ). In the context of “sony dvd 
handycam”, “sony dvd” not followed by “handycam” was found 
1 time, while “dvd handycam” not following “sony” was found 
12 times. Thus “dvd handycam” was chosen. No cross-level 
overlap solving was fired. The algorithm stopped. 

5. EXPERIEMENTAL RESULTS 
We tune our algorithm using a set of 400 multi-word web queries, 
randomly selected from a search engine company’s web query 
log, which has more than 170 thousand queries. The algorithm is 
then tested using another set of web queries from the same query 
log, and a set of TREC (Text REtrieval Conference) queries. 
Finally, we apply the recognized phrases from TREC queries to 
TREC document retrieval tasks, comparing the retrieval 
effectiveness of the IR system when (1) not utilizing phrases in 
the queries at all, (2) using phrases recognized by a baseline 
phrase recognition algorithm, and (3) using the phrases 
recognized by our algorithm. The results of the noun phrase 
recognition experiments are reported in recall, precision and f-
score [29]. For a phrase type T, the precision (P) is the number of 
the correctly identified T phrases by our algorithm divided by the 
total number of the identified T phrases by our algorithm. Recall 
(R) is the number of the correctly identified T phrases by our 
algorithm divided by the total number of the T phrases in the 
golden standard. The F-score is defined as 2PR/(P+R). The results 
of the document retrieval experiments are reported as Mean 
Average Precision (MAP) and Geometric Mean Average 
Precision (GMAP) scores[31]. 

5.1 Testing Algorithm Using Web Queries 
We randomly selected another 500 multi-word queries from the 
same query log used for selecting the tuning set. These two sets 
do not overlap. These 500 queries contain 205 2-word queries, 
163 3-word queries, 86 4-word queries, 30 5-word queries and 16 
6-word queries. Each of three graduate students labeled all of the 
PNs, DPs, SNPs and CNPs in the queries. Disagreements were 
solved by majority voting. These labeled phrases were set as the 
golden standard. 

5.1.1 Overall Phrase Recognition Performance 
Table 1 shows the noun phrase recognition performance of our 
algorithm using this 500-web-query set. In the PN row, three 
major reasons for the errors are: First, the web queries contain 
many less well-known proper names such as names of people, 
small companies and organizations. They are not defined in 
dictionaries. There are also not enough number of instances in the 
documents for them to be verified. This affects the recall. The 
second reason is the informal writing of the PNs, such as 

incomplete name and unofficial names. For example, a query 
“zenon z2” refers to a TV show “Zenon: the Zequel”. The query 
used an unofficial name “z2”. This incorrect title can not be 
verified. The third reason for the errors in PN is the capitalization 
of the words in the documents. In the procedure of is_doc_PN(p), 
we require the content words of a potential PN be capitalized in 
the documents. In some cases, non-PN phrases also have all of 
their content words capitalized to emphasize them. They satisify 
the procedure is_doc_PN(p), becoming the false positive PNs, 
which affects the precision. For example, “Return Policy” is such 
a phrase because some companies emphasize it as an important 
issue. The cases involving un-official names and the emphases by 
capitalizing certain words require further study. 

Table 1: Scores of our algorithm on the 500-web-query set 

 # in set Recognized Correct Recall Precision F-score
PN 263 258 243 0.9240 0.9419 0.9328 
DP 102 103 102 1 0.9903 0.9951 

SNP 167 183 149 0.8922 0.8142 0.8514 
CNP 292 268 252 0.8630 0.9403 0.9000 

The DP row has one false positive case. The query is “young 
models” that refers to young persons posing for purpose of art or 
fashion. Wikipedia has an entry “young model” that is about a 
mathematical model. 
In the SNP row, an error type is that is_doc_PN( ) falsely 
recognizes some SNPs as PNs. This lowers the recall. The “return 
policy” is such an example. Another error type is that some PNs 
are recognized as SNPs. The third error type is that the 
pick_one_phrase( ) function made wrong choices. Both the 
second and the third error types lower the precision.  
In the CNP row, the major error type is that some CNPs partially 
overlap with recognized SNPs, while we adopt a SNP-has-higher-
priority strategy, the CNPs are discarded. This affects the recall. 

5.1.2 Impact of Individual Tools on the Algorithm 
In order to analyze the impact of each individual tool on our 
algorithm, we test the performances of these tools individually. 
Tables 2 to 5 show the performance of the individual tools in PN, 
DP, SNP and CNP recognition tasks respectively. In tables 2 to 5, 
the “Full” lines refer to the corresponding data in Table 1. 
In Table 2, 5 tools are tested in the PN recognition respectively. 
Minipar got low recall (0.2000). Minipar uses grammatical rules 
to parse text, which needs context information for correct parsing. 
But the web queries are too short to provide enough contexts. 

Table2. Scores of individual tools on PN recognition task 

Tool Recognized Correct Recall Precision F-score
Minipar 63 53 0.2000 0.8413 0.3232
WordNet 82 67 0.2548 0.8171 0.3884
Wikipedia 195 180 0.6844 0.9231 0.7860
Doc_set 217 182 0.6868 0.8387 0.7552

Name list 29 26 0.0981 0.8966 0.1769
Full 258 243 0.9240 0.9419 0.9328

The recall of WordNet alone is low (0.2548) because it only 
recognizes PNs that are defined in its database. Given that many 
of the PNs do not have entries in WordNet, they are missed. 
Wikipedia is an open dictionary. Its open editing architecture 
makes its data updated with the current affairs of the world. 
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That’s why it got a much higher recall value (0.6844) than the 
non-open tools of Minipar, WordNet and Name List. 
The name list tool got the lowest recall (0.0981) but it is expected, 
since it only recognizes people names. Its 0.8966 precision 
demonstrates its effectiveness. 
Is_doc_PN(p) alone gets high recall as Wikipedia does, actually 
the highest (.6868) among the 5 tools. Since we use the document 
set returned from Google, the documents are also kept up to date. 
These 5 tools all got reasonable precisions (0.81 to 0.89). 
Wikipedia has the highest precision 0.9231 because it has high 
quality contents. The results show that a single tool usually has a 
low recall. One single tool is not enough to recognize most of the 
PNs in the web queries, since the web queries cover very wide 
topics. Different tools must be used together to achieve desirable 
result. 

Table 3. Scores of individual tools on DP recognition task 

Tool Recognized Correct Recall Precision F-score
WordNet 62 40 0.3922 0.6452 0.4878
Wikipedia 104 97 0.9510 0.9327 0.9417

Full 103 102 1 0.9903 0.9951
In Table 3, two individual tools are tested in the DP recognition 
task. The recall of WordNet is low (0.3922) due to the relatively 
small amount of term definitions it has, comparing to the various 
topics in the web queries. The precision of WordNet is also low 
(0.6452). In many cases, WordNet does not recognize a valid 
PN/DP. But a sub-phrase of this unrecognized PN/DP is still a 
valid DP. This sub-phrase is recognized, becoming a false 
positive. For example, “brookdale community college” is a PN not 
recognized by WordNet. But “community college” is recognized. 
Wikipedia alone gets recall of 0.9510 in DP recognition, which is 
due to its open editing architecture and large data collection. Its 
precision is 0.9327 because it has the same situation as that of 
WordNet: a sub-phrase of an unrecognized PN/DP is incorrectly 
recognized as a DP. 

Table 4. Scores of individual tools on SNP recognition task 

Tool Recognized Correct Recall Precision F-score
Collins0 118 96 0.5749 0.8136 0.6737
Collins1 243 157 0.9401 0.6461 0.7659
Collins2 238 157 0.9401 0.6597 0.7753

Full 183 149 0.8922 0.8142 0.8514
Collins0: Collins phrase (baseline) 
Collins1: Collins 0 + sub-phrase 
Collins2: Collins 1 + verify_collinsP 
Full: Collins 2 + overlap resolving 
Table 4 shows the performances of the individual tools on SNP 
recognition. The Collins0 row uses Collins parser alone as a 
baseline. The phrases labeled directly by the parser are the results 
of Collins0. The sub-phrases of these directly labeled Collins 
phrases are not included (Line 9 Figure 4). The verify_collinsP(p) 
(Line 14 Figure 4) and the overlapping solving technique (Line 
16-28 Figure 4) are not applied. We only remove the phrases that 
overlap with recognized PN/DPs. The result shows the 
effectiveness of the Collins parser alone. The 0.8136 precision is 
acceptable. The 0.5749 recall is low. This shows that the Collins 
parser alone is not enough for SNP recognition. 
The Collins1 is Collins0 plus using the sub-phrases of the Collins 
phrases in Collins0. The direct output of the parser misses many 

correct phrases. We add the sub-phrases of these Collins phrases 
as additional SNP candidates. This will bring in many incorrect 
phrases so that the precision could be harmed. But we want to 
find if these additional sub-phrases can improve the recall. The 
incorrect and redundant phrases will be removed in “Collins2” 
and “full” rows. We see the recall of “Collins1” increases 
substantially from 0.5749 to 0.9401. The additional sub-phrases 
do work. Unfortunately, the precision drops from 0.8136 to 
0.6461. But the f-score is still improved from 0.6737 to 0.7659. 
Collins2 is Collins1 plus verify_collinsP( ), which tests if a phrase 
is actually used in the real world. This verification removes 5 
(243 to 238) incorrect phrases. The precision increases a little. It 
gets the same number of correct phrases so the recall is not 
changed. 
“Full” is the full algorithm configuration. It is the Collins2 plus 
the overlapping problem solving step. This step aims to further 
remove the incorrect phrases introduced from the parser and the 
sub-phrases. Comparing to Collins2, the precision increases from 
0.6597 to 0.8142, which is the highest precision among the 4 
configurations. The recall drops to a still acceptable degree of 
0.8922 from 0.9401. The 0.8514 f-score is the highest among the 
four. Thus the overlapping solving technique is necessary. 

Table 5. Scores of individual tools on CNP recognition task 

Tool Recognized Correct Recall Precision F-score
Collins0 257 238 0.8151 0.9261 0.8670
Collins1 374 286 0.9795 0.7647 0.8589
Collins2 359 273 0.9349 0.7604 0.8387

Full 268 252 0.8630 0.9403 0.9000
Table 5 shows the CNP recognition results of the 4 configurations 
defined in Table 4. Collins0 is still the baseline. In Collins1, we 
still see that the additional sub-phrases help increase the recall 
(0.8151 to 0.9795) but harm the precision (0.9261 down to 
0.7647). In Collins2, the verify_collinsP( ) does not help the 
performance but even decreases it a little. The full configuration 
greatly improves the precision (0.7604 to 0.9403) at a small cost 
of the recall (0.9349 down to 0.8630). And the full configuration 
has the highest f-score among the four. The behaviors of CNP 
recognition are the same as those in SNP recognition. 

5.2 Testing Algorithm Using TREC Queries 
We also use a set of TREC queries to test our algorithm. There are 
249 queries from the ad-hoc tracks of TREC-6, 7, 8, and the robust 
tracks of TREC-12 and 13, 238 of which are multi-word queries. 
These 238 queries contain 70 2-word queries, 143 3-word queries, 
23 4-word queries and 2 5-word queries. Three graduate students 
double-checked and labeled the PNs, DPs, SNPs and CNPs in these 
238 queries as the golden standard. These TREC queries are not 
new. Some TREC related documents, which describe these queries, 
can be found in the top retrieved documents from Google when 
searching these queries. These documents should not be used to 
prove the existence of the phrases. So when we use Google to 
collect documents, we set the restriction that the returned documents 
must not contain the terms such as “TREC”, “query” and “phrase”. 
This is done by adding “-TREC”, “-query” and “-phrase” as query 
restrictions when searching in Google. 
The overall performance of our system on the TREC query set is 
reported in Table 6. The only error in the PN row is a falsely 
recognized PN from is_doc_PN(p). The only error in the DPs is 
due to a query “food and drug laws”, where the golden standard 
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indicates “food and drug” and the entire query is a CNP. Our 
system recognizes "drug laws" as a DP. The errors in the SNP 
row are mainly caused by the incorrect pick_one_phrase( ) 
results. In the CNP row, some CNPs are missed because they can 
not be verified in the phrase_verification(p). 

Table 6. Scores of our algorithm on the 238-TREC-query set 

 # in set Recognized Correct Recall Precision F-score
PN 32 33 32 1 0.9697 0.9846 
DP 110 111 110 1 0.9910 0.9955 

SNP 99 102 90 0.9091 0.8824 0.8955 
CNP 159 146 146 0.9182 1 0.9574 

We tested the performance of individual tools as we did in 
Section 4.1. The results are shown in Table 7 through Table 10. 

Table 7. Scores of individual tools on PN recognition task 

Tool Recognized Correct Recall Precision F-score
Minipar 3 2 0.0625 0.6667 0.1143 
WordNet 15 14 0.4375 0.9333 0.5957 
Wikipedia 32 32 1 1 1 
Doc_set 32 18 0.5625 0.5625 0.5625 

Name list 0 0 0 0 0 
Full 33 32 1 0.9697 0.9846 

In Table 7, the “name list” tool did not recognize anything, 
because there are 3 people’s names in the PNs, all of which are 
foreign names. None of the “first name, last name” is found by 
is_name( ). Minipar only finds 2 correct PNs. This again shows 
that lacking context greatly affects its performance. WordNet got 
high precision but low recall. This is similar to its performance in 
Table 2, because of limited number of definitions. Is_doc_PN( )’s 
performance in the TREC data set is worse than its performance 
in the web data set as shown in Table 2. A major error type is that 
a PN is not recognized but its sub-phrase is incorrectly recognized 
as PN. Wikipedia had a perfect score because the PNs in TREC 
queries are rather well known. 

Table 8. Scores of individual tools on DP recognition task 

Tool Recognized Correct Recall Precision F-score
WordNet 59 50 0.4545 0.8475 0.5917
Wikipedia 109 108 0.9818 0.9908 0.9863

Full 111 110 1 0.9910 0.9955
In Table 8, two individual components are used to recognize DP 
respectively. WordNet’s low recall value means that its 
performance is still affected by the limited entries. Wikipedia’s 
performance is good and stable as it does in the PN recognition 
experiment. 

Table 9. Scores of individual tools on SNP recognition task 

Tool Recognized Correct Recall Precision F-score
Collins0 55 49 0.4949 0.8909 0.6364
Collins1 156 98 0.9899 0.6282 0.7686
Collins2 155 98 0.9899 0.6323 0.7717

Full 102 90 0.9091 0.8824 0.8955
Table 9 shows the performances of the individual tools on SNP 
recognition in the TREC query set. The four configurations are the 
same as those defined in Table 4. The pattern of the performances 
change is similar to that in Table 4. The pure Collins parser has 
acceptable precision but low recall in Collins0 row. Additional sub-
phrases boost the recall but also damage the precision in Collins1. 

Verify_collinsP( ) improves precision a little in Collins2. At last, the 
full algorithm increases the precision at a small cost of the recall. 
The full algorithm still has the best performance. 

Table 10. Scores of individual tools on CNP recognition task 

Tool Recognized Correct Recall Precision F-score
Collins0 155 152 0.9560 0.9806 0.9682
Collins1 164 154 0.9686 0.9390 0.9536
Collins2 156 146 0.9182 0.9359 0.9270

Full 146 146 0.9182 1 0.9574
Table 10 shows the CNP recognition results using the TREC query 
set. The 0.9560 recall in baseline Collins0 is very high, because the 
TREC queries have simpler grammar structures. They mainly 
consist of nouns, while the web queries contain many verbs and 
prepositions. Other than this, the performances of the four 
configurations still follow the same pattern as those in Table 5. The 
full configuration obtains 0.9182 recall and 100% precision. 

5.3 Utilizing Noun Phrases for IR 
This experiment is to test whether obtaining more correct phrases 
yields higher information retrieval (IR) effectiveness. We 
conducted three document retrieval experiments, comparing the 
retrieval results using phrases recognized by our algorithm in 
Section 4.2, to those recognized by a baseline system, and to not 
using phrase at all. We use the IR system by Liu [20]. This system 
allows both phrases and single terms in the query. The similarity 
between the query and a document is represented as a pair of 
(phrase-similarity, term-similarity). The phrase-similarity of a 
document is defined as the sum of the idf (inverse document 
frequency) weights of the phrases in common between the 
document and the query. If a document does not have the 
recognized phrase, its phrase-sim is 0. The term-similarity is the 
usual term similarity between the query and the document, which 
is computed by using Okapi formula [26]. Each query term 
appeared in the document contributes to the term-similarity, no 
matter it is in a query phrase or not. The phrase-similarity has 
high priority than the term-similarity. Given a query, the retrieved 
documents are ranked in descending order of their phrase 
similarity values. When documents have the identical phrase 
similarity value, they are ranked in descending order of their term 
similarities. So given a query, two documents D1 and D2 have 
similarities (x1, y1) and (x2, y2), respectively. D1 will be ranked 
higher than D2 if (1) x1>x2, or (2) x1=x2 and y1>y2. 
The 249 TREC queries are from 6 resources, the ad hoc tracks of 
TREC 6, 7, 8 and the robust tracks of TREC 12, 13, 14. TREC 14 
queries are executed on the AQUAINT data collection [31]; other 
5 sets are executed on the TREC disks 4 and 5 except the 
Congressional Records portion [30]. 
We simplify our phrase recognition algorithm to a weaker 
“single-tool algorithm”. It serves as a baseline phrase recognition 
algorithm. It utilizes just one tool to recognize one type of phrases, 
while our full algorithm uses multiple tools for each phrase type. 
In this single-tool algorithm, Wikipedia alone recognizes the PNs 
and DPs, because it yields the best results in the PN/DP single-
tool experiments. The Collins parser alone recognizes SNPs and 
CNPs, because it is the fundamental component in the SNP/CNP 
part of our algorithm. The intuition is that our algorithm has better 
phrase recognition capability than this baseline. Better phrases 
should help retrieval system produce higher retrieval 
effectiveness. From Tables 7, 8, 9 and 10 we can see that this 
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single-tool baseline algorithm has almost the same PN/DP/CNP 
recognition ability as the full algorithm, and substantially worse 
SNP recognition ability. 
We conduct three experiments. 
(1) Feed the queries to the IR system, without recognizing any 

phrase. The output of the IR system should represent the 
effectiveness of the system when using only individual terms. 
Since the phrase similarity is always 0, the documents are 
ranked in descending order of their term similarities. 

(2) Recognize the phrases in the queries by using the “single-
tool” baseline algorithm. Then feed the queries and the 
recognized phrases together to the IR system. The output 
should show the effect done by the recognized phrases when 
comparing to the output of (1). 

(3) Recognize the phrases in the queries by using our complete 
phrase recognition algorithm. Then feed the queries and the 
recognized phrases together to the IR system. The output 
should show the effect of recognizing phrases with higher 
qualities, when comparing to the result of (2). 

There are 11 single-term queries in the 249 queries. Their 
retrieval results are also included in the final results. So the 
difference between (1) and (2), and that between (2) and (3) are 
just caused by the differences of the phrases. 
The retrieval results are presented as mean average precision 
(MAP) [30] and geometric mean average precision (GMAP) [31] 
in Table 11. Comparing the scores of line 1 and 2 shows that all 
of the 6 query sets, when using the phrases from the baseline 
algorithm, get much higher scores than not using phrases at all 
(MAP gains from 17% to 54%, GMAP gains from 15% to 55%). 
This shows that the document retrieval, with the recognition of 
the phrases, actually improves over just using single terms. Table 
11 also shows that our full phrase recognition algorithm helps the 
retrieval achieve higher scores than the baseline phrase 
recognition algorithm does. The improvements are from 1.6% to 
9.6% in MAP and 2.3% to over 26% in GMAP. This 
demonstrates that better noun phrase recognition yields better 
retrieval results. 

Table 12. Compare our results to the highest TREC 13 MAP 

System Old topic set New topic set Combined 
TREC 13 0.317 0.401 0.333 
Our algorithm 0.348 0.428 0.364 
Improvement 9.78% 6.73% 9.31% 

In TREC 13 [30], these 249 queries are used in the robust track. 
200 of them from TREC 6, 7, 8 and 12 are called the “old topic 
set”. The other 49 are called the “new topic set”. In [30], the best 
MAP of the “old topic set” is 0.317. The best MAP of the “new 
topic set” is 0.401. The combined score is 0.333. We calculated 

the MAP scores for the old, new and the combined set for our 
algorithm from Table 11. Table 12 shows the comparison between 
our scores and the TREC 13 scores (Table 12 uses 3 digits 
because TREC 13 robust track scores were reported in this format 
[30]). The improvements of our scores over the best scores in 
these topic sets are 9.78%, 6.73% and 9.31% respectively. 
Furthermore, the 0.2931 MAP and the 0.3508 GMAP of the 
TREC 14 query set (Table 11) are 5.7% and 26% higher than the 
best corresponding scores reported in [31]. So our algorithm helps 
the IR system achieve higher scores than the best officially 
reported scores of the same query set and the document 
collection. 

5.4 Comparing to a Related Work 
Lima et al [17] studied the proper noun and phrase recognition 
problem. They reported 0.8786 precision and 0.9010 grammar 
coverage ([17] used “grammar coverage”, which is an upper 
bound of the recall) on 100 company names; 0.7770 precision and 
0.8000 grammar coverage on 100 person names; 0.7983 to 0.8200 
precision and 0.9160 to 0.9560 grammar coverage on 200 short 
queries that have 1.59 words on the average, with an upper-bound 
of f-score at 0.8827 (denoted by Q1); and 0.8049 to 0.8139 
precision and 0.7800 to 0.8520 grammar coverage on 200 queries 
that have at least 3 words with a 3.59 word average length, with 
an upper-bound of f-score at 0.8325 (denoted by Q2). To compare 
our result to theirs, we aggregate their company and person names 
together as a PN set, and compare it to the PN row of Table 1. We 
aggregate the 2-word DPs and the SNPs in Table 1 together 
(0.9302 recall, 0.8727 precision, 0.9006 f-score) to compare to 
their Q1 set. We aggregate the 3-or-more-word DPs (11 correct) 
and the CNPs in Table 1 together (0.8680 recall, 0.9427 precision, 
0.9038 f-score) to compare to their Q2 set. The results are shown 
in Table 13.. 

Table 13. Comparison between Lima et al. and us in F-Score 

Phrase Type Lima et at. Us 
PN 0.8395 0.9328 

2-word 0.8827 0.9006 
3-or-more-word 0.8325 0.9038 

6. CONCLUSIONS 
In this paper, noun phrases are classified into four types. We 
provide an algorithm that recognizes them. The algorithm is 
tested on a web query set and TREC query titles. High accuracies 
of recognition are obtained. Utilizing an up-to-date dictionary for 
recognizing proper names and well-defined phrase recognition 
seems to be a good method. Looking for instances in a document 
set is also good for less well-known proper names. Natural 
language parser and finding phrase instances in documents are 
good for recognizing SNP and CNP. Our document retrieval 
experiments also show that recognizing and utilizing phrases in 

 
Table 11. MAP and GMAP scores of IR experiments using different phrase recognition algorithms 

TREC 6 TREC 7 TREC 8 TREC12 TREC13 TREC14  
Phrase MAP GMAP MAP GMAP MAP GMAP MAP GMAP MAP GMAP MAP GMAP

1 No phrase 0.1950 0.1069 0.2246 0.1262 0.2388 0.1577 0.3269 0.2248 0.3341 0.2188 0.2451 0.1712 
2 Single-tool 0.3003 0.1564   0.2998 0.1962 0.3180 0.2281 0.4148 0.3401 0.3912 0.2529 0.3286 0.2609 

Increase 2 over 1 54% 46.30% 33.48% 55.47% 33.17% 44.64% 26.90% 51.29% 17.09% 15.58% 34.07% 52.39%
 

3 Our algorithm 0.3293 0.1981 0.3112 0.2160 0.3231 0.2334 0.4291 0.3538 0.4279 0.3036 0.3508 0.2931 
Increase 3 over 2 9.66% 26.67% 3.80% 10.09% 1.60% 2.32% 3.45% 4.03% 9.38% 20.05% 6.76% 12.34%
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the queries can substantially improve retrieval effectiveness; 
furthermore, the quality of the phrases has a positive impact on 
retrieval effectiveness. 
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