
Recognition and Classification of Noun Phrases in Queries
for Effective Retrieval

1Wei Zhang, 2Shuang Liu, 1Clement Yu, 3Chaojing Sun, 4Fang Liu, 5Weiyi Meng
1Department of Computer Science

University of Illinois at Chicago
Chicago, IL 60607, USA

{wzhang,yu}@cs.uic.edu
2Ask.com

Edison, NJ 08837, USA

shuang.liu@ask.com

3Broadcom Corporation
San Diego, CA 92128, USA

chaojing@gmail.com
4Live Search, Microsoft

Redmond, WA 98052, USA

fangliu@microsoft.com

5Department of Computer Science
Binghamton University

Binghamton, NY 13902, USA

meng@cs.binghamton.edu

ABSTRACT
It has been shown that using phrases properly in the document
retrieval leads to higher retrieval effectiveness. In this paper, we
define four types of noun phrases and present an algorithm for
recognizing these phrases in queries. The strengths of several
existing tools are combined for phrase recognition. Our algorithm
is tested using a set of 500 web queries from a query log, and a set
of 238 TREC queries. Experimental results show that our
algorithm yields high phrase recognition accuracy. We also use a
baseline noun phrase recognition algorithm to recognize phrases
from the TREC queries. A document retrieval experiment is
conducted using the TREC queries (1) without any phrases, (2)
with the phrases recognized from a baseline noun phrase
recognition algorithm, and (3) with the phrases recognized from
our algorithm respectively. The retrieval effectiveness of (3) is
better than that of (2), which is better than that of (1). This
demonstrates that utilizing phrases in queries does improve the
retrieval effectiveness, and better noun phrase recognition yields
higher retrieval performance.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing – dictionaries, linguistics processing. H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval – query formulation.

General Terms
Algorithms, Design, Experimentation.

Keywords
Information Retrieval, noun phrases, proper noun, dictionary
phrase, simple phrase, complex phrase, feedback, verification.

1. INTRODUCTION
The objective of this paper is to detect various types of multi-
word noun phrases in a query. In this paper, we consider the
queries that are short and similar to typical web search queries.
The detected noun phrases are used to interpret the original query
in order to improve retrieval effectiveness. Noun phrases are
classified into four categories: (1) proper noun; (2) dictionary
phrase; (3) simple phrase and (4) complex phrase. A proper noun
(PN) refers to the name given to a person, place, event, group or
organization, etc., for example, “Tom Smith”. Dictionary phrases
(DP) are the noun phrases defined in dictionaries, but not proper
nouns, for example, “computer monitor”. Both the simple noun
phrase (SNP) and complex noun phrase (CNP) are the noun
phrases that are grammatically correct, used in the daily language,
but not formally defined in dictionaries. We require SNP to
contain exactly 2 words and CNP to contain three or more words;
for example “small car” is an SNP and “local movie theater” is a
CNP. The reason for recognizing phrases in queries, and
classifying them into the four types, is that noun phrases are
known to be very helpful for document retrieval [1][4][16][28]. A
recent paper [20] shows that proper use of these four types of
phrases yields significantly higher effectiveness in document
retrieval than just using the individual query words. Zhou, et. al
[33] reported that the use of concepts, which are equivalent to
phrases, in biomedical IR also resulted in higher retrieval
effectiveness than just using individual query terms. Our work
converts the original query from a set of words to phrases in order
to improve document retrieval performance. In this paper, we
utilize the following tools:

(i) Wikipedia [32] is a comprehensive online encyclopedia. It is
used to recognize proper nouns and dictionary phrases.

(ii) WordNet [12] is an electronic dictionary. It is used to
recognize dictionary phrases and certain proper nouns.

(iii) Minipar [18] is used to recognize proper nouns.

(iv) Collins parser [9] is used to recognize SNP and CNP.

(v) Google [14] is used to recognize some proper nouns and to
collect documents to provide some statistics. Actually,
Google is used as a large document collection. Any search
engine, which has the property of ranking documents that
have a set of query words in a small window size, ahead of
documents that either have a proper subset of the query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’07, November 6--8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011...$5.00.

711

words, or have the words in a larger window, is sufficient for
our purpose.

We apply Wikipedia, WordNet, Minipar and Google to detect
PNs and DPs in the queries. We use a document collection to test
if these PN/DPs are really used in the real world. They are
discarded if not found in the documents. Then the SNPs and
CNPs are searched in the queries. These two types of phrases are
grammatically correct, used in daily language, but do not have
entries in dictionaries. Collins parser and some statistical
techniques are used to detect the SNP/CNPs. This includes
detecting the shorter noun phrases embedded in longer noun
phrases. For example, a query “Orlando travel agents” is a CNP.
“Travel agents” is a SNP. Both need to be recognized. Our
algorithm is tuned using a set of 400 web queries randomly
selected from a web query log. It is tested on another set of web
queries and a set of multi-word TREC query titles. The
contributions of this paper are

(i) The evaluation of various tools and their combinations for
their effectiveness on noun phrase detection task.

(ii) The analysis of the errors made by each tool.

(iii) The development of an algorithm that combines
different tools for noun phrase recognition in short queries.

(iv) An operational system that yields higher noun phrase
recognition accuracy than a baseline system.

(v) Experimental results show that recognizing phrases in queries
improves document retrieval effectiveness.

The rest of this paper is organized as follows. Section 2 describes
the PN/DP recognition algorithm. The SNP/CNP recognition is
explained in Section 3. Experimental results are reported in
Section 4. Section 5 reviews the related works. Conclusions are
given in Section 6.

2. RELATED WORKS
Phrases have been used in document retrieval [1][4][16][20].
Higher retrieval effectiveness over the individual word method
has been reported.
Lima et al [17] studied the proper noun and phrase recognition
problem. They used the EM algorithm to estimate the parameters
of a probabilistic context-free grammar (PCFG), given a large
Web query log and a hand-written context-free grammar. The
PCFG was utilized to compute the most probable parse for a
query, which was then employed for phrase recognition. They
studied on the company names, human names and other short
Web queries, where company and human names could fit in our
PN category, and other queries could fit in our SNP/CNP
categories.
Mihalcea and Moldovan [24] claimed that the implicit phrases
were recognized but technical details were not provided.
Florian, et al [13] presented a classifier-combination framework
for named entity recognition. Four statistical classifiers are
combined. Also, additional dictionary data and two more
classifiers are combined. The best f-scores on the training set and
the test set are 93% and 88% respectively. Florian’s system
mostly focuses on named entity (PN) recognition, while ours also
finds the ordinary phrases (SNP and CNP) because we aim to
provide general phrases to document retrieval systems.

Evans and Zhai [10] extracted meaningful short noun phrases
from documents by using both corpus statistics and linguistic
heuristics. The performance of their system on the noun phrase
recognition was not directly reported. Instead, they compared and
reported the document retrieval results of (1) using and (2) not
using the recognized noun phrases. The system was tested on
TREC-1993 queries 51-100. The setup (1) improves the
precisions at all the document levels over (2), 13% improvement
at 5-doc level, 6% at 10-doc level and 7% at 15-doc level, etc.
Lin [19] only uses Minipar and WordNet for conference name
recognition. We not only add another tool, Wikipedia, but also
expand the conference name to various types of proper nouns.
The following aspects of our work appear to be novel: (1) we
integrate different strategies into a unified algorithm to recognize
different types of noun phrases, (2) Minipar, Wordnet Wikipedia
and a large document collection are used jointly to find different
types of proper nouns. (3) Phrase verification is carried out at the
statistical level, validating whether a sequence of words is
commonly used as a whole in the real world. The document
collection is also used to determine which of two overlapping
phrases is the desired one.

3. PROPER NOUN AND DICTIONARY
PHRASE RECOGNITION
The PN/DP recognition algorithm recognizes proper nouns (PN)
and dictionary phrases (DP) in a query. The pseudo code is given
in Figure 1.

Figure 1. Algorithm for PN/DP recognition
From line 2 to line 20, given an n-word query p (w1 w2 … wn), the
PN/DP recognition starts from p itself (n-word candidate, a string
of n consecutive words in the original query); if failed, it searches
in the (n-1)-word sub-phrases of p; this process repeats until

712

reaching the 2-word candidates. We call the searches among the
x-word candidates the “level-x” search. A recognized PN/DP is
called a “level-x potential PN/DP”, because they still need to be
verified. We do not consider the case of two words, which are not
in consecutive position, forming a phrase. For example,
“computer price” is not examined as a candidate given a query
“computer monitor price”.

is_wiki_PN(p). In line 6, function is_wiki_PN(p) uses Wikipedia
to check if a phrase candidate p is a PN. A PN should be defined
in a dictionary if it is well known, and should have all of its
content words capitalized. When p is submitted to Wikipedia, a
definition page should be returned if p is defined. We require that
the first instance of p in the main body of that page have all its
content words capitalized, in order to label p as a Wikipedia PN.
We emphasize the “main body of the page” because the words in
the page title are usually capitalized regardless of their types.

is_wiki_DP(p) is similar to is_wiki_PN(p) but the p needs not to
be capitalized in the Wikipedia text in is_wiki_DP(p).

is_wn_PN(p). In line 6, this function uses WordNet as another
dictionary to check if p is a PN. If (1) WordNet recognizes p as a
defined noun phrase; (2) one of the p’s hypernyms in WordNet is
a city, province, country, organization, geographical area, person
or a syndrome; and (3) the content words of p in its WordNet
definition are capitalized, p is labeled as a WordNet PN.

is_wn_DP(p) recognizes p as a DP if it is defined in WordNet but
not qualified as a WordNet PN.

is_minipar_PN(p). In line 7, this function uses Minipar to check
if p is a PN. If Minipar gives p a “PN” label, or one of the labels
of “person”, “country”, “corpname”, “location”, “corpdesig”,
“fname”, “gname”, “date”, which refer to people, location,
organization, family name, given name and dates, respectively,
the p is labeled as a Minipar PN. Minipar is only used to
recognize PN but not for DP, because it is not a pure dictionary.
Some of its decisions are made based on grammatical rules.

is_Name(p). In line 7, this function uses a list of first names, a list
of last names, and several name-written patterns to detect names
of persons. This is necessary because the names of the ordinary
people are hardly defined in dictionaries. In our implementation,
we use the name lists from the U.S. Census Bureau, because
currently we only test our algorithm using documents written in
English. The patterns we adopt are “first name initial, last name”,
“first name initial, middle name initial, last name”, “first name,
middle name initial, last name”, “first name, last name”. This
function is fired if a whole query itself matches any of the
patterns, while other tools can not recognize any PN/DP in this
query. During the algorithm tuning, we tried to apply this function
to parts of the queries. But it gave us many false positives. So we
decided to only apply it to a whole query.

is_doc_PN(p). In line 7, this function detects the less-famous
proper names in a query, such as less well-known people,
organizations, or locations that are not indexed in dictionaries.
This is necessary as is_Name() only detects names of persons. A
phrase candidate p is searched in a document collection. If at least
three instances of p are found in documents, such that (1) All non-
stop words in these instances are capitalized, (2) None of the
instances is a sub-string of a longer string, which has all the non-
stop words in capitalized form. (3) At least one of the instances is

not a sub-string of a longer proper noun. Then we say p is a PN
recognized in a document collection. In our implementation, we
submit p to Google. The actual pages of the top 10 returned
documents serve as the document set.

We need to emphasize that we use Google as a huge document set
and use it to give essential statistics to our system when making a
decision. Any document retrieval system, which can return
documents that have a set of specified words appeared in the
smallest text window ahead of documents having the set of words
in larger window sizes, can be used. Using a large text corpus to
get statistics is common in IR. The system in [6] use locally
stored static corpus to do statistical computation for document
retrieval.

phrase_verification (p). In line 8, this function verifies the
existence of PN/DPs that are recognized by one of the above
functions. It is a simplified is_doc_PN(p). To verify a potential
PN p, This function looks for at least one instance of p in a
document collection, such that this instance satisfies the condition
(1) and (2) as described in is_doc_PN(p). The criteria is less strict
for phrase_verification(p) because p has been recognized by one
of the above functions. We use the documents returned by Google
as the document collection. For example, Minipar labels “vista
window company” as a PN. An instance of this phrase is found in
a document as “Vista Window Company is proud to …”. A DP
does not need to be verified by looking for instances in the
documents, because of the definition of DP.

pick_one_phrase(p1, p2) function. When PN/DPs overlap, two
resolving processes are conducted from line 12 to 28. First, from
line 13 to 18, we resolve the overlapped PN/DPs at the same
level. The function pick_one_phrase(p1, p2) at line 15 picks one
phrase from two partially overlapping PN/DPs p1 and p2. This
function searches all the words of p1 and p2 together in a
document collection, and counts the occurrences of p1 and p2 in
the documents. The one with the larger number of count is picked.
In implementation, we submit all the content words in p1 and p2
to Google. The top 10 returned documents form a document set.
For example, in a query “pocket watch chains”, “pocket watch” is
a Wikipedia DP and “watch chains” is a WordNet DP. The query
“pocket watch chains” is submitted to Google together to retrieve
documents. “Pocket watch” has 62 instances while “watch
chains” has 39 in stances in the returned documents. So “pocket
watch” is picked.

At line 19, all the sub-phrases that are contained within the
recognized PN/DPs are discarded. The intuition is that the words
in a PN/DP should not be decomposed.

From line 22 to 28, the overlapping problem between two PN/DPs
at different levels is solved. For example, a query is “starlite drive
in movie theatre”, Wikipedia recognizes “drive in movie theatre”
as a level-4 DP. Is_doc_PN(p) recognizes “starlite drive in” as a
level-3 PN. The pick_one_phrase(p1,p2) at line 24 solves the
overlapping problem. It is as same as the pick_one_phrase(p1, p2)
at line 15. “Starlite drive in” got 26 instances and “drive in movie
theatre” got 5. The former one is chosen. Line 26 is necessary
because it is possible that a discarded PN/DP candidate may still
contain shorter valid PN/DPs. For example, even “drive in movie
theatre” is discarded; its sub-phrase “movie theatre” can still be
recognized as a valid DP.

713

At line 29, the whole procedure (line 2 to 28) will run again as
long as there is candidate labeled as “not checked” at line 26.

4. SIMPLE AND COMPLEX PHRASE
RECOGNITION
Some noun phrases are not PN or DP, yet are grammatically
correct and are used in the English language. If such a noun
phrase contains exactly two words, we define it as a “simple noun
phrase” (SNP). If it has three or more words, we define it as a
“complex noun phrase” (CNP). For example, “white car” is a
noun phrase, but probably not defined in any dictionary. This type
of noun phrases is also useful to improve retrieval effectiveness.
We adopt Collins parser [9] to recognize them. Collins parser is a
language parser with phrase structure annotation ability. Brill
tagger [3] attaches part of speech (POS) tags to the query words,
because Collins parser needs them.

4.1 Punctuations and Headwords
Before the parser processes a query, the query is pre-processed. If
two words connected by a hyphen, they are either unchanged,
merged as a single word or the hyphen is replaced by space. The
one that is the most frequent one in a document set is chosen.
Other punctuation marks except the apostrophes are removed.
A headword (HW) of a phrase is the element that determines the
syntactic function of the whole phrase. In a noun phrase, the head
is the noun that refers to the same entity that the whole phrase
refers to [11]. It plays the same grammatical role as the whole
constituent [28]. For example, “art” is the HW of DP “performing
art”. Before actually recognizing SNP/CNP, the PN/DPs in a
query are replaced by their HWs. A PN/DP is sent to Collins
parser. The parser generates a parse tree. The root of the tree is
the corresponding HW. The (PN/DP, HW) mapping information
is stored for future PN/DP restoration. The HW replacement is
necessary because in some circumstances, the existence of the
whole PN/DP may cause parsing error. The HW replacement may
help the parser get the correct parse tree.

Example 1. In a query "download pieces of me", "piece of me" is
a PN. The whole query is a valid CNP. Without HW-replacement,
Collins parser considers "download pieces" and "of me" as two
phrases. With the HW-replacement, "pieces of me" is replaced by
its HW "pieces". "download pieces" is parsed as a noun phrase
(download/NN pieces/NN). After restoring the "pieces of me", the
whole title is correctly recognized as a noun phrase.

4.2 Implicit Phrase
A coordinate structure in texts involves several components that
are connected by “and” or “or”. This sometimes indicates that
there are implicit phrases in the text. For example, a query “main
and contributing factor” has two explicit phrases: the query itself
and “contributing factor”. But there is also an implicit phrase
“main factor”. This implicit phrase can not be recognized directly.
Given a query with coordinate structure, we use a set of
grammatical rules to find the implicit phrases.

4.2.1 Noun Phrase in a Coordinate Structure
Rule1: CONJ: - [Compi CC]n Comp’
Rule2: Comp’:- [Modi]m Head
where CONJ is a coordinate phrase; CC designates either “and” or
“or”; Compi is an adjective or a noun; Comp’ is a noun phrase

with at least one modifier, and Head is the headword of Comp’.
For the noun phrase “main and contributing factor”, its Collins
parsing structure is shown in Figure 2. The node “CONJ/factor”
refers to a coordinate structure, which includes a noun phrase, an
adjective “main”, an “and” and a noun phrase “NP/factor”, while
the node “NP/factor” in turn includes an adjective “contributing”
and a noun “factor”. So the Comp1 is “main”, CC is “and”, and
Comp’ is “contributing factor”, Mod is “contributing”, Head is
“factor”, and both m and n are 1.

Figure 2. noun phrases in coordinate structure

When this set of rules is fired, the new phrases are generated as:
NPi:- Compi NN (i =1, 2, …, n)

In the example, the new phrase “main factor” is generated.

4.2.2 Coordinate Structure in a Noun Phrase
Rule 1: NP :- CONJ NP’

Rule 2: CONJ :- [Compi CC]n Compn
where NP is a noun phrase containing a coordinate noun phrase
CONJ, and a noun or noun phrase NP’, CC refers to either “or” or
“and”; Compi represents a component noun phrase or adjective
phrase. In the noun phrase “physical or mental impairment”, NP’
is “impairment”, Comp1 is “physical”, CC is “and”; and Comp2 is
“mental”. The parse tree is shown in Figure 3.

 Figure 3: Coordinate structure in noun phrases

When this set of rules is fired, new phrases are generated as:
NPi :- Compi NP’ (i = 1, 2, …, n)

In the above example, new simple phrases “physical impairment”
and “mental impairment” are generated.

4.2.3 Noun Phrase with Coordinate Structure and
Prepositional Phrase
Rule 1: NP :- CONJ PP

Rule 2: CONJ :- [Compi CC]n Compn

where NP is a noun phrase which contains a coordinate noun
phrase, PP is a prepositional phrase, CC designates “or” or “and”;
and Compi represents a component noun phrase. For the noun
phrase “systematic explorations and scientific investigations of
Antarctica”, PP is “of Antarctica”, Comp1 is “systematic

714

explorations”, CC is “and”; and Comp2 is “scientific
investigations”. When this set of rules is fired, new phrases are:

NPi :- Compi PP (i = 1, 2, …, n)
In the example, phrases “systematic explorations of Antarctica”
and “scientific investigations of Antarctica” are generated.
In some cases, the coordinate noun phrase itself may satisfy 2 or
more set of rules, for example “[main and contributing factor] in
ship loss” satisfies the rule in 6.3, while “main and contributing
factor” satisfies rule in 6.1. Thus, the new phrases are “main
factor in ship loss” and “contributing factor in ship loss” as shown
in Figure 2.

4.3 Recognize SNP and CNP
After the punctuations, headwords and coordinate structure in a
query are processed, the Collins parser is used to recognize the
SNP and CNP in the query. The pseudo code of the whole
algorithm is given in Figure 4.

Figure 4. Algorithm for SNP/CNP recognition
Generating Collins noun phrases. At line 6, Collins parser
analyzes a modified query and returns a parse tree. The phrases,
such as noun phrases, verb phrases and adjective phrases, are
annotated in the tree. The noun phrases are picked at line 7.
They are labeled as the Collins NPs. In line 9, the sub-phrases
of these Collins NPs are also collected as Collins NPs. This is
to avoid missing some noun phrases that are not recognized by
the parser. For example, in Figure 3, given a query “best
compact sedan”, the parse tree on the left is given by Collins
parser. It captures the whole query as a noun phrase, but does
not capture the embedded SNP “compact sedan”. The correct
parsing is given on the right hand side of Figure 5. The

adjective “compact” modifies the noun “sedan”. The adjective
“best” modifies the noun phrase “compact sedan”.

Figure 5: Collins parser fails to generate correct parse tree

The reason why we want to obtain an embedded simple phrase,
such as “compact sedan” from a complex phrase such as “best
compact sedan”, is that a relevant document may not contain the
complex phrase but may contain the simple phrase. Such a
document can still have a similarity allocated to the simple phrase,
which is part of the similarity allocated to the complex phrase.

Verify Collins phrase. From line 10 to l5, if a Collins phrase t is
verified by verify_collinsP(t), it becomes a “verified Collins
phrase”. The idea is that: The noun phrases in the parse tree are
grammatically correct. But the parser can not tell if the phrases
are meaningful in the real world text. A phrase to be verified must
(1) not intersect with a recognized PN/DP, or (2) be a phrase that
contains a recognized PN/DP and additional words. For example,
“Spider Man tickets” contains a PN “Spider Man” and an
additional word “tickets”. If a potential noun phrase partially
overlaps with a PN/DP, we prefer the PN/DP. For example, the
query “blood pressure level” has two shorter phrases of “blood
pressure” and “pressure level”. The former is a DP. So “pressure
level” is discarded and will not go for verification.
When a two-word phrase p is fed to verify_collinsP(t), the
function searches p in a document collection to examine the
existence of p. If an instance of p is found, such that this instance
plus its boundary words is not a sub-phrase of the query, p
becomes a verified Collins phrase. For example, to verify “tourist
bus” in “free tourist bus”, at least one instance of “tourist bus”
should not have the word “free” before it.
If p has three or more words, it could be written in various ways.
For example, “colin farrell wallpaper” can be written as
“wallpaper of colin farrell”. We verify these phrases as follows:
(1) Search the exact p in the document set. If p is found, and if

this instance plus its boundary words is not a sub-phrase of the
query, p is verified.

(2) Otherwise, we look for a narrow text window in the
documents. This window should contain all the content words
of p. But the ordering of these words in the window can be
different from that in p. If such a window is found, we label p
as verified. The more words p contains, the wider the text
window will be.

In our implementation, a phrase p is submitted to Google. The top
20 retrieved documents are used as the document collection.

Solving the phrase-overlapping problem. From 16 to 28, the
problem, in which two verified Collins phrases overlap, is
resolved. From line 17 to 21, two overlapped phrases having the
same number of words are handled. pick_one_phrase(t1, t2) at
line 18 counts the occurrences of t1 and t2 respectively as
described in Section 2, except that it does not care about the
capitalization of the words. The one with a higher count is
preferred. From line 22 to 27, the cross-level overlapping problem
is solved. We adopt a lower level priority strategy: if two verified

715

Collins phrases from different levels overlap, the one at the lower
level (has fewer words) is preferred, because during the tuning we
found this is better than picking the higher level phrase. The
cross-level overlapping solving process does not include the
original query (|Q|-level) since the original query overlaps with all
of its sub-phrases.
From line 29 to 32, a verified Collins phrase is labeled as SNP if
it has 2 words. Otherwise it is labeled as a CNP. We use Example
2 as an illustration.

Example 2: Collins parser labeled the query “sony dvd
handycam” as noun phrase. Its sub-phrases “sony dvd” and “dvd
handycam” were also added as Collins NPs. All three pass the
verification_collinsP(t). “Sony dvd” and “dvd handycam” were
examined by pick_one_phrase(). In the context of “sony dvd
handycam”, “sony dvd” not followed by “handycam” was found
1 time, while “dvd handycam” not following “sony” was found
12 times. Thus “dvd handycam” was chosen. No cross-level
overlap solving was fired. The algorithm stopped.

5. EXPERIEMENTAL RESULTS
We tune our algorithm using a set of 400 multi-word web queries,
randomly selected from a search engine company’s web query
log, which has more than 170 thousand queries. The algorithm is
then tested using another set of web queries from the same query
log, and a set of TREC (Text REtrieval Conference) queries.
Finally, we apply the recognized phrases from TREC queries to
TREC document retrieval tasks, comparing the retrieval
effectiveness of the IR system when (1) not utilizing phrases in
the queries at all, (2) using phrases recognized by a baseline
phrase recognition algorithm, and (3) using the phrases
recognized by our algorithm. The results of the noun phrase
recognition experiments are reported in recall, precision and f-
score [29]. For a phrase type T, the precision (P) is the number of
the correctly identified T phrases by our algorithm divided by the
total number of the identified T phrases by our algorithm. Recall
(R) is the number of the correctly identified T phrases by our
algorithm divided by the total number of the T phrases in the
golden standard. The F-score is defined as 2PR/(P+R). The results
of the document retrieval experiments are reported as Mean
Average Precision (MAP) and Geometric Mean Average
Precision (GMAP) scores[31].

5.1 Testing Algorithm Using Web Queries
We randomly selected another 500 multi-word queries from the
same query log used for selecting the tuning set. These two sets
do not overlap. These 500 queries contain 205 2-word queries,
163 3-word queries, 86 4-word queries, 30 5-word queries and 16
6-word queries. Each of three graduate students labeled all of the
PNs, DPs, SNPs and CNPs in the queries. Disagreements were
solved by majority voting. These labeled phrases were set as the
golden standard.

5.1.1 Overall Phrase Recognition Performance
Table 1 shows the noun phrase recognition performance of our
algorithm using this 500-web-query set. In the PN row, three
major reasons for the errors are: First, the web queries contain
many less well-known proper names such as names of people,
small companies and organizations. They are not defined in
dictionaries. There are also not enough number of instances in the
documents for them to be verified. This affects the recall. The
second reason is the informal writing of the PNs, such as

incomplete name and unofficial names. For example, a query
“zenon z2” refers to a TV show “Zenon: the Zequel”. The query
used an unofficial name “z2”. This incorrect title can not be
verified. The third reason for the errors in PN is the capitalization
of the words in the documents. In the procedure of is_doc_PN(p),
we require the content words of a potential PN be capitalized in
the documents. In some cases, non-PN phrases also have all of
their content words capitalized to emphasize them. They satisify
the procedure is_doc_PN(p), becoming the false positive PNs,
which affects the precision. For example, “Return Policy” is such
a phrase because some companies emphasize it as an important
issue. The cases involving un-official names and the emphases by
capitalizing certain words require further study.

Table 1: Scores of our algorithm on the 500-web-query set

 # in set Recognized Correct Recall Precision F-score
PN 263 258 243 0.9240 0.9419 0.9328
DP 102 103 102 1 0.9903 0.9951

SNP 167 183 149 0.8922 0.8142 0.8514
CNP 292 268 252 0.8630 0.9403 0.9000

The DP row has one false positive case. The query is “young
models” that refers to young persons posing for purpose of art or
fashion. Wikipedia has an entry “young model” that is about a
mathematical model.
In the SNP row, an error type is that is_doc_PN() falsely
recognizes some SNPs as PNs. This lowers the recall. The “return
policy” is such an example. Another error type is that some PNs
are recognized as SNPs. The third error type is that the
pick_one_phrase() function made wrong choices. Both the
second and the third error types lower the precision.
In the CNP row, the major error type is that some CNPs partially
overlap with recognized SNPs, while we adopt a SNP-has-higher-
priority strategy, the CNPs are discarded. This affects the recall.

5.1.2 Impact of Individual Tools on the Algorithm
In order to analyze the impact of each individual tool on our
algorithm, we test the performances of these tools individually.
Tables 2 to 5 show the performance of the individual tools in PN,
DP, SNP and CNP recognition tasks respectively. In tables 2 to 5,
the “Full” lines refer to the corresponding data in Table 1.
In Table 2, 5 tools are tested in the PN recognition respectively.
Minipar got low recall (0.2000). Minipar uses grammatical rules
to parse text, which needs context information for correct parsing.
But the web queries are too short to provide enough contexts.

Table2. Scores of individual tools on PN recognition task

Tool Recognized Correct Recall Precision F-score
Minipar 63 53 0.2000 0.8413 0.3232
WordNet 82 67 0.2548 0.8171 0.3884
Wikipedia 195 180 0.6844 0.9231 0.7860
Doc_set 217 182 0.6868 0.8387 0.7552

Name list 29 26 0.0981 0.8966 0.1769
Full 258 243 0.9240 0.9419 0.9328

The recall of WordNet alone is low (0.2548) because it only
recognizes PNs that are defined in its database. Given that many
of the PNs do not have entries in WordNet, they are missed.
Wikipedia is an open dictionary. Its open editing architecture
makes its data updated with the current affairs of the world.

716

That’s why it got a much higher recall value (0.6844) than the
non-open tools of Minipar, WordNet and Name List.
The name list tool got the lowest recall (0.0981) but it is expected,
since it only recognizes people names. Its 0.8966 precision
demonstrates its effectiveness.
Is_doc_PN(p) alone gets high recall as Wikipedia does, actually
the highest (.6868) among the 5 tools. Since we use the document
set returned from Google, the documents are also kept up to date.
These 5 tools all got reasonable precisions (0.81 to 0.89).
Wikipedia has the highest precision 0.9231 because it has high
quality contents. The results show that a single tool usually has a
low recall. One single tool is not enough to recognize most of the
PNs in the web queries, since the web queries cover very wide
topics. Different tools must be used together to achieve desirable
result.

Table 3. Scores of individual tools on DP recognition task

Tool Recognized Correct Recall Precision F-score
WordNet 62 40 0.3922 0.6452 0.4878
Wikipedia 104 97 0.9510 0.9327 0.9417

Full 103 102 1 0.9903 0.9951
In Table 3, two individual tools are tested in the DP recognition
task. The recall of WordNet is low (0.3922) due to the relatively
small amount of term definitions it has, comparing to the various
topics in the web queries. The precision of WordNet is also low
(0.6452). In many cases, WordNet does not recognize a valid
PN/DP. But a sub-phrase of this unrecognized PN/DP is still a
valid DP. This sub-phrase is recognized, becoming a false
positive. For example, “brookdale community college” is a PN not
recognized by WordNet. But “community college” is recognized.
Wikipedia alone gets recall of 0.9510 in DP recognition, which is
due to its open editing architecture and large data collection. Its
precision is 0.9327 because it has the same situation as that of
WordNet: a sub-phrase of an unrecognized PN/DP is incorrectly
recognized as a DP.

Table 4. Scores of individual tools on SNP recognition task

Tool Recognized Correct Recall Precision F-score
Collins0 118 96 0.5749 0.8136 0.6737
Collins1 243 157 0.9401 0.6461 0.7659
Collins2 238 157 0.9401 0.6597 0.7753

Full 183 149 0.8922 0.8142 0.8514
Collins0: Collins phrase (baseline)
Collins1: Collins 0 + sub-phrase
Collins2: Collins 1 + verify_collinsP
Full: Collins 2 + overlap resolving
Table 4 shows the performances of the individual tools on SNP
recognition. The Collins0 row uses Collins parser alone as a
baseline. The phrases labeled directly by the parser are the results
of Collins0. The sub-phrases of these directly labeled Collins
phrases are not included (Line 9 Figure 4). The verify_collinsP(p)
(Line 14 Figure 4) and the overlapping solving technique (Line
16-28 Figure 4) are not applied. We only remove the phrases that
overlap with recognized PN/DPs. The result shows the
effectiveness of the Collins parser alone. The 0.8136 precision is
acceptable. The 0.5749 recall is low. This shows that the Collins
parser alone is not enough for SNP recognition.
The Collins1 is Collins0 plus using the sub-phrases of the Collins
phrases in Collins0. The direct output of the parser misses many

correct phrases. We add the sub-phrases of these Collins phrases
as additional SNP candidates. This will bring in many incorrect
phrases so that the precision could be harmed. But we want to
find if these additional sub-phrases can improve the recall. The
incorrect and redundant phrases will be removed in “Collins2”
and “full” rows. We see the recall of “Collins1” increases
substantially from 0.5749 to 0.9401. The additional sub-phrases
do work. Unfortunately, the precision drops from 0.8136 to
0.6461. But the f-score is still improved from 0.6737 to 0.7659.
Collins2 is Collins1 plus verify_collinsP(), which tests if a phrase
is actually used in the real world. This verification removes 5
(243 to 238) incorrect phrases. The precision increases a little. It
gets the same number of correct phrases so the recall is not
changed.
“Full” is the full algorithm configuration. It is the Collins2 plus
the overlapping problem solving step. This step aims to further
remove the incorrect phrases introduced from the parser and the
sub-phrases. Comparing to Collins2, the precision increases from
0.6597 to 0.8142, which is the highest precision among the 4
configurations. The recall drops to a still acceptable degree of
0.8922 from 0.9401. The 0.8514 f-score is the highest among the
four. Thus the overlapping solving technique is necessary.

Table 5. Scores of individual tools on CNP recognition task

Tool Recognized Correct Recall Precision F-score
Collins0 257 238 0.8151 0.9261 0.8670
Collins1 374 286 0.9795 0.7647 0.8589
Collins2 359 273 0.9349 0.7604 0.8387

Full 268 252 0.8630 0.9403 0.9000
Table 5 shows the CNP recognition results of the 4 configurations
defined in Table 4. Collins0 is still the baseline. In Collins1, we
still see that the additional sub-phrases help increase the recall
(0.8151 to 0.9795) but harm the precision (0.9261 down to
0.7647). In Collins2, the verify_collinsP() does not help the
performance but even decreases it a little. The full configuration
greatly improves the precision (0.7604 to 0.9403) at a small cost
of the recall (0.9349 down to 0.8630). And the full configuration
has the highest f-score among the four. The behaviors of CNP
recognition are the same as those in SNP recognition.

5.2 Testing Algorithm Using TREC Queries
We also use a set of TREC queries to test our algorithm. There are
249 queries from the ad-hoc tracks of TREC-6, 7, 8, and the robust
tracks of TREC-12 and 13, 238 of which are multi-word queries.
These 238 queries contain 70 2-word queries, 143 3-word queries,
23 4-word queries and 2 5-word queries. Three graduate students
double-checked and labeled the PNs, DPs, SNPs and CNPs in these
238 queries as the golden standard. These TREC queries are not
new. Some TREC related documents, which describe these queries,
can be found in the top retrieved documents from Google when
searching these queries. These documents should not be used to
prove the existence of the phrases. So when we use Google to
collect documents, we set the restriction that the returned documents
must not contain the terms such as “TREC”, “query” and “phrase”.
This is done by adding “-TREC”, “-query” and “-phrase” as query
restrictions when searching in Google.
The overall performance of our system on the TREC query set is
reported in Table 6. The only error in the PN row is a falsely
recognized PN from is_doc_PN(p). The only error in the DPs is
due to a query “food and drug laws”, where the golden standard

717

indicates “food and drug” and the entire query is a CNP. Our
system recognizes "drug laws" as a DP. The errors in the SNP
row are mainly caused by the incorrect pick_one_phrase()
results. In the CNP row, some CNPs are missed because they can
not be verified in the phrase_verification(p).

Table 6. Scores of our algorithm on the 238-TREC-query set

 # in set Recognized Correct Recall Precision F-score
PN 32 33 32 1 0.9697 0.9846
DP 110 111 110 1 0.9910 0.9955

SNP 99 102 90 0.9091 0.8824 0.8955
CNP 159 146 146 0.9182 1 0.9574

We tested the performance of individual tools as we did in
Section 4.1. The results are shown in Table 7 through Table 10.

Table 7. Scores of individual tools on PN recognition task

Tool Recognized Correct Recall Precision F-score
Minipar 3 2 0.0625 0.6667 0.1143
WordNet 15 14 0.4375 0.9333 0.5957
Wikipedia 32 32 1 1 1
Doc_set 32 18 0.5625 0.5625 0.5625

Name list 0 0 0 0 0
Full 33 32 1 0.9697 0.9846

In Table 7, the “name list” tool did not recognize anything,
because there are 3 people’s names in the PNs, all of which are
foreign names. None of the “first name, last name” is found by
is_name(). Minipar only finds 2 correct PNs. This again shows
that lacking context greatly affects its performance. WordNet got
high precision but low recall. This is similar to its performance in
Table 2, because of limited number of definitions. Is_doc_PN()’s
performance in the TREC data set is worse than its performance
in the web data set as shown in Table 2. A major error type is that
a PN is not recognized but its sub-phrase is incorrectly recognized
as PN. Wikipedia had a perfect score because the PNs in TREC
queries are rather well known.

Table 8. Scores of individual tools on DP recognition task

Tool Recognized Correct Recall Precision F-score
WordNet 59 50 0.4545 0.8475 0.5917
Wikipedia 109 108 0.9818 0.9908 0.9863

Full 111 110 1 0.9910 0.9955
In Table 8, two individual components are used to recognize DP
respectively. WordNet’s low recall value means that its
performance is still affected by the limited entries. Wikipedia’s
performance is good and stable as it does in the PN recognition
experiment.

Table 9. Scores of individual tools on SNP recognition task

Tool Recognized Correct Recall Precision F-score
Collins0 55 49 0.4949 0.8909 0.6364
Collins1 156 98 0.9899 0.6282 0.7686
Collins2 155 98 0.9899 0.6323 0.7717

Full 102 90 0.9091 0.8824 0.8955
Table 9 shows the performances of the individual tools on SNP
recognition in the TREC query set. The four configurations are the
same as those defined in Table 4. The pattern of the performances
change is similar to that in Table 4. The pure Collins parser has
acceptable precision but low recall in Collins0 row. Additional sub-
phrases boost the recall but also damage the precision in Collins1.

Verify_collinsP() improves precision a little in Collins2. At last, the
full algorithm increases the precision at a small cost of the recall.
The full algorithm still has the best performance.

Table 10. Scores of individual tools on CNP recognition task

Tool Recognized Correct Recall Precision F-score
Collins0 155 152 0.9560 0.9806 0.9682
Collins1 164 154 0.9686 0.9390 0.9536
Collins2 156 146 0.9182 0.9359 0.9270

Full 146 146 0.9182 1 0.9574
Table 10 shows the CNP recognition results using the TREC query
set. The 0.9560 recall in baseline Collins0 is very high, because the
TREC queries have simpler grammar structures. They mainly
consist of nouns, while the web queries contain many verbs and
prepositions. Other than this, the performances of the four
configurations still follow the same pattern as those in Table 5. The
full configuration obtains 0.9182 recall and 100% precision.

5.3 Utilizing Noun Phrases for IR
This experiment is to test whether obtaining more correct phrases
yields higher information retrieval (IR) effectiveness. We
conducted three document retrieval experiments, comparing the
retrieval results using phrases recognized by our algorithm in
Section 4.2, to those recognized by a baseline system, and to not
using phrase at all. We use the IR system by Liu [20]. This system
allows both phrases and single terms in the query. The similarity
between the query and a document is represented as a pair of
(phrase-similarity, term-similarity). The phrase-similarity of a
document is defined as the sum of the idf (inverse document
frequency) weights of the phrases in common between the
document and the query. If a document does not have the
recognized phrase, its phrase-sim is 0. The term-similarity is the
usual term similarity between the query and the document, which
is computed by using Okapi formula [26]. Each query term
appeared in the document contributes to the term-similarity, no
matter it is in a query phrase or not. The phrase-similarity has
high priority than the term-similarity. Given a query, the retrieved
documents are ranked in descending order of their phrase
similarity values. When documents have the identical phrase
similarity value, they are ranked in descending order of their term
similarities. So given a query, two documents D1 and D2 have
similarities (x1, y1) and (x2, y2), respectively. D1 will be ranked
higher than D2 if (1) x1>x2, or (2) x1=x2 and y1>y2.
The 249 TREC queries are from 6 resources, the ad hoc tracks of
TREC 6, 7, 8 and the robust tracks of TREC 12, 13, 14. TREC 14
queries are executed on the AQUAINT data collection [31]; other
5 sets are executed on the TREC disks 4 and 5 except the
Congressional Records portion [30].
We simplify our phrase recognition algorithm to a weaker
“single-tool algorithm”. It serves as a baseline phrase recognition
algorithm. It utilizes just one tool to recognize one type of phrases,
while our full algorithm uses multiple tools for each phrase type.
In this single-tool algorithm, Wikipedia alone recognizes the PNs
and DPs, because it yields the best results in the PN/DP single-
tool experiments. The Collins parser alone recognizes SNPs and
CNPs, because it is the fundamental component in the SNP/CNP
part of our algorithm. The intuition is that our algorithm has better
phrase recognition capability than this baseline. Better phrases
should help retrieval system produce higher retrieval
effectiveness. From Tables 7, 8, 9 and 10 we can see that this

718

single-tool baseline algorithm has almost the same PN/DP/CNP
recognition ability as the full algorithm, and substantially worse
SNP recognition ability.
We conduct three experiments.
(1) Feed the queries to the IR system, without recognizing any

phrase. The output of the IR system should represent the
effectiveness of the system when using only individual terms.
Since the phrase similarity is always 0, the documents are
ranked in descending order of their term similarities.

(2) Recognize the phrases in the queries by using the “single-
tool” baseline algorithm. Then feed the queries and the
recognized phrases together to the IR system. The output
should show the effect done by the recognized phrases when
comparing to the output of (1).

(3) Recognize the phrases in the queries by using our complete
phrase recognition algorithm. Then feed the queries and the
recognized phrases together to the IR system. The output
should show the effect of recognizing phrases with higher
qualities, when comparing to the result of (2).

There are 11 single-term queries in the 249 queries. Their
retrieval results are also included in the final results. So the
difference between (1) and (2), and that between (2) and (3) are
just caused by the differences of the phrases.
The retrieval results are presented as mean average precision
(MAP) [30] and geometric mean average precision (GMAP) [31]
in Table 11. Comparing the scores of line 1 and 2 shows that all
of the 6 query sets, when using the phrases from the baseline
algorithm, get much higher scores than not using phrases at all
(MAP gains from 17% to 54%, GMAP gains from 15% to 55%).
This shows that the document retrieval, with the recognition of
the phrases, actually improves over just using single terms. Table
11 also shows that our full phrase recognition algorithm helps the
retrieval achieve higher scores than the baseline phrase
recognition algorithm does. The improvements are from 1.6% to
9.6% in MAP and 2.3% to over 26% in GMAP. This
demonstrates that better noun phrase recognition yields better
retrieval results.

Table 12. Compare our results to the highest TREC 13 MAP

System Old topic set New topic set Combined
TREC 13 0.317 0.401 0.333
Our algorithm 0.348 0.428 0.364
Improvement 9.78% 6.73% 9.31%

In TREC 13 [30], these 249 queries are used in the robust track.
200 of them from TREC 6, 7, 8 and 12 are called the “old topic
set”. The other 49 are called the “new topic set”. In [30], the best
MAP of the “old topic set” is 0.317. The best MAP of the “new
topic set” is 0.401. The combined score is 0.333. We calculated

the MAP scores for the old, new and the combined set for our
algorithm from Table 11. Table 12 shows the comparison between
our scores and the TREC 13 scores (Table 12 uses 3 digits
because TREC 13 robust track scores were reported in this format
[30]). The improvements of our scores over the best scores in
these topic sets are 9.78%, 6.73% and 9.31% respectively.
Furthermore, the 0.2931 MAP and the 0.3508 GMAP of the
TREC 14 query set (Table 11) are 5.7% and 26% higher than the
best corresponding scores reported in [31]. So our algorithm helps
the IR system achieve higher scores than the best officially
reported scores of the same query set and the document
collection.

5.4 Comparing to a Related Work
Lima et al [17] studied the proper noun and phrase recognition
problem. They reported 0.8786 precision and 0.9010 grammar
coverage ([17] used “grammar coverage”, which is an upper
bound of the recall) on 100 company names; 0.7770 precision and
0.8000 grammar coverage on 100 person names; 0.7983 to 0.8200
precision and 0.9160 to 0.9560 grammar coverage on 200 short
queries that have 1.59 words on the average, with an upper-bound
of f-score at 0.8827 (denoted by Q1); and 0.8049 to 0.8139
precision and 0.7800 to 0.8520 grammar coverage on 200 queries
that have at least 3 words with a 3.59 word average length, with
an upper-bound of f-score at 0.8325 (denoted by Q2). To compare
our result to theirs, we aggregate their company and person names
together as a PN set, and compare it to the PN row of Table 1. We
aggregate the 2-word DPs and the SNPs in Table 1 together
(0.9302 recall, 0.8727 precision, 0.9006 f-score) to compare to
their Q1 set. We aggregate the 3-or-more-word DPs (11 correct)
and the CNPs in Table 1 together (0.8680 recall, 0.9427 precision,
0.9038 f-score) to compare to their Q2 set. The results are shown
in Table 13..

Table 13. Comparison between Lima et al. and us in F-Score

Phrase Type Lima et at. Us
PN 0.8395 0.9328

2-word 0.8827 0.9006
3-or-more-word 0.8325 0.9038

6. CONCLUSIONS
In this paper, noun phrases are classified into four types. We
provide an algorithm that recognizes them. The algorithm is
tested on a web query set and TREC query titles. High accuracies
of recognition are obtained. Utilizing an up-to-date dictionary for
recognizing proper names and well-defined phrase recognition
seems to be a good method. Looking for instances in a document
set is also good for less well-known proper names. Natural
language parser and finding phrase instances in documents are
good for recognizing SNP and CNP. Our document retrieval
experiments also show that recognizing and utilizing phrases in

Table 11. MAP and GMAP scores of IR experiments using different phrase recognition algorithms

TREC 6 TREC 7 TREC 8 TREC12 TREC13 TREC14
Phrase MAP GMAP MAP GMAP MAP GMAP MAP GMAP MAP GMAP MAP GMAP

1 No phrase 0.1950 0.1069 0.2246 0.1262 0.2388 0.1577 0.3269 0.2248 0.3341 0.2188 0.2451 0.1712
2 Single-tool 0.3003 0.1564 0.2998 0.1962 0.3180 0.2281 0.4148 0.3401 0.3912 0.2529 0.3286 0.2609

Increase 2 over 1 54% 46.30% 33.48% 55.47% 33.17% 44.64% 26.90% 51.29% 17.09% 15.58% 34.07% 52.39%

3 Our algorithm 0.3293 0.1981 0.3112 0.2160 0.3231 0.2334 0.4291 0.3538 0.4279 0.3036 0.3508 0.2931
Increase 3 over 2 9.66% 26.67% 3.80% 10.09% 1.60% 2.32% 3.45% 4.03% 9.38% 20.05% 6.76% 12.34%

719

the queries can substantially improve retrieval effectiveness;
furthermore, the quality of the phrases has a positive impact on
retrieval effectiveness.

7. ACKNOWLEDGMENTS
The authors thank the reviewers for their helpful comments. This
work is supported in part by NSF grants IIS-0738727 and IIS-
0738652, and by an AOL research grant. The views of this paper
are those of the authors, and do not represent those of NSF or
AOL.

8. REFERENCES
[1] A Arampatzis, T Tsoris, C Koster, and T van der Weide.

Phrase-based Information Retrieval. Information Processing
& Management, 34(6):693-707. 1998.

[2] D Bikel, S Miller, R Schwartz and R Weischedel. Nymble: a
High-Performance Learning Name-finder. In proc. of the
Conf. on Applied NLP. 1997.

[3] Eric Brill. Transformation-Based Error-Driven Learning and
Natural Language Processing: A Case Study in Part of
Speech Tagging. Computational Linguistics. 1995

[4] Bruce Croft, H Turtle, and D Lewis. The use of phrases and
structured queries in information retrieval. In Proc. of SIGIR.
1991.

[5] J Callan and T Mitamura. Knowledge-based extraction of
named entities. In Proc. of CIKM. 2002.

[6] Guihong Cao, Jian-Yun Nie, Jing Bai. Integrating Word
Relationships into Language Models. In Proc. of SIGIR.
2005.

[7] Nancy Chinchor. Overview of MUC-7. In Proc. of MUC.
1998.

[8] Ken Chow, Robert Luk, Kam-Fai Wong and Kui-Lam.
Kwok: Hybrid Term Indexing for Weighted Boolean and
Vector Space Models. Int. J. Comput. Proc. Oriental Lang.
14(2): 133-151, 2001.

[9] M. Collins, Head-driven statistical models for natural
language parsing. PhD thesis, U. of Pennsylvania, 1999.

[10] David Evans and Chengxiang Zhai. Noun-Phrase Analysis in
Unrestricted Text for Information Retrieval. In Proc. of ACL.
1996

[11] Glossary of linguistic terms, by E Loos, S Anderson, D Day,
P Jordan, and D Wingate (editors). SIL International. 2003

[12] C. Fellbaum. WordNet, An electronic Lexical Database. The
MIT Press, 1998.

[13] Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
Zhang. Named Entity Recognition through Classifier
Combination. In Proc. of CoNLL. 2003.

[14] Google: http://www.Google.com/apis/

[15] David Grossman and Ophir Frieder. Ad Hoc Information
Retrieval: Algorithms and Heuristics. Kluwer. 1998.

[16] S Jones and M Staveley. Phrasier: A System for Interactive
Document Retrieval Using Keyphrases. In Proc. of SIGIR.
1999.

[17] E Lima and J Pedersen. Phrase Recognition and Expansion
for Short, Precision-biased Queries based on a Query log. In
Proc. of 22nd ACM SIGIR. 1999

[18] D Lin. PRINCIPAR - An Efficient, broad-coverage,
principle-based parser. In Proc. of COLING. 1994.

[19] D Lin. Using collocation statistics in information extraction.
In Proc. of Message Understanding Conference. 1998.

[20] S Liu, F Liu, C Yu and W Meng. An effective approach to
document retrieval via utilizing Wordnet and recognizing
phrases. In Proc. of SIGIR. 2004.

[21] I Mani and R MacMillan. Identifying Unknown Proper
Names in Newswire Text, In Corpus Processing for Lexical
Acquisition, MIT Press. 1995.

[22] Christopher Manning and Hinrich Schütze, Foundations of
statistical natural language processing, MIT Press. 1999

[23] M Marcus, G Kim, M Marcinkiewicz, R MacIntyre, A Bies,
M Ferguson, K Katz and B Schasberger. The Penn Treebank:
Annotating Predicate Argument Structure. In Proc. of the
Human Language Technology Workshop. 1994.

[24] R Mihalcea and D Moldovan. An Automatic Method for
Generating Sense Tagged Corpora. In Proc. of AAAI. 1999.

[25] G Miller. WordNet: An On-line Lexical Database, Special
Issue, International Journal of Lexicography. 1990.

[26] S Robertson and S Walker. Okapi/Keenbow at TREC-8. In
Proc. of TREC. 1999.

[27] Egidio Terra and Charles Clarke. Frequency Estimates for
Statistical Word Similarity Measures. HLT/NAACL. 2003.

[28] University of Glasgow, LILT project,
www.arts.gla.ac.uk/SESLL/EngLang/LILT/frameset.htm

[29] C. van Rijsbergen. Information Retrieval. Butterworth, 1979.
[30] E Voorhees. Overview of the TREC 2004 Robust Retrieval

Track. In Proc. of the 13th TREC. 2004.
[31] E Voorhees. Overview of the TREC 2005 Robust Retrieval

Track. In Proc. of the 14th TREC. 2005.
[32] Wikipedia: http://en.wikipedia.org
[33] Wei Zhou, Clement Yu, Neil Smalheiser, Vetle Torvik and

Hong Jie. Knowledge-intensive Conceptual Retrieval and
Passage Extraction of Biomedical Literature. In Proc. of 30th
SIGIR. 2007.

720

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /EngraversMT-Bold
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EurostileBold
 /EurostileRegular
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-DemiBold
 /MaiandraGD-Italic
 /MaiandraGD-Regular
 /Mangal-Regular
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

