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ABSTRACT

Completing software maintenance and evolution tasks for
today’s large, complex software systems can be difficult, of-
ten requiring considerable time to understand the system
well enough to make correct changes. Despite evidence that
successful programmers use program structure as well as
identifier names to explore software, most existing program
exploration techniques use either structural or lexical iden-
tifier information. By using only one type of information,
automated tools ignore valuable clues about a developer’s
intentions—clues critical to the human program compre-
hension process. In this paper, we present and evaluate a
technique that exploits both program structure and lexical
information to help programmers more effectively explore
programs. Our approach uses structural information to fo-
cus automated program exploration and lexical information
to prune irrelevant structure edges from consideration. For
the important program exploration step of expanding from
a seed, our experimental results demonstrate that an inte-
grated lexical- and structural-based approach is significantly
more effective than a state-of-the-art structural program ex-
ploration technique.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging—debugging aids; D.2.7
[Software Engineering]: Distribution, Maintenance, and En-
hancement—reverse engineering

General Terms: Human Factors, Reliability

Keywords: Natural language program analysis, program
exploration, software maintenance, software tools

1. INTRODUCTION

Completing a software maintenance or evolution task first
requires understanding the existing software, followed by
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performing the actual modification and then revalidating the
subsequent software version [6]. For maintenance tasks such
as debugging, the first step of finding and understanding
the code relevant to a bug fix tends to take more time than
actually fixing the bug [20, 21]. With as much as 60-90%
of software life cycle resources spent on program mainte-
nance [6, 13], there is a critical need for automated tools
to help explore and understand today’s large and complex
software.

Automated tools can draw from the variety of information
developers use to explore programs, such as expert knowl-
edge, external documentation, or dynamic information. Re-
gardless of additional available information, the developer
will always be interested in the source code itself. Thus, in
this paper we focus on static information available from the
source code, in the form of programmer-defined structure
and lexical identifier names. Most automatic exploration
techniques that leverage this structural and lexical informa-
tion focus on either search or navigation.

When searching code, maintainers typically use lezical in-
formation found in the program’s comments and identifiers.
Identifier names often communicate a programmer’s intent
in writing pieces of code [8, 22], and therefore provide valu-
able information to the developer. To explore a program
by searching, the developer enters a query related to the
maintenance task and the search tool retrieves potentially
relevant program elements. Thus, searches find disparate
program elements relevant to a query, but ignore structural
information that may help eliminate irrelevant results.

When navigating code, maintainers often explore based
on the program structure by following method call chains or
control flow, as well as dependence, variable def-use, or type
hierarchy relationships. In contrast to lexical searches, nav-
igation suggestions utilize program structure information to
automatically recommend relevant sections of code [32, 39].
Unfortunately, a single program element may be structurally
connected to tens or hundreds of other elements, when only
a handful are relevant to the maintenance task.

Thus, most existing program exploration techniques use
either lexical or structural information, despite evidence
that successful programmers use lexical as well as struc-
tural information to explore programs [33]. By using only
one kind of information, automated tools ignore valuable
clues about a developer’s intentions [5]—clues critical to the
human program comprehension process. By utilizing lexical
as well as structural program information, we can create au-
tomatic program exploration tools that mirror how humans
attempt to understand code.



In this paper, we present and evaluate an automated ap-
proach for focusing program exploration that exploits both
structural and lexical information. We have implemented
our technique as an automated tool, Dora the Program
Explorer.! Dora takes as input a natural language query
related to the maintenance task and a program structure
representation to be explored. Dora then outputs a sub-
set of the program structure relevant to the query, called
a relevant neighborhood. In this paper, we assume a start-
ing point, or seed, in the program structure representation
and we focus on finding the relevant neighborhood for this
seed. The current implementation of Dora uses the program
call graph [14] as the program structure representation to
be explored, and methods as the seed elements.

This paper makes the following contributions:

e A technique to automatically identify the relevant neigh-
borhood of a call graph using lexical information, in-
cluding a technique to score method relevance with
respect to a natural language query

e An Eclipse plug-in, Dora, that implements our tech-
nique and enables programmers to visualize a relevant
neighborhood for software maintenance tasks

e Quantitative evaluation against an existing structural-
based technique and two naive lexical- and structural-
based techniques for a baseline comparison

Our experimental results demonstrate that an integrated
lexical- and structural-based approach is significantly more
effective than a state-of-the-art structural program explo-
ration technique.

2. IMPROVING THE STATE-OF-THE-ART

Developers use a variety of approaches to explore pro-
grams and find code relevant to maintenance tasks. In this
section, we outline the most relevant approaches.

Navigation-based Exploration Approaches

Navigation-based program exploration techniques help de-
velopers navigate structural dependencies. Unfortunately,
most existing tools require the developer to initiate every
exploration step and manually select every structure edge
to be expanded [9, 34, 38]. In contrast, Dora automatically
explores highly relevant structure edges to save the devel-
oper time and effort by producing a relevant neighborhood.

The most closely related exploration technique is Robil-
lard’s structural topology approach, Suade [32, 43], which
automatically generates suggestions for program investiga-
tion based on a seed method set, or concern. The Suade ap-
proach uses structural relations between program elements
(calling a method, being called by a method, accessing a
field, and being accessed by a method) to evaluate the speci-
ficity and reinforcement that a given element has upon an-
other. Elements that have fewer structural relationships are
considered more specific, and are therefore given a higher
relevance score. Reinforcement increases the score of ele-
ments that have more structural connections to elements
already in the concern. Our approach differs from Suade
in that we use lexical and structural information to explore

'Dora comes from exzploradora, the Spanish word for a fe-
male explorer.

a program, rather than just structure. Because both tech-
niques use different information to score relevant program
elements, it may be possible to create a hybrid approach
that combines both techniques.

Another technique that automatically includes relevant
structural edges is program slicing. Slicing techniques use
program dependence relationships such as control and data
dependence to extract the parts of a program that may affect
a point of interest [39, 41, 44]. The slices of the program can
be used to aid program comprehension. Unfortunately, slices
tend to be large and can be expensive to calculate. Reducing
expense has the trade-off of making slices more conservative
and therefore containing even more irrelevant information.
To potentially reduce cost and improve relevance, our lexical
scoring mechanism could be applied to slicing techniques as
an additional stopping criteria.

Search-based Exploration Approaches

Most search-based approaches to program exploration use
the lexical information in comments and identifiers to locate
methods relevant to a maintenance task. There are regular
expression-based searching techniques such as UNIX grep,
however, most current research focuses on modern informa-
tion retrieval (IR) [24, 31] and natural language [37] search-
ing techniques. To make queries more effective at locating
relevant code, approaches have been suggested to help find
the concept words in software [27, 37]. These approaches are
complementary to our work to potentially discover a seed
method set, which is used as input to our current approach.

Other search-based approaches automatically link docu-
mentation to source code by using lexical information [2, 23]
or a combination of lexical and structural information [45].
Although these approaches are fully automatic, they require
accurate documentation in addition to meaningful identifier
names, whereas our approach needs only meaningful iden-
tifier names. However, incomplete, nonexistent, or inaccu-
rate documentation could hinder the searching effectiveness
of these approaches. In addition, the documentation may
be written at a coarser granularity than the maintenance
task being completed. With no mechanism to retrieve finer
granularity matches, the developer is forced to search for
only those features that are at the documentation granular-
ity. By leveraging the identifiers of a program and allowing
user-specified queries, Dora is capable of searching at mul-
tiple levels of granularity.

Some search-based techniques utilize structure informa-
tion, rather than lexical information. JQuery [19] com-
bines structural queries with navigation and integrates mul-
tiple kinds of program structure relationships in a contextual
view. Strathcona [15] uses the structure of the code that a
developer is working on to automatically recommend rele-
vant example code from a repository. These approaches are
complementary to our work to potentially discover a seed
method set.

We are aware of one other search technique that combines
lexical as well as structural information. Sourcerer [3] uses
keyword queries in addition to program structure to find
relevant examples from a large repository of open source
projects. Although the work focuses on a different problem,
the approach appears very related. Unfortunately, there are
not enough details in the limited initial publication to fully
compare the approach to Dora.



Software Architecture Recovery

Developers also can use architecture recovery techniques to
understand a system [5, 26, 28]. During architecture re-
covery, developers use lexical patterns in conjunction with
source structure models to locate high-level concepts in code.
The developer is responsible for articulating the key concepts
of the maintenance task in a regular expression query that
may also require specifications as to which code structures
should be searched [26, 28]. In contrast, Dora takes as input
a simple natural-language-based query. By using natural
language query terms rather than regular expressions, Dora
can utilize more advanced information retrieval techniques
such as stemming [29] and tf-idf [42].

Program Structure Visualization

A number of approaches have been suggested for whole-
program visualization and navigation [4, 7, 12, 18, 40]. Some
approaches have made efforts to restrict the information pre-
sented so as not to overwhelm the developer by adding zoom-
ing or fisheye viewing capabilities [7, 18, 40] or aggregating
dependencies to a higher level [4]. By using Dora, we be-
lieve that these tools can be further improved by focusing
the developer’s attention on information that is likely to be
relevant to a maintenance task.

Program Structure Representations

A variety of structural program models have been proposed
to enhance program comprehension and facilitate mainte-
nance tasks, such as system dependence graphs [16], pro-
gram slices [41, 44], type hierarchies [11] and call graphs [14].
Although our general strategy can be applied to any type of
structural program model, we focus this paper on call graphs
as an intuitive model that allows developers to quickly com-
prehend interactions between large sections of code. Call
graphs are relatively inexpensive to calculate, and have the
advantage of representing even scattered code well because
call graphs are indifferent to class decompositions.

3. COMBININGLEXICAL & STRUCTURAL

INFORMATION: AN EXAMPLE

In this section, we present an example motivating why
utilizing both lexical and structural information is impor-
tant for automated program exploration tools. Consider the
‘add auction’ concern? in the open source auction sniping
program, jBidWatcher.®> Figure 1 is the subgraph of the
jBidWatcher call graph relevant to the concern. The shaded
methods are those missed by a simple lexical search on the
query ‘add*auction.’

The concern consists of two connected components: the
trigger, shown in Figure 1(a), and the handler, shown in Fig-
ure 1(b). The trigger code handles the user-initiated GUI
event, which adds the ‘add auction’ event request to the pro-
gram’s application event queue. The handler code processes
the ‘add auction’ event, removing it from the event queue
and adding the auction to the program’s internal data struc-
tures. Within each component, the methods are statically
connected by calling relationships. The two components are
linked by a data dependence on the event queue.

2A concern is a high-level idea, or feature, implemented in
code.

3sourceforge.net/projects/jbidwatcher version 1.0pre6
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Figure 1: ‘Add Auction’ concern.
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private void DoAdd(Component src) {
String endResult;
String prompt =
”"Enter_the_auction_number_to_add”;
endResult = promptString(src, prompt, ”Adding”);

// They closed the window or cancelled.
if (endResult == null) return;
MQFactory. getConcrete(” user”)

.enqueue (ADD_AUCTION + endResult);

}

private void DoPasteFromClipboard () {
String auctionld = getClipboardString();

72N

if (auctionId != null) {
MQFactory.getConcrete(” user”)
.enqueue (ADD_AUCTION + auctionId);

Figure 2: Triggering an ‘add auction’ event. It is not
obvious from the method name that doPasteFromClipboard
is relevant to adding an auction.

Combining lexical and structural information for auto-
mated exploration tools is helpful for a number of reasons.
Through this example, we highlight the main reasons:

Automatically eliminate breadth choices. Finding the
methods that handle the ‘add auction’ event by looking at
the callees of DoAction is no trivial task. DoAction calls
38 methods within the same class that handle various user
actions such as bidding, searching, or adding an auction.
For the ‘add auction’ task, only two of the 38 methods are
relevant: doAdd and doPasteFromClipboard, shown in Fig-
ure 2. Although method signatures are usually a good indi-
cation of relevance, in this example, a developer skimming
the callees might miss the relevant method doPasteFromClip-
board. Thus it is important for lexical techniques to analyze
the signature as well as the source code of each method to
include non-obvious relevant methods while still eliminating
irrelevant call edges.

Automatically expand deep call chains. Looking at
the handler component in Figure 1(b), there are 12 relevant
methods and two call chains that are 7 methods deep. The
few unrelated callers into the call chain are easy to eliminate
using lexical name information.

Find relevant elements missed by lexical searches.
The most effective simple search for this concern is the regu-
lar expression ‘add*auction’. Using Eclipse’s [17] simple lex-
ical search on methods rather than files, the query matches
50 methods, 11 of which are relevant. The 3 methods in the
top ten results (ranked by number of matches) have dashed
lines in Figure 1. The lexical search misses 4 relevant meth-
ods that are easily found using structural call edges.

Recursive exploration. Lastly, the jBidWatcher example
in Figure 1 illustrates how using lexical information to prune
irrelevant call edges enables recursive exploration. Most ex-
isting techniques for call graph navigation either display the
entire call graph [7, 12] or explore a single edge at a time [38].
Another navigation technique is Eclipse’s frequently-used
call hierarchy feature [17], which allows developers to re-
cursively view either all descendants or all ancestors of a
method. These approaches lack the ability to recursively rec-

ommend relevant callers and callees. This capability would
allow developers to view sibling calling relationships in ad-
dition to ancestor and descendant relationships.

For example, starting from the Auctions.addEntry method,
it is impossible to realize that Auctions.addEntry and Auction-
Entry.AuctionEntry share the caller JBidMouse.addAuction in
Eclipse’s call hierarchy without changing to a different start-
ing point. However, by using lexical information to prune ir-
relevant edges, exploration tools can automatically discover
relationships such as shared callers with no additional user
intervention.

In summary, combining both lexical and structural infor-
mation enables exploration tools to automatically prune ir-
relevant structural edges. By eliminating irrelevant edges,
exploration tools can recursively search a structural pro-
gram representation to provide the maintainer with a broad,
high level view of the code relevant to a maintenance task—
without including the entire program.

4. PROGRAM EXPLORATIONWITH DORA

Before detailing how Dora combines lexical and structural
information to explore programs, we illustrate how develop-
ers can use Dora during maintenance. There are a number
of maintenance situations where exploring with Dora is use-
ful, such as: finding all the dependencies for a reusable code
component, finding existing relationships to add a feature,
analyzing dependencies to judge change effect propagation,
or to better understand the flow of a concern. The follow-
ing steps illustrate how developers can use Dora to find the
relevant neighborhood of a maintenance task.

Step 1. Determine the query. The user should formu-
late a query related to the maintenance task. The query
terms can come from simple lexical searches, expert recom-
mendations, interactive query expansion [30, 37], or be de-
rived directly from a maintenance request. If multiple terms
are used in the program to refer to the same concept, all
these terms should be included in the query. Since Dora is
most effective when the query terms match the actual terms
used in the code, users unfamiliar with the code or unsure
of the program terms used to refer to a particular concept in
the code should plan to augment their query term selection.

Step 2. Identify the seed method set. There are a num-
ber of ways a maintainer can quickly locate a seed set. The
seed set could come from expert recommendations, the de-
veloper’s own prior knowledge, or by using search tools such
as Eclipse’s lexical search [17], Google Eclipse Search [31],
or FindConcept [37].

Our exploration heuristic is designed to operate on static
program models, which may be inadequate to represent all
the dynamic relationships found in code. Therefore, for our
approach to fully explore the code relevant to a maintenance
task, the user must add seed methods that are not connected
by statically available edges. It should be noted that only
one method need be selected from each relevant connected
component—our heuristic is designed to find the rest.

Step 3. Identify the relevant neighborhood. Our cur-
rent Dora strategy follows call graph edges from the seed set,
scoring each method’s relevance to the query. The details of
our relevance score are described in Section 5.

Step 4. Output the relevant neighborhood. Dora

automatically displays the relevant call graph neighborhood
to the user. In addition, the relevant methods are output to



a concern representation [36] for further investigation and
future viewing. In reaction to the output, the maintainer
can inspect an overall view of the relevant code and delve
into the details of the most promising methods. If the user
believes the results to be incomplete, the user can optionally
add additional query terms or seed methods and rerun Dora.

5. AUTOMATICALLY IDENTIFYING THE
RELEVANT NEIGHBORHOOD

The main contribution of Dora is the automatic identifica-
tion of the relevant neighborhood by combining lexical and
structural information. Starting from a seed method m in
the seed set, Dora uses structural information by traversing
structural call edges to find the set of callers and callees for
m. The set of callers and callees become candidates for the
relevant neighborhood. Next, Dora uses lexical information
by scoring each candidates’ relevance to the query, which
we call the method relevance score. Candidates scored
higher than a given threshold, ¢, are added to the relevant
neighborhood. Candidates scored less than ¢; but more than
a threshold t2 are further explored to ensure they are not
connected to more relevant methods. This use of two thresh-
olds guards against missing very relevant methods that are
connected by a borderline relevant method. Both thresholds
are given a default value of ¢t; = 0.5 and t2 = 0.3, but are
user specifiable. Finally, this exploration process is recur-
sively repeated for each starting seed method and for each
method added to the relevant neighborhood. In the remain-
der of this section we describe in detail how Dora uses lexical
information to calculate the method relevance score.

5.1 Componentsof the Method Relevance Score

5.1.1 TermFrequency

The principal component of our method relevance score
is how frequently query terms appear in a method, also
known as term frequency. Term frequency (tf) is often used
to determine document relevance in information retrieval
(IR) [42]. The intuition is that the more frequently a word
occurs, the more relevant the document, or method, is to
the query. For example, in an addAuction method, the word
‘auction’ appears 25 times. In contrast, the word ‘sort’, a
term irrelevant to adding an auction, appears only once.

The drawback of term frequency is that uninformative
terms appearing throughout the program can distract from
less frequent, but relevant, terms. Intuitively, the more
methods that include a term, the less a term discriminates
between methods. To address this issue, the IR community
commonly multiplies a term frequency by its inverse docu-
ment frequency (idf), called a tf-idf score [42]. The idf for a
term ¢ is calculated by dividing the total number of methods
in a program by the number of methods that contain ¢, and
taking the resulting number’s natural log.

For example, consider the query ‘add auction’ from the
auction sniping program jBidWatcher. Because the domain
of jBidWatcher involves online auctions, the term ‘auction’
appears in 470 of the 1,812 methods in the program. In con-
trast, the word ‘add’ appears in only 261 methods. There-
fore, occurrences of the term ‘add’ are given a higher tf-idf
score than occurrences of ‘auction’. Thus, more occurrences
of the word ‘auction’ are required to get a tf-idf score as
high as the less-used term ‘add’.

Before counting the frequency of terms, we apply a sim-
ple preprocessing step to the query and methods. First, all
the identifiers are split into terms based on non-alphabetic
characters and camel case, similar to previous textual source
analysis approaches [2, 23]. For example, addAuction and
add_auction both become the terms ‘add’ and ‘auction’. Next,
the terms are converted into lower case and stemmed using
Porter’s stemming algorithm [29]. Stemming ensures that
similar terms like ‘auction’ and ‘auctioned’ map to the same
conceptual term of ‘auction.” To count how frequently query
terms appear in a method, we use a sum of the tf-idf scores
for each query term appearing in the method.*

5.1.2 Method Features

In addition to how frequently a term occurs, our score
takes into account where the query terms appear in the
method. We consider the method name to be the most
important indicator of relevance. Because method names
have higher visibility in a program than, say, local vari-
ables, programmers typically select very descriptive method
names [22]. We chose not to include other method signature
information, such as the declaring class or package name, for
the same reason that we use idf: classes and package names
are shared by many system components and therefore are
less able to differentiate between program elements.

As demonstrated by our example in Section 3, occasion-
ally a method name alone does not indicate relevance to a
maintenance task. Thus, we count the number of method
statements containing a query term, multiplied by the term’s
idf. These tf-idf scores are summed and then normalized by
the method length. Because longer methods are more likely
to contain more query term occurrences, dividing by the
method length ensures our scores are not biased to longer
methods.

In addition to where terms are located, we also take into
consideration whether a method is binary, i.e., whether it
is a library method with no source code present. Although
library methods are rarely explored by developers, highly
relevant library method calls can provide additional infor-
mation to relevant non-library methods. Therefore, we in-
clude highly relevant calls to library methods in the relevant
neighborhood for context purposes. Thus, the method fea-
tures that we consider for our scoring technique are name,
statement, and binary.

5.2 Calculating the Method Relevance Score

Although we had some intuition into the features of a
method that would be useful in determining relevance to
the query, we were unsure how to weight them for the rel-
evance score. To determine our weights, we applied logistic
regression on a training set of methods. Logistic regression
is a statistical technique to find the best fitting model for
a binary dependent variable [1]. Given a set of features, or
independent variables, logistic regression outputs a set of
feature weights 3 and an intercept value a that best predict
the training data. Unlike linear regression methods, which
output a linear model, logistic regression outputs an expo-
nential model. Therefore, given a feature vector x of size k,
weights (3, and intercept «, we apply the following equation

4In IR, cosine similarity is commonly used to determine the
similarity score between a query and a document. However,
in our experience we have found that cosine similarity scores
do not translate well for programs, and thus use only tf-idf.



to calculate the probability p that a method is relevant to
the query:
ea+ﬁlzl+m+ﬁk1k

p= 1 + eatbrzat . +Brzy

This equation will always give a value between 0 and 1,
making it ideal for calculating probabilities.

For our training set, we used methods from nine concerns
used in a previous concern location tool evaluation [37]. We
included the methods in the concerns plus all methods one
call edge away from any method in a concern. We manu-
ally inspected each method and annotated them as either
relevant or irrelevant. Although the manual annotations are
necessarily subjective, we have tried to limit bias by com-
bining the input of three Java programmers.

After training the model, we define our method score (p):

670.5+72.5*bin+name+045*statement

p= 1 + 670A5+72A5*binJrnameJrO.5*statement

In training our model, we considered other possible method
features such as comments. However, none of the other
features we tried with the model added to its predictive
power. We would have liked to consider other types of
methods in addition to binary, such as public, private, ab-
stract, etc., but had insufficient training data for these cat-
egories. Therefore, we focused the model on the simplest
variables that best predicted relevance: binary, name, and
statement.

One might be tempted to blindly apply the scoring mecha-
nism presented to search the whole program for relevant sec-
tions of code. However, our additional requirement that all
elements included in the neighborhood be structurally con-
nected to a seed method significantly restricts our search of
the program to very relevant code. A whole-program scoring
technique would need to be more sophisticated to filter out
spurious occurrences of related words in contexts unrelated
to the query.

6. EXPERIMENTAL EVALUATION

The purpose of our evaluation is two-fold:

1. To compare our integrated lexical- and structural-based
approach against a state-of-the-art structural-based ap-
proach

2. To demonstrate that our sophisticated lexical scoring
technique is an improvement over naive lexical scoring
techniques in identifying the relevant neighborhood

6.1 Experiment Design
6.1.1 Variablesand Measures

The independent variable in our study is the method scor-
ing technique. The structural-based approach we compare

against is Robillard’s structural topology approach, Suade [32,

43]. Suade uses the specificity and reinforcement that a
given method has upon another to recommend structurally
relevant methods. Because we are evaluating the technique
on singleton method sets, only the specificity of a program
element is taken into account.

We include two additional lexical- and structural-based
techniques in our study: boolean-AND (AN D) and boolean-
OR (OR). These techniques are baselines used to evaluate
Dora’s more sophisticated relevance score. These techniques
output either 0 or 1: AND outputs 1 if all query terms

Crn. Query Prog. ] N3 N2 %
C3 Task progress complete Gantt 32 2 12 38%
C9 Update auction JBid. 22 3 11 50%
C10 Download thumbnail image JBid. 19 6 11 58%
C11 Execute auction bid JBid. 13 2 7 54%
C12 Delete auction JBid. 24 6 11 46%
C13 Toggle fold node Free. 21 6 14 67%
C14 Zoom in out Free. 25 2 14 56%
C16  Auto save file Free. 6 2 5 83%

Table 1: Concerns and queries used in evaluation,
in terms of number of methods.

Program Version NCLOC # Classes # Methods
Gantt 2.0.2 43,246 555 3,991
JBidWatcher 1.0pre6 22,997 183 1,812
Freemind 0.8.0 70,341 617 5,388

Table 2: Program Characteristics for concerns used
in the evaluation.

appear in the method; OR outputs 1 if any query term
appears in the method.

The dependent variable in our study is the effectiveness of
each technique, measured in terms of the commonly used IR
measures, precision and recall. Precision is the fraction of
methods reported by the technique that are relevant, calcu-
lated by dividing the number of relevant methods reported
by the total number of methods reported. Recall is the frac-
tion of relevant methods reported, calculated by dividing
the number of relevant methods reported by the total num-
ber of actual relevant methods. High precision implies a
scoring technique returns few irrelevant methods, whereas
high recall implies the scoring technique misses few relevant
methods. Since ideal techniques have both high recall and
high precision, the F' measure is commonly used to combine
both precision and recall into a single measure. The F' mea-
sure is defined as the harmonic mean of precision and recall,
and is high only when both precision and recall are high.
Thus, a high F' value can be interpreted as the best possible
combination of precision and recall. We use the F' measure
to evaluate the performance of each scoring technique.

6.1.2 Subjects

To evaluate each technique, we use sets of methods from
concerns as seeds. Thus, each subject in our study is a
<concern, query> pair. To avoid investigator bias in deter-
mining our own concerns for evaluation, we selected 8 con-
cerns from a recent study of the concept assignment problem
on 4 open source Java programs [35]. Methods were selected
for each concern by 3 independent developers, with varying
levels of agreement (overlap in methods selected). Details of
the concerns are shown in Table 1. The column labeled U is
the union of methods selected by all three developers in the
study, N3 is the number agreed upon by all three develop-
ers, N2 is the number at least two agreed upon, and the last
column shows the percent developer agreement.

Because conflicts of agreement could indicate poor qual-
ity method sets for a concern, we used only those concerns
where at least two developers agreed on 35% or more of
the relevant methods (72 in Table 1). We considered any
method selected by at least two developers to be relevant to
a concern. To put the concerns into context, the program
characteristics for the concerns are presented in Table 2.

5Calculated using the Eclipse Metrics Plug-in, metrics.
sourceforge.net.
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Figure 3: Precision-Recall Graph. Suade and Dora
were evaluated at various thresholds ranging from 0 to 1
(AN D and OR require no threshold). Each point represents
precision and recall averaged over a given threshold, with
decreasing threshold values from left to right.

The one component of our subject <concern, query> in-
put missing from these concerns is the query. To avoid in-
vestigator bias, the queries were chosen by an independent
researcher involved in the concept assignment study who
had no knowledge of our scoring technique. The queries
were selected by looking at the concern descriptions, lexical
searches, and a query expansion mechanism [37].

Thus, we evaluated each scoring technique on 8 <concern,
query> pairs, containing a total of 160 seed methods. The
median number of caller and callee edges per seed is 7, with a
minimum of one edge and a maximum of 62. A total of 1885
call edges were evaluated by each technique, with overlap.

6.1.3 Methodology

Although the ideal evaluation would recursively explore
from each seed method, incorrect identifications would prop-
agate and unfairly skew the results. Therefore, our evalu-
ation compares the effectiveness of each technique applied
one edge away from a single seed method. For each method
m in the set of evaluation concerns, we applied each scoring
technique to all the callers and callees of m, and calculated
the precision and recall for m. We used Eclipse [17] to gen-
erate the structural information used by the techniques.

Both Suade and Dora output relevance scores ranging
from 0 to 1. However, to evaluate the techniques in terms of
precision and recall requires a threshold to map these scores
to 0 or 1. Because this threshold selection is a potential
threat to validity, we evaluated the threshold performance
on the training data set used for Dora. We evaluated the
precision and recall at threshold levels varying from 0 to 1 at
0.005 intervals, and selected the threshold for each technique
that maximized the mean F' measure. We found that Suade
performed best at a 0.3 threshold, and Dora at a thresh-
old of t1 = 0.5. Based on these thresholds, the results
for Dora and Suade were partitioned into relevant (1) and
irrelevant (0) scores before calculating precision and recall.

5Because we are only scoring methods one edge from a seed,
Dora’s threshold t2 is unnecessary.
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Figure 4: F Measure across techniques. The shaded
box represents 50% of the data, from the 25th to 75th per-
centiles, the horizontal bar represents the median, and the
plus represents the mean. Dora performs significantly bet-
ter than Suade (o = 0.05).

6.2 Results

Overall, we found Dora to be the most successful tech-
nique, and structural-based Suade to be competitive with
the naive lexical- and structural-based OR. Of all the tech-
niques, naive AND had the worst performance.

6.2.1 Precision, Recall, and Threshold Variation

Figure 3 shows a Precision-Recall graph for all four tech-
niques. Suade and Dora were evaluated at thresholds rang-
ing from 0 to 1 at 0.005 intervals (AND and OR require
no threshold). Each point represents precision and recall
averaged over a given threshold, with decreasing threshold
values from left to right. (A high threshold means fewer
methods are scored as relevant, and therefore recall is low.)

For both Dora and Suade, the recall progressively in-
creases as the threshold decreases, whereas the precision in-
creases with the threshold and drops off again when the
threshold gets too high. The peak in Dora’s F' measure
performance at (R = 59, P = 43) occurs at the 0.5 thresh-
old. The peak in Suade’s performance at (48,33) occurs
at the 0.41 threshold. At (23,23), AND performs simi-
larly to Dora and Suade at higher than optimal thresholds,
0.99 and 0.64, respectively. At (60,32), OR performs simi-
larly to Dora and Suade, with less than peak precision for
Dora, and slightly better than peak recall for Suade. Fig-
ure 3 demonstrates how Dora outperforms Suade in terms
of precision over many thresholds, and performs equivalently
in terms of recall. Specifically, Dora outperforms Suade
in precision for thresholds 0.05-0.98 (Dora) and 0.0-0.59
(Suade). Suade and Dora perform equivalently on the
training set for all other thresholds.

6.2.2 Overall Performance

Figure 4 shows the overall performance of each technique.
Each bar shows the distribution of F' measures calculated
for each seed method across all the concerns. The shaded
box represents 50% of the data, from the 25th to 75th per-
centiles. The horizontal bar represents the median, and the
plus represents the mean.
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Figure 5: F Measure for each concern by technique. The trends illustrated in Figure 4 are also seen for most of the

<concern, query> pairs.

Since each shaded box extends from 0, at least 25% of the
160 methods considered by each technique have 0% recall
and precision. However, Dora achieves 100% precision and
recall for 25% of the data—more than any other technique.
Suade and OR appear to perform similar to one another,
although OR has a slightly higher mean F' measure.

To confirm these observations, we performed a Bonferroni
mean separation test” at a = 0.05. Dora performs sig-
nificantly better than structural-based Suade, with a mean
difference of 12.9, although neither Dora nor Suade are sig-
nificantly different from OR (with mean differences of 9.6
and 3.3, respectively). All the approaches outperform AN D
with statistical significance.

6.2.3 Performance by Concern

Figure 5 shows the performance for each technique, sep-
arately for each concern. Although each concern does not
contain sufficient data to judge significant differences, the
trends in Figure 5 follow the same pattern as the overall
performance results in Figure 4, with AND < Suade <
OR < Dora. Concerns 9 and 12 are an exception to the
general trend, with AN D outperforming most techniques.
For both of these concerns, AND had much higher preci-
sion than OR and Suade. This was due to the fact that
most of the relevant methods contained both query terms.
Because AN D performed so poorly for the remainder of the
concerns, AN D is clearly very sensitive to the query.

6.3 Threatsto Validity

Because the selection of methods relevant to a concern is
a necessarily subjective task, the correctness of the concerns
used in the evaluation could be a threat to validity. The
developers were unfamiliar with the programs and tasks as-
signed to them, and were advised to spend less than an
hour selecting program elements relevant to the concerns.
For this reason it is possible that the developers missed rel-

"Before performing the contrasts, we applied the ANOVA
F-Test to test that the means were significantly different
(p < 0.0001). Next, we performed the Bonferroni mean
separation test, which evaluates multiple mean comparisons
and controls the experimentwise error rate. The error rate
is controlled by adjusting the « for each pairwise compari-
son such that the experimentwise error rate of a = 0.05 is
preserved.

evant methods or even included irrelevant ones, which could
impact the precision and recall of the techniques evaluated
in the experiment. However, we do not believe that the de-
velopers consistently selected methods incorrectly, and we
tried to alleviate this threat by only using concerns with at
least 35% agreement. Since all the techniques are subject to
the same vulnerability, we do not feel this is a serious threat
to the validity of the study.

Four of the evaluation concerns were from a program that
was used during training, although with three different con-
cerns. This could affect our results by potentially giving
Dora an unfair advantage. However, a T-Test revealed that
for each technique, there was no significant difference® in
mean I measures between concerns from completely new
programs, and those concerns of a program used by three
out of nine training concerns.

We minimized threats to conclusion validity by carefully
selecting a threshold for Dora and Suade. We evaluated
precision and recall at various threshold levels on the same
training set, and selected the optimal threshold for each
technique to maximize the mean F' measure. In addition,
we have shown a precision-recall graph (Figure 3) that illus-
trates our conclusions independent of threshold selection.

A second threat to conclusion validity is the application of
Suade to singleton method sets, rather than partial concerns
with multiple methods. Restricting the input to singleton
method sets forces Suade to rely solely on its specificity
scoring component, and perhaps to perform suboptimally.
Because previous Suade evaluation [32] used such singleton
method sets, we do not feel this is a serious threat to the
conclusions of our study.

We minimized internal threats to validity by having each
scoring technique operate on the same structure data. We
minimized the potential for investigator bias by using con-
cerns and queries selected by software engineers outside the
investigators.

Because we evaluated the techniques on 8 concerns from
3 open source Java programs, the results of this study may
not generalize to all programs and <concern, query> com-
binations. In addition, any developer naming conventions
could have affected the lexical-based approaches.

8 At the 5% significance level: AND p = 0.14, OR p = 0.53,
Suade p = 0.77, Dora p = 0.39.



6.4 Discussion

In this study, we found that the integrated Dora approach
outperformed the purely structural Suade approach, moti-
vating further development of integrated structural and lex-
ical techniques.

In addition, we found that not all integrated approaches
outperformed a purely structural approach. For example,
the naive lexical scoring mechanism (OR) performed equiva-

lently to structural-based Suade, and AN D performed worse.

Because AN D requires all query terms to be present, it is
very sensitive to the selected query terms. Thus, the success
of a lexical- and structural-based technique is highly depen-
dent on the performance of the lexical scoring technique.

Of the three lexical scoring techniques, Dora outperformed
OR and AND. In Figure 4, Dora clearly outperforms OR
and AND, although not with statistical significance over
OR. However, Figure 5 shows that Dora performs as good
as or better than OR in every concern. Further, there are
additional lexical method features that could enhance Dora
in the future, which might offer significant improvements
over the naive OR technique.

In the future, our scoring technique could be integrated
into Eclipse’s call hierarchy or a whole-program call graph
visualization tool to highlight relevant suggestions. To over-
come limitations in static representations, Dora could allow
programmers to add conceptual edges [10] to the program
representation, or take advantage of common programming
frameworks to discern additional relationships [25].

7. CONCLUSIONS

Completing software maintenance and evolution tasks for
today’s large, complex software systems can be difficult, of-
ten requiring considerable time to understand the system
well enough to make correct changes. To help programmers
more effectively explore programs for software maintenance
tasks, we present a technique that exploits both program
structure and lexical information. The experimental re-
sults demonstrate that our integrated lexical- and structural-
based approach is significantly more effective than a state-of-
the-art structural program exploration technique, motivat-
ing further development of integrated structural and lexical
techniques.
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