
Copyright

by

Bassem H. Elkarablieh

2009

The Dissertation Committee for Bassem H. Elkarablieh
certifies that this is the approved version of the following dissertation:

Assertion-based Repair of Complex Data Structures

Committee:

Sarfraz Khurshid, Supervisor

Adnan Aziz

Dewayne Perry

Kathryn McKinley

Keshav Pingali

Assertion-based Repair of Complex Data Structures

by

Bassem H. Elkarablieh, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2009

Dedicated to my family and friends.

Acknowledgments

I am deeply indebted to many people for their guidance and support during

the three years I spent at the University of Texas at Austin.

I would first like to thank my advisor, Dr. Sarfraz Khurshid, for his continu-

ous support, spectacular training and everlasting professional and technical advice.

I will never forget him staying in office till 5 a.m. assisting me with writing my

first paper. I feel extremely lucky to have him as my advisor and I wish him all the

success in his life and career.

I am grateful to Dr. Kathryn McKinley. Kathryn was the instructor for

my first lecture class at UT. Kathryn unselfishly provided me her guidance and

assistance. Her comments and advice vastly improved the quality of my work.

I would like to thank the readers of my thesis. Dr. Adnan Aziz, Dr. Dwayne

Perry and Dr. Kishav Pengali for their helpful comments on my work.

Special acknowledgements go to the Electrical and Engineering department,

the Excellence in Distributed Global Environment center, and the National Science

Foundation for providing me with the financial assistance throughout my research

years at UT.

My heartfelt gratitude also goes to Dr. Adrian Nunez, my thesis advisor at

Syracuse University, who currently works at Intel. Adrian aggressively campaigned

v

for my fellowship at Syracuse University. Without his help and support I would not

have made it this far. All the best wishes for him and his family.

Throughout my academic career, I had three summer internships. Special

thanks to my mentors Laurant Chawaout at Intel, John Thomas at Google, and

Patrice Godefroid at Microsoft Research.

I am proud to be a member of the Software Verification Validation and Test-

ing group at UT. I was fortunate to work with very smart researchers including,

Engin Uzuncaova , Danhua Shao, Daryl Shannon, Alison Lee, Zubair Malik, Yehia

Zayour, and Shadi Abdul Khalek. Those guys provided the friendly environment

that I needed to complete my research.

I could not complete my Ph.D. without the support of my friends. I would

like to first thank my friends at UT, Shayak Banerjee, Veronica (Chen) Ding, Chih-

wen (Wendy) Kan, Shadi Abdul Khalik, Monica Coury, Michele Saad, Hala Nasser,

Marcel Nassar, Mohammed, Ali, Surayah, and Sarah Fakhreddine, Omar El Ayach,

and Salam Akoum. Special thanks to my friends in Syracuse University, Mario

Tayah, Nancy Khoury, Jean Hannoush, Tingwei (Benson) Chiang , WeiYu (Tren-

ton) Chen, Phoenix Huang, Chinyu Chin, Tsu Mei (Amy) Wie, WonKyung Park,

Gulru Ustundag for helping me survive my first two years of graduate school in

the freezing cold of the north. I would also like to thank my high school and col-

lege friends in Lebanon, Sami Azzam, Nicolas Tohme, Mazen Rashidi, Moham-

mad Sabbagh, Lara Semaan, Farah Eido, Zena Sheikh, Mohammad Mahjoub, Talal

Kurdi, Lama Wazzan, Rola Haidar, Dana Sleiman and Ali Jaber.

vi

A great owe of gratitude goes to Christine Kehyayan for being patient and

understanding all these year. While she never asked me or pushed me to finish, I

always felt the pressure to prosper and make her proud.

Finally, my deepest thanks go to my family, my mother Wafaa, my un-

cles Mowafak and Najib, and my brother Feras. They never doubted my abilities,

never asked me“when are you going to graduate?”, always trusted my decisions,

and prayed for my success and prosperity. From all my heart, Thank you!

vii

Assertion-based Repair of Complex Data Structures

Publication No.

Bassem H. Elkarablieh, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Sarfraz Khurshid

As software systems are growing in complexity and size, reliability becomes

a major concern. A large degree of industrial and academic efforts for increasing

software reliability are directed towards design, testing and validation—activities

performed before the software is deployed. While such activities are fundamen-

tal for achieving high levels of confidence in software systems, bugs still occur

after deployment resulting in costly software failures. This dissertation presents

assertion-based repair, a novel approach for error recovery from insidious bugs

that occur after the system is deployed. It describes the design and implementation

of a repair framework for Java programs and evaluates the efficiency and effective-

ness of the approach on repairing data structure errors in both software libraries and

open-source stand-alone applications.

Our approach introduces a new form of assertions, assertAndRepair, for

developers to use when checking the consistency of the data structures manipulated

by their programs with respect to a set of desired structural and data properties. The

viii

developer provides the properties in a Java boolean method, repOk, which returns a

truth value based on whether a given data structure satisfies these properties. Upon

an assertion violation due to a faulty structure, instead of terminating the execution,

the structure is repaired, i.e., its fields are mutated such that the resulting structure

satisfies the desired properties, and the program proceeds with its execution. To

aid developers in detecting the causes of the fault, repair-logs are generated which

provide useful information about the performed mutations.

The repair process is performed using a novel algorithm that uses a system-

atic search based on symbolic execution to determine valuations for the structures’

fields that result in a valid structure. Our experiments on repairing both library

data structures, as well as, stand-alone applications demonstrate the utility and ef-

ficiency of the approach in repairing large structures, enabling programs to recover

from crippling errors and proceed with their executions.

Assertion-based repair presents a novel post-deployment mechanism that

integrates with existing and newly developed software, providing them with the de-

fensive ability to recover from unexpected runtime errors. Programmers already

understand the advantages of using assertions and are comfortable with writing

them. Providing new analyses and powerful extensions for them presents an attrac-

tive direction towards building more reliable software.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xv

List of Figures xvi

Chapter 1. Introduction 1
1.1 An Increasing Demand for Reliability 1
1.2 Improving Reliability by Utilizing Assertions 2
1.3 Assertion-based Error Recovery . 3

1.3.1 Illustrative Example . 5
1.3.2 Why Assertion-based Repair? 6
1.3.3 Applicability of Repair . 7

1.4 Thesis and Challenges . 9
1.5 Contributions . 10

1.5.1 Impact . 13

Chapter 2. Overview 15
2.1 Requirements . 15
2.2 Repair Algorithm . 16
2.3 Repair Framework . 17
2.4 Optimizations . 18

2.4.1 Static Analysis for Repair 18
2.4.2 Check-point Based Backtracking 18

2.5 Repair Based Generation . 19
2.6 Organization . 20

x

Chapter 3. Assertion-based Repair 21
3.1 Examples . 22

3.1.1 Doubly Linked List . 22
3.1.2 Binary Search Tree . 26

3.2 Background . 28
3.2.1 Symbolic Execution . 29

3.2.1.1 Relationship with Repair 30
3.2.2 Systematic Search . 31

3.2.2.1 Application to Repair 33
3.3 Repair Algorithm . 34

3.3.1 Non-deterministic Field Assignments 39
3.3.2 Complexity . 40

3.4 Correctness . 42
3.4.1 Assumptions . 42
3.4.2 Correctness Statement . 43
3.4.3 Correctness Argument . 44

3.5 Limitations . 47
3.6 Preliminary Results . 48

3.6.1 Understanding the Results of Repair 50

Chapter 4. Framework 55
4.1 Juzi API . 57
4.2 Instrumentation Engine . 60

4.2.1 State Space Exploration . 62
4.2.2 Structure Mutation . 63
4.2.3 Symbolic Execution . 66

4.3 Configurations . 68
4.3.1 Controlling the Fields to Repair 68
4.3.2 Controlling Data Repair . 69
4.3.3 Abstractions . 70
4.3.4 Visualization . 70

xi

Chapter 5. Optimizations 72
5.1 STARC: Static Analysis for Repairing Complex Data 72

5.1.1 Illustrative Example . 74
5.1.2 Detecting the Recurrent Fields of a Structure 75

5.1.2.1 Terminology . 76
5.1.2.2 Data-flow Framework 77
5.1.2.3 Prioritizing Repair Actions 80

5.1.3 Detecting Constraints on References 81
5.1.4 Characteristics . 83

5.1.4.1 Completeness of the Repair Algorithm 83
5.1.4.2 Reachability of the Repaired Structure 84

5.1.5 Preliminary Evaluation . 84
5.2 Checkpoint-based Backtracking for Efficient Repair 87

5.2.1 State Storage and Retrieval Algorithm 89
5.2.1.1 Undo Commands 92
5.2.1.2 Abstract Undo Operations 95

5.2.2 Monitoring the Program Counter 98
5.2.3 Characteristics . 101

5.2.3.1 Overhead of the Checkpoint-based Backtracking . . 102
5.2.3.2 Soundness of the Approach 102
5.2.3.3 Abstract Analysis on Containers 103

5.2.4 Performance Improvement 104

Chapter 6. Evaluation 107
6.1 Experiments on Library Data Structures 107

6.1.1 Benchmarks . 108
6.1.2 Methodology . 109
6.1.3 Results . 111

6.2 Experiments on Stand-alone Applications 113
6.2.1 ASM . 114

6.2.1.1 Bug Report . 115
6.2.1.2 Bug Effect . 116

xii

6.2.1.3 Repair Result . 117
6.2.2 Borg Calendar . 119

6.2.2.1 Case Study . 119
6.2.2.2 Repair Result . 122

6.2.3 HSQLDB . 124
6.2.3.1 Specifications . 125
6.2.3.2 Bug Report . 127
6.2.3.3 Repair Results . 128

6.3 Discussion . 130
6.3.1 Faults in Data Structures . 130
6.3.2 Implementation of repOk 131
6.3.3 Program Tolerance to Changes 132

Chapter 7. Repair-based Test Case Generation 134
7.1 Repair Based Generation . 136

7.1.1 Generating a Random Graph 137
7.1.2 Completing the Structure 142
7.1.3 Dicos: Difference Constraint Solver 143

7.2 Evaluation . 145
7.2.1 Solving Constraints on Structure 146
7.2.2 Solving Constraints on Structure as well as Data 147

7.3 Characteristics . 148
7.3.1 Generate Large Inputs from Specifications 148
7.3.2 Test Case Enumeration . 150

Chapter 8. Related Work 151
8.1 Error Detection . 151
8.2 Error Recovery . 153
8.3 Test Input Generation . 155
8.4 Invariant Detection . 156
8.5 Model Checking . 157

xiii

Chapter 9. Future Work: Specification-based Error Recovery 159
9.1 A New Definition of Repair . 159
9.2 The Design of a Specification Language 160
9.3 The Design of Repair Algorithms 161
9.4 Assisting the Users with Writing Repair Specifications 162

Chapter 10. Conclusions 164
10.1 Summary . 164
10.2 Meaning . 167

Bibliography 168

Vita 187

xiv

List of Tables

3.1 An evaluation of the core repair algorithm 49
3.2 The effect of the fault location on repairing global constraints 52
3.3 The effect of the fault location on repairing local constraints 53

5.1 The first three iterations of the data flow framework. 79
5.2 Results for repairing data structures using STARC. 85
5.3 An evaluation of the checkpoint-based backtracking 104

6.1 An evaluation of assertion-based repair 112

7.1 Results for generating structures with no data 145
7.2 Results for generating structures with data 147

xv

List of Figures

1.1 An illustration of assertion-based repair. 5

3.1 Class invariant for the DoublyLinkedList. 23
3.2 Repairing a circular doubly linked list. 24
3.3 Repairing a binary search tree. 27
3.4 Example of a search tree. 32
3.5 The search tree for repairing a singly linked list. 34
3.6 The repair algorithm. 37

4.1 Juzi: a framework for repairing Java programs. 56
4.2 A repairable DoublyLinkedList class. 58
4.3 The implementation of the assertAndRepair method. 59
4.4 The instrumented DoublyLinkedList class. 64
4.5 The instrumented repOk method. 66
4.6 An example of accessor methods added by Juzi 67
4.7 Example of the Juzi visualization module. 71

5.1 Static analysis for repair. 73
5.2 Repairing a circular doubly linked list using STARC. 74
5.3 The stateful backtracking process. 88
5.4 Components for maintaining the program state. 90
5.5 An example of a field undo command 94
5.6 Abstract undo commands on sets. 96
5.7 An example of the backtracking implementation. 99

6.1 A bug in the ASM framework. 116
6.2 The declaration of the CFG class in Juzi. 118
6.3 Borg inconsistency illustration . 121
6.4 The XTree data structure in Borg. 123

xvi

6.5 Data structures to maintain the data in an HSQL database. 126
6.6 The data structure to maintain table indices in HSQL. 127
6.7 A corrupt HSQL index structure. 129

7.1 A framework for generating large data structures. 137
7.2 The Egor algorithm for generating random graphs. 139
7.3 Generating a random BinarySearchTree object with two nodes. . 141
7.4 Random graph with six nodes generated by Egor. 142
7.5 Completing the randomly generated graph. 143
7.6 Solving difference constraints using Dicos. 144

xvii

Chapter 1

Introduction

1.1 An Increasing Demand for Reliability

As software systems are growing in complexity and size, reliability is be-

coming harder to achieve. Software failures already cost the US economy tens of

billions of dollars annually; and such cost is expected to rapidly increase with the

rising dependency of the majority of businesses on software [62, 119]. To meet the

ever-increasing demand for reliability, a great deal of progress is required in im-

proving the current state-of-art and developing new techniques for delivering high

quality, robust software.

Efforts for improving reliability in industry and academia are primarily di-

rected toward design, testing, and validation [4, 21, 24, 95]—activities that are per-

formed before the software is deployed. While such pre-deployment activities are

fundamental for providing a certain level of confidence in program correctness and

robustness, they do not prevent errors and anomalies from occurring dynamically

in deployed software. For example, a single bit flip due to a cosmic ray can com-

promise the safety of a Java Virtual Machine with high probability and allow an

intruder to run arbitrary code [52].

Bugs are inherent in deployed software systems resulting in errors which,

1

if left untreated, can have serious consequences such as security breaches, loss of

critical data, or unexpected failures. With error prevention being an arduous task,

post-deployment techniques and approaches become necessary for systems to de-

tect and adapt to unwanted erroneous scenarios. The ability to handle runtime er-

rors on-the-fly can bring an unprecedented increase on reliability. Such increase is

necessary to enable running mission-critical systems in unpredictable and hostile

environments.

1.2 Improving Reliability by Utilizing Assertions

A powerful technique for detecting runtime errors in a program state is by

using assertions—statements that evaluate a boolean expression representing a set

of desired properties. Programmers have long used assertions to describe program

properties, and most recent programming languages including C++, Java, C#, Ruby

and Python have special support for assertions. An assertion violation in a running

program is highly likely to indicate that the program has reached an erroneous state.

Usually, when an error occurs in a running application, programmers termi-

nate the application, debug, test, and redeploy it. While this halt-on-error approach

is sometimes necessary, e.g., during the execution of a security protocol, there are

situations where alternative approaches are more desirable. For example, with cor-

ruption of persistent data, such as a file system, a simple reboot is unlikely to help.

As another example, consider an intentional naming server for service location in

a dynamic network [1]. If the server fails due to a malformed query, a continual

subjection to the query will force perpetual failures. This problem compounds for

2

deployed software, which cannot be promptly debugged and re-installed.

An attractive alternative to halt-on-error is to repair the state of the program

and let it continue. In several cases, this alternative enables systems to resume

their correct behavior. For example, a server that does not crash on a malformed

query but repairs it, can continue to correctly resolve well-formed ones. Similarly,

repairing a file system or a database can recover valuable data.

The traditional techniques for repair implement special repair routines [55,

93] which are triggered when specific problems occur during execution. These

routines are domain specific and do not perform repair based on a well-formed

description of the system. Thus, it is hard to build a robust generic repair framework

using such approaches, since the developer must envision all possible bugs.

In this dissertation, we introduce assertion-based repair, a novel approach

for error recovery from insidious bugs that occur after the system is deployed. We

argue that assertions in a program represent a powerful form of specifications that

hold key information for repairing corrupt program states and increasing program

tolerance to runtime errors.

1.3 Assertion-based Error Recovery

Assertions have long been used to describe the properties of code. By writ-

ing assertions in a program, programmers intend to check the consistency of the

program state with respect to a set of desired properties. Several static and dy-

namic analyses utilize assertions for checking programs [7,22,59,113,124]. While

3

proving to be highly useful for error detection, we envision assertions to be likely

powerful for error recovery.

The techniques we propose in assertion-based repair utilize violated asser-

tions and use them as a basis for repairing corrupt program state. The key insight is

that assertions include the properties that the program must satisfy to proceed with

its execution. We utilize this insight as a basis to mutate the program state to sat-

isfy these properties. These mutations not only serve as a mean to repair the state,

but also, provide helpful information for developers to diagnose the causes of the

inconsistencies.

We focus on repairing structurally complex data, which pervade object-

oriented languages and are characterized by class invariants that represent struc-

tural integrity constraints. Good programming practice advocates the use of class

invariant in assertions, by writing the invariant as predicates, named repOk, which

return true if and only if their input satisfies its constraints [81]. The key idea

is to repair data structures by analyzing the structural constraints described in the

violated assertion. Given a structure that violates an assertion which represents its

integrity constraints, we alter the structure such that the resulting structure satisfies

the given constraints. Assertion-based repair does not aim to transform an erroneous

state into one that a (hypothetical) correct program would have generated [31] be-

cause such state is unknown at the time of the violation. Instead, repair aims to

generate a state that allows the program to recover on-the-fly from an erroneous

state and resume its normal operation.

4

void traverseLeft() {

 assert repOk();

}

 Node p = root;

 while (p != null)

 p = p.left;

Terminate
program

assertion
checktrue

N0

N1 N2

false

void traverseLeft() {

 assert repOk();

}

 Node p = root;

 while (p != null)

 p = p.left;

N0

N1 N2

assertion
check

Repair
program

false

N0

N1 N2

true

(a) (b)

Figure 1.1: An illustration of assertion-based repair.

1.3.1 Illustrative Example

To elaborate an overall view of assertion-based repair, consider the exam-

ple in Figure 1.1. The tree structure in Figure 1.1 contains a cycle along the left

pointer, and thus violates the acyclicity constraint of a tree. The traverseLeft

method performs a simple traversal of the tree following the left pointer. Before

traversing the tree, the traverseLeft checks the validity of the structure by as-

serting repOk. It is always a good idea to assure the validity of the state before

performing critical operations. Had the assert statement not been executed, the

program would have gone into an infinite loop. However, when the assertion is

executed on the corrupt structure the violation is detected.

Figure 1.1 (a) shows the traditional approach for handling assertion viola-

tions. Upon detecting an error through an assertion violation the program is termi-

nated, debugged and re-executed. Figure 1.1 (b) shows the repair-based approach

5

for handling assertion violations. Instead of terminating the program, the structure

is repaired, the cycle along the left pointer is broken, and the program execution

proceeds safely. Note that assertion-based repair utilizes the existence of the asser-

tion check to perform repair. After repair, the program continues its execution from

the statement right after the assertion check.

1.3.2 Why Assertion-based Repair?

Several features and properties make assertion-based repair a very attractive

post-deployment analysis that can have a profound impact on improving software

reliability.

Unlike hand written dedicated repair routines [55, 93] which describe how

to generate a desired state, assertions describe what a desired state should be, i.e.,

its properties. Writing the repair routine already requires knowledge of desired

properties. Moreover, it requires translating them into a procedure that correctly

establishes them. To illustrate, consider red-black trees. Writing a repair routine

involves implementing complex re-balancing operations to satisfy the constraints

on height, color, etc. In contrast, writing an assertion requires writing conceptually

simple tree traversals that check the constraints.

Unlike previous work on constraint based repair, assertion-based repair al-

lows writing constraints using the language of implementation. Prior work [31–33]

requires describing the properties in a declarative language. Although declarative

languages provide a more succinct method for describing constraints, there is a

large gap between the syntax and grammar of such languages and those of impera-

6

tive programming languages which are commonly used by software developers and

testers.

Assertion-based repair is a feasible candidate for integrating error recovery

logic in software systems. Repair is only triggered on assertion violations and thus

the repair logic incurs no extra cost on a running program. The only cost imposed

by repair is the cost of writing assertions. Several applications already contain

assertions, as is advocated by defensive programming [51]. In such cases, repair

comes for free.

1.3.3 Applicability of Repair

The applicability of assertion-based repair on software applications highly

depends on the properties that characterize these applications.

Applications that maintain persistent data are attractive candidates for re-

pair; for example a file system or a database application where rebooting the system

is highly unlikely to repair a fault. For another example, a data application where

clearing and rebuilding the state of a database may take much more time than fixing

a fault that occurs in the data structure at run-time.

Service oriented applications with very high downtime costs are other good

candidates for repair. A widely used technique for increasing the reliability of such

applications is by asserting the inputs, and ignoring any input that violates the ap-

plication contract. Ignored inputs represent a loss of valuable transactions. Rather

than ignoring such transactions, repair fixes the corrupt inputs to satisfy the given

contract and enables processing them.

7

One property of repair is that the repaired structure might not be the one a

program would have generated. These differences might further affect the execution

of the program making it hard to reason about the acceptability of the repaired

application. Some applications can tolerate such differences. For example in some

application, like games, a deterioration in gameplay is much more preferable by

users than a crash that terminates the game before even saving the progress. In some

applications, data structures are mutually independent and not all the structures

are affected by the changes. In other applications, changes in the data structure

might only affect the performance of the program, for instance, consider a search

application that stores information in a binary search tree. If the tree gets corrupted,

it might be repaired into a linked list. Such a change might affect the performance

of the search but not the correctness.

On the other hand, applications that consider exactness a more important

requirement than durability might not be appropriate for repair and program termi-

nation might be their best solution. For example, consider a stock exchange appli-

cation where a stock price is automatically changed by repair. Such result might

create hazardous consequences on the users. Computational algorithms are other

candidates that may not tolerate even a minimal deviation in data and thus may not

be appropriate for repair.

It is therefore important to consider the risks, costs, and benefits before

choosing whether repair is appropriate for an application. Our experience with

repairing stand-alone applications including a program analysis tools, a calendar

organizer and a database engine showed that repairing the corruptions enabled the

8

applications to proceed with their executions in a manner that is more appropriate

for the user than sudden crashes.

In summary, applications where uptime is important, reboot is a non-feasible

solution, and which tolerate the variance between the repaired structure and the hy-

pothetically correct one are targets for assertion-based repair. Applications where

rebooting solves the problem, that are data sensitive, and cannot tolerate changes in

the program state are not appropriate candidates for repair.

1.4 Thesis and Challenges

Our thesis is that assertion-based repair is a practical post-deployment tech-

nique for improving reliability through error recovery from data structure corrup-

tion errors: it is feasible to on-the-fly repair fairly large complex data structures

while enabling applications to proceed with their executions, and providing de-

velopers with useful information to diagnose the error sources. This dissertation

provides the evidence that supports our thesis. It presents an efficient and effective

algorithm for repairing data structures based on violated assertions and describes

the design and implementation of a framework for repairing Java programs.

We faced several challenges while developing this work. One of the chal-

lenges was the design of the repair algorithm. As a post-deployment analysis, the

repair algorithm must be orders of magnitude faster than similar assertion-based

testing and verification techniques [10, 29, 34, 91, 101]. At the same time, correct-

ness is crucial for data structure repair; a repair algorithm that generates structures

that do not satisfy the desired properties is not practical.

9

The main challenge that we faced in this work was evaluating the effect

of repair on running programs. Recall that when repair is performed, there is no

guarantee that the repaired structure would be the same as a hypothetically correct

structure. While the repaired structure allows the program to proceed with its exe-

cution, there is no precise way to predict how the program behaves on the repaired

structure, or evaluate how far does the repaired execution diverge from the original

one.

The methodology we therefore use to evaluate the effect of repair is by mea-

suring the acceptability of the repaired program from a user perspective based on

empirical studies. We studied the behavior of a set of open-source applications after

being repaired. The repaired faults were existing bugs that we found documented

in bug repositories.

The case studies showed that in some applications where the data structures

employ a certain degree of redundancy, the applications were completely repaired

and the effect of repair was not noticeable. In some other cases the effect of re-

pair was a modification in the order of the data elements. Nevertheless, in all the

considered applications, repair enabled the program to avoid a potential crash.

1.5 Contributions

This dissertation makes the following contributions:

• Repair assertions: We present an alternative use of program assertions. As-

sertions already provide powerful tools for runtime checking. Repair asser-

10

tions provide an effective and practical tool for error recovery from data struc-

ture errors. A convenient form of writing assertions is to use imperative pred-

icates such as repOk methods that describe class invariants. We introduce

the assertAndRepair construct for Java that allows both runtime checking

of properties described as repOk methods as well as automatic repair in case

of a violation.

• Algorithm for efficient and effective repair: We present a novel algorithm

that uses violated assertions as a basis for repair. The repair algorithm em-

ploys a systematic backtracking search in conjunction with on-demand sym-

bolic execution to mutate and fix corruptions in the data structure’s fields.

Our algorithm is sound and complete with respect to the given structural con-

straints under realistic assumptions. It repairs a corrupt structure into one that

satisfies the given constraints if a valid structure can be constructed from the

objects of the corrupt one and it does not generate a structure that violates

any of the given constraints.

• Optimizations: We present two optimizations to scale the performance of

the repair algorithm. The first optimization is based on a static analysis that

guides the repair algorithm to the more likely candidates to repair corrupt

fields. The second optimization is based on an efficient state exploration en-

gine for repair that performs checkpoint-based backtracking by storing partial

program states and performing abstract undo operations. These optimiza-

tions enable the repair algorithm to handle some structures with hundreds of

thousands of objects.

11

• Implementation: We implemented a framework for assertion-based repair

of Java programs. Our framework comprises of three main components: (1)

A Java API to be used in programs to enable repair; (2) the core repair logic

which consists of the search engine, the symbolic execution engine, and the

constraint solver; and (3) a configuration module that enables user control to

the repair algorithm.

• Repair logs: We abstract repair to report a log which summarizes the repair

actions. We also allow custom abstraction functions provided by the user to

compare the state before and after repair. These abstractions help the user

understand the mutations performed during repair and assist in diagnosing

the sources of the errors.

• Evaluation: We present an evaluation of assertion-based repair on both text-

book data structures as well as stand-alone applications. We evaluate the effi-

ciency of the repair algorithm by using it to repair fairly large data structures

characterized with a variety of structural and data constraints. We evaluate

the acceptability of the repaired structures by performing a set of case studies

on repairing stand-alone applications. The experimental results show the fea-

sibility of repairing some data structures with hundreds of thousands of nodes

while enabling programs to safely proceed with their executions.

• Application: We present an application of repair to automated constraint

based testing. We use the repair framework to generate large data structures

by repairing randomly generated graphs to satisfy a set of desired properties.

12

Such structures are important for performing several testing tasks, including

stress and load testing.

1.5.1 Impact

Data structures are ubiquitous in software systems. Programmers typically

use library data structures or implement custom data structures that are specific for

their programs. Recent work by Jump and McKinley [65] on dynamic shape anal-

ysis showed that 90% of the heap objects when running the SPECjvm [27] and Da-

Capo [9] benchmarks were part of recursive data structures; out of which 33% were

application specific data structures. Assertion-based repair makes a fundamental

impact on increasing the confidence in the validity of the data structures maintained

by programs. Recursive data structures often include redundancies to enable per-

forming efficient operations. Assertion-based repair enables repairing corrupt data

structures while utilizing redundancies to perform effective and efficient repair that

in most cases results in unnoticeable effect on running programs.

Developing robust software requires developing methodologies and paradigms

that apply to the different levels of the software life cycle [10,38,66,84]. A large de-

gree of effort on increasing reliability has focused on approaches for better require-

ment gathering, architecture, design, and testing. One key issue in these approaches

resides in the lack of synergy among the used methodologies and the expensive cost

of combining these methodologies. Another issue is that these approaches are ap-

plied before the software is deployed and do not provide software with a defense

against errors that occur during runtime.

13

A key impact of assertion-based repair is its ability to integrate with existing

approaches that utilize assertions for checking software before it is deployed [10],

while providing software with the ability to tolerate errors and programmers with

the ability to diagnose these errors. Assertion-based repair enables a unified frame-

work for software verification and resilient computing—two software reliability

methodologies that traditionally have employed very different algorithms. For ex-

ample, using Korat [10,89,90], a constraint based testing framework, in conjunction

with repair, a program annotated with assertions is (1) systematically tested before

deployment and (2) trusted to execute without corruption once deployed—using the

very same assertions. The unification has the potential to make a profound impact

on improving the quality of software by providing software verification and resilient

computing together at the cost of one.

A broader impact of this work is that it demonstrates the feasibility of per-

forming post-deployment analyses without incurring large performance cost. It

opens a promising direction for future work on applying a wide-spectrum of anal-

yses on deployed software in an effort to improve reliability. Other researchers at

academia [104] and industry [53] also showed interest in repair and are now are

considering similar approaches of repair in their work. New software development

paradigms are also being developed to enable automatic integration of repair logic

in software [11].

14

Chapter 2

Overview

This chapter presents an overview of assertion-based repair, its components

and applications. We start by listing the key requirements that we believe post-

deployment analyses as well as error recovery techniques must satisfy to be at-

tractive for practitioners; we then briefly overview the techniques we developed to

target these requirements.

2.1 Requirements

The goal of our work is to provide programmers with a set of tools and

techniques to easily incorporate data structure repair into their programs as an error

recovery mechanism to improve reliability. We define our goal through the follow-

ing requirements.

• Correctness: The repair logic must be sound and complete, i.e., it must not

repair a corrupt data structure into one that does not satisfy the desired con-

straint; at the same time if a structure exists within given domains that satisfies

the constraints, the repair logic must generate it.

• Efficiency: Being a post-deployment analysis, repair must be orders of mag-

nitude faster than similar assertion-based techniques for testing, verification,

15

and error recovery. Since repair is only performed upon assertion violations,

it must add minimal overhead on running applications, and must not deterio-

rate performance in case the repair logic is not executed.

• Ease of integration: Repair must be easy to incorporate in existing software

systems. The developer need not expend large amount of effort to inte-

grate repair into a software system. Rather, by following good programming

practices such as writing program specifications and defensive code that fre-

quently asserts its key properties, repair must come at minimal cost.

• Transparency: Repair must not keep the developers in the dark as to what

is being changed in the program state. It must be configurable, giving the

developer some control over the subset of the program state that repair alters.

With these requirements in mind, we first developed an effective algorithm

to repair corrupt data structures. We then developed optimizations for the original

algorithm in order to improve its efficiency. The efficiency of these optimizations

directed our attention to alternative uses of repair in test case generation of large

data structures. We finally implemented a configurable framework for integrating

repair into existing code.

2.2 Repair Algorithm

The repair algorithm takes as inputs (1) an assertion that describes what

properties the program state must satisfy and (2) a state that violates them, and

16

generates a new state that satisfies the desired properties. The repair algorithm em-

ploys a backtracking search that performs systematic exploration of a neighborhood

of the given state and uses symbolic execution [48, 75, 97, 106] as well as heuristics

to perform efficient and effective repair.

Experiments using libraries and applications show that the repair algorithm

effectively repairs complex structures with few thousand nodes, while enabling sys-

tems to recover from potentially crippling errors.

2.3 Repair Framework

We developed an assertion-based repair framework, Juzi, for repairing Java

programs. Juzi introduces a new assertion statement assertAndRepair, to be

used by developers for incorporating repair in programs. It provides an abstraction

of the actions performed by the repair algorithm to help the user understand what

is being altered by repair. It also supports custom abstraction functions provided

by the users. The abstraction is presented in the form of repair-logs that are tai-

lored towards helping users debug their programs. The level of detail in the logs

is configured by the user. A key feature of Juzi is enabling the user to control the

repair algorithm. Juzi provides the Repairable Java interface that allows the user

to mark the classes to be considered for repair. Users also indicate what fields the

repair algorithm is allowed to mutate, and what data values can be introduced by

the repair algorithm.

17

2.4 Optimizations

To enhance the performance of the repair algorithm, we devised key opti-

mizations that target the state exploration strategy and the backtracking engine.

2.4.1 Static Analysis for Repair

We developed STARC, which uses static analysis to scale the performance

of the original repair algorithm to handle larger structures with complex structural

constraints. The key idea behind STARC is as follows: the constraints described in

repOk represent the desired properties of the program state that enable the program

execution to proceed. By analyzing repOk, information can be extracted about the

target data structure that can help guide the search during repair. STARC statically

analyzes repOk to identify: (1) the recurrent fields, i.e., fields that repOk uses to

traverse the structure; and (2) local field constraints, i.e., how the value of an object

field is related to the value of a neighboring object field. The result of the static

analysis is used to guide the original repair algorithm to the more likely candidates

to repair a fault. Experimental results show that STARC scales the performance of

the original repair algorithm by up to an order of magnitude.

2.4.2 Check-point Based Backtracking

We developed an efficient light-weight search engine for repair that per-

forms check-point based backtracking by incrementally storing partial program

states and performing abstract undo operations for restore. This approach is based

on two key insights: (1) repOk methods check desired properties by traversing

18

the given structure without mutating them; and (2) the traversals are over object

graphs and are often implemented using standard work-list-based algorithms that

keep track of sets of visited nodes to prevent infinite traversals. The first insight

allows us to define a minimal set of state components to store, which reduces stor-

age overhead. The second insight allows us to use our own library classes in place

of Java libraries, such as sets and lists, that enable efficient backtracking. Our ap-

proach gains its efficiency by avoiding the performance overhead imposed by code

re-execution based approaches [10,23,35,46] while reducing the overhead of main-

taining the program state before and after backtracking. Experimental results show

an order of magnitude speed-up when integrated with STARC.

2.5 Repair Based Generation

We envision an alternative use of repair for test input generation of large

data structures. A key observation behind the generation approach is that while the

problem of generating an input that satisfies all the given constraints is hard, gener-

ating a structure at random, which may or may not satisfy the constraints but has a

desired number of objects is straightforward. Indeed, a structure generated at ran-

dom is highly unlikely to satisfy any of the desired constraints. However, it can be

repaired using STARC to transform it so that it satisfies all the desired constraints.

A comparison with current search based as well as SAT based techniques for test

input generation shows up to two orders of magnitude improvement in generation

time.

19

2.6 Organization

The remainder of this dissertation is organized as follows. Chapter 3 presents

the core repair algorithm. It argues the correctness of the algorithm and presents

a snapshot of the results on repairing a set of library data structures. Chapter 4

presents the design and implementation of an assertion-based repair framework.

Chapter 5 presents the optimizations performed on the core algorithm to scale its

performance. An evaluation of the approach on repairing both library data struc-

tures and stand-alone applications is then presented in Chapter 6. Chapter 7 then

presents an application of repair for test input generation. Chapter 8 compares our

work with related work in the field of software testing, verification and validation.

Chapter 9 presents key future directions and describes the work being performed

on repair at the time of writing this dissertation. Finally, Chapter 10 concludes the

dissertation.

20

Chapter 3

Assertion-based Repair

A form of specification that programmers use is assertions—statements that

evaluate Boolean expressions that represent desired properties. If an assertion eval-

uates to false at run-time, the program is highly likely to have reached an er-

roneous state. Errors—however seemingly innocuous—in a program state, if left

untreated, can have serious consequences. The standard approach when an error is

detected at runtime is to terminate the program, debug it if possible, and re-execute

it. An alternative to program termination is repair. Instead of terminating a program,

repair its state and let it continue.

This chapter presents a novel algorithm for repairing corruptions that occur

in complex data structures. Given a structure that violates an assertion that repre-

sents its integrity constraints, the repair algorithm uses a systematic search based

on symbolic execution to repair the structure, i.e., mutates it such that the resulting

structure satisfies the given constraints.

This chapter also argues the correctness of the repair algorithm and evalu-

ates it on repairing a set of complex structures. Experimental results show that the

algorithm effectively repairs corrupt structures with a small number of errors and

with a few thousand objects.

21

3.1 Examples

We present two examples of repairing circular doubly linked lists and bi-

nary search trees to illustrate the repair algorithm and its key components. These

examples demonstrate how the repair algorithm can on-the-fly repair faults in both

the reference as well as the data members of the data structures.

3.1.1 Doubly Linked List

Consider the following class declaration of a circular doubly linked list:

c l a s s D o u b l y L i n k e d L i s t {
Node h e a d e r ;
i n t s i z e ;

s t a t i c c l a s s Node {
i n t e l e m e n t ;
Node n e x t ;
Node p rev ;

}
}

The DoublyLinkedList class declares an internal Node class that models

the nodes of the list. Each list has a header field and stores the number of nodes

reachable from header in the size field. Each Node instance holds two pointers,

next and prev, and an integer field, element.

The structural integrity constraints (class invariant) of DoublyLinkedList

are: (1) circular structure along next; (2) transpose relation between the next and

prev fields; and (3) number of nodes reachable from the header following next

cached in size. An empty list has a null header and its size is 0.

22

boolean repOk () {
L0 / / I f t h e header i s n u l l , s i z e must be 0
L1 i f (h e a d e r == n u l l) re turn s i z e == 0 ;
L2 S e t v i s i t e d = new HashSet () ;
L3 v i s i t e d . add (h e a d e r) ;
L4 Node c u r r e n t = h e a d e r ;
L5 whi le (t rue) {
L6 Node n = c u r r e n t . n e x t ;
L7 / / Nex t ca nn o t be n u l l
L8 i f (n == n u l l) re turn f a l s e ;
L9 / / C i r c u l a r i t y c o n s t r a i n t
L10 i f (! v i s i t e d . add (n)) {
L11 i f (v i s i t e d . s i z e () != s i z e) re turn f a l s e ;
L12 i f (n . p r ev != c u r r e n t) re turn f a l s e ;
L13 e l s e break ;
L14 }
L15 / / Prev i s t r a n s p o s e o f n e x t
L16 i f (n . p r ev != c u r r e n t) re turn f a l s e ;
L17 c u r r e n t = n ;
L18 }
L19 re turn true ; }

Figure 3.1: Class invariant for the DoublyLinkedList.

The structural constraints of the DoublyLinkedList can be written as a

Java predicate that returns true if and only if its input satisfies all the constraints.

Following the literature, we term such a Java predicate repOk and for object-

oriented programs, we term structural invariants, class invariants [81]. The class

invariant for the DoublyLinkedList class is displayed in Figure 3.1.

An assertion can invoke repOk to check the structural constraints. For ex-

ample, the following Java assert statement checks them at the beginning of the

add method in DoublyLinkedList:
O b j e c t add (i n t e l e m e n t) {

a s s e r t repOk () ;
. . .

}

23

header
size = 4

N0 N1 N2 N3

header
size = 4

N0 N1 N2 N3

(a) (b)
header
size = 4

N0 N1 N2 N3

header
size = 4

N0 N1 N2 N3

(c) (d)
header
size = 4

N0 N1 N2 N3

header
size = 4

N0 N1 N2 N3

(e) (f)
header
size = 4

N0 N1 N2 N3 N0 N1 N2 N3

header
size = 4

(g) (h)

Figure 3.2: Repairing a circular doubly linked list.

To illustrate repair, consider the structures shown in Figure 3.2. The dashed

arrows represent violations of the structural constraints. The bold arrows represent

repaired fields. Figure 3.2 (a) shows a doubly linked list with two corruptions: (1)

the next of N2 is N1 but the prev of N1 is not N2, and (2) the prev of N3 is N1

but the next of N1 is not N3. Figures 3.2 (b–h) show the mutations that the repair

algorithm performs to repair the corrupt structure.

Given the corrupt structure in Figure 3.2 (a), and the repOk predicate, the

repair algorithm first invokes repOk on the structure, and then monitors the field

accesses during the execution of repOk. When repOk returns false due to a con-

24

straint violation, the repair algorithm systematically mutates the last field accessed

by repOk (Section 3.3). For this example, we assume that the size field is correct

and that it is not mutated by the repair algorithm. The next example illustrates how

data fields are repaired.

Figures 3.2 (b–h) show the sequence of mutations that the repair algorithm

performs to repair the faults in the structure of the list. During the first invocation

of repOk, the last field accessed is the next field of N2. Thus, the algorithm

systematically mutates this field to: (1) null; (2) list nodes already encountered

during repOk’s execution (N0 and N2); and (3) a list node not yet encountered

during repOk’s execution (N3). (Note that the algorithm does not try node N1,

since it is the original value of the next field and it has already been checked by

the first execution of repOk.) The order of candidate selection for field mutations

enables covering all non-isomorphic structures that can be generated by a program

(Section 3.4). After each mutation the algorithm invokes the repOk predicate again

to check for constraint satisfaction. Setting N2.next to N3 allows the execution of

repOk to proceed further.

The algorithm then detects the corruption in the prev field of node N3, and

repairs it similarly (Figures 3.2 (e-h)). For this example, the repair algorithm per-

forms a total of seven mutations to repair the violations in the structure of the initial

corrupt list. We term these mutations repair actions in the rest of the document.

25

3.1.2 Binary Search Tree

The DoublyLinkedList example illustrates the use of the repair algo-

rithm to repair faults that violate the structural constraints of a list. We now present

an example that illustrates the use of the repair algorithm to repair faults that vio-

late both the structural as well as the data constraints. We describe how the repair

algorithm generates primitive values that satisfy the data constraints of a structure.

Consider the following class declaration of a binary search tree, i.e., an

acyclic graph that satisfies the search constraints on the values of its nodes:

c l a s s B i n a r y S e a r c h T r e e {
Node r o o t ;
i n t s i z e ;

s t a t i c c l a s s Node {
i n t e l e m e n t ;
Node l e f t ;
Node r i g h t ;

}
}

Each BinarySearchTree object has a root node and stores the number

of nodes in the size field. Each Node object has an integer value called element

and has a left and a right child. The class invariant of BinarySearchTree

can be formulated as follows.

boolean repOk () {
i f (! i s A c y c l i c ()) re turn f a l s e ;
i f (! s i zeOk ()) re turn f a l s e ;
i f (! s e a r c h C o n s t r a i n t s O k ()) re turn f a l s e ;
re turn t rue ;

}

26

left

(b) (c)

(e)(d)

(a)

(f)

Constraints on data values:

N6 < 3

N2 < N0N4 < 3

N6 < N4

N6 < N5

3 < N2

N1 < N0

root

left right

right right

size = 6

N1

N4 N0

N3

N5

N6 N2

3

0

2

1

4

5

6

N2 < N1

N5 < N4

left

leftleftleft

left

root

left right

right right

size = 6

N1

N4 N0

N3

N5

N6 N2

3

6

4

5

2

1

0
left left

root

left right

right right

size = 6

right

N1

N4 N0

N3

N5

N6 N2

3

6

4

5

2

1

0
left

root

left
left right

right right

size = 6

right

N1

N4 N0

N3

N5

N6 N2

3

6

4

5

2

1

0
left

root

leftleft
left right

right right

size = 6

right

N1

N4 N0

N3

N5

N6 N2

3

6

4

5

2

1

0

Figure 3.3: Repairing a binary search tree.

When invoked on a BinarySearchTree object o, the predicate repOk tra-

verses the object graph rooted at o and checks all the constraints that characterize

a binary search tree including, acyclicity along the left and right fields, consis-

tency of the size field, and the correctness of the search order of the data members.

If any constraint is violated the predicate returns false; otherwise, it returns true.

The helper methods are implemented as standard work-list-based algorithms that

keep track of visited nodes [85].

To repair faults in the primitive fields of the structure, the repair algorithm

uses on-demand symbolic execution [69] where a corrupt field is treated symboli-

cally, and a path condition is computed for that field during the execution of repOk.

Once the path condition is computed, the algorithm then uses a decision proce-

27

dure [6] to solve the path condition and determine the correct values to repair the

field.

To illustrate, consider the binary search tree in Figure 3.3(a). The dashed

lines represent fields that violate the acyclicity constraints. The elements in the

tree are inserted in reverse order. Figures 3.3(b-d) show the steps that the repair

algorithm takes to break the cycles in the structure. Following a depth first traversal

which accesses the left field before the right field, the repair algorithm breaks

a cycle each time it encounters an already visited node. Figure 3.3(e) shows the

path condition after symbolically executing repOk on the repaired structure. The

path condition contains the constraints on the order of the data values. Figure 3.3(f)

shows the repaired structure after solving the path condition and reordering the

values in the tree.

Using symbolic execution, the repair algorithm discovers the constraints

that the data members need to satisfy for repOk to return true. By solving these

constraints the repair algorithm determines values for the data members that repair

the structure.

3.2 Background

In this section we give a brief description of the basics of symbolic execu-

tion and systematic searches, and illustrate how the repair problem relates to these

techniques.

28

3.2.1 Symbolic Execution

The symbolic execution of a program is the process of running the program

on symbols rather than concrete values [75]. These symbols represent arbitrary val-

ues that the input variables can take. To enable symbolic execution, the semantics

of the program operations are defined on symbolic variables. Program instruc-

tions are abstracted as one of two types: assignment and conditional instructions.

For assignment instructions, symbolic execution uses a dedicated memory model

for transferring information between symbolic variables. For conditional instruc-

tions, symbolic execution considers both outputs of a condition and executes the

two branches of the conditional instruction. This enables executing all the paths of

a program.

In addition to executing all program paths, symbolic execution populates the

necessary constraints on the input variables for an execution to take a specific path.

Solving these constraints determines whether the corresponding path is reachable

through a concrete execution or not. If the path is reachable, concrete values are

generated for the inputs to cover that path. To illustrate, consider symbolically

executing the method below that takes two integers x and y, and returns the absolute

value of the difference:

i n t d i f f e r e n c e (i n t x , i n t y) {
L1 . i n t d i f f ;
L2 . i f (x > y)
L3 . d i f f = x − y ;
L4 . e l s e
L5 . d i f f = y − x ;
L6 . re turn d i f f ; }

29

Symbolic execution starts by assigning two symbols, say X and Y, to the

input variables x and y. When executing the conditional statement on line L2, two

cases are considered. In the first case, the if branch is taken, the path condition is

updated with the constraint X > Y, and the diff variable is assigned to a symbolic

expression corresponding to the difference operation X - Y on line L3. In the

second case, the else branch is taken, the constraint X <= Y is added to the path

condition, and the diff variable is assigned to the symbolic expression Y - X on

line L5. The path conditions are then solved to generate concrete values for the

input variables that allow covering all the method’s paths.

3.2.1.1 Relationship with Repair

The repair algorithm uses symbolic execution to generate a set of constraints

on the data members of a data structure. It then solves these constraints to de-

termine values for the data members that satisfy the desired constraints. For ex-

ample, consider the implementation of the helper method isOrdered from the

BinarySearchTree example in Section 3.1.2.

boolean i s O r d e r e d (Node n , i n t min , i n t max) {
/ / Check i f r o o t i s l e s s t han t h e minimum o f t h e r i g h t sub−t r e e
/ / and g r e a t e r than t h e maximum o f t h e l e f t sub−t r e e
i f ((n . e l e m e n t <= min) | | (n . e l e m e n t >= max)) re turn f a l s e ;
/ / Check i f t h e l e f t sub−t r e e i s o r d e r e d
i f (n . l e f t != n u l l) {

i f (! i s O r d e r e d (n . l e f t , min , n . e l e m e n t)) re turn f a l s e ;
}
/ / Check i f t h e r i g h t sub−t r e e i s o r d e r e d
i f (n . r i g h t != n u l l) {

i f (! i s O r d e r e d (n . r i g h t , n . e lement , max)) re turn f a l s e ;
}
re turn t rue ; }

30

The above method checks if the elements in the binary search tree satisfy

the correct search order. Using symbolic execution, the method is executed on the

root node of the tree to determine the path constraints that result in isOrdered

returning the value true. By solving these constraints values can be determined to

fix corruptions in the data members.

3.2.2 Systematic Search

Search-based approaches have been employed is several techniques for check-

ing software systems [3, 5, 30, 41, 58]. Three key components define a search pro-

cess: (1) search variables, i.e., components that the search finds values for, (2)

domains of values, i.e., the set of possible values that the search variables could

take; these values determine the search space, and (3) the search algorithm which

includes a search strategy that defines the order in which the search variables are as-

signed, the order in which values are assigned to the variables, as well as techniques

and heuristics (if possible) to enhance the search efficiency.

As an example, consider solving the following equation using a search al-

gorithm where X1, X2, X3 are integer values from the set {1, 3, 4}.

X1 + X2 + X3 = 10

In this problem, the search variables are X1, X2, and X3. The domain of values for

each variable is the set {1, 3, 4}. The search space is represented as the n-ary tree in

Figure 3.4. Nodes in the tree represent the search variables. We also term the nodes

of the search tree as choice points since they represent events where the search

31

X1

1 3 4

X2

X3

X2

X3 X3 X3 X3 X3 X3 X3

X2

X3

1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 3 4 1 3 4

41 3 41 3 41 3

1

Figure 3.4: Example of a search tree.

algorithm chooses a value for a variable. Edges in the tree represent the possible

values for the search variables. We term the edges as the choices at the choice

points. A path from the root to a leaf represents a candidate solution. Solutions that

solve the equation end at bold leaf nodes whereas solutions that do not solve the

equation end at dashed leaf nodes.

The goal of the search algorithm is to find the paths that result in a valid

solution of the problem by traversing the search tree. Several search strategies can

be employed by the search algorithm including various traversal mechanisms such

as, depth first, breadth first, or best first traversals. A search algorithm can also

be configured to find all the solutions of the problem or to stop after finding the

first solution. Since the state space is typically large, it is usually difficult for the

search algorithm to cover all the search tree in a feasible amount of time. Several

techniques can be used to target this problem and improve the search performance.

For example, pruning techniques can be used to skip certain search paths that do

not lead to a solution.

32

3.2.2.1 Application to Repair

The repair algorithm uses a systematic search to repair the values of the

reference fields of a corrupt data structure. The repair problem is modeled as a

search problem where (1) the search variables are the fields of the corrupt data

structure; (2) the domain of values are the objects and values that compose the data

structure; and (3) repOk executions are used to guide the search and perform the

state space pruning. The goal of the search is to find values for the fields of the

structure to satisfy repOk. To illustrate, consider the following declaration of a

singly linked list.

c l a s s S i n g l y L i n k e d L i s t {
Node h e a d e r ;

s t a t i c c l a s s Node {
Node n e x t ;

}
}

A singly linked list has a header node, and each Node object in the list has

a next field. The only constraint on the structure of the list is acyclicity along the

next field. The search tree considered for finding a singly linked list with up to two

nodes is displayed in Figure 3.5(a). The choice points are the fields of the linked list

{header, N0.next, N1.next} and the choices are the nodes of the list N0, N1

in addition to null. The repair algorithm employs efficient pruning techniques that

are based on the Korat [10] tool for test input generation and that enable trimming

large sections of the search tree. For example, when the header field is assigned to

null the search does not consider any assignment for the next field of N0 or N1.

33

(b)

header

next

null N0 N1

null N0

next

null N0 N1

N0

header

next

N1

N0

header

next

next

N1

N0

header

next

next

N0

N1

header

next

N0

header

(a)

Figure 3.5: The search tree for repairing a singly linked list.

Moreover, only one node is considered for the header field, since considering the

other node only generates isomorphic structures. Using a depth first traversal of the

search tree, the search algorithm considers the lists in Figure 3.5(b) out of which

three lists satisfy the constraints.

This section illustrated how symbolic execution and systematic searches can

be separately used for repairing the data and the reference fields of a data structure.

In typical data structures, however, these two problems are not independent. The

next section describes the repair algorithm which combines the two techniques to

repair data structures.

3.3 Repair Algorithm

We define repair as follows:

Definition. Given a data structure s such that !s.repOk(), i.e., s violates the struc-

tural integrity constraints, generate t such that t.repOk(), i.e., t satisfies the same

constraints.

34

A key property of this definition is that the correctness specification is de-

fined with respect to a single program state. The definition does not constrain repair

to be performed with respect to a hypothetically correct reference state, but rather

defines repair as a transformation from the corrupt state into one that satisfies the

correctness specification. Another property of this definition is that it is relaxed

with respect to the repaired structure, i.e., it does not require the repaired structure

to satisfy any extra properties except what is defined in the correctness specifica-

tion. For example, the definition leaves the notion of similarity between the original

and repaired structure undefined.

This definition directs the design of the repair algorithm to primarily target

generating a structure that satisfies the integrity constraints specified by the user.

Any extra constraints on the generated structure are then added as an extension to

the original algorithm. For example, similarity can be represented as a distance-

metric between two graphs, one representing the initial corrupt structure, and the

other representing the new repaired structure.

We present a repair algorithm based on Java assertions. The algorithm im-

plements a dedicated solver for imperative constraints given as a repOk method.

This solver only operates on a single program state. Two fundamental techniques

that have been widely used in several techniques for testing and verification are

structural constraint solving and symbolic execution. The repair algorithm com-

bines these two techniques. It employs a systematic backtracking search for solving

the structural constraints and symbolic execution for solving the data constraints.

By solving the structural constraints the algorithm repairs faults in the reference

35

fields of the structure and by solving data constraints, it repairs faults in the primi-

tive fields of the structure.

Figure 3.6 shows the pseudo-code for the repair algorithm. The algorithm

takes a repOk predicate and a structure s as inputs and returns a boolean value

indicating whether the repair is successful or not.

Primarily, the algorithm performs a systematic search of the predicate space,

while mutating the fields of the given structure to satisfy the given predicate. The

algorithm first initializes the search by computing bounds on the search space. It

does this by calling the method getTypeDomains which traverses the given struc-

ture and for each type T it records domain(T) which holds all the values of type T

that are stored in the structure. The recorded domains represent the candidates for

repairing the corrupt fields in the structure.

The algorithm then proceeds with the search loop (the “SEARCH” label in

Figure 3.6) and repeatedly invokes repOk on the given structure while monitoring

its execution (the method runAndMonitor). During each invocation of repOk the

repair algorithm records information about the data structure. First, it records the

order in which the fields are accessed. This information is returned as a stack of

fields indicated by the stack variable in Figure 3.6. Second, for each accessed

field, it records a list of objects of the fields’s type encountered when the field was

accessed in repOk. When repOk reads an object field, the repair algorithm marks

the value of the field as visited. The objects are stored in the visited map in

Figure 3.6. Third, it records a path condition that holds the constraints on symbolic

fields generated during the execution of repOk. While initially all the structure

36

boolean r e p a i r (P r e d i c a t e repOk , O b j e c t s) {
L1 / / T r a v e r s e t h e g i v e n s t r u c t u r e t o compute a map t h a t h o l d s domains o f
L2 / / v a l u e s o f a l l t h e t y p e s d e c l a r e d and used i n t h e da ta s t r u c t u r e .
L3 Map<Type , Set<Objec t>> typeDomains = S ea rc h . getTypeDomains (s) ;
L4 Stack<F i e l d > s t a c k = new Stack<F i e l d > () ;
L5 Map<F i e l d , L i s t <Objec t>> v i s i t e d = new HashMap<F i e l d , L i s t <Objec t >>();
L6 C o n s t r a i n t S o l v e r s o l v e r = new C o n s t r a i n t S o l v e r () ;
L7 P a t h C o n d i t i o n pc = new P a t h C o n d i t i o n () ;
L8
L9 SEARCH: / / The main s e a r c h loop
L10 do {
L11 / / Moni tor t h e e x e c u t i o n o f repOk and r e c o r d : (1) f i e l d a c c e s s o r d e r
L12 / / (2) o b j e c t s a c c e s s e d f o r each type , and (3) a pa th c o n d i t i o n h o l d i n g
L13 / / c o n s t r a i n t s on t h e s y m b o l i c f i e l d s .
L14 boolean r e s u l t = execu teAndMoni to r (repOk , s , s t a c k , v i s i t e d , pc) ;
L15
L16 / / I f repOk r e t u r n s t r u e and t h e c o n s t r a i n t s are s o l v e d , r e t u r n TRUE
L17 i f (r e s u l t && s o l v e r . s o l v e (pc)) re turn true ;
L18
L19 / / I t e r a t e over t h e a c c e s s e d f i e l d s and compute t h e r e p a i r c a n d i d a t e s :
L20 / / For a r e f e r e n c e f i e l d , t h e c h o i c e s are : (1) n u l l , (2) v i s i t e d o b j e c t s
L21 / / o f i t s t ype , and (3) a non−v i s i t e d o b j e c t from i t s t y p e ’ s domain .
L22 / /
L23 / / For a p r i m i t i v e f i e l d , t h e o n l y c h o i c e i s a s y m b o l i c v a r i a b l e .
L24 f o r (F i e l d f : s t a c k) {
L25 S e a r ch . c o m p u t e R e p a i r C a n d i d a t e s (f , v i s i t e d , typeDomains) ;
L26 }
L27
L28 BACKTRACK: / / The b a c k t r a c k i n g loop
L29 whi le (! s t a c k . i sEmpty ()) {
L30 / / Get t h e l a s t f i e l d a c c e s s e d and mu ta t e i t s v a l u e . I f a l l
L31 / / t h e m u t a t i o n s have been c o n s i d e r e d , r e s t o r e t h e f i e l d ’ s
L32 / / o r i g i n a l v a l u e and g e t t h e n e x t f i e l d i n t h e s t a c k .
L33 F i e l d f = s t a c k . t o p () ;
L34
L35 i f (S ea r c h . h a s N e x t C a n d i d a t e (f)) {
L36 O b j e c t o = Se a r ch . g e t N e x t C a n d i d a t e (f) ;
L37 f . a s s i g n (o) ;
L38 break ;
L39 } e l s e {
L40 f . r e s t o r e V a l u e () ;
L41 s t a c k . pop () ;
L42 }
L43 } / / End b a c k t r a c k i n g loop
L44 } whi le (! s t a c k . i sEmpty ()) ; / / End s e a r c h loop
L46
L47 / / I f a l l t h e s e a r c h i s e x h a u s t e d , r e t u r n FALSE
L48 re turn f a l s e ;

}

Figure 3.6: The repair algorithm.

37

fields have concrete values, during the search process, primitive fields can become

symbolic.

If the execution of repOk returns true and the path constraints are satis-

fiable, the search terminates with a success and the corrupt structure s is repaired.

If the execution of repOk returns false or the path constraints are not satisfiable

the algorithm systematically backtracks (the “BACKTRACK” label in Figure 3.6)

mutating the values of the fields in reverse order of field access.

To perform backtracking, the algorithm first computes the possible choices

for each field in the search. The number of choices for each field depends on the

type of the field as well as the number of objects of the field’s type encountered

when the field is accessed; this information is pre-computed in the visited map.

For reference fields the number of candidates is equal to the number of encountered

objects + 2 (corresponding to null and one object that has not been encountered).

For primitive fields, there is one possible candidate; a symbolic value corresponding

to the field. The algorithm iterates over all the fields returned in the stack variable

when monitoring repOk, and uses the computeRepairCandidates method on

each field to compute and track the choices for repairing a field. The order through

which the field choices are enumerated is described in Section 3.3.1.

Backtracking occurs in reverse order of field access. The algorithm tries to

mutate the value of the last field accessed during the execution of repOk. If the

field has more candidates to try, its value is mutated to the next candidate and then

repOk is re-executed on the structure. Since all the fields of the structure except

the last field have the same value, the execution of repOk on the mutated structure

38

has the same field access order for those fields. This is a property of re-execution-

based backtracking where the state of the search is not saved but recomputed with

every iteration of the search. Once all the candidates for a field have been checked,

and do not repair the structure, the repair algorithm restores the field to its original

value and systematically backtracks to update the value of the second to last field

accessed and so forth until all the search candidates are discovered.

If all the field mutations do not repair the structure, the repair algorithm

returns false declaring that the structure s is still corrupt.

3.3.1 Non-deterministic Field Assignments

While backtracking on a field f the repair algorithm non-deterministically

mutates the value of the field according to its type. The algorithm considers two

cases: reference fields and primitive fields.

References. For a reference field f of type T and of value v, the algorithm

non-deterministically assigns f to candidates in the following order:

1. null, if v 6= null;

2. all visited objects o of type T , such that o 6= v and o belongs to the objects

that have already been encountered during repOk’s invocation, i.e., objects

maintained by the visited variable in Figure 3.6; and

3. a new (non-visited) object o of type T , such that o has not been encountered

during the execution of repOk; the computeRepairCandidates method

in Figure 3.6 computes this object. It takes the field f, the visited objects, and

39

the type domains, and selects an object from the field’s domain that is not in

the field’s visited set.

When all the candidates have been considered for a reference field f , the

original value of the field is restored.

Primitives. For a primitive field f of type T and value v, the algorithm

non-deterministically assigns f to a new symbolic value V , and adds the constraint

V 6= v to the current path condition.

Notice that a primitive field access may introduce symbolic values. For

these values, further invocations of repOk follow forward symbolic execution [72,

75]. Since all fields initially have concrete values, the first execution of repOk fol-

lows standard Java semantics for these values and does not generate any constraints

in the path condition. Once a field becomes symbolic, repOk’s execution populates

a set of constraints in the path condition which are solved to determine concrete

values for the field. If the constraints are not satisfiable, then the algorithm restores

the original value of the field. Therefore, when the algorithm terminates, all the

fields of the structure will have concrete values.

The repair algorithm builds on an initial algorithm [69] which is based on

the Korat test input generator [10] and symbolic execution [69, 72].

3.3.2 Complexity

The repair algorithm uses a systematic search algorithm where (1) the search

variables are the fields of the corrupt data structure, (2) the domains of values are

40

the objects of the corrupt data structure, and (3) search space pruning is performed

according to the field access order in repOk. The worst case performance of the

algorithm is therefore the time required to cover all the search space without any

pruning, which is exponential in terms of the size of the corrupt structure. Addition-

ally, the algorithm uses re-execution-based backtracking where the state of the data

structure is not saved during the search but rather rebuilt with every repair action.

This approach reduces the performance and memory space overhead of maintaining

the state of the data structure upon backtracking, but requires re-executing repOk

on the structure and re-constructing the structure state with every repair actions.

The number of repair actions is proportional to the size and the number of faults

in the data structure. As the number of required repair actions increases, the extra

repOk executions become expensive.

In practice, however, the experimental results (Section 3.6) show that the

repair algorithm can effectively repair complex data structures with up to a few

thousand nodes and tens of faults in less than a minute. The experimental results

also show that the performance of the repair algorithm depends on the implemen-

tation of repOk. Since search space pruning is primarily performed when repOk

returns false, a repOk formulation that terminates as soon as a fault is detected

in the data structure enables effective pruning of the search space and in turn more

efficient repair.

In Chapter 5, we describe a set of key optimizations for the repair algorithm

that target (1) reducing the number of repair actions required to repair the corrupt

structure, (2) pruning more sections of the search space, and (3) performing efficient

41

backtracking. While these optimizations do not improve the theoretical worst-case

complexity, they make our approach scale to larger structures in practice.

3.4 Correctness

In this section we argue the correctness of the repair algorithm with respect

to the given structural integrity constraints. We start by stating a set of key as-

sumptions about the correctness of the symbolic execution engine as well as a set

of conditions that the given predicate must satisfy for the algorithm to behave as

described in Section 3.3. We then state the correctness statement and present a

correctness argument for the repair algorithm.

3.4.1 Assumptions

We list the following assumptions about the symbolic execution engine and

the implementation of repOk. If any of the assumptions is violated, then the repair

algorithm may not repair correctly.

• A1: Symbolic execution of repOk is sound and complete. The symbolic

execution generates inputs that cover all the reachable paths in repOk, and if

the symbolic execution generates an input to cover a path P , then the concrete

execution on that input must traverse P .

• A2: Any execution of repOk must terminate with a boolean return value. If

this assumption is violated, then the repair algorithm may not terminate.

• A3: The implementation of repOk must not depend on the identity of the

42

objects in the data structure; i.e., the implementation must not include invo-

cations to the System.identityHashCode utility method.

• A4: The implementation of repOk must be deterministic. All the executions

of repOk on a structure must follow the same execution path, access the fields

of the structure in the same order, and return the same value.

• A5: The implementation of repOkmust not access global data or static fields.

The fields accessed by repOk must either be fields of the data structure or

local variables defined within repOk.

The assumptions about symbolic execution are necessary to state the cor-

rectness of the repair algorithm since the repair algorithm uses symbolic execution

to determine conditions on the input structure that result in repOk returning true.

These assumptions disregard any imprecision that the symbolic execution may incur

due to any loop structures in repOk, or operations in repOk that result in generat-

ing constraints in a non-decidable theory, e.g., non-linear arithmetic, system calls,

or resource allocations. The assumptions about repOk’s implementation are neces-

sary to ensure that (1) the search algorithm does not hang due to a bug in repOk and

(2) the utilized pruning techniques do not force the search to miss a valid structure.

3.4.2 Correctness Statement

Given a repOk method that satisfies the above assumptions, and an input

data structure; we argue that the repair algorithm is:

43

• Sound: If the repair algorithm returns true, the output structure does not

have any symbolic members and satisfies the given constraints.

• Complete: If at least one valid structure can be constructed using the ob-

jects of the input structure, the algorithm returns true and outputs a valid

structure.

3.4.3 Correctness Argument

Soundness: We argue that the repair algorithm repairs a corrupt structure into one

that satisfies the consistency constraints. If the repair algorithm returns true, then

the algorithm terminates at line L17 in Figure 3.6. To satisfy the conditions on line

L17, the execution of repOk on the structure returns true and the path constraints

are satisfiable. Thus, the output structure satisfies the constraints. If the algorithm

returns false, then it terminates at line L48 in Figure 3.6. To execute line L48

the stack variable is empty and all the structure fields are restored to their original

concrete values. Thus, the output structure is equivalent to the original corrupt

structure.

Completeness: We argue that the pruning techniques employed by the repair algo-

rithm do not force the search algorithm to skip any valid structure, i.e., a structure

that satisfies the constraints described in repOk.

Consider a naive search algorithm that takes a data structure p as input and

enumerates all the possible candidates for the fields of the structure without any

pruning. For a reference field f of type T , the candidate values are null in addition

44

to all the structure objects of type T . For a primitive field f of type T and value v,

the candidate values are v and a symbolic variable V corresponding to f .

The result of the naive search is a set of structures that can be categorized

into two groups: (1) structures with all the fields having concrete values; we term

these structures as the concrete structures and (2) structures with some fields hav-

ing symbolic values; we term these structures as the symbolic structures. Running

repOk on a concrete structure results in a truth value indicating whether the struc-

ture is valid or not. Symbolically executing repOk on a symbolic structure results

in covering all the paths in repOk along with a path condition for each path. For re-

pair, we are interested in the first reachable path in repOk that returns true. From

assumption A1, the symbolic execution is complete and thus any valid structure is

either a concrete structure or one that is generated by the symbolic execution.

The repair algorithm employs two pruning techniques on the naive search

algorithm. The first pruning technique is through the execution of repOk. Once

repOk returns false, the algorithm backtracks only on the fields accessed by

repOk’s execution; the values of the rest of the structure’s fields are not consid-

ered. The second pruning technique is through the non-deterministic field choices

performed during backtracking. The algorithm only considers one object that has

not been encountered during the execution of repOk instead of all such objects.

We argue that the pruning techniques do not skip any valid structure from the ones

generated by the naive algorithm.

The first type of pruning does not affect the completeness of the repair al-

gorithm since only structures that result in repOk returning false are not consid-

45

ered. Consider an execution of repOk that returns false and with a field access

order {f1, f2, .., fn}. From assumptions A4 and A5, since repOk is deterministic

and does not access global data, any data structure with the same values of fields

{f1, f2, .., fn} results in the same execution of repOk, and thus all the rest of the

fields do not affect repOk’s result.

The second type of pruning does not skip any valid data structure and only

considers non-isomorphic structures. This follows from the proof of correctness

and optimality of Korat [10] and it is described in detail in a technical report on

the evaluation of Korat [86]. Briefly, form assumption A3, repOk does not depend

on the identity of the assigned objects. Therefore, any two objects o1 and o2 of

type T that have not been encountered during repOk’s execution are semantically

equivalent since their fields are not yet accessed. Thus, using either o1 or o2 as

candidates when assigning a field f of type T results in two isomorphic structures.

Given the above argument, any pruning performed by the algorithm does

not ignore any valid structure. If a structure exists that satisfies repOk it is either a

concrete structure, or it is a symbolic structures whose fields’ values are generated

by the symbolic execution.

Correctness: The correctness of the repair algorithm with respect to the given con-

straints follows from its soundness and completeness.

46

3.5 Limitations

Repairing data values in a structure requires care. For example, in repairing

DoublyLinkedList, while we expect repair to re-establish structural constraints

of a doubly linked list, we do not expect repair to modify any particular element.

However, nothing prevents repair from introducing a new value for the size field

of the DoublyLinkedList if such a value satisfies the desired constraints. This

may cause a problem in some applications that do not tolerate any changes in the

repaired data structure. We mitigate this problem by allowing users to specify fields

that should not be mutated by repair. By declaring size as un-modifiable, the user

is assured that repair will only re-structure the existing list entries to satisfy the

invariants.

While proving the correctness of repair, we made strong assumptions about

the completeness of symbolic execution. However, since repOk is an arbitrary Java

method, finding an input for which the method returns true is undecidable. In

fact, non-linear constraints over integers are undecidable. We have not found this

to be a problem in practice. A reason for that is that repOk predicates are special

methods that focus on structural integrity and the constraints of commonly used data

structures seldom involve complex arithmetic. Even when repOk uses complex

arithmetic, bounded enumeration enables exhaustive exploration of a bounded input

space.

47

3.6 Preliminary Results

This section gives a quick overview of the evaluation of the repair algorithm

and its ability to repair different types of constraints. A detailed evaluation of the

repair algorithm is described in Chapter 6.

We present the results for applying the repair algorithm to the three data

structures described in this chapter: singly linked list, circular doubly linked list,

and binary search tree. For each subject structure, we evaluate the performance

of the repair routine by injecting errors, i.e., corrupting object fields and repairing

them as follows. Given s, the desired size of a structure, and e the desired number

of fields to corrupt:

1. Generate a structure of size s.

2. Corrupt e fields at random in the structure; a corruption is a triple 〈o, f, v〉,
where object o’s reference field f is assigned value v, which is either null

or a reference to an object of a compatible type.

3. Repair the corrupt structure.

For all subjects, we re-used repOk predicates that were developed previ-

ously [10, 30]. Re-use of specifications is a key strength of assertion-based repair.

Indeed, if a repOk is already available for a subject, say because it was tested with

Korat [10], it is used in repair for free. All experiments used a 1.7 GHz Pentium D

with 2 GB of RAM.

48

Subject Size Repair (ms) Repair (ms) Repair (ms) Repair (ms) Repair (ms)
[#errors≤1] [#errors≤5] [#errors≤10] [#errors≤15] [#errors≤20]

100 ≤ 2
Singly linked 1,000 21 not not not not
list 10,000 168 applicable applicable applicable applicable

100,000 1,666
50 170 204 239 261 293

Doubly linked 100 302 382 492 573 651
list 200 2,721 2,961 3,240 3,417 3,755

400 25,175 26,502 27,344 30,642 32,035
500 ≤ 2 47 62 141 219

Binary search 1000 14 109 156 218 392
tree 2000 33 266 516 762 968

4000 68 703 1,797 3,031 4,218

Table 3.1: Results for applying the repair algorithm on three subject structures.

We evaluate how the repair time varies with the structure size and the num-

ber of corrupt fields. Table 3.1 tabulates the results for the three subjects. For each

subject, we tabulate different structure sizes and the time to repair when there are

1, 5, 10, 15 and 20 errors injected. We choose these numbers of errors because in

a real situation, we expect a small number of corruptions. The last five columns

are labeled [#errors ≤ n] since it is possible (though unlikely) for a randomly

generated error to set the value of a field to its original value. The repair times for

sizes less than 50 are negligible and not shown here.

For singly linked acyclic list, Table 3.1 shows times for [#errors ≤ 1] only

as a singly linked list either has zero or exactly one cycle, irrespective of how many

next fields are mutated. Since at most one fault can occur is the structure of a

singly linked list, the repair algorithm can handle lists with 100,000 objects within

two seconds.

Doubly linked list was the most difficult among the above subjects to repair.

49

The complexity of the structure is in preserving reachability since each node must

be reachable from any node in the structure. The first valid structure might not have

the same number of nodes as the corrupt structure, and thus, the repair algorithm

keeps searching for a valid structure with the original size, if possible. For these

structures, the algorithm can repair structures with 400 nodes and [#errors ≤ 20]

in around thirty two seconds. Note that for the doubly linked list example, the

variation of the repair time with respect to the number of faults is minimal. We

explain this behavior in detail in Section 3.6.1.

For binary search tree the only structural constraint is acyclicity. The data

constraint corresponds to the correct search order of the data elements. For these

structures the algorithm repairs structures with up to 4,000 nodes in less that five

seconds.

We point out that the injected errors cripple the subject implementations,

causing failures ranging from un-handled exceptions to infinite loops. The repair

algorithm successfully repairs the corrupt structures and enables the respective ap-

plications to continue to execute.

3.6.1 Understanding the Results of Repair

The previous section evaluated the performance of repair in terms of the

size of the structure and the number of present faults. It computed the repair time in

the presence of randomly injected faults which gives an overall idea of the average

performance of the repair algorithm.

The repair time is affected by the number of repair actions performed during

50

repair. From the algorithm in Figure 3.6, each repair action requires executing

repOk on the structure to check if the performed action repairs a corruption. Several

parameters affect the number of repair actions required to repair a data structure.

These parameters include: (1) the location of the fault with respect to the root of

the structure, (2) correlations that exist between the corruptions, and (3) the violated

constraints. To further understand the results of repair, we study the effect of these

parameters on both the number of repair actions performed during repair and the

repair time. We use the doubly linked list example as a representative example since

its structure is characterized by both global properties such as the circularity and

reachability constraints and local properties such as the transpose relation between

the next and prev fields.

The nature of the violated constraints is very important for analyzing the

performance of the repair algorithm. Faults in a doubly linked list can occur in

the next, prev, or size fields of the structure. Faults in the next field may

break the circularity constraint and the transpose relation, faults in the size field

may break the reachability constraint, and faults in the prev field may break the

transpose relation. We study the result of repairing faults in each of these fields

independently, and then consider the cases of simultaneous faults.

Repairing the next field: For this experiment, we first configure the repair algo-

rithm not to mutate the value of the size field. We consider repairing a doubly

linked list with 200 nodes. We select one node of the list and assign its next field

to the header node. We vary the location of the selected node with respect to the

header node and study the effect of the fault location on the repair time. We run

51

Fault location Node#40 Node#80 Node#120 Node#160 Node#200
Repair actions 58,240 50,780 38, 520 21,460 2,002
Repair time (ms) 3,625 3,321 2,735 1,670 203

Table 3.2: Variation of the repair time with respect to the location of the fault in the
next field.

the repair algorithm for 5 different locations and compute the repair time as well

as the number of repair actions. The result is displayed in Table 3.2. The first row

shows the distance from the header node following the next field. The second

and third rows show the number of repair actions performed and the repair time in

milliseconds.

Note that for repairing a fault in the next field, the number of required

repair actions decreases as the fault moves away from the header node. For ex-

ample, the number of repair actions required to fix a corruption at the end of the

list is almost 20 time less than the number of actions required to repair a fault at

the 40th node. This is reflected on the repair time which also decreases as the fault

moves further away from the header node. This result is justified as follows. To

repair a fault in the next field, the repair algorithm may require to reorder the

nodes of the list depending on the choice of the non-encountered node during the

non-deterministic choice assignments. If such a fault occurs early during traversal,

the repair algorithm needs to reorder a large portion of the remaining nodes. As

the fault moves away from the header node, the size of the list that needs to be

reordered decreases and thus the number of required repair actions decreases.

We increase the number of faults injected at a time by injecting four faults

52

Fault location Node#400 Node#800 Node#1200 Node#1600 Node#2,000
Repair actions 401 801 1,201 1,601 2,001
Repair time (ms) 110 360 719 1,503 2,688

Table 3.3: Variation of the repair time with respect to the location of the fault in the
prev field.

in the next fields of nodes at distances 40, 80, 120, and 160 from the header node

and run the repair algorithm. The algorithm performs 60,830 mutations on the list

and repairs it in 3,870 milliseconds. Note that the repair time is similar to that of

repairing a single fault at the 40th node. Since repairing the fault at the 40th node

reorders the rest of the list, it automatically fixes the other faults.

We then release the constraint on the size field and allow the repair algo-

rithm to mutate it. We inject a single fault in the next field of the 100th node. To

repair the list, the algorithm performs only 103 mutations in 68 milliseconds. The

repaired list, however, includes only 100 nodes. Instead of finding a list with the

original nodes, the algorithm modifies the size field to reflect the number of nodes

in the list (in this case 100 nodes reachable through next) and repairs the structure.

Repairing the prev field: We run similar experiments to study how the repair

algorithm performs when repairing faults in the prev field. We consider a doubly

linked list with 2,000 nodes, and inject faults in the prev field of a set of the list’s

nodes. We again study the effect of the fault location on the performance of repair.

The results are tabulated in Table 3.3.

To repair a fault in the prev field, the repair algorithm searches all the list

nodes encountered during repOk’s traversal for the right candidate to repair the

53

corruption. As the distance of the faulty field from the header node increases, the

number of repair actions increases since the algorithm needs to try more candidates

before finding the right one. Moreover, there is no need to reorder the elements of

the list while repairing the prev field, and therefore, unlike repairing faults in the

next field, the number of non-encountered objects does not affect the performance

of the repair algorithm. The repair time also increases as the location of the fault

moves away from the header node. Each repair action requires traversing the

structure from the header node, which adds a quadratic growth in repair time with

respect to the location of the fault.

We then study the effect of repairing faults in the prev fields of multiple list

nodes on the performance of the repair algorithm. We consider a list of 1,000 nodes

and set the prev field of each of the nodes to null. To repair the list the repair

algorithm performs 501,500 mutations in 3 minutes. Note that unlike faults in the

next field where repairing the first detected fault dominates the performance of

repair, faults in the prev field are independent, and the repair time is the cumulative

time for repairing each fault in the order they occur while traversing the list.

The results of this section show that parameters such as the location of the

fault and the violated constraint utterly affect the performance of the repair algo-

rithm. The effect of these parameters differ depending on the nature of the structure

and the fields being repaired. To generalize the evaluation as much as possible, we

take such factors into consideration in our fault injection methodology (Chapter 6)

and in addition to randomly injected faults, we introduce specific faults at different

locations violating all the structural constraints that characterize the structures.

54

Chapter 4

Framework

Repair-based error recovery is viewed as a three stage process. The first

stage is a pre-deployment stage. Programmers develop repairable classes, i.e.,

classes that include a repOk method that describes the class invariant, and use

repair assertions instead of standard assertions to check for the consistency of the

repairable classes instances with respect to the class invariant. The second stage

is the integration stage. The repair logic is integrated into the program to gener-

ate repairable programs. The last stage is a post-deployment stage. The program

from the second stage is executed. The program behaves similarly to the original

program in case no assertion violation is detected, but automatically repairs itself

upon a violation. Unlike standard assertions, the repair assertions trigger the repair

algorithm upon a violation and enable error recovery.

To be attractive for practitioners, assertion-based repair must be easy to in-

corporate in existing software systems. This chapter presents an implementation of

a framework, code named Juzi, for assertion-based repair of Java programs. Fig-

ure 4.1 shows the architecture of the Juzi framework for error recovery. Juzi uses

code instrumentation to integrate repair into Java programs. Juzi takes as input a

program that implements a set of repairable classes and uses repair assertions to

55

Pre−deployment analysis

Instrumented
Program

Repaired
Structure

Erroneous
Structure

Symbolic
Execution

Code
Instrumentation

Configuration

ProgramJuzi API

Concrete

Logs
Repair

Post−deployment analysis

Execution

Constraint
Solver

Search−based
Repair

Figure 4.1: Juzi: a framework for repairing Java programs.

check for its properties (Section 4.1). Based on a set of user configurations (Sec-

tion 4.3), Juzi instruments the program classes and generates a new program with

embedded repair logic (Section 4.2). Once the instrumented program is executed

the post-deployment analysis starts. Upon an assertion violation, the erroneous

program state is detected and the repair loop is triggered. The repair loop consists

of the search algorithm, the symbolic execution engine, and the constraint solver.

The result of the repair loop is a repaired state that potentially enables the program

execution to proceed.

Additionally, Juzi provides an abstraction of the actions performed by the

repair algorithm to help the user understand what is being altered by repair (Sec-

tion 4.3.3). The abstraction is presented in the form of repair-logs that are tailored

towards helping users debug their programs.

Juzi consists of three key components: (1) a Java API for programmers

to use while writing programs, (2) a code-instrumentation module, that performs

source-to-source translation of the program to integrate the repair logic into the

56

programs’s code, and (3) a configuration module that allows user control of both

the repair algorithm as well as the output of repair. We next describe each of the

modules in detail.

4.1 Juzi API

Juzi provides a set of API methods and interfaces for programmers to use

in order to write repairable data structures. Juzi introduces the Repairable Java

interface for developers to identify the Java classes to be considered for repair. A

repairable class is a class which implements a repOk method that describes its class

invariant. Juzi also introduces a new assertion assertAndRepair to be used for

asserting the consistency of a repairable class state with respect to repOk. The

declaration of the components is shown below:

p u b l i c i n t e r f a c e R e p a i r a b l e {

p u b l i c boolean repOk () ;
}

p u b l i c c l a s s J u z i {

p u b l i c s t a t i c boolean a s s e r t A n d R e p a i r (R e p a i r a b l e o b j) { . . }

p u b l i c s t a t i c boolean a s s e r t A n d R e p a i r (R e p a i r a b l e [] o b j s) { . . }
}

The Repairable interface declares one method, repOk. Any class that

implements the Repairable interface must define repOk. Juzi provides two ver-

sions of the assertAndRepair API method; one that takes a single repairable

object and another that takes an array of repairable objects.

57

p u b l i c c l a s s D o u b l y L i n k e d L i s t implements R e p a i r a b l e {
Node h e a d e r ;
i n t s i z e ;

p u b l i c s t a t i c c l a s s Node {
i n t e l e m e n t ;
Node n e x t ;
Node p rev ;

}

p u b l i c boolean repOk () { . . }

p u b l i c vo id a d d F i r s t (i n t e l e m e n t) { . . }

p u b l i c s t a t i c D o u b l y L i n k e d L i s t c r e a t e L i s t (i n t s i z e) {
D o u b l y L i n k e d L i s t l l = new D o u b l y L i n k e d L i s t () ;
f o r (i n t i = 0 ; i < n ; ++ i) {

l l . a d d F i r s t (i) ;
}
a s s e r t A n d R e p a i r (l l) ;
re turn l l ;

}
}

Figure 4.2: A repairable DoublyLinkedList class.

To illustrate the use of the API, consider the DoublyLinkedList class in

Figure 4.2. The class implements the Repairable interface and therefore imple-

ments a repOk method. The addFirst method adds an element at the beginning

of the list and the createList method creates a list of a given size by successively

calling the addFirst method. Good programming practices advocate asserting the

integrity of the data structures at the border of public and factory methods [81]. To

assert the integrity of the created list, the assertAndRepair method is called be-

fore returning from the createList method which ensures the consistency of the

list with respect to the constraints described in repOk.

58

p u b l i c s t a t i c boolean a s s e r t A n d R e p a i r (R e p a i r a b l e o b j) {
/ / I f t h e c l a s s i s n o t i n s t r u m e n t e d ,
/ / t h e n t r e a t as a Java a s s e r t i o n
i f (! (o b j i n s t a n c e o f J u z i I n s t r u m e n t e d)) {

a s s e r t o b j . repOk () ;
re turn true ;

}

/ / E x e c u t e t h e r e p a i r l oop
J u z i . i n i t i a l i z e (o b j) ;
Se a r c h . i n i t i a l i z e (o b j) ;
boolean done = f a l s e ;
do {

P a t h C o n d i t i o n . i n i t i a l i z e () ;
i f (o b j . repOk ()) {

i f (! P a t h C o n d i t i o n . i s F e a s i b l e ()) co n t i n u e ;
done = t rue ;
break ;

}
} whi le (S e a r ch . n e x t S t a t e ()) ;
re turn done ;

}

Figure 4.3: The implementation of the assertAndRepair method.

The implementation of assertAndRepair is displayed in Figure 4.3. The

assertAndRepair method first checks if the class has been instrumented by Juzi

or not. If the class is not instrumented, the method behaves as a standard assertion

that wraps the Java assert statement on repOk and terminates the program in case

of a violation. If the class is instrumented, the method executes the repair loop. Note

that this implementation enables using the standard semantics of assertions before

the program is deployed, and then the repair semantics can be used after deployment

once the program is instrumented.

59

4.2 Instrumentation Engine

Juzi implements an instrumentation engine that takes the user program as

input and instruments it into a functionally equivalent program that uses a set of

libraries to enable repair. To compute the program classes that need to be instru-

mented, Juzi first detects the set of repairable classes (classes that implement the

Repairable interface) and performs a reachability analysis to determine all the

classes that the repairable classes reference, and the classes that reference the re-

pairable classes. Juzi labels all these classes as “instrumented” by adding an empty

interface JuziInstrumented to their interface list. This label allows runtime

checking of whether a class is instrumented or not; for instance, the implemen-

tation of the assertAndRepair method does that. Juzi then instruments each

class by (1) replacing field accesses with invocations to accessor methods that en-

able non-deterministic choice assignments, (2) adding boolean fields to monitor

the initializations of the fields, and (3) inserting calls into the repair libraries. Juzi

uses third party libraries for performing the code instrumentation at the bytecode

level [12, 19, 98].

Two key classes enable repair: Search and PathCondition. Figure 4.3

shows the repair loop which performs a systematic search and uses symbolic exe-

cution [75].

The Search class provides a framework for state space exploration. It im-

plements an initialize method which takes an input structure, and initializes

the search space as described in Chapter 3. To initialize the search space, the

initialize method traverses the structure and for each type it records the do-

60

mains of values that the fields of that type could take. The recorded domains rep-

resent the candidates for repairing the corrupt fields in the structure. The Search

class also keeps track of the current state of the search and provides the nextState

method which puts the search into the next possible state. The nextState method

returns false if the entire state space is explored.

The PathCondition class enables tracking the path conditions that arise in

symbolic execution. The path condition is a set of constraints on program variables

that, when satisfied, enable the program execution to take a specific program path.

The initialize method clears the path condition; isFeasible checks whether

the current path condition is satisfiable; and update adds a constraint to the path

condition.

The repair loop starts by initializing the search environment and state by

calling Search.initialize on the corrupt structure. The loop proceeds by re-

peatedly invoking repOk on the given structure. Each execution of repOk (1) mon-

itors the order of field accesses and (2) non-deterministically updates the value of

the last field accessed—if all values have been checked, systematically backtracks

to update the value of the second to last field accessed and so forth (Section 3.3.1).

The given repOk implementation, however, does not include the logic for back-

tracking, field monitoring, or non-deterministic field assignments. Juzi instruments

repOk to allow such behavior.

61

4.2.1 State Space Exploration

To support non-deterministic choices, the Search class provides a choose

method that takes an integer which represents the number of non-deterministic

choices and returns an integer which represents one of these choices. For example,

the assignment, int choice = Search.choose(2);, non-deterministically as-

signs the values 0, 1, 2 to the variable choice.

To keep track of the current choice, Search holds a counter for each call

site for the method choose in the program. At each call site, the first call to choose

adds a counter in the Search class and initializes its value to 0. Further calls at a

call site return the value of the counter. Search also provides a nextStatemethod

that increments the value of the last added counter. Once all the possible choices

for a counter are explored, the corresponding counter is deleted. The nextState

returns true if a counter is incremented, and false when all the counters are

deleted (this indicates that the state space is explored). To illustrate, consider the

following example:

void s p a c e E x p l o r a t i o n () {
L1 . S e a r ch . i n i t i a l i z e () ;
L2 . do {
L3 . i n t i = S e a r ch . choose (1) ;
L4 . i n t j = S e a r ch . choose (2) ;
L5 . System . o u t . p r i n t l n (i + " " + j) ;
L6 . } whi le (S ea r c h . n e x t S t a t e ()) ;

}

The calls to the choose method at lines L3 and L4 set the search space

by creating two counters that count from 0 to 1 and 0 to 2 respectively. The

nextState increments the value of the counters. The do..while loop executes

62

until both counters reach their maximum value and the nextState returns false.

The output of executing the method spaceExploration is:
0 0
0 1
0 2
1 0
1 1
1 2

By associating field domain values with integer indices, the choose method

enables non-deterministic field assignments.

4.2.2 Structure Mutation

The repair algorithm mutates the structure based on repOk’s executions. To

enable non-deterministic field assignments, Juzi instruments the Java bytecode of

both the repairable classes and the repOk methods.

Class instrumentation: For each field in a class, Juzi adds a boolean vari-

able field is initialized that indicates whether a field is being accessed for

the first time. To monitor field accesses and allow non-deterministic assignment,

Juzi adds get and set accessor methods for each field. These methods provide

the functionality for accessing and setting field values, and enable an observer to

note the order of accesses. Additionally, for each class type, Juzi uses two new

java.util.Set fields that represent the sets of visited and non-visited objects

during the search. To illustrate, a snapshot of the instrumented DoublyLinkedList

from Section 4.1 is displayed in Figure 4.4. A boolean field and two accessor meth-

ods are added for reference fields (to support non-deterministic field assignment)

63

c l a s s D o u b l y L i n k e d L i s t implements R e p a i r a b l e {
s t a t i c S e t v i s i t e d L i s t s , n o n V i s i t e d L i s t s ;
s t a t i c S e t v i s i t e d N o d e s , n o n V i s i t e d N o d e s ;

Node h e a d e r ; boolean h e a d e r i s i n i t i a l i z e d ;
S y m b o l i c I n t s i z e ; boolean s i z e i s i n i t i a l i z e d ;

void h e a d e r (Node n) { . . . } / / added s e t method
Node h e a d e r () { . . . } / / added g e t method

void s i z e (S y m b o l i c I n t i) { . . . } / / added s e t method
S y m b o l i c I n t s i z e () { . . . } / / added g e t method

s t a t i c c l a s s Node {
S y m b o l i c I n t e l e m e n t ; boolean e l e m e n t i s i n i t i a l i z e d ;
Node n e x t ; boolean n e x t i s i n i t i a l i z e d ;
Node p rev ; boolean p r e v i s i n i t i a l i z e d ;

void n e x t (Node n) { . . . } / / added s e t method
Node n e x t () { . . . } / / added g e t method

void prev (Node n) { . . . } / / added s e t method
Node prev () { . . . } / / added g e t method

void e l e m e n t (S y m b o l i c I n t i) { . . . } / / added s e t method
S y m b o l i c I n t e l e m e n t () { . . . } / / added g e t method
. . .

}
. . .

}

Figure 4.4: The instrumented DoublyLinkedList class.

and for primitive fields (to support symbolic execution). Two sets are added for

each reference type to keep track of the visited and non-visited objects of that type.

repOk instrumentation: To monitor the order of field accesses in repOk,

Juzi instruments the method’s bytecode by changing all the field accesses to method

invocations of the added accessor methods. To illustrate, the following bytecode

64

corresponds to the statement “Node current = header;” from the repOkmethod

of the DoublyLinkedList:

2 6 : a l o a d 0
2 7 : g e t f i e l d #24 ; / / F i e l d header : L D o u b l y L i n k e d L i s t \$Node ;
3 0 : a s t o r e 2

The instrumented bytecode is:

3 2 : a l o a d 0
3 3 : i n v o k e v i r t u a l #165 ; / / Method header : () L D o u b l y L i n k e d L i s t \$Node ;
3 6 : a s t o r e 2

For ease of understanding, Figure 4.5 illustrates the instrumented code at the

source-code level. All the field accesses are transformed into method invocations.

Operations on primitive values are changed into operations on symbolic primitives.

Conditional statements are replaced with method invocations that update the path

condition.

The non-deterministic assignment is performed by the methods added dur-

ing class instrumentation. Figure 4.6 shows an example of the added methods for

the next field of the DoublyLinkedList class. The first method (the set method)

simply sets the value of next and marks it as accessed (initialized) by assigning the

next is initialized variable to true. The second method (the get method) re-

turns the current value of next if it is previously accessed (initialized). If it is not

yet initialized, the get method non-deterministically chooses a value for next. The

first choice is the original (possibly corrupt) value. This choice reflects the normal

behavior of a field access and is made to maintain the normal execution of the pro-

gram in case there is no error. The other choices are null, a visited Node, and a

65

boolean repOk () {
i f (h e a d e r () == n u l l)

re turn (s i z e () . ifEQ (new I n t C o n s t a n t (0)) ;
S e t v i s i t e d = new HashSet () ;
v i s i t e d . add (h e a d e r ()) ;
Node c u r r e n t = h e a d e r () ;
whi le (t rue) {

Node n = c u r r e n t . n e x t () ;
i f (n == n u l l) re turn f a l s e ;
i f (! v i s i t e d . add (n)) {

/ / S y m b o l i c check ; u p d a t e s t h e pa th c o n d i t i o n
i f (s i z e () . ifNEQ (v i s i t e d . s i z e ())) re turn f a l s e ;
i f (n . p r ev () != c u r r e n t) re turn f a l s e ;
e l s e break ;

}
i f (n . p r ev () != c u r r e n t) re turn f a l s e ;
c u r r e n t = n ;

}
re turn t rue ;

}

Figure 4.5: The instrumented repOk method.

new non-visited Node (as described in Section 3.3.1). Note that the algorithm keeps

track of the visited and non-visited nodes for each field so that the correct choices

are made according to the order in which the fields are accessed in repOk.

4.2.3 Symbolic Execution

To enable symbolic execution, instrumentation replaces type declarations of

primitive types with custom library classes. For example, each integer declaration

is replaced with the library class SymbolicInt. The SymbolicInt defines the

semantics of the operations on symbolic integers. All the operations over primi-

tive integers are replaced with invocations of library methods that are members of

the SymbolicInt class. A key requirement of symbolic execution is the ability

66

/ / S e t method f o r n e x t
void n e x t (Node n) {

n e x t = n ;
n e x t i s i n i t i a l i z e d = t rue ;

}

/ / Get method f o r n e x t
Node n e x t () {

i f (! n e x t i s i n i t i a l i z e d) {
n e x t i s i n i t i a l i z e d = t rue ;

/ / Non−d e t e r m i n i s t i c c h o i c e based on t h e number o f v i s i t e d nodes
i n t i = Se a rc h . choose (v i s i t e d N o d e s . s i z e () + 2) ;

/ / Re t u r n t h e o r i g i n a l v a l u e and
/ / add t h e node o b j e c t t o t h e v i s i t e d node s e t
i f (i == 0) {

i f (n e x t != n u l l)
i f (v i s i t e d N o d e s . add (n e x t))

n o n V i s i t e d N o d e s . remove (n e x t) ;
}
/ / A s s i g n n u l l t o n e x t
e l s e i f (i == 1) {

i f (n e x t == n u l l)
Se a r c h . b a c k t r a c k () ;

n e x t = n u l l ;
}
/ / A s s i g n an a l r e a d y v i s i t e d node t o n e x t
e l s e i f (i > 1 && i < v i s i t e d N o d e s . s i z e () + 2) {

Node temp = g e t V i s i t e d N o d e A t (i − 2) ;
i f (n e x t == temp)

Se a rc h . b a c k t r a c k () ;
n e x t = temp ;

}
/ / A s s i g n a new non−v i s i t e d node t o n e x t
e l s e i f (i == v i s i t e d N o d e s . s i z e () + 2) {

Node temp = getANonVis i tedNode () ;
i f (temp != n u l l) {

n e x t = temp ;
v i s i t e d N o d e s . add (n e x t) ;
n o n V i s i t e d N o d e s . remove (n e x t) ;

}
}
e l s e

S ea rc h . b a c k t r a c k () ;
}
re turn n e x t ;

}

Figure 4.6: The added accessor methods for next.

67

to cover different program paths. To allow covering the two branches of a con-

ditional statement, Juzi replaces conditional statements with method invocations

on SymbolicInt variables. These methods perform non-deterministic Boolean

choices and consider both results of a conditional statement. For example, the

ifNEQ method in Figure 4.5 compares two symbolic integers and considers the

two cases for equality and inequality. To keep track of the path conditions gen-

erated using symbolic execution, Juzi uses the PathCondition class described

earlier and that is updated with every non-deterministic choice. At the end of each

program path, the repair algorithm checks the satisfiability of the path condition. If

the path condition is satisfiable, it solves the path condition and assigns values to

the symbolic variables.

4.3 Configurations

We next describe the different ways the user can configure the repair algo-

rithm.

4.3.1 Controlling the Fields to Repair

Juzi provides a configuration file for the user to specify what classes to

instrument and what fields to repair. This feature allows the user to add more con-

straints on the repair algorithm, which may be needed in some cases. For example,

when the structure needs to have a certain number of nodes, the user can specify

not to repair the size field and keep it concrete rather than symbolic. In this case,

Juzi cannot modify the size field to satisfy other constraints and if the size prop-

68

erty is not satisfied, it reports the structure as non-repairable. We have already used

this feature while running the experiments in Section 3.6.1 where we configured

Juzi to treat the size field concretely to study the effect of the fault location on the

performance of the repair algorithm.

4.3.2 Controlling Data Repair

Data repair is a challenging problem. To illustrate, consider the problem

of repairing the data elements of a binary search tree. While re-ordering the data

elements to satisfy the search order may be a good choice for repair, the repair al-

gorithm may set new values to the data elements and declare the tree as repaired.

Juzi gives the user some control on how to repair the data. (1) The user can specify

domains of values for data fields. Juzi will then use these domains while repairing

data corruptions. (2) The user can select which type of constraint solver to use for

solving the path conditions. Constraints on the order of data can be solved using a

difference constraint solver which reorders the data elements without mutating the

values. Other complex constraints require more complex solvers to repair the data

values. (3) The user can configure Juzi to only use the values present in the data

structure to repair the structure. For a primitive type T , the repair algorithm com-

putes domain(T) by traversing the given (corrupt) structure, collecting all values

of type T encountered during the traversal, and re-using these values to solve the

data constraints.

69

4.3.3 Abstractions

To assist the users in understanding the mutations performed during repair,

Juzi provides them an abstraction of the performed repair actions, if they so desire.

The abstraction specifies the set of fields that are mutated. Such information can

help the users debug their program (if the corrupt structure was a result of a bug

in the program). Moreover, Juzi also provides the users with a pair of abstract

values that represent the structure before and after repair. The users can choose to

provide their own abstraction functions if they like. As a default, Juzi provides a

function, α, that counts the number of values of each type reachable from root o:

α(o) = {〈n, T 〉|n is number of values of type T}. Juzi also reports a difference

report between the structure state before repair and after repair which indicates the

fields that have been mutated along with their original and new values.

4.3.4 Visualization

Juzi can be configured to visualize the repair process to provide a graphical

representation of the structure before and after repair as well as the steps taken to

go from the initial (corrupt) to the repaired structure. This feature (1) helps users

understand the behavior of the repair algorithm, and (2) provides a debugging tool

as it visually portrays the repair process suggesting ideas as to what might have

gone wrong during the program execution. Moreover, the visualization also assists

the user in finding bugs in repOk itself and guides the writing of repOk methods.

Juzi uses the Jung network layout framework to visualize the data struc-

tures [82]. Jung provides a generic graph class and a customizable utility package

70

Figure 4.7: Example of the Juzi visualization module.

for displaying the graphs. Upon an assertion violation, Juzi translates the corrupt

data structure into a Jung graph and displays it. The display GUI is interactive and

allows the user to manually go through the repair actions one step at a time. Once

the structure is repaired the program proceeds with its execution using the repaired

structure. Figure 4.7 shows an example of the visualization provided by Juzi for

repairing a doubly linked list with four nodes. By clicking the next button the user

can iterate through the repair actions.

71

Chapter 5

Optimizations

This chapter presents two key optimizations for the core repair algorithm

presented in Chapter 3. These optimizations target the search exploration strategy

and the backtracking engine, and aim at enhancing the performance of the repair

algorithm to repair larger structures with more faults. The first optimization utilizes

a static analysis of repOk to capture information about the target data structure

and uses the information to guide the search to the more likely candidates to repair

faulty fields. The second optimization devises a checkpoint-based backtracking

engine that enables the search to efficiently backtrack to the next candidate structure

without having to rebuild the structure state.

5.1 STARC: Static Analysis for Repairing Complex Data

We presents STARC, a static analysis for efficient and effective repair of

large data structures. Similar to the original repair approach, STARC systemati-

cally explores a neighborhood of the given corrupt structure using a backtracking

search [23, 46, 56, 59] and performs repair actions, to transform the structure into

one that satisfies the desired assertion. STARC, however, draws its key strength

from a static analysis that enables it to perform repair actions that are more likely to

72

Fields

Instrumented
Program

Repaired
Structure

Erroneous
Structure

Symbolic
Execution

Configuration

Program

Concrete

Logs
Repair

Pre−deployment analysis Post−deployment analysis

Execution

Constraint
Solver

Search−based
Repair

Code
Instrumentation

Static
Analysis

Juzi API

Recurrent

Figure 5.1: Static analysis for repair.

correct the corruption. The key idea behind STARC is as follows: repOk describes

the constraints that the corrupt structure must satisfy. Statically analyzing repOk’s

implementation enables extracting information about the target data structure that

can help guide the search during repair.

Given a repOk method, the static analysis identifies two key characteristics.

One, it identifies a set of recurrent fields [16], i.e., fields that repOk primarily uses

to traverse its input structure. Two, it identifies a set of local field constraints,

i.e., how the value of an object field is related to the value of a neighboring object

field. STARC uses the result of the static analysis to (1) prioritize the order of

repair actions based on the role of the corrupt field (recurrent or not), which makes

efficient local repairs of corrupt fields and (2) monitor field accesses based on their

relationship with their neighboring fields, which enables effective pruning of the

search space. Figure 5.1 shows STARC as an extension of the repair framework

described in Chapter 4. The bold components represent the new optimizations.

These optimizations enables STARC to feasibly repairs faulty structures with tens

73

header
size = 4

N0 N1 N2 N3

(a)
header
size = 4

N0 N1 N2 N3

(b)

N0 N1 N2 N3

header
size = 4

(c)

Figure 5.2: Repairing a circular doubly linked list using STARC.

of thousands of nodes—up to ten times larger than those possible using the original

repair algorithm.

5.1.1 Illustrative Example

This section illustrates STARC using the doubly linked list example. It il-

lustrates how STARC uses the static analysis to improve the performance of repair.

Consider the DoublyLinkedList class and the repOk method described

in Section 3.1.1. To repair a doubly linked list, STARC first analyzes repOk and

detects that the next field is the field used to traverse the doubly linked list, i.e.,

the recurrent field of the structure, and that the prev field is always equal to the

transpose of the next field. Then given an erroneous structure STARC orders the

repair actions according to the role of the field being repaired and guides the search

74

algorithm to the choices that are more likely to repair the corruptions.

To illustrate, consider repairing the DoublyLinkedList instance in Fig-

ure 5.2 (a). Figures 5.2 (b-c) show the mutations performed by STARC to repair

the corrupt structure. STARC uses the static analysis result to prioritize the order

of the mutations on the corrupt fields. For a recurrent field, STARC gives a higher

priority for selecting a non-visited node over a visited one or null, since recurrent

fields are used for traversal and are highly likely to point to a new node. For this

example, STARC first sets the next field of node N2 to the non-visited node N3,

and thus, repairs the next field in one try. STARC then utilizes the information

about the transpose relation between the prev and the next fields to repair faults

in the prev field. STARC directly sets the prev field of node N3 to node N2, and

repairs the structure.

In comparison with the original repair algorithm, instead of performing

seven mutations to repair the list the optimizations enable STARC to repair the

structure using only two mutations.

5.1.2 Detecting the Recurrent Fields of a Structure

The performance of the repair algorithm is highly dependent on the number

of repair actions that are required to repair a structure. To scale the performance

of the search algorithm, STARC first implements a static analyzer that detects the

recurrent fields of the data structure. A key observation behind finding the recur-

rent fields is that such fields satisfy the reachability constraint of the structure. A

recurrent field is more likely to point a non-visited object rather than a visited one.

75

Cahoon and McKinley proposed a data flow analysis framework for detect-

ing the recurrent fields for prefetching of linked structures [15, 16]. We use this

analysis to prioritize the repair actions. The problem is modeled as a forward data

flow analysis problem. We first define some terms that we use to describe the com-

ponents of the framework, then we describe the data-flow framework and illustrate

how STARC uses the recurrent field information to prioritize repair actions.

5.1.2.1 Terminology

We define the following terms:

• Information unit (IU): An information unit is the left hand side of an assign-

ment operation on objects or object fields. An information unit is used to save

and propagate information in the data flow framework.

• Object field (F): An object field is a reference field in the data structure.

• Recurrent status (RS): The recurrent status of an object field can have one

of three values: non recurrent (nr), possibly recurrent (pr), and recurrent (r),

where the elements are ordered such that nr ≤ pr ≤ r.

• Information site (IS): An information site is a program statement of interest.

For example, consider the repOkmethod for the DoublyLinkedList class

(Section 3.1.1). The information units are the local variables visited, current,

n, and the implicit variable this. The object fields are the header field of the

76

variable this, and the next and prev fields of the variables current and n. The

information sites are lines L2, L4, L6, L17, and L0, the entry of the method.

5.1.2.2 Data-flow Framework

The basic data unit in the data flow framework is the information tuple T :

T ⊂ (IU × F × IS ×RS)

The data flow framework includes:

Initialization: When initializing an information tuple, all the components of the

tuple are initialized to the bottom element of their lattices. For an information unit,

iu, the bottom element is iu, for an object field, the bottom element is null, for an

information site, the bottom element is L0, and for the recurrent status, the bottom

element is nr.

The data-flow functions: The propagation of information in the framework occurs

at the information sites. We consider two types of information patterns: equality

patterns and access patterns. Given an input set of information tuples, Rin, we

compute:

• Equality patterns: 〈information unit〉 = 〈information unit〉′

GEN(iu = iu′, Rin) = {(iu, f, is, rs)|(iu′, f, is, rs) ∈ Rin}

KILL(iu = iu′, Rin) = {(iu, f, is, rs)}

77

• Access patterns: 〈information unit〉 = 〈information unit〉′.〈object field〉

GEN(iu = iu′.f, Rin) =

if {(iu′, null, L0, nr)} ∈ Rin
(iu, f, is, pr)

if {(iu, f, is, pr)} ∈ Rin
(iu, f, is, r)

KILL(iu = iu′.f, Rin) = {(iu, f, is, pr), (iu, null, L0, nr)}

The meet operation: The meet operation (t) is defined on sets of tuples. Given

two sets T1 and T2, the meet operation is defined as follows:

T1 t T2 = {t|t ∈ T1 ∧ t 6∈ T2} ∪ {t|t 6∈ T1 ∧ t ∈ T2}
∪{(iu, f, is, rs1 t rs2)|(iu, f, is, rs1) ∈ T1
∧(iu, f, is, rs2) ∈ T2}

The transfer functions: The transfer functions are:

Ain(ip) =
⊔

p∈pred(ip) Aout(p)

Aout(ip) = (Ain(ip)/KILL(ip, Ain(ip))) tGEN(ip, Ain(ip))

Starting at the entry of the analyzed method (repOk), all the tuples are initialized.

The algorithm proceeds by propagating information and iterating until a fixed point

is reached. To illustrate, the first three iterations of the data flow analysis for the

DoublyLinkedList’s repOk are displayed in Table 5.1. The bold tuples indicate

an update in the tuple information during successive iterations. The tuples for the

information units this and visited are never updated and thus they are omitted

for brevity. The framework converges in the fourth iteration.

78

st
m

t
R

A
It

er
at

io
n

1
It

er
at

io
n

2
It

er
at

io
n

3
L
4

i
n

(
c
u
r
r
e
n
t
,
n
u
l
l
,

L
0
,

n
r
)

(
c
u
r
r
e
n
t
,
n
u
l
l
,

L
0
,

n
r
)

(
c
u
r
r
e
n
t
,
n
u
l
l
,

L
0
,

n
r
)

(
n
,

n
u
l
l
,

L
0
,

n
r
)

(
n
,

n
u
l
l
,

L
0
,

n
r
)

(
n
,

n
u
l
l
,

L
0
,

n
r
)

L
4

o
u
t

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
n
,

n
u
l
l
,

L
0
,

n
r
)

(
n
,

n
u
l
l
,

L
0
,

n
r
)

(
n
,

n
u
l
l
,

L
0
,

n
r
)

L
6

i
n

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,
n
u
l
l
,

L
0
,

n
r
)

(
c
u
r
r
e
n
t
,
n
e
x
t
,

L
1
7
,

p
r
)

(
c
u
r
r
e
n
t
,
n
e
x
t
,

L
1
7
,

r
)

(
n
,

n
u
l
l
,

L
0
,

n
r
)

(
n
,

n
u
l
l
,

L
0
,

n
r
)

(
n
,

n
u
l
l
,

L
0
,

n
r
)

(
n
,

n
e
x
t
,

L
6
,

p
r
)

(
n
,

n
e
x
t
,

L
6
,

r
)

(
n
,

n
e
x
t
,

L
6
,

r
)

L
6

o
u
t

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,
n
u
l
l
,

L
0
,

n
r
)

(
c
u
r
r
e
n
t
,
n
e
x
t
,

L
1
7
,

p
r
)

(
c
u
r
r
e
n
t
,
n
e
x
t
,

L
1
7
,

r
)

(
n
,

n
e
x
t
,

L
6
,

p
r
)

(
n
,

n
e
x
t
,

L
6
,

r
)

(
n
,

n
e
x
t
,

L
6
,

r
)

L
1
7

i
n

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,

h
e
a
d
e
r
,

L
4
,

p
r
)

(
c
u
r
r
e
n
t
,
n
u
l
l
,

L
0
,

n
r
)

(
c
u
r
r
e
n
t
,
n
e
x
t
,

L
1
7
,

p
r
)

(
c
u
r
r
e
n
t
,
n
e
x
t
,

L
1
7
,

r
)

(
n
,

n
e
x
t
,

L
6
,

p
r
)

(
n
,

n
e
x
t
,

L
6
,

r
)

(
n
,

n
e
x
t
,

L
6
,

r
)

L
1
7

o
u
t

(
c
u
r
r
e
n
t
,
n
e
x
t
,

L
1
7
,

p
r
)

(
c
u
r
r
e
n
t
,
n
e
x
t
,

L
1
7
,

r
)

(
c
u
r
r
e
n
t
,
n
e
x
t
,

L
1
7
,

r
)

(
n
,

n
e
x
t
,

L
6
,

p
r
)

(
n
,

n
e
x
t
,

L
6
,

r
)

(
n
,

n
e
x
t
,

L
6
,

r
)

Ta
bl

e
5.

1:
T

he
fir

st
th

re
e

ite
ra

tio
ns

of
th

e
da

ta
flo

w
fr

am
ew

or
k.

79

At the end of the analysis, the object fields in the tuples that have a recurrent

status r are considered the recurrent fields as used by repOk. For example, as

expected, in Table 5.1 all the tuples that have r as a recurrent status have next as

an object field. Thus, next is the field used for traversing the list in the repOk

method of the DoublyLinkedList class. The prev field is not reported by the

analysis as a recurrent field since it is not used by repOk to traverse the structure.

Note that interprocedural analysis is performed similarly. At the call site,

information is propagated to the entry of the called method by following a set of

equality patterns for each argument in the method signature. At the return site,

information is propagated from the called method to the caller by following an

equality pattern at the caller side. Details about the interprocedural analysis are

found elsewhere [16].

5.1.2.3 Prioritizing Repair Actions

STARC uses the information about the reference fields to prioritize the can-

didates for repairing the structure fields. The repair algorithm follows the same

search pattern when taking repair actions to fix an error in a reference field (Sec-

tion 3.3). The recurrent fields of a linked data structure are used to traverse the

structure starting from a given root node. For traversing a structure, recurrent fields

are more likely to point to new (non-visited) nodes or null rather than pointing to

previously visited nodes. STARC orders its repair candidates based on the type of

the faulty field (recurrent or not). For recurrent fields, STARC gives higher priority

for choosing a new (non-visited) candidate over choosing a visited one or null. For

80

the non-recurrent fields, STARC chooses the same order presented in Section 3.3;

STARC gives higher priority to choosing a visited node over a new node. This op-

timization not only improves performance (Section 5.1.5) but also guarantees that

the reachability of the structure is preserved by repair.

5.1.3 Detecting Constraints on References

Structural properties often constrain aliasing possibilities, e.g., o.f == p

⇔ p.g == o for objects o and p, and fields f and g. Solving such constraints can

be efficiently performed symbolically without enumerating the search space.

STARC implements a static constraint solver that repairs particular fields

instantaneously; without triggering the search algorithm. Some of the imperative

constraints on reference fields take the following pattern:

i f (i u != i u’) {
...
return false;

}

For example, the transpose relation between the next and prev fields of

the DoublyLinkedList class takes the following form:

Node n = c u r r e n t . n e x t ;
i f (n . p r ev != c u r r e n t) {

re turn f a l s e ;
}

The solution of such constraints is embedded in the negation of the con-

dition. STARC performs static analysis on the control flow graph of the repOk

81

method to detect these patterns. Once these patterns are detected, the solver injects

the solution of the constraints into the repOk method.

All the analysis that STARC performs is at the Java bytecode level. To de-

tect patterns in a method, STARC builds the control flow graph (CFG) and searches

for basic blocks where the entry instruction is a conditional branch and the exit

instruction is an integer return. To detect the items being compared in the condi-

tional statement, STARC uses the JVM specification [80] to trace the last two items

produced on the stack. For example, consider the bytecode example of the trans-

pose constraint of the DoublyLinkedList as described in the repOk method in

Section 3.1.1:

/ / Compare prev t o c u r r e n t
4 2 : a l o a d 3
4 3 : g e t f i e l d #32 ; / / F i e l d D o u b l y L i n k e d L i s t \$Node . p rev ;
4 6 : a l o a d 2
4 7 : i f a c m p e q 52
/ / r e t u r n f a l s e
5 0 : i c o n s t 0
5 1 : i r e t u r n

STARC detects the parameters of the conditional statement by following the

consumer/producer chain of the previous instruction until two items are produced

in the stack. In the above example, the instructions used to produce the comparison

objects are:

4 2 : a l o a d 3 / / consume : 0 produce : 1
4 3 : g e t f i e l d #32 ; / / consume : 1 produce : 1
and
4 6 : a l o a d 2 / / consume : 0 produce : 1

82

These instructions are then used to produce the solution for the constraint

and add the solution to the bytecode as follows:

4 2 : a l o a d 3
4 3 : g e t f i e l d #32 ; / / F i e l d D o u b l y L i n k e d L i s t \$Node . p rev ;
4 6 : a l o a d 2
4 7 : i f a c m p e q 57
/ / s e t t h e f i e l d o f p rev t o c u r r e n t
5 1 : a l o a d 3
5 2 : a l o a d 2
5 3 : p u t f i e l d #32 ; / / F i e l d D o u b l y L i n k e d L i s t \$Node . p rev ;

Using this solver, STARC identifies equality constraints and directly solves

such constraints without using any non-deterministic search. This optimization en-

ables highly efficient solving of a variety of local constraints. To illustrate, STARC

automatically detects the transpose relation of the DoublyLinkedList and fixes

any violation in the prev field by setting it to the transpose of its predecessor’s

next field.

5.1.4 Characteristics

We next discuss some characteristics of the STARC framework.

5.1.4.1 Completeness of the Repair Algorithm

The original repair algorithm uses a systematic search that explores all the

non-isomorphic structures that satisfy the integrity constraints. Thus, if there exists

a structure that satisfies the integrity constraints, the algorithm will find it. We point

out that the optimizations added in STARC do not affect the completeness of the

original algorithm. Using the recurrent field information, STARC only changes the

83

order of the search and does not skip any valid structure from being explored. The

reference constraint solver statically detects and solves constraints that are not yet

initialized by the search algorithm. Thus, the instrumentation of repOk does not

affect its behavior.

5.1.4.2 Reachability of the Repaired Structure

An important characteristic of STARC is that it solves two problems: the

structural constraints as described in repOk and the reachability of the original

structure nodes. Recall that STARC prioritizes the order of choices according to

the type of the faulty field. Using the recurrent analysis information, the recurrent

fields are assigned to new non-visited nodes. Thus, STARC first solves the reacha-

bility problem and then satisfies repOk. This feature is not present in the original

repair algorithm, which usually finds the first structure that solves the constraints

disregarding the original size and the number of nodes reachable from the root of

the structure. For example, as discussed in Section 3.6.1, a faulty doubly linked list

of 200 nodes may be repaired into a list with 100 nodes that satisfies the structural

integrity constraints. Since STARC’s algorithm is complete, and prioritizes reacha-

bility, it first tries to find a solution with all reachable nodes. If none exists, it will

satisfy repOk with a smaller structure, if possible.

5.1.5 Preliminary Evaluation

This section presents a preliminary evaluation of STARC by applying it to

faulty implementations of the three subject structures used to evaluate the original

84

Subject Structure Size # of faults Time (ms) # of repair actions
core STARC core STARC

1,000 1 23 21 1 1
Singly linked list 10,000 1 178 148 1 1

100,000 1 1,648 1,581 1 1
100 10 516 16 1,525 85

1,000 10 212,203 152 539,300 749
Doubly linked list 100 ≥ τ 382 ≥ δ 992

10,000 10 ≥ τ 14,925 ≥ δ 4,022
100 ≥ τ 23,778 ≥ δ 9,710

100 10 51 60 113 113
1,000 10 153 160 443 443

Binary search tree 100 2,363 2,422 9,554 9,554
10,000 10 15,435 15,711 5,618 5,618

100 161,110 160,845 67,017 67,017

Table 5.2: Results for repairing data structures using STARC.

repair algorithm. This evaluation demonstrates the efficiency of the optimizations

integrated in STARC. We report the average repair time and the number of repair

actions required to fix the errors and compare the results of STARC with those of

the original repair algorithm. We set a threshold time of ten minutes to repair a

faulty structure, and stop the execution after that period.

Table 5.2 displays the repair time and the number of repair actions taken by

the original repair algorithm and STARC to repair the three subject structures; τ

represents a time threshold of 10 minutes, and δ represents a threshold one million

repair actions. Singly linked list has the simplest of the constraints and the least

number of faults and its repair is therefore the fastest. For the binary search tree

where acyclicity is the only constraint, the performance of both approaches is in-

distinguishable since breaking cycles is achieved by setting the value of the corrupt

field to null.

85

The doubly linked list results show that for solving constraints like transpose

and circularity, STARC outperforms the original repair algorithm by more than two

orders of magnitude. The original algorithm did not finish the execution within the

ten minutes threshold when repairing a doubly linked list with 1,000 nodes and 100

faults, whereas STARC was able to repair a doubly linked list with 10,000 nodes

in less than thirty seconds. Note that although the repair algorithm is complete for

both approaches, the former took 539,300 repair actions to repair ten faults in a

doubly linked list of size 1,000 whereas the latter only took 749 actions. The static

analyzer in STARC bias the repair algorithm toward solving the reachability con-

straint while repairing a recurrent field. The original repair algorithm on the other

hand repairs the faults in the structure, yet the repaired structure might not satisfy

the reachability constraint, thus it keeps searching for a structure that satisfies all the

constraints. STARC also enables overcoming the disadvantage of the original algo-

rithm when maintaining the reachability of the elements in the data structure. When

using STARC, there is no need to configure the size field as un-modifiable by

the repair algorithm.

Note however that STARC still requires to traverse the data structure for

every repair action since it uses a re-execution-based backtracking approach. The

next section presents an efficient backtracking that enables performing mutations

on the structure without having to recreate its state by re-executing repOk from the

beginning.

86

5.2 Checkpoint-based Backtracking for Efficient Repair

We present a novel backtracking approach that significantly improves the

efficiency of the core repair algorithm, and in general systematic search engines.

Specifically, most existing approaches, including the one we used in the repair al-

gorithm, use backtracking through code re-execution to explore their search space.

For example, the core repair algorithm (Figure 3.6) explores the state space of

repOk using a backtracking search where program states are not stored to enable

backtracking; instead, the state at a backtracking control point is re-created by re-

executing repOk from the beginning and monitoring its execution.

An alternative to code-execution is performing stateful searches, such as

those used in some model checkers, e.g., SPIN [59] and Java Pathfinder(JPF) [114],

which store (hash) program states and retrieve them for backtracking. Both ap-

proaches have complementary strengths and traditionally model checkers are based

on one of the two approaches [23, 46, 59, 114].

In contrast to these approaches, our approach uses a checkpoint-based back-

tracking that employs efficient state manipulations based on selective storing of pro-

gram components, and abstract undo operations for retrieving the program state.

Our approach is based on two key insights: (1) repOk implementations check de-

sired properties by traversing the given structures without mutating them; and (2)

the traversals are over object graphs and often use standard worklist-based algo-

rithms that track sets of visited nodes to prevent infinite traversals. The first insight

allows us to define a minimal part of state to store, which reduces storage overhead.

The second insight allows us to use our own library classes in place of the standard

87

ret
rie

ve
save

sa
ve

retrieve

sa
ve

ret
rie

ve
save

retrieve

Figure 5.3: The stateful backtracking process.

Java libraries, such as sets and lists, that are commonly used in graph traversals; in

contrast with the standard libraries that optimize program execution, our libraries

optimize backtracking. Checkpoint-based backtracking combines the benefits of

a re-execution-based search with those of a stateful search by avoiding rebuilding

program states while at the same time not imposing the large overheads of state

storage and retrieval.

There are two key requirements for stateful backtracking: a mechanism for

switching the execution control to specific statements in a program, and an approach

for storing and retrieving the program state at those statements. The performance is

highly dependent on the efficiency of the aforementioned operations. For instance,

our experiments with STARC show that the overhead imposed by a naive approach

of saving and restoring that takes a snapshot of the heap at every choice point, is

similar to that imposed by rebuilding the program state for most structures.

We next describe the backtracking algorithm. We first describe how to main-

tain the program state, i.e., the stack, static, and heap memory, and then describe

88

how to efficiently maintain the program counter when backtracking.

5.2.1 State Storage and Retrieval Algorithm

Systematic search algorithms [10,36,72,106] operate on choice points, i.e.,

program statements where non-deterministic choices are performed on the search

variables, and termination points, i.e., program statements that specify the end of

a search path or a choice. For instance, the choice points in STARC are the field

access statements in repOk where the search variables are the fields of the structure,

and the choices are the members of the field domains. The termination points are

the return statements of repOk where a structure is declared as valid or not.

Backtracking occurs between a termination point and a choice point. To

maintain the correctness of a program execution, a backtracking approach must

save the program state at each choice point, and upon backtracking, must retrieve

the saved state and proceed with the next choice. To illustrate, Figure 5.3 gives an

abstraction of the search process. Black nodes represent choice points, and white

nodes represent termination points. As the program executes (following the dashed

arrows in Figure 5.3), the search algorithm saves the state between choice points.

Once a termination point is reached, the search algorithm backtracks to the last

choice point (following the dotted arrows in Figure 5.3), retrieves the saved state

and proceeds with the next choice.

Several approaches exist for state storage/retrieval [74, 122]. A simple, yet

expensive, approach for storing the state is by taking a snapshot of the heap at every

choice point. This approach is (1) expensive regarding memory requirements, and

89

/ / An i n t e r f a c e f o r undo commands
p u b l i c i n t e r f a c e UndoCommand {

p u b l i c vo id e x e c u t e () ;
}

/ / D e c l a r a t i o n o f t h e s t a c k used f o r s t o r i n g t h e undo commands
Stack<UndoCommand> undoStack = new Stack<UndoCommand > () ;

/ / S t o r e method f o r s a v i n g t h e undo commands a t a c h o i c e p o i n t
p u b l i c vo id s t o r e () {

saveUndoStack (undoStack) ;
undoStack = new Stack<UndoCommand > () ;

}

/ / R e t r i e v e method f o r r e s t o r i n g t h e program s t a t e
/ / a t t h e b a c k t r a c k i n g t a r g e t
p u b l i c vo id r e t r i e v e () {

undoStack = g e t L a s t U n d o S t a c k () ;
whi le (! undoStack . i sEmpty ()) {

UndoCommand uc = undoStack . pop () ;
uc . e x e c u t e () ;

}
}

Figure 5.4: Components for maintaining the program state.

(2) inefficient as it stores a lot of unnecessary redundant states. A more efficient

approach for state storage is by using state comparisons [79, 117]. This approach

efficiently hashes the heap at the first choice point, and then incrementally updates

it by comparing the state at the current choice point with the stored one.

We propose an alternative approach for state storage/retrieval. Rather than

taking a snapshot of the heap at the choice point, or performing state comparisons to

update the snapshot, we incrementally store the program state as the changes occur

during execution. To enable efficient state retrieval, along with every stored change,

90

we save a corresponding undo command [44] that enables retrieving the original

state when the command is executed. Undo commands are implementations of the

“Command” design pattern [44] where each command object saves the necessary

information for undoing the effect of an action performed on the object. Undo

commands have been previously used in software model checkers [100]. However,

our use of the undo commands is different. Rather than performing the operations

at the concrete heap level, we introduce abstract undo commands which perform

these operations at an abstract object level. We further describe this idea later in

this section.

The search algorithm maintains the undo commands in a stack which we

term “undo stack”. As the program executes, the undo stack is populated with undo

commands. At each choice point, the undo stack is saved. Upon backtracking, the

last saved undo stack is retrieved, and its commands are executed to restore the state

to the previous choice point. To illustrate, Figure 5.4 shows the implementation of

the store method which is invoked at choice points, and the retrieve method

which is invoked when backtracking. The UndoCommand interface defines the com-

mon behavior of all undo commands. The undoStack saves the undo commands

that occur between two choice points in the program. The store method saves the

undo stack and clears it, and the retrieve method retains the last undo stack and

executes its commands to retrieve the program state.

91

5.2.1.1 Undo Commands

We next describe the undo commands. Undo commands are considered in

the methods of interest for the search algorithm. For instance, in STARC, undo

commands are inserted in repOk and any helper method invoked by repOk that

accesses the target structure fields, i.e., contains choice points. Undo commands

are inserted at method statements that cause a change in the program state. The

statements of interest for inserting the undo commands are the following:

• store operations on the local variables,

• store operations on instance or static fields of a class, and

• method invocations.

We create undo commands that (1) save the original value of the modified

object, and (2) enable retrieving the state of the modified object when the undo

command is executed. We next describe the undo operation for each of above state-

ments.

Local variable stores: Store operations on local variables are treated as

field store operations. Since Java doesn’t support pointer creations to elements in

the JVM registers’ stack, our approach replaces local variables with static fields and

uses field undo commands (described in the next paragraph) to undo local changes.

This approach adds some overhead as XSTORE instructions which access the vari-

ables from the method’s stack are replaced with PUTSTATIC instructions which ac-

cess the variables from static memory. Note that our transformation replaces stack

92

frames with static fields and as such cannot support recursive methods; to support

recursion, our transformation would need to replace stack frames with (appropri-

ately linked) heap objects.

Field stores: Field store operations are the simplest to save and undo. Be-

fore each field store operation, we create an undo command object that takes as

input the field’s owner object and the field’s value. When the command is exe-

cuted, it reassigns the field to the saved value. To illustrate, consider the example

of the repOk method for the DoublyLinkedList class in Figure 5.5(a). The

method has two fields to store, n and current (the visited variable is never re-

assigned and thus it is not saved). To store current, we push a new instance of

the CurrentUndoCommand class (Figure 5.5(b)) which takes the list object and the

field’s value, onto the undo stack. Upon backtracking, when the execute method

of the CurrentUndoCommand is invoked, the field current retrieves its old value.

The field n is similarly stored. The example in Figure 5.5(b) describes the general

implementation of an undo command to restore the value of a field. We point out,

however, that there is no need to save the owner object when restoring static fields.

Note that executing the undo commands upon backtracking restores the

heap, static, and stack memory since local variables are transformed into static

fields.

Method invocations: A straightforward way to handle method invocations

is to instrument the invoked method’s code and add undo commands before changes

to its local variables and fields accesses. We use this approach on repOk (the

method of interest of STARC’s search algorithm) and any helper method invoked

93

/ / A s t a t i c f i e l d t o r e p l a c e t h e l o c a l v a r i a b l e c u r r e n t
p u b l i c s t a t i c Node c u r r e n t ;

/ / RepOk method w i t h undo commands , and undoab le c o n t a i n e r s
p u b l i c boolean repOk () {

. . .
/ / The HashSet i s r e p l a c e d w i t h an undoab le hash s e t
Set<Node> v i s i t e d = new UndoableHashSet<Node>(undoStack) ;
. . .

whi le (t rue) {
. . .

/ / Undo command added t o r e t r i e v e t h e v a l u e o f c u r r e n t
undoStack . push (new CurrentUndoCommand (t h i s , c u r r e n t)) ;
c u r r e n t = n ;

}
. . .

}
(a)

/ / The undo command f o r f i e l d a c c e s s e s
p u b l i c c l a s s CurrentUndoCommand implements UndoCommand {

D o u b l y L i n k e d L i s t l i s t ;
Node v a l u e ;

p u b l i c CurrentUndoCommand (D o u b l y L i n k e d L i s t l i s t , Node v a l u e) {
t h i s . l i s t = l i s t ;
t h i s . v a l u e = v a l u e ;

}

p u b l i c vo id e x e c u t e () {
l i s t . c u r r e n t = v a l u e ;

}
}

(b)

Figure 5.5: An undo command class to restore the value of the variable current
in repOk.

94

by repOk which contains choice points. However, we treat other method invoca-

tions differently depending on the type of the method, its effect on the caller object,

and the type of its caller object. We first check if the method is pure, i.e., does not

mutate the state of its caller, and if so, there is no need to instrument the method’s

code. We then check the method’s caller object type. If the caller object’s type

is a container type, i.e., its class implements the java.util.Collection or the

java.util.Map interfaces, we use abstract undo commands to reverse the

effect of the method on the container (Section 5.2.1.2). If the method’s caller object

type is not a container, we use the straightforward approach, i.e., instrument the

method and add undo operations on its field accesses.

5.2.1.2 Abstract Undo Operations

Container types are widely used in Java programs. For example, repOk

predicates are typically implemented as standard work-list algorithms that traverse

the object graph, keep track of visited nodes, and check for the validity of the struc-

tural integrity constraints [85]. Collection classes provide powerful utilities for

performing such traversals and checks, for example, a LinkedList object can be

used for the work-list and a HashSet object can be used for saving the visited

items. These classes maintain complex data structures to enable efficient opera-

tions, such as adding, removing, or checking the occurrence of an element. This

makes it expensive to store and retrieve their states using standard approaches. To

illustrate, a snapshot approach requires iterating over the container elements at each

choice point to save the state. A state comparison approach requires traversing the

95

/ / A s n i p p e t o f t h e UndoableHashSet c l a s s
p u b l i c c l a s s UndoableHashSet<T> implements Set<T> {

Stack<UndoCommand> undoStack ;
Set<T> c o n t a i n e r ;
. . . .

p u b l i c boolean add (T e) {
i f (c o n t a i n e r . add (e)) {

undoStack . push (new AddUndoCommand<T>(c o n t a i n e r , e)) ;
re turn true ;

}
re turn f a l s e ;

}
}

(a)

/ / I m p l e m e n t a t i o n f o r t h e a b s t r a c t add undo command
p u b l i c c l a s s AddUndoCommand<T> implements UndoCommand {

Set<T> c o n t a i n e r ;
T v a l ;

p u b l i c AddUndoCommand (Set<T> c o n t a i n e r , T v a l) {
t h i s . c o n t a i n e r = c o n t a i n e r ;
t h i s . v a l = v a l ;

}

p u b l i c vo id e x e c u t e () {
c o n t a i n e r . remove (v a l) ;

}
}

(b)

Figure 5.6: Abstract undo commands on sets.

container to perform state comparisons. Even the undo approach that we presented

in the previous section may be expensive due to the complex implementation of the

operations on containers. For example, a HashSet implementation uses a HashMap

which saves its elements in an internal array. Therefore adding undo commands for

96

all the internal state changes involves several operations, especially for operations

that dynamically resize the containers.

We present an efficient way for undoing changes on containers. We perform

the undo operations at the abstract level of the container rather than at the concrete

container implementation. For example, instead of adding field undo commands

in the implementation of the addFirst method of a LinkedList class, we add

one undo command that reverses the effect of the addFirst method, i.e., the undo

command calls the removeFirst method on the LinkedList object.

To apply this abstraction, we implement undoable versions of the container

classes and replace all the instances of the concrete versions with the new ones, e.g.,

the visited variable in the repOk method in Figure 5.5(a). The undoable versions

are simple adapters for the original containers where the methods’ implementations

push the appropriate undo command to the program undo stack. To illustrate, con-

sider the code snippet of the UndoableHashSet class in Figure 5.6(a). The add

method of this class adds an object to the internal wrapped HashSet object. If

the add operation is successful, an AddUndoCommand object is created and pushed

onto the undo stack. The implementation of the AddUndoCommand class is dis-

played in Figure 5.6(b). Instances of the class are constructed using the container

and the object added to the container. The execute method simply removes the

added object from the container.

Abstract undo operations achieve their efficiency by providing a way to

undo the effect of complex operations that are frequently invoked and that involve

large state changes.

97

5.2.2 Monitoring the Program Counter

We next describe how to maintain the program counter and change its value

between choice points to automatically switch the program control without special

JVM support.

We start by identifying the backtracking sources, i.e., the program state-

ments to backtrack from, and the backtracking targets, i.e., program statements to

backtrack to. We then instrument the program to enable branching from the sources

to the targets while restoring the state of the program at those targets.

The backtracking sources are the termination points of the program. For

instance, the return statements in repOk. The backtracking targets are the choice

points of the program.

To enable efficient backtracking, we instrument the method under analysis,

e.g., repOk, by adding labels at the backtracking targets, and TABLESWITCH in-

structions at the backtracking sources. The branch targets for the TABLESWITCH in-

structions are the labels inserted before the backtracking targets. The TABLESWITCH

condition checks an integer value returned by search algorithm that identifies the la-

bel of the target choice point (this information is already maintained by the search

algorithm). Note that this is a non-trivial use of table switches as the targets of the

TABLESWITCH instructions occur at arbitrary points in the method code.

At the backtracking sources and targets, we also add a call to the retrieve

and store methods described in Section 5.2.1 to maintain the program state when

backtracking.

98

p u b l i c boolean repOk () {
/ / L0 :
/ / s t o r e () ;

Node h e a d e r = g e t H e a d e r () ;

/ / L1 :
/ / s t o r e () ;

i n t s i z e = g e t S i z e () ;

System . o u t . p r i n t l n (h e a d e r + " " + s i z e) ;

/ / r e t r i e v e () ;
/ / i n t i n d e x = Search . g e t T a r g e t I d () ;
/ / TABLESWITCH \\ (i n d e x)
/ / 0 : L0
/ / 1 : L1
/ / 2 : L2

/ / L2 :
re turn t rue ;

}

Figure 5.7: An example of the backtracking implementation.

To illustrate the backtracking approach, consider the example in Figure 5.7

of a simplified repOkmethod that accesses two fields from the DoublyLinkedList

and always returns true. The instructions added by the instrumentation are dis-

played in the commented portion of the code. Our use of the TABLESWITCH state-

ments cannot be expressed in Java source and therefore, they are expressed in Java

bytecode. The method in Figure 5.7 is simple and does not require adding undo

commands.

The code example has two choice points. A label is added (L0 and L1)

before each choice point, as well as a call to the store method which is used to

99

save any undo commands performed before the choice point (in this case none).

The added labels are the backtrack targets.

The method has one backtracking source which is the return statement.

Before this statement, a label is added (L2) in addition to a call to the retrieve

method which is used to execute the saved undo commands. A TABLESWITCH is

also added before the return statement. The branching labels are L0 and L1, with

the default label L2. For illustration, the domain of values we use in this example

are [null, N0] for the header field, and [0, 1] for the size field. The output of

executing repOk is as follows:

n u l l 0
n u l l 1
N0 0
N0 1

The execution works as follows. The first pass on repOk assigns header

and size to null and 0 respectively. Before the method returns, the search algo-

rithm returns 1 as the id for the last choice point, and the TABLESWITCH branches

to label L1, assigns size to 1, and prints the values. At the next encounter of the

return statement, the search algorithm returns 0 as the last field initialization since

all the values in the size field domain are considered. The program backtracks

to label L0, assigns header to N0, assigns size to 0, prints the values and so on.

When all the choices are considered, the search algorithm returns 2 as the branch

target, which causes the TABLESWITCH to branch to label L2, and the method’s

execution then terminates.

The above discussion illustrated backtracking within a single repOkmethod.

100

However, normally as the complexity of the structural constraints increases, it is

typical to represent the class invariant as multiple small helper methods with one

executive repOk method that invokes the helper methods. Such cases might require

backtracking to choice points that reside in the helper methods from the return state-

ments in repOk. To handle such scenarios, the call sites of the helper methods are

considered backtracking targets, and TABLESWITCH statements are added at the

entry points of the helper methods to enable branching to the destination choice

point. Upon backtracking from repOk, the control point is changed to the helper

method’s call site, the method is invoked, and then the TABLESWITCH at the en-

try of the method directs the control to the target choice point. Note that there is

no need to restore the local variables at the target choice point, since restoring the

values is automatically handled by executing the undo commands.

The described backtracking mechanism adds minimal overhead since it pri-

marily adds table switches at method entries and return statements. Backtracking

within repOk requires one switch, while backtracking for the cases of helper meth-

ods, requires two switches per invocation to reach the target choice point.

5.2.3 Characteristics

We discuss some characteristics of the checkpoint-based approach and ad-

dress its limitations.

101

5.2.3.1 Overhead of the Checkpoint-based Backtracking

The checkpoint-based approach removes the overhead of rebuilding the pro-

gram state from scratch after each backtracking operation (as in re-execution-based

backtracking). This overhead includes re-initializing the object fields in every iter-

ation of the search algorithm. However, it introduces the overhead of maintaining

the program state by saving and executing the undo commands. Our experiments

with the new backtracking engine (Section 5.2.4) show that the checkpoint-based

approach reduces the number of field initializations performed in STARC, while

introducing a set of undo commands. The number of such commands, however,

is relatively an order of magnitude less than the reduction in field initializations,

resulting in faster generation time.

A key reason for this improvement relates to the nature of the repOk meth-

ods used by STARC to build and explore the search space. Such methods are typ-

ically pure methods, i.e., they check for the structural properties without mutating

the structure. Thus, we expect state changes between 2 consecutive choice points

to be minimal, which results in less undo operations to retrieve the state and in turn

a better performance than code re-execution.

5.2.3.2 Soundness of the Approach

The search presented in this chapter is purely performed through code in-

strumentation of the class under analysis. This entails some modifications in the

structure of the class, including adding fields to replace local variables when per-

forming undo operations. Such modifications may affect the soundness of the ap-

102

proach on some Java programs. For example, consider a repOk method that reflec-

tively accesses the fields of its declaring class. Such method might have a different

behavior because of the changes performed on the structure of the class.

Other factors that might break the soundness of the approach are the abstract

undo operations. These operations might not be equivalent to the exact inverse of

the corresponding forward operations. While executing these commands reverses

the effect at the abstract container level, the internal structure of the container might

have changed. For example, adding and removing methods in a balanced tree may

involve some reordering operations that result in a different structure. A repOk

method that accesses the internal implementation of the container may have a dif-

ferent behavior after running the undo operations.

While the described scenarios may break the soundness of repair, we do

not expect these cases to happen in practice. For example, we never encountered

or wrote a repOk method that reflectively reasons about its own class, or uses the

implementations of the container libraries rather than the well defined interfaces.

5.2.3.3 Abstract Analysis on Containers

Although presented in the context of a Java implementation, the proposed

technique is not limited to Java or its containers. Undo operations can be applied to

different languages and on any (well-specified) container written in that language.

For example, similar containers can be implemented for the C++ standard library.

We believe that extending current program analyses to handle libraries opens

more opportunities for reasoning about programs. For example, abstract symbolic

103

Subject Size Faults Time(ms) Field initializations Undo
structure STARC Checkpoint STARC Checkpoint operations

1,000 100 382 31 482,544 1,872 1,988
Doubly linked 10,000 100 23,778 182 32,118,651 19,210 18,418
list 100,000 100 ≥ τ 1,142 - 199,808 199,614

1,000,000 100 ≥ τ 8,640 - 1,999,995 1,999,988
1,000 100 2,391 121 8,126,303 12,552 9,529

Binary search 10,000 100 1 60,648 937 228,499,900 97,015 67,051
tree 100,000 100 ≥ τ 3,184 - 331,607 629,673

1,000,000 100 ≥ τ 32,009 - 5,922,174 2,922,274

Table 5.3: Results for repairing two structures with up to a million nodes and 100
faults.

execution has been previously introduced in a workshop paper [73] which treats

containers as symbolic objects. By treating containers symbolically, the approach

was able to test programs that manipulate such containers, an analysis that was not

feasible if the implementation of the container was to be considered.

5.2.4 Performance Improvement

We evaluate checkpoint-based backtracking by integrating it in STARC and

using it to repair data structures with up to a million nodes. To demonstrate the ef-

ficiency, we compare the repair time taken by the checkpoint-based approach with

that taken by the re-execution-based approach originally used in STARC. We use

STARC to refer to the original algorithm. The checkpoint-based approach gains its

efficiency by reducing the number of field initializations performed by re-executing

repOk on the structure after each repair action. We compare the number of field ini-

tializations performed by the checkpoint-based approach with those performed by

STARC. Additionally, we report the number of undo operations, which represents

the overhead of the checkpoint-based approach to maintain the program state.

104

Table 5.3 shows the repair results. The table displays the repair time in mil-

liseconds taken by STARC and the checkpoint-based approach for repairing cor-

rupt binary search trees and doubly linked lists with up to a million nodes. The

original re-execution-based search does not terminate in a threshold of ten min-

utes for repairing structures with a hundred thousand nodes and a hundred faults.

The checkpoint-based backtracking enables repairing structures with up to a mil-

lion nodes in less than 10 seconds for the doubly linked list and 33 seconds for the

binary search tree. Moreover, when the re-execution-based backtracking terminates

within the threshold time, the checkpoint-based backtracking achieves more than

two orders of magnitude speedups when repairing the corrupt structures.

To study the speedups obtained by using the checkpoint-based backtrack-

ing approach, we perform a comparison between the number of field initializations

performed by STARC and the checkpoint-based approach when repairing the struc-

tures. We also study the number of undo operations required by the checkpoint-

based backtracking approach to maintain the program state. The field initialization

results in Table 5.3 show that for the studied subjects the checkpoint-based ap-

proach reduces the number of field initializations required by STARC by more than

two orders of magnitude, while the number of undo commands performed is less

than an order of magnitude than the number of field initializations performed by the

re-execution-based backtracking. For example, when repairing a doubly linked list

with ten thousand nodes, the field initialization ratio is 1,617X while the number of

undo commands is comparable to the number of field initializations performed by

the checkpoint-based approach.

105

Note that the speedup factors increase with the size of the structure. For

example, for the binary search tree example, the speedup factor increased from

19X when repairing a corrupt structure with 1,000 nodes to 171X when repairing

a structure with 10,000 nodes. This increase in the speedup factor relates to the

nature of the backtracking search used in STARC. The original search in STARC is

re-execution-based and thus every mutation in the structure requires traversing the

structure from the root to check the class invariant. As the size (number of faults)

of the structure increases, such traversals become more expensive. The checkpoint-

based approach, on the other hand, incrementally checks for the class invariant and

requires a single traversal of the structure to perform all the mutations.

The experiment on repair presented in this section demonstrated that inte-

grating the checkpoint-based approach in STARC scales its performance for re-

pairing larger data structures more efficiently. Chapter 6 presents more empirical

evidence of the efficiency of the optimizations on repairing a wider variety of data

structures and stand-alone applications.

106

Chapter 6

Evaluation

This chapter presents an evaluation of assertion-based repair on repairing

inconsistencies in data structures. Two types of experiments are presented: (1) ex-

periments for measuring the efficiency of the repair algorithm, where we repair a

diverse set of library data structures and (2) experiments for evaluating the effect

of repair on running applications, where we repair inconsistencies in the data struc-

tures of three stand-alone applications. We next describe each of these experiments

and discuss some interesting results.

6.1 Experiments on Library Data Structures

In chapters 3 and 5 we presented a preliminary evaluation of the repair al-

gorithm and the subsequent optimizations on three subject data structures. The

evaluation demonstrated the ability of the repair framework to efficiently repair

large data structures that occur in real applications. In this section we extend the

evaluation to a more diverse set of subjects with a wider spectrum of structural and

data constraints. We start by describing the subject structures, and then we state the

evaluation methodology and present the experimental results.

107

6.1.1 Benchmarks

The subjects we choose to evaluate repair are primarily textbook data struc-

tures [26] that are characterized by a set of local constraints, i.e., constraints re-

lating objects in the structure to their neighboring objects, and global constraints,

i.e., constraints relating all the objects of the structure. These structures are also

characterized by a set of data constraints that include both structurally dependent

constraints, i.e., constraints relating the data elements to structural properties, and

structurally independent constraints, i.e., constraints relating the data elements of

an object to the data elements of neighboring objects. The subject data structures

are described below:

• Binary tree. A binary tree object has a root node and a size field caching

the number of nodes in the tree. Each node in the tree has a left and a

right child node in addition to a parent node. The root node has no

parent. Integrity constraints include acyclicity along left and right, the

transpose relation between parent and children nodes, and consistency of the

size field with respect to the number of reachable nodes from the root.

• Sorted linked list. A sorted linked list is an acyclic linked list whose nodes

have integer elements. Integrity constraints include acyclicity as well as or-

dering of elements: all elements appear in sorted order.

• Disjoint set. The Disjoint set data structure is a linked-based implementation

of the fast union-find data structure [26]; this implementation uses both path

compression and rank estimation heuristics to improve efficiency. A Disjoint

108

set object has a header and a tail node as well as a size field that rep-

resents the size of the set; each set node has a child and a parent field.

Structural integrity constraints are acyclicity and reachability to the sentinel

header node (the parent field of each node should point to the header node).

• AVL tree. An AVL tree is a balanced binary search tree. The integrity con-

straints are the same as those of the binary search tree as well as the balance

property where the height of the left and the right sub-trees does not differ by

more than one.

• Ranked tree. A ranked tree is an augmented AVL tree where each node in

the tree is labeled with a rank value defined as follows: given a node n and a

function size that returns the number of nodes in a sub-tree, the rank of n is

equal to size(n.left) + size(n.right) + 1. Integrity constraints are the same

as those of an AVL tree in addition to the consistency of the rank field.

6.1.2 Methodology

To evaluate the efficiency of the repair algorithm, we apply it to repair the

subject structures described in the previous section. We study the repair time and

the number of repair actions with respect to the size of the structure.

We generate a set of data structures for each subject and use fault injection to

introduce inconsistencies in the structural and data constraints. Recall that several

parameters can affect the performance of repair (Section 3.6.1), e.g., the location of

the fault with respect to the root of the structure. To incorporate these parameters

109

into the evaluation, we design several techniques for fault injection and apply the

appropriate technique on the subject structures.

The first technique is random fault injection where we select a field of the

structure at random and assign it to a node of a compatible type that is also se-

lected at random. This technique may break the reachability of the structure since

assigning fields randomly may cause the loss of some nodes due to garbage col-

lection. We therefore apply this technique to inject faults in the data elements of

the data structures where we randomly select a structure node and assign its data

fields to randomly selected integer values. We do not expect such a scenario to

happen in practice, but it helps assessing the performance of the repair algorithm

on unexpected behavior.

The second technique is location-based fault injection where we select equidis-

tant nodes on a path from the root object along a specified set of fields and randomly

assign the fields to nodes in the structure that are selected at random. We use this

technique to perform an experiment where the faults are not clustered in a single

region of the data structure but rather spread over the whole structure. We have

used this technique to study the effect of the location of a fault on repairing doubly

linked lists (Section 3.6.1) .

The last technique is ad hoc fault injection where we manually identify the

relationship between the fields of the structure and distribute the faults accordingly.

This is not a generic approach and it differs according to the subject structure. This

technique is effective for understanding the performance results of the repair algo-

rithm. We already used this technique in section 3.6.1 to study the dominance of

110

repairing a fault in the next field of a doubly linked list on the overall repair time.

We use this technique in situations where random selection might break structure

reachability. For example, to introduce cycles in a tree structure, we only consider

leaf nodes.

We conduct experiments on structures with sizes ranging from ten thousand

nodes to one million nodes, and with 100 faults injected using the three described

fault injection techniques. All experiments use a 1.7 GHz Pentium D with 2 GB of

RAM.

6.1.3 Results

Table 6.1 shows the repair time and number of repair actions performed by

the repair algorithm for repairing the subject structures. The table also shows the

fault injection technique used for each subject.

For the sorted list, we use random fault injection where a hundred data

fields are assigned to random integer values. Since the only structural constraint

is acyclicity, we do not inject any faults in the next field of the list since changing

any field breaks the reachability of other elements in the list. For repairing a list

with up to a million nodes, the repair algorithm took less than 20 seconds and per-

formed around seven hundred thousand repair actions. The actions performed by

repair include shifting the elements of the list to retain the sorted order.

For the binary tree example, we use location-based fault injection. We gen-

erate a complete binary tree where each node has two children except nodes at the

last level of the tree which can have either one or no children. We choose a hun-

111

Subject Size Number of Repair Repair Fault
structure faults time (ms) actions injection

10,000 100 122 5,188
Sorted list 100,000 100 1,552 60,757 random

1,000,000 100 18,542 680,153
10,000 100 140 4,257

Binary tree 100,000 100 1,500 42,752 location-based
1,000,000 100 19,094 406,837

10,000 100 212 24,520
Disjoint sets 100,000 100 2,947 256,526 ad hoc

1,000,000 100 35,857 3,715,811
10,000 100 265 67,106

Avl tree 100,000 100 2,406 324,674 ad hoc
1,000,000 100 28,266 2,422,175

10,000 100 294 85,434
Ranked tree 100,000 100 3,219 454,633 ad hoc

1,000,000 100 37,548 3,233,502

Table 6.1: Results for applying the repair algorithm on five subject structures.

dred nodes at the last level of the tree and introduce cycles as well as corruptions

in the parent field of the nodes. For the binary tree example, the repair algo-

rithm performed four hundred thousand repair actions on the fields to generate a

correct binary tree with up to a million nodes in nineteen seconds. The repair ac-

tions include breaking cycles in the tree and searching for the nodes that correct the

parent field.

For the disjoint sets, we use ad hoc fault injection. We first generate a valid

structure and then select a hundred equidistant nodes along the path following the

child field. For each of these nodes, we set the parent field to a randomly se-

lected node. We then split the set into two structures; one with nodes reachable

through the tail field and the other with nodes reachable through the header

112

field. To successfully recombine the two sets and satisfy the constraints, the repair

algorithm performed around three million mutations in less than forty seconds. The

repair was performed in three stages. The first traversal of the structure connected

the two structures along the child field. Further traversals took care of fixing the

parent field and assigning the tail of the set.

For the last two structures, we combine two fault injection techniques. We

use random fault injection to corrupt the rank field of the nodes of a ranked tree

and data fields of the avl tree, and ad hoc fault injection to insert cycles in the trees

where we only introduce cycles in the fields whose original value is null. Similar

to the other structures, the repair algorithm repaired trees with a million nodes in

less than a minute.

These results show the applicability of the approach to various complex

structures. For all the studied structures, the repair algorithm was able to perform

repair in less than a minute for data structures with up to one million objects.

6.2 Experiments on Stand-alone Applications

To study the acceptability of assertion-based repair, we use it to repair in-

consistencies in the data structures of stand-alone applications and we observe the

effect of repair on the running applications. We choose a diverse set of open-source

applications including a software analyzer [12], a calendar application [8], and a

database engine [112].

Challenges while conducting the experiments include studying the applica-

113

tions’ source code and documentation, locating the key data structures, identifying

the consistency constraints, formulating repOk methods to describe the constraints

in terms of the application constructs, and modifying existing assertions (or adding

new assertions) to enable repair.

To generate inconsistencies at runtime, we mine the bug repositories of these

applications to detect known bugs that either resulted in data structure corruption

errors in the applications themselves or indirectly resulted in errors in programs that

use the buggy applications. For the experiments in this section, we do not use fault

injection.

For each application, we develop an input scenario that results in a corrupt

data structure. We run the application on the input and compare its behavior with

and without the repair capabilities.

6.2.1 ASM

ASM [12,76] is an open-source framework for manipulating Java bytecode.

ASM provides an efficient engine for both code instrumentation and code genera-

tion making it a powerful utility for software analysis. Several open-source projects

including, language interpreters [99] and software development and testing frame-

works [40] use ASM to perform code transformation. Juzi also uses ASM to per-

form bytecode instrumentation to incorporate repair in Java programs.

114

6.2.1.1 Bug Report

ASM supports frame manipulation for programs complying with the Java

specifications. A program compiled using Java 6 (or a higher version) includes

stack frame information in addition to bytecode instructions to enable efficient class

verification [80]. At every label in the program representing a branch target or an

exception handler, a stack frame is saved holding the types of the objects present

in the local variables and in the operand stack. While analyzing a method’s byte-

code, ASM provides any registered client visitor with the frame information and

the object types. According to the ASM documentation, the object type informa-

tion provided by ASM is interpreted as follows: primitive types are represented by

an integer encoding the type, reference types are represented by a String object

representing the type’s internal name, and uninitialized types (that correspond to

objects that are created using NEW but whose constructor has not yet been invoked)

are represented by a Label object that points to the location of the NEW instruction

that created the type.

A bug in version 3.1 causes ASM to announce inconsistent type information

when analyzing frames with uninitialized types. The frames announced by ASM

mistakenly point to labels that do not exist in the program. This bug surfaces when

analyzing a corner test case that involves the tertiary operator (expr?op1 : op2)

as a parameter of a constructor call. To illustrate, Figure 6.1 shows a Java class

that triggers the bug, along with a snapshot of the reported bytecode. Note in the

bytecode, the FRAME statements include a pointer to label L2 that does not exist in

the method foo. This bug is reported in the ASM bug repository with id#312464.

115

/ / The Java c l a s s t h a t t r i g g e r s t h e ASM bug
p u b l i c c l a s s FrameBug {

p u b l i c boolean foo (i n t x , i n t y) {
I n t e g e r m = new I n t e g e r (x == 0 ? 0 : 1) ;
I n t e g e r k = new I n t e g e r (y == 0 ? 0 : 1) ;
re turn m > k ;

}
}

/ / The c o r r e s p o n d i n g b y t e c o d e r e p o r t e d by ASM
p u b l i c foo (I I) Z

NEW j a v a / l a n g / I n t e g e r
DUP
ILOAD 1
IFNE L0
ICONST 0
GOTO L1

L0
FRAME FULL [FrameBug I I] [L2 L2]

ICONST 1
L1
FRAME FULL [FrameBug I I] [L2 L2 I]

INVOKESPECIAL j a v a / l a n g / I n t e g e r .< i n i t > (I)V
ASTORE 3

L3
NEW j a v a / l a n g / I n t e g e r
DUP
ILOAD 2
. . .

Figure 6.1: A bug in the ASM framework.

6.2.1.2 Bug Effect

In Juzi, we use ASM to manipulate the bytecode of Java classes to enable

repair. For each method, we build the control flow graph (CFG) where the first

instruction in a code block corresponds to the first instruction of the method, branch

targets, exception handlers, or instructions that follow branch instructions. A CFG

116

block that corresponds to a branch target holds the frame information, where a

frame containing a Label object points to the CFG block that contains the target

label.

Figure 6.2 shows the declaration of the data structure used to represent the

basic blocks in a CFG. Each CFG instance has an entry block and a list of exit

blocks. Each basic block has a list of predecessor and successor basic blocks as

well as a reference to the first and last instruction in the block. A basic block also

has a reference to a frame instance. Each instruction node is a doubly linked list

node that holds two references to the next and previous instructions in sequential

order. A frame instance has a set of types for the local variables and the variables in

the operand stack. Each uninitialized type is associated with a pointer to the basic

block that holds the Label corresponding to the NEW instruction responsible for

creating the object of that type.

We used Juzi to analyze the program that triggers the bug in Figure 6.1.

The bug in ASM causes Juzi to build an inconsistent CFG where a frame instance

has a Label object for L2 that corresponds to a null basic block. After build-

ing the CFG, Juzi throws a NullPointerException when trying to access the

information of the basic block.

6.2.1.3 Repair Result

We modified the code in Juzi by formulating a repOk method that describes

the consistency constraints of the CFG class and added assertions to check for the

consistency after building the CFG. The integrity constraints that we considered for

117

p u b l i c c l a s s CFG {
B a s i c B l o c k e n t r y ; / / The e n t r y b l o c k
B a s i c B l o c k [] e x i t B l o c k s ; / / The e x i t b l o c k s

p u b l i c c l a s s Ba s i c B l o c k {
B a s i c B l o c k [] p r ed ; / / The p r e d e c e s s o r b l o c k s
B a s i c B l o c k [] succ ; / / The s u c c e s s o r b l o c k s
A b s t r a c t I n s n N o d e f i r s t ; / / The f i r s t i n s t r u c t i o n
A b s t r a c t I n s n N o d e l a s t ; / / The l a s t i n s t r u c t i o n
Frame frame ; / / The frame i n f o r m a t i o n
i n t t y p e ; / / The b l o c k t y p e

}

p u b l i c c l a s s Frame {
i n t t y p e ; / / The frame t y p e
O b j e c t [] l o c a l T y p e s ; / / Loca l v a r i a b l e t y p e s
O b j e c t [] s t a c k T y p e s ; / / Operand s t a c k t y p e s
/ / B l o c k s h o l d i n g u n i n i t i a l i z e d t y p e s
B a s i c B l o c k [] u n I n i t i a l i z e d T y p e s ;

}

p u b l i c c l a s s A b s t r a c t I n s n N o d e {
i n t t y p e ; / / The i n s t r u c t i o n t y p e
A b s t r a c t I n s n N o d e n e x t ; / / Nex t i n s t r u c t i o n
A b s t r a c t I n s n N o d e p rev ; / / P r e v i o u s i n s t r u c t i o n

}
}

Figure 6.2: The declaration of the CFG class in Juzi.

the CFG class are the following: (1) the entry block has no predecessors, (2) exit

blocks have no successors, (3) if a block B1 is a predecessor of block B2 then B2

is a successor of B1, (4) instruction nodes must satisfy the constraints of a doubly

linked list, and (5) uninitialized types in a frame must point to a Label object

corresponding to a NEW instruction.

We instrumented the CFG class to enable repair and ran the version of Juzi

with the repairable CFG on the program that triggered the error. The new version

118

of Juzi detected the inconsistency in the CFG and repaired the CFG as follows. The

repair algorithm traversed all the instruction nodes searching for a pattern of two

instructions where the first is a Label, and the second is NEW. The algorithm found

the instructions corresponding to label L3 and assigned it to the frame. The algo-

rithm then found the basic block that contained the two instructions and assigned it

to the null pointer that caused the error in the first place. The generated CFG en-

abled the execution of Juzi to proceed and generated a log-report with the changes

that occurred. The repair process was performed in less than 100 milliseconds and

15 repair actions were considered.

6.2.2 Borg Calendar

Borg [8] is an open-source calendar and task tracking system written in Java

with over a hundred thousand downloads on SourceForge. Borg provides several

features including a to-do list, several calendar views, popup reminders, repeating

appointments, as well as importing/exporting data from/to various calendar for-

mats. To maintain the user data, Borg interacts with a database management system

(DBMS) and maintains a database holding the user projects, tasks, appointments,

and memos.

6.2.2.1 Case Study

Borg provides two methods for creating calendar projects. The first method

is interactive, where the user creates projects and tasks by filling up forms that

popup upon request. The second method is batch, where the user provides an XML

119

file describing the projects and the tasks and imports the file into Borg. After cre-

ating each component, Borg saves/updates the database with the calendar informa-

tion.

Borg’s implementation supports a fair amount of error checking when ma-

nipulating the calendar components interactively. For example, when creating a

project in the calendar, Borg asserts that the due date of a project is assigned after

the start date, and that a description string is provided for a project. If these prop-

erties are violated, Borg reports the error in a message box and does not allow the

project creation. Figure 6.3(a) shows a snapshot of Borg’s error message.

These consistency checks, however, are not performed when the calendar

data is imported from an XML file. An inconsistent XML description file can result

in an inconsistent calendar. For instance, consider the following XML data that

represents a project with one task:

<TASKS>
. . .

<P r o j e c t>
<KEY>1< /KEY>
<Id>1< / I d>
<S t a r t D a t e>0 3 / 0 1 / 0 9 12 : 0 0 AM< / S t a r t D a t e>
<DueDate>0 3 / 3 1 / 0 9 12 : 0 0 AM< / DueDate>
<D e s c r i p t i o n>F i r s t< / D e s c r i p t i o n>
<S t a t u s>OPEN< / S t a t u s>

< / P r o j e c t>
<Task>

<KEY>1< /KEY>
<TaskNumber>1< / TaskNumber>
<S t a r t D a t e>0 3 / 2 8 / 0 9 12 : 0 0 AM< / S t a r t D a t e>
<DueDate>0 3 / 2 1 / 0 9 12 : 0 0 AM< / DueDate>
<S t a t e>OPEN< / S t a t e>
<Type>TASK< / Type>
<D e s c r i p t i o n>One< / D e s c r i p t i o n>
<P r o j e c t>1< / P r o j e c t>

< / Task>
. . .

< / TASKS>

120

(a
)

(b
)

Fi
gu

re
6.

3:
(a

)B
or

g
er

ro
rm

es
sa

ge
in

di
ca

tin
g

an
in

co
ns

is
te

nc
y.

(b
)A

n
in

co
ns

is
te

nt
ta

sk
im

po
rt

ed
fr

om
X

M
L

.

121

Figure 6.3(b) shows a snapshot of Borg’s state after importing the file into

the calendar. Notice the corruption in the task information; the start date is assigned

after the due date without any complaints from Borg.

6.2.2.2 Repair Result

We consider two ways to prevent the faulty scenario. The first is by asserting

the consistency of the loaded data before updating the database as performed when

creating tasks interactively, and the second is by performing repair.

To import the data from an XML file, Borg implements a parser that parses

the XML into a simplified DOM tree. The data is then analyzed and translated to

SQL queries into the underlying database. The declaration of the tree structure is

shown below:

p u b l i c c l a s s XTree {
/ / Each XML e l e m e n t has a name and a v a l u e
S t r i n g name ;
S t r i n g v a l u e ;

/ / Each XML e l e m e n t has c h i l d r e n , s i b l i n g s , and a p a r e n t
XTree f i r s t C h i l d ;
XTree l a s t C h i l d ;
XTree s i b l i n g ;
XTree p a r e n t ;

}

Each XTree object represents an XML element. Each element has a name

and an optional value. An XTree object also has pointers to the parent XML

element, the first and the last children elements, and the sibling element

which resides at the same tree level. Figure 6.4 illustrates the data structure shape.

122

1
IdKey Start Due

Project

Tasks

Task

Id Start Due
1 1 03/01 03/31 03/1503/101

Project

Figure 6.4: The XTree data structure in Borg.

We check for two types of consistency constraints: constraints on the struc-

ture of the XTree nodes, and constraints on the contents of the XTree nodes. For

the structural constraints, we consider the standard tree constraints which include

acyclicity along the children pointers, correctness of the parent pointer, and the va-

lidity of the list along the siblings. For the data constraints, we consider the validity

of the relationships between the data elements. For example, the start date element

of a task must happen before the due date element of the same task. For another

example, the duration of a task must not exceed the duration of its project.

We formulate a repOk method that describes the above properties and mod-

ify Borg’s source code to check for the consistency of the constraints after parsing

the XML file. We report an error message similar to the one in Figure 6.3(a) when

an inconsistency is detected.

For the first experiment, we disable repair. We import a faulty XML file with

two faults: (1) a task with a duration that expands beyond its project’s duration,

and (2) a task with a due date that happens before its start date. Borg fails to

import the XML file due to the inconsistency in the calendar information. Instead

123

of loading the calendar, Borg announces an error message indicating the load failure

and proceeds with its execution. Note that this problem persists if we try to load the

same file again.

For the second experiment, we instrument the XTree class and use the in-

strumented class in Borg. We run Borg and import the faulty XML file. Borg now

shows a warning message indicating that repair was performed and points to the

log-file which shows the repair steps. The repair algorithm detects the inconsisten-

cies in the data elements. For the first fault, it sets the start date to the project’s start

date and the due date to the project’s due date. For the second fault, it sets the start

and due dates to the same value. The repair process took less than 50 milliseconds.

Repair allows loading the calendar. While it is highly likely that the repaired tasks

do not have the original intended dates, the repair logs point out the errors while

allowing Borg to process the file.

6.2.3 HSQLDB

The HSQL database engine [112] is a popular relational database for Java

with over one million downloads on SourceForge. HSQL supports a rich subset

of the SQL language and provides both in-memory as well as disk based queries.

HSQL is being used in several open-source projects. We used HSQL while ex-

perimenting with Borg to maintain the calendar state. We also used HSQL in our

research on DBMS testing [68].

124

6.2.3.1 Specifications

Database tables in HSQL are represented as set of rows holding the data

elements. To enable efficient operations on the tables, HSQL supports various in-

dexing schemes for the data. Figure 6.5 shows the declaration of the data structures

used by HSQL to maintain the tables of the database1. For efficient in-memory

indexing, HSQL maintains the indices of the database records in an internal data

structure that implements a balanced binary search tree. The class Index imple-

ments AVL trees and the class Node represents the nodes corresponding to the rows

of the table. Each node has a left, a right, and a parent field defining the

backbone of the tree and an integer field defining the tree balance at a node. Ad-

ditionally, a node has an instance of the row object it represents, and a next field

representing a node in another index tree that corresponds to the same row. We will

shortly elaborate on the use of the next field.

Multiple indices can be created for a database table. A primary index is

created for a table to identify unique rows. This index is created by default in case

the user does not specify it. Other indices include foreign key indices that relate

a table to other tables and user created indices (using the CREATE INDEX SQL

expression) that enable faster processing of desired columns. Figure 6.6 shows the

shape of a Table data structure with n indices. Each index is represented as a

separate AVL tree. A row that belongs to the table is represented as n nodes in the

data structure where each node belongs to a different index tree and all the nodes

1We modified the original field names for the clarity of the description.

125

p u b l i c c l a s s Tab le {
Index [] i n d e x L i s t ;
i n t i ndexCoun t ;
. . .

}

p u b l i c c l a s s Index {
Node r o o t ;
. . .

}

p u b l i c c l a s s Node {
Node l e f t ;
Node r i g h t ;
Node p a r e n t ;
Node n e x t ;
i n t b a l a n c e ;
Row row ;
. . .

}

p u b l i c c l a s s Row {
O b j e c t d a t a [] ;
Node p r i m a r y ;

}

Figure 6.5: Data structures to maintain the data in an HSQL database.

point to the same row (we omit the arrows from the nodes to the rows in Figure 6.6

for clarity). These nodes are connected in a linked list where the primary node

represents the header node of the list in the primary index (I1). The list elements

can then be accessed following the next field of the nodes. An update on a row

may require changes on the nodes pointing to that row. The linked list structure

enables quick access to all such nodes.

The structural integrity constraints for the Table data structure are the fol-

lowing: (1) acyclicity along left and right, (2) correctness of parent, (3) the

126

n−1

R
O
W

R
O
W

. . .

. . .

. . .

primary

primary

I II

root rootroot root

parentparent

left left left left

parent parent

next next

nextnext

1 2 n

index list

I

Figure 6.6: The data structure to maintain table indices in HSQL.

height-balance property where the number of nodes in the left and right sub-

tree do not differ by more than one, (4) the linked list constraints along the next

field where the primary index points to the head of the list and the last index points

to the last node in the list, and (5) the order constraint where the order in which the

nodes are inserted in the linked list must match the order in which the corresponding

indices are inserted in the indexList.

6.2.3.2 Bug Report

Earlier versions of HSQL contained a bug that corrupted the consistency

constraints of the data structures and caused loss of data when updating the database.

This is a known bug id#878288 that is reported in HSQL’s bug repository and is

fixed in later versions.

When creating table indices, HSQL inserts every new index at the end of the

indexList in the Table class. For each row in the table, it creates a node object

for the new index, inserts the node in the index’s AVL tree, and adds the node at the

127

end of the linked list along the next field. An optimization was added to the Table

class that clusters the indices in the indexList according to their types (primary,

foreign, or user created) and not in the order they are created. The optimization,

however, was not reflected on the order in which the elements are inserted in the

node’s linked list, which corrupted the order constraint of the data structure and

caused multiple index trees to cross-link.

6.2.3.3 Repair Results

We formulated a repOk method to describe the structural integrity con-

straints of the Table data structure in HSQL. We asserted the properties at the exit

statements of the createIndex method in HSQL that is responsible for creating

the table indices. We used the following SQL script to corrupt the data structure:

/ / Cr e a t e t a b l e ‘ ‘ u s e r s ’ ’ w i t h a pr imary i n d e x
CREATE TABLE u s e r s (i d INTEGER p r i m a r y key , name TEXT, age INTEGER)
INSERT INTO u s e r s VALUES(1 , ’n1’ , 10)

/ / Cr e a t e t a b l e ‘ ‘ f o r e i g n ’ ’ w i t h a pr imary i n d e x
CREATE TABLE f o r e i g n (i d INTEGER p r i m a r y key)
INSERT INTO f o r e i g n VALUES(1)

/ / Add an i n d e x on t h e age f i e l d as a f o r e i g n key
ALTER TABLE u s e r s ADD FOREIGN KEY (age) REFERENCES f o r e i g n (i d)

/ / Add an i n d e x on name column
CREATE INDEX name ON u s e r s (name)

The SQL statements perform the following: (1) create two tables users

and foreign and insert one row of data in each table, (2) create a foreign key

constraint which inserts an index on the age column in the users table, and (3)

128

data

primary key

N2N1 N3

foreign keyname

1 n1 10

primary row row row

next next

root root root

index list

Figure 6.7: A corrupt HSQL index structure.

create a user index on the name column of the users table. Since HSQL puts user

created indices before foreign key indices, the created data structure is corrupted.

Figure 6.7 shows the state of the data structure after creating the last index. Note the

corruption in the order constraint where the order in which the indices are placed in

the indexList does not match order in which the corresponding nodes are inserted

in the linked list.

We executed the script in the presence of the assertion (but without repair).

HSQL detected the corruption and threw an exception while creating the last index.

The exception allowed HSQL to roll back and stop the execution of the script.

We then executed the script with the repair enabled. When executing repOk

on the corrupt structure, the repair algorithm is triggered and the structure is re-

paired. The repair algorithm detects the inconsistency in the linked list and reorders

the nodes of the list to satisfy the order in which the indices are inserted. The re-

paired structure is similar of the structure that is generated by HSQL after applying

the bug fix. For the example above, the repair was performed in 40 milliseconds.

129

6.3 Discussion

We next discuss our experience with using assertion-based repair while de-

signing and analyzing the experiments. The experimental results demonstrated the

ability of the approach to repair complex data structures while enabling programs

to proceed with their execution. The repair results, however, varied among differ-

ent structures. Three key factors affected the results of repair: (1) the nature of the

faults in the data structures, (2) the implementation of the repOk methods, and (3)

the program tolerance to internal state changes. We discuss the effect of each of

these factors and draw general conclusions about the repair results.

6.3.1 Faults in Data Structures

We use an abstraction of data structures to interpret the repair results. We

view three different roles for the fields of a data structure. Some fields define the

backbone of the data structure. These fields typically connect the structure nodes

and define the structure reachability. Examples of such fields are the next field of

a linked list, the left and right fields of a BinaryTree, and the child field of

a disjoint set. Other fields in the structure enable efficient operations. These fields

add redundancy to the data structure, yet, they are necessary for practical usage. For

example, in a doubly linked list, the next field enables traversing the structure and

reaching all the nodes. However, efficient delete operations require quick access

to the node before the node to be deleted. The prev field provides such a quick

access. The rest of the fields define the data stored in the data structure, e.g., the

element field of a binary search tree.

130

The experiments showed the following behavior of the repair algorithm

when repairing fields with similar roles.

• Repairing faults in the fields that define the structure’s backbone resulted in

reordering the objects of the data structure.

• Repairing faults in the redundant fields resulted in the hypothetically correct

data structure, i.e., the structure before fault injection.

• Repairing faults in the data fields resulted in either duplicating a value that

existed in the structure, swapping the values between fields, or introducing

new values that did not originally exist in the structure.

This generalization of behavior was observed in the majority of the studied

structures. For example, repairing faults in the next field of a doubly linked list

or the database structure resulted in reordering the nodes in the list. Repairing the

parent pointer in a disjoint set, or the rank field of the ranked tree resulted in the

original structure since these fields define redundant information. Repairing data

fields resulted in duplicating existing fields as in the calendar example or introduc-

ing a new value as in the binary search tree.

6.3.2 Implementation of repOk

Our experience with implementing repOk methods showed that implement-

ing repOk methods to check for the global constraints first, i.e., constraints on the

backbone of the structure, followed by the local constraints, i.e., constraints on the

131

redundant fields, and then the data constraints resulted in a more efficient repair

than any other order. This follows from the intuition of incremental constraint solv-

ing and separation of concerns. By generating a valid backbone of a data structure,

then fixing all other fields as an incremental addition to the backbone, and finally

repairing the data fields, we separate solving for reachability from solving the rest

of the constraints. Moreover, by representing independent constraints separately in

repOk, we decouple the structural constraint solver in the repair algorithm from

the symbolic execution engine. This, in general, reduces the number of wrong de-

cisions made during the search and in turn improves performance.

6.3.3 Program Tolerance to Changes

To reason about the acceptability of the generated structures, we consider

an alternative view of the repair problem.

Consider the heap state of a program right before executing a repair asser-

tion. The heap can be viewed as a graph where the vertices are the objects created

during execution and the edges are the fields of those objects. Let S be the set of all

the valid graphs that are the result of the program execution, and let S ′ be the set of

all the valid graphs that can be formed using the object fields. The set S is a subset

of the set S ′.

Now consider the result of repairing an invalid graph using the same asser-

tion. The result of repair is a valid graph that either belongs to S, i.e., a graph that

the program can build; or belongs to S ′ but not S, i.e., a graph that the program

cannot build. In the former case, we expect the program to tolerate the divergences

132

from the original graph. For example, this scenario occurred in the calendar ex-

ample, where the repaired structure was one that sets a task duration to its project

duration; this can be generated using a valid user input. In the latter case, we cannot

draw conclusions regarding the behavior of the program after repair.

133

Chapter 7

Repair-based Test Case Generation

Software testing, the most commonly used technique for validating the qual-

ity of software, is a labor intensive process, and typically accounts for about half the

total cost of software development and maintenance [7]. Automating testing would

not only reduce the cost of producing software but also increase the reliability of

modern software.

For programs that take as inputs structurally complex data, which pervade

modern software, test generation is particularly hard. Desired inputs must satisfy

complex structural integrity constraints that characterize valid structures.

There are two fundamental approaches for generating structurally complex

tests: one, representation-level generation by explicitly allocating objects and set-

ting values of their fields such that the underlying constraints are satisfied; two,

abstract-level generation by a sequence of method invocations using the API. The

two approaches are complementary and have their advantages and disadvantages.

For example, while concrete-level generation requires the user to a priori provide

constraints, abstract-level generation requires the user to first correctly implement

the methods used in a sequence.

Recent years have seen a significant progress in automating both these ap-

134

proaches. Constraint-based techniques are able to provide efficient test enumera-

tion at the representation level using off-the-shelf SAT solvers [87] as well as using

novel search algorithms [10, 72, 106]. Efficient state matching algorithms are able

to provide test enumeration at the abstract level by pruning redundant method se-

quences [115, 120, 121].

Much of the prior work, however, has focused on systematic generation

of small structures. The motivation—inspired by traditional model checking—for

that is to enable bounded exhaustive testing, where a program is tested on all (in-

equivalent) inputs within a small input size. While bounded exhaustive testing does

increase a developer’s confidence in their software, it is not prudent to altogether

ignore testing the program on larger inputs.

This chapter presents a novel algorithm for constraint-based generation of

large inputs that represent structurally complex data. We view structures as object

graphs whose nodes represent objects and edges represent fields. A key observation

behind the generation algorithm is that while generating an object-graph that satis-

fies desired structural constraints is hard, generation of a connected graph at random

with a desired number of nodes is straightforward. Of course, a graph generated at

random is highly unlikely to satisfy any of the desired constraints and would there-

fore represent an invalid structure. However, we can systematically repair it, using

STARC, such that it satisfies all the constraints.

Experimental results using a prototype implementation show that the gen-

eration algorithm can generate structures that are 100 times larger than those pos-

sible with previous constraint-based generation techniques, such as Korat [10] that

135

implements a dedicated search, or TestEra [87] that uses the Alloy Analyzer and

off-the-shelf SAT solvers, such as mChaff [92].

7.1 Repair Based Generation

This section describes the test generation algorithm. The prototype imple-

mentation utilizes three main engines: Egor, a random graph generator, STARC, the

data structure repair framework described earlier, and Dicos, a difference constraint

solver.

We describe the algorithm for generating a structure that has a unique root;

structures that have more than one root are handled similarly [10]. Figure 7.1 shows

the generation framework, which takes three inputs: (1) clazz that represents

the class of the structure’s root, (2) predicate repOk representing the structural

integrity constraints, and (3) size, a set of pairs, which defines the number of ob-

jects for each class in the structure. To illustrate, consider the declaration of the

class BinarySearchTree from Section 3.1.2. To generate tree objects with 100

nodes, we set size = {<BinarySearch Tree, 1>, <Node, 100>}.

The generation algorithm performs the following steps:

• Allocate appropriate objects using the field declarations in clazz and gen-

erate a random graph using these objects; indeed, this graph may not satisfy

any of the desired constraints yet;

• Repair the reference fields of the random graph such that all constraints on

136

Class
Declaration

(clazz)

Scope

(size)

Random Graph

Generator (Egor)

Random

Graph

Predicate
Method
(repOk)

Repair Framework

(STARC)

Generated

Structure

Constraint Solver

(Dicos)

Constraints on

Primitives

Values to
Primitives

Figure 7.1: A framework for generating large data structures.

these fields are satisfied; STARC returns the constraints on the primitive vari-

ables;

• Solve the data constraints; Dicos returns a complete solution;

• Assign each data field its value; the resulting graph represents a concrete

object-graph that satisfies all the desired invariants.

The rest of this section describes the details of the algorithm and its main

modules.

7.1.1 Generating a Random Graph

Egor takes an object representing the class declaration of the structure’s root

class, and the desired size as inputs, and generates a random graph that is allocated

on the heap. The vertices of the graph are new objects of the given classes. The

edges of the graph represent the reference fields. Figure 7.2 shows the pseudo-code

for the Egor random graph generation algorithm.

137

Intuitively, the algorithm starts with an empty graph. It then allocates new

objects as required to generate a graph of the desired size. For each object, the

algorithm randomly assigns values to the object’s reference fields, ensuring at each

step that the graph can further be extended if necessary. The algorithm terminates

when the graph has the desired number of objects and their reference fields have

been initialized.

To explain the algorithm, we first explain the notation we use in Figure 7.2:

• clazz is an object representing the container class of the structure (for ex-

ample the BinarySearchTree class).

• size is a set of pairs representing the desired size of every class in the struc-

ture. Egor provides a helper method desiredSize that takes a field f and

size, and returns the desired size of the class that is the declared type of f.

• liveObjectWorkList is a list of objects whose reference fields are yet to

be assigned a value.

• assignedObjectSet is a set of objects whose reference fields have already

been assigned a value. Egor provides a helper method getRandomObject

that randomly returns an object from the assignedObjectSet.

• LiveFieldCount is a class that represents for each class the number of ob-

ject fields, i.e., live count, that have not yet been assigned values in the struc-

ture. The live count of every class is initially set to zero. LiveFieldCount

provides three helper methods: get, update, and decrement. The method

138

O b j e c t genera teRandomGraph (C l a s s c l a z z , Set<P a i r <Class , i n t>> s i z e) {
/ / I n i t i a l i z e t h e s t r u c t u r e s f o r m a i n t a i n i n g t h e a l g o r i t h m s t a t e
Random rand = new Random () ;
L i n k e d L i s t l i v e O b j e c t W o r k L i s t = new L i n k e d L i s t () ;
S e t a s s i g n e d O b j e c t S e t = new HashSet () ;
L i v e F i e l d C o u n t l i v e F i e l d C o u n t = new L i v e F i e l d C o u n t (c l a z z) ;
C u r r e n t S i z e c u r r e n t S i z e = new C u r r e n t S i z e (c l a z z) ;

/ / C re a t e an i n s t a n c e o f t h e r o o t c l a s s , add i t t o t h e w o r k l i s t , and
/ / u pd a t e t h e f i e l d i n f o depend ing on t h e f i e l d s t o be a s s i g n e d
O b j e c t r o o t = c l a z z . n e w I n s t a n c e () ;
l i v e O b j e c t W o r k L i s t . add (r o o t) ;
l i v e F i e l d C o u n t . u p d a t e (r o o t) ;

/ / I t e r a t e u n t i l t h e work− l i s t i s empty , a t each s t e p p i c k up an
/ / o b j e c t and a s s i g n i t s r e f e r e n c e f i e l d s
whi le (! l i v e O b j e c t W o r k L i s t . i sEmpty ()) {

O b j e c t o = l i v e O b j e c t W o r k L i s t . r e m o v e F i r s t () ;
f o r (F i e l d f : f i e l d s (o)) {

/ / I f t h e d e s i r e d number o f o b j e c t i s c r e a t e d , t h e n a s s i g n
/ / t h e f i e l d t o n u l l or a p r e v i o u s l y c r e a t e d o b j e c t
l i v e F i e l d C o u n t . dec remen t (f) ;
i f (c u r r e n t S i z e . g e t (f) == d e s i r e d S i z e (f , s i z e)) {

i n t i = r and . n e x t I n t (2) ;
i f (i == 0) f . s e t V a l u e (n u l l) ;
i f (i == 1) f . s e t V a l u e (getRandomObjec t (a s s i g n e d O b j e c t S e t)) ;

} e l s e {
/ / I f f i s t h e l a s t f i e l d t o be a s s i g n e d o f a t y p e t , a s s i g n f
/ / t o a new o b j e c t o f t y p e t t o e n a b l e e x t e n d i n g t h e graph
i f (l i v e F i e l d C o u n t . g e t (f) == 0) {

O b j e c t o’ = newInstance(f);
f.setValue(o’) ;
l i v e O b j e c t W o r k L i s t . add (o’);
liveFieldCount.update(o’)
c u r r e n t S i z e . u p d a t e (f) ;

} e l s e {
/ / Randomly a s s i g n f t o (1) n u l l , (2) a p r e v i o u s l y c r e a t e d
/ / o b j e c t , and (3) a new o b j e c t o f t h e f i e l d ’ s t y p e
i n t i = r and . n e x t I n t (3) ;
i f (i == 0) f . s e t V a l u e (n u l l) ;
i f (i == 1) f . s e t V a l u e (getRandomObjec t (a s s i g n e d O b j e c t S e t)) ;
i f (i == 2) {

O b j e c t o’ = newInstance(f);
f.setValue(o’) ;
l i v e O b j e c t W o r k L i s t . add (o’);
liveFieldCount.update(o’) ;
c u r r e n t S i z e . u p d a t e (f) ;

}
}

}
}
a s s i g n e d O b j e c t S e t . add (o) ;

} }

Figure 7.2: The Egor algorithm for generating random graphs.

139

get takes a field object and returns the live count of the field’s declared class;

update takes an object, and for each of its fields, increments the live count

of the field’s declared class; decrement takes a field object, and decrements

the live count value of the field’s declared class.

• CurrentSize is a class that represents the number of objects for each class

in the structure. For each class, the current size is initially zero. The class

CurrentSize provides two helper methods: get and update. The method

get takes a field and returns the current size of the field’s declared class;

update takes a field and increments the size for the field’s declared class.

The Egor generation algorithm first initializes its variables. Next, it creates

an instance of the root class (clazz), adds it to the liveObjectWorkList, and

updates the liveFieldCount. Next, Egor iterates until the liveObjectWorkList

is empty. In each iteration, Egor removes the first object from the work list and as-

signs values to each of the object’s reference fields as follows. When assigning a

field f of type t, Egor first checks the currentSize, and the desiredSize for t.

If currentSize is equal to the desiredSize, Egor randomly assigns f to null,

or to an object from the assignedObjectSet since new objects of class t can no

longer be added to the graph. If the current size is less than the desired size, Egor

checks t’s liveFieldCount. If it is zero, i.e., the graph can only be extended fur-

ther by assigning a new object to f , Egor allocates a new object o′ of type t, assigns

o′ to f , and updates the liveFieldCount and currentSize for t. If the live

field count is greater than zero, Egor randomly assigns f to null, an object from

140

DesiredSize

[Iteration 0]

liveObjectSet

assignedObjectSet

root

BinarySearchTree

Node

0

1

1

0 2

1

BinarySearchTree

root?

LiveFieldCount CurrentSize DesiredSize

[Iteration 1]

liveObjectSet

assignedObjectSet

N0

BinarySearchTree

Node

0

2

1

1 2

1

BinarySearchTree

root

root

i0N0

left? right?

LiveFieldCount CurrentSize

right
i0N0

i1N1

left? right?

[Iteration 2]

liveObjectSet

assignedObjectSet

N1

BinarySearchTree

Node

0

2

1

2 2

1

BinarySearchTree

root

root

N0

LiveFieldCount CurrentSize DesiredSize

left

i0N0

i1N1

[Resulting object−graph]

liveObjectSet

assignedObjectSet

BinarySearchTree

Node

0

0

1

2 2

1

BinarySearchTree

root

root

N0

LiveFieldCount CurrentSize DesiredSize

N1

right

right

Figure 7.3: Generating a random BinarySearchTree object with two nodes.

the assignedObjectSet, or a new object of a compatible type. After assigning

all the fields of an object, Egor adds the object to the assignedObjectSet.

As an example, consider generating a BinarySearchTree structure with

two nodes. The algorithm takes three iterations of the while-loop. The algorithm

state at the beginning of each iteration as well as the resulting object-graph are

shown in Figure 7.3. The reference fields are labeled with the field name; a ‘?’

indicates the field has not yet been assigned a value by the algorithm; fields that have

the value null are omitted for clarity. Each node is labeled with its identity (N0

or N1) and a symbolic integer value (i0 or i1). Initially the BinarySearchTree

root object is the only live object with one field (the root) to be assigned. Since

assigning the root field to null prevents extending the graph to the desired size,

141

left

N0

N2

N3 N4

N5

i0

i1 i2

i4i3

i5

N1

Size: 6

root

rightleft

left

right
rightright

left

left

Figure 7.4: Random graph with six nodes generated by Egor.

the field is assigned to a new node N0. Node N0 has two fields to be assigned left

and right. Egor randomly sets the left field to null and the right field to a

new node N1 in order to satisfy the reachability constraint. Finally, Egor sets the

left and right fields node N1 to previously encountered nodes, and completes

the graph. Note that in the last iteration Egor does not create any new nodes since

the graph already contains the desired number of objects of type Node.

The generated graph satisfies two key properties: reachability, i.e., all the

objects allocated are reachable from the root object, and randomness, i.e., the as-

signment to each field is made at random (using the Java API). Note that primitive

data is left uninitialized. Determining the values for the primitive fields is per-

formed using Dicos after the random structure is repaired by STARC. Figure 7.4

shows an example of a six node BinarySearchTree graph generated using Egor.

7.1.2 Completing the Structure

To complete the structure, STARC takes the random structure generated

by Egor and repOk, and generates a repaired structure as well as the set of data

142

(c)

N0

N2

N3 N4

N5

i0

i1 i2

i4i3

i5

N1

Size: 6

root

rightleft

rightright

left

N0

N2

N3 N4

N5

4

1

3

2

N1

Size: 6

root

rightleft

rightright

left

5

6

i1 < i3
i3 < i0
i5 < i3
i1 < i5
i0 < i2
i2 < i6

i1 < i0

Exctracted Constraints:

(a) (b)

Figure 7.5: Completing the randomly generated graph.

constraints, which constrain the primitive fields of the resulting structure.

To illustrate, Figure 7.5(a) shows the repaired structure for the randomly

generated structure in Figure 7.4. Figure 7.5(b) shows the data constraints ex-

tracted from the BinarySearchTree in Figure 7.5(a). The constraints returned

by STARC are solved by Dicos (Section 7.1.3). The solution returned by Dicos is

used to assign values to the data fields and complete the structure (Figure 7.5(c)).

7.1.3 Dicos: Difference Constraint Solver

Dicos is a difference constraint solver for primitive integers. Dicos handles

integer constraints that take the form x < y and x ≤ y as well as simple equality

constraints of the form x == y. Following a textbook algorithm [26], the current

implementation builds a constraint graph where the vertices are the primitive fields,

and the edges are the constraints. Dicos adds a root node in the graph that is a pre-

decessor of all the nodes. Once the graph is built, the problem simplifies to finding

the single source shortest path from the added root node. To check the satisfiabil-

143

N0
N1

N5

N4

N2

1

1

1

1
1

1

1

N3

?

? ?

?

?

? N0
N1

N5

N4

N2

1

1

1

1
1

1

1

N3

5

4 1

3

2

6

(a) (b)

Figure 7.6: Solving difference constraints using Dicos.

ity of the constraints, Dicos checks for negative cycles in the graph. A negative

cycle indicates a contradiction in the constraints. Dicos implements the Bellman-

Ford [26] algorithm to find the shortest path in time O(v.e). Since the complexity

of the data constraints varies between structures, Dicos uses faster algorithms for

handling simple constraints. For example, the data integrity constraints of the bi-

nary search tree example are translated into a directed acyclic graph (DAG) rather

than a cyclic one. For a directed acyclic graph with v nodes and e edges, Dicos can

compute the primitive values in O(v + e) using a topological traversal.

To illustrate, Figure 7.6 shows the data constraint graph for the path con-

dition in Figure 7.5(b). The dotted lines are the edges from the newly added root.

Figure 7.6(a) shows the state of the graph before solving the constraints, all the dot-

ted edges are labeled with ‘?’. Figure 7.6(b) shows the solution for the difference

constraints; each ‘?’ has been replaced with a value that satisfies the constraints.

The topological distance from the added root node to each node determines the or-

144

Repair-based Korat TestEra
Singly Linked Generation Repair Total Total Total
List Time(ms) Time(ms) Time(ms) Time(ms) Time(ms)
10 Nodes ≤ 1 ≤ 1 ≤ 2 37 3,000
100 Nodes ≤ 1 ≤ 1 ≤ 2 334 -
1,000 Nodes 2 5 7 - -
10,000 Nodes 18 51 69 - -
100,000 Nodes 199 583 782 - -
Doubly Linked Generation Repair Total Total Total
List Time(ms) Time(ms) Time(ms) Time(ms) Time(ms)
10 Nodes ≤ 1 4 5 82 8,000
100 Nodes ≤ 1 44 45 3,204 -
1,000 Nodes 3 271 274 - -
10,000 Nodes 34 3,718 3,752 - -
100,000 Nodes 396 43,174 43,570 - -
Binary Tree Generation Repair Total Total Total

Time(ms) Time(ms) Time(ms) Time(ms) Time(ms)
10 Nodes ≤ 1 5 6 21 5,000
100 Nodes ≤ 1 60 61 512 -
1,000 Nodes 3 372 375 - -
10,000 Nodes 38 3,672 3,710 - -
100,000 Nodes 402 45,267 45,669 - -

Table 7.1: Results on solving constraints on the structure.

der of the data and solves the path condition. Dicos keeps track of the nature of the

graph being constructed and then decides on which algorithm to use. Dicos even

performs some simplifications on the path condition that might solve satisfiability

without the need of a solver.

7.2 Evaluation

We evaluate the generation algorithm by applying it to generate six subject

structures. For each subject, we evaluate the time it takes to generate one valid

structure for sizes: 10, 100, 1,000, 10,000, and 100,000.

145

For solving purely structural constraints, two of the previous tools that have

been shown to provide efficient solving are TestEra [87], which uses the Alloy An-

alyzer [61] and off-the-shelf SAT technology, and Korat [10], which implements an

imperative constraint solver. We present a comparison of the repair-based genera-

tion approach with these two tools when generating structures with purely structural

constraints. For data constraints TestEra and Korat are unable to compete with the

repair-based approach because they require explicit enumeration of primitive values

and checking of their constraints. The comparison with TestEra and Korat shows

that the repair-based approach can generate structures of sizes that are 100 times

larger. All experiments used a 1.7GHz Pentium D with 2GB of RAM.

7.2.1 Solving Constraints on Structure

Table 7.1 shows the results for the data structures with purely structural

constraints. All tabulated times are in milliseconds. A time of ‘-’ indicates failure

to generate in 20 minutes. Singly linked list has the simplest of the constraints and

its generation is therefore the fastest. For generating doubly linked lists and binary

trees, repair-based generation can generate structures with up to 100,000 nodes in

less than a minute.

We gave TestEra and Korat 20 minutes to generate one structure. Over-

all, Korat performs better than TestEra. However, Korat is unable to generate any

subject structure with more than 800 nodes within the given time. The generation

results show that the repair-based approach enables generating structures that are

up to 100 times larger than those feasible with Korat and TestEra.

146

Repair-based
Sorted Linked Structure Generation Structure Repair Data Generation Total
List Time(ms) Time(ms) Time(ms) Time(ms)
1,000 Nodes 3 11 27 41
10,000 Nodes 31 121 296 537
100,000 Nodes 338 1,423 2,571 4,332
Binary Search Structure Generation Structure Repair Data Generation Total
Tree Time(ms) Time(ms) Time(ms) Time(ms)
1,000 Nodes 4 422 41 467
10,000 Nodes 42 4,008 389 4,439
100,000 Nodes 446 48,401 4,067 52,914
Avl Structure Generation Structure Repair Data Generation Total
Tree Time(ms) Time(ms) Time(ms) Time(ms)
1000 Nodes 7 2,765 35 2,807
10000 Nodes 76 10,984 376 11,436
100000 Nodes 901 72,593 4,844 78,338

Table 7.2: Results on solving constraints on the structure as well as the data.

Notice that the random graph generation time is essentially proportional to

the size and the number of fields in the target structure. The repair time dominates

the total generation time as expected. Since the corrupt structure is generated at

random, and only satisfies the reachability constraint, we expect the number of

faults to be proportional to the size of the structure. Moreover we expect the faults

to be distributed among all the fields of the structure. For repairing such random

graphs, STARC took around 45 seconds to repair graphs with a hundred thousand

nodes.

7.2.2 Solving Constraints on Structure as well as Data

Structures generated in this section have constraints on the order of the data.

For a sorted list, the elements are ordered in a strictly increasing/decreasing order

147

along the next field. For a binary search or avl trees the element in the root of a

tree is larger than all the elements in the left sub-tree, and less than all the elements

in the right sub-tree. We used TestEra and Korat to generate these structures, and

both failed to generate the first structure with 400 nodes within 20min. TestEra

and Korat use a search algorithm to solve the reference constraints as well as data

constraints whereas we try to solve the two problems separately if possible which

allows us to use a dedicated solver for data constraints.

Table 7.2 tabulates the results for three subject structures. Since the con-

straints are on the order of the data elements, the performance of Dicos scales es-

sentially linearly with the size of the generated structures. For test generation, the

performance of the random graph generator is linear with respect to the number of

fields in the generated structure, and generates random graphs with a hundred thou-

sand nodes in less than a second. The dominance of the repair time on the overall

result is observable on the BinarySearchTree and the AvlTree examples which

include complex constraints on the structure of the tree. For the sorted list, the re-

pair time is primarily the time taken to build the constraints on the primitives. Note

that for structures with mixed constraints, repair-based generation still scales and

generates structures with a hundred thousand nodes in less than two minutes.

7.3 Characteristics
7.3.1 Generate Large Inputs from Specifications

Several techniques have been recently developed for performing scope-based

testing, i.e., exhaustively testing a program on all inputs within a desired size.

148

Scope-based testing aims at verifying the correctness of programs when manipu-

lating small size input, while projecting a similar behavior of the program for larger

inputs. Software, however, may behave differently when subjected to inputs of dif-

ferent sizes. For example, a sorting process may use one algorithm for sorting a

small number of elements, and a more efficient (and complex) algorithm for sorting

a larger number of elements. Testing such a program on small inputs may not exer-

cise the code of the efficient algorithm, and thus any anomaly in the implementation

of the efficient algorithm may not be captured.

Testing software systems on large size input is crucial for detecting bugs and

unexpected system behavior. It is typical in industry to have a team of testers dedi-

cated towards stress and load testing [37]. Stress testing is the process of exposing

the program to a heavy input load that does not occur in normal circumstances in

an effort to detect any undesired behavior. This process is typically performed by

(1) writing test scripts where the tester replicates small input scenarios to generate

a large test, (2) running the program on the test cases, and (3) checking for abnor-

mal behavior such as a program crash or memory problems. This approach has

two key problems: (1) regression is very expensive; changes in the program may

require large changes in the test scripts (or even rewriting the scripts from scratch)

due to the replication, and (2) the tests that result from replicating or combining

small input scenarios are usually skewed.

The approach presented in this chapter tackles these two problems. First,

it generates large inputs using specifications. As long as the specification does not

change, no changes are required in the tests despite modifications in the implemen-

149

tation. Second, the tests are generated automatically and at random providing a

diverse suite for exercising possibly different scenarios. Moreover, with some tun-

ing, the presented approach can provide a powerful tool for negative testing, i.e.,

generating inputs that violate a programs pre-condition and check how the program

reacts to such inputs. The random graph generator is generic and generates a ran-

dom heap which is more likely to be inconsistent. The generated heaps can be used

to mimic the behavior of a program in the presence of a bug that puts the system in

a similar state.

7.3.2 Test Case Enumeration

We have illustrated repair-based generation for generating one structure of

a desired size. The same approach can also be used to systematically enumerate a

given number of structures. We expect a typical usage of repair-based generation

to be to generate a small set of large test inputs; for inputs of large size, exhaustive

generation is infeasible in principle due to the enormous number of valid structures.

150

Chapter 8

Related Work

Assertion-based repair [35, 69] introduces a novel use of assertions for re-

pairing data structure corruptions in deployed software. While primarily designed

for error recovery, the techniques used in assertion-based repair are closely related

to techniques used in specification based testing, dynamic test input generation, and

software model checking.

This chapter reviews the work related to assertion-based repair. It first re-

views related work on error detection, traditional error recovery, and constraint-

based repair and then it relates repair to common assertion-based techniques for

testing and verification.

8.1 Error Detection

Detecting errors using specifications at runtime is one of the earliest tech-

niques for checking program correctness. There is a large body of research on

behavioral specification languages [54, 61, 64, 78], both in their own regard and as

annotations for code. In Larch [77], programmers write annotations in an abstract

mathematical notation. The Java Modeling Language (JML) [78] is a general pur-

pose specification language that combines Eiffel’s [88] approach of basing the an-

151

notation language on the underlying programming language with Larch’s algebraic

basis; several tools support JML [18, 94, 123]. The Unified Modeling Language

(UML) [96, 102] is the de facto industry standard for object modeling. Another

widely used specification language is Z [109], which allows constructing mathe-

matical models of dynamic systems. An objected-oriented extension of Z has been

developed to allow modeling systems as interactions between objects [108]. Al-

loy [60] is a relational, first-order logic suitable for expressing software designs. It

builds on Z’s mathematical basis to provide a small yet expressive language. Al-

loy’s key strength is its analyzability. The SAT-based Alloy Analyzer performs

scope bounded checking.

Runtime verification (RV) [57] allows synthesizing monitors from specifica-

tions for debugging as well as checking safety properties at run-time. Monitoring-

oriented programming (MOP) [17] generalizes RV by supporting logic plug-ins that

allow users to specify both monitor deployment and error recovery. MOP enables

repair but requires the user to provide repair routines [17]. The SETL [42] pro-

gramming language is based on a logic of sets; it provides sets and relations as

basic datatypes and supports quantifiers. SETL users can manually direct the com-

piler to choose appropriate concrete datatypes for efficient execution of SETL pro-

grams. The JML checker [13] translates annotations written in the Java Modeling

Language (JML) into runtime checks. The checker handles several JML constructs

and can check post conditions that relate post-states with pre-states, but does not

enable repair.

Assertion-based repair is closely related to specification-based analyses. (1)

152

Repair uses specifications for recovering from errors rather than detecting errors.

(2) Unlike specification-based techniques which perform reasoning on two program

states, repair reasons on a single program state, and performs mutations based on

a general description of a valid state. We describe in Chapter 9 how repair can

be extended to relate multiple program states and utilize existing pre-deployment

techniques to perform post-deployment software analysis.

8.2 Error Recovery

Error recovery has been part of software systems for a couple of decades [63,

107]. System reboot is a traditional error recovery mechanism. In this approach,

the user reboots the system when it crashes, uses system logs to analyze the cause

of the problem, and creates patches to fix the errors. One disadvantage of this ap-

proach is that the system state before the crash is lost and the system returns to its

initial state. Additionally, if the problematic scenario recurs, then the program is

likely to reach the same corrupt state and crash again.

Check-pointing and rollback [74,122] tackles the problem of state loss when

rebooting by recovering the program state to the last saved state rather than the

initial one [67]. One drawback still exists when persistent, rather than volatile,

faults occur in a system. In this case, it is very difficult to automate recovery using

traditional approaches.

Repair is another mechanism for fault-tolerance and error recovery; several

systems have featured repair over the last couple of decades [20, 43, 55, 93]. The

fsck and chkdsk file system utilities check the consistency of the file structure

153

upon booting a system and repair possible corruptions. Commercial tools such as

the IBM MVS operating system [93] and the Lucent 5ESS telephone switch [55]

implement dedicated components for monitoring and maintaining the consistency

of the system state. DIRA [107] combines check-pointing mechanisms with dedi-

cated routines to detect buffer overflow attacks and repair the structures damaged by

the attack. A fundamental problem with the traditional approaches to repair is that

repair is based on dedicated repair routines, which must be implemented for each

system they are intended for. As a result, these routines are ill-understood, mostly

ad-hoc, and are program specific. The problem is compounded by the absence of

any text-book algorithms for repairing erroneous program states.

The use of structural integrity constraints to perform repair is relatively new.

Demsky and Rinard [31, 33] are the first to use constraints as repair routines. Their

framework performs repairs based on constraints written in a new declarative lan-

guage that is similar to the first-order relational language Alloy [61]. Repair is per-

formed by translating the constraints to disjunctive normal form and solving them

using an ad-hoc search. To help the user formulate constraints, they have taken

a promising approach [32] of integrating repair with dynamic invariant generation

using Daikon [39].

Garcia [45] and Suen [110] made an initial investigation of using assertions

for repair [69]. Our core repair algorithm is based on that work. The use of as-

sertions for repair differs from the use of declarative constraints in several ways.

Our work allows writing constraints using the language of implementation rather

than using a declarative language which is semantically different from common

154

programming languages and may require users to learn a new language. This al-

lows performing repair on the heap itself and not on an abstraction of the heap and

enables providing users with meaningful feedback in the form of repair logs.

8.3 Test Input Generation

Specification-based testing techniques has been present in the testing litera-

ture for a long time [50]. Many approaches automate test generation from specifi-

cation languages provided in the form of program annotations [34,41,71,111,123].

These approaches are typically search-based. For example, the ASMLT [41] test in-

put generator translates ASML specifications into finite state machines (FSM) and

generates test cases by traversing the FSM states.

Korat [10] is similarly a search-based test generation tool that exhaustively

enumerates all non-isomorphic instances of a data structure up to a bound on the

size. Korat accepts the constraints written as a repOk predicate. TestEra [70] is

a test generation tool that uses the Alloy Analyzer to generate all the structures

that satisfy the integrity constraints. TestEra translates the class declarations of a

structure into an Alloy model and the Java predicate into an Alloy formula which is

then fed into the Alloy Analyzer.

Handling data constraints is always a challenge for search and SAT based

approaches. Korat treats data members the same way it treats reference values, and

even if the structural integrity constraints are solved, Korat still needs to perform

the search to complete the structure. TestEra does not provide an efficient way to

handle data elements due to the way primitive data types are modeled in Alloy [60].

155

A recent technique that is gaining a lot of popularity in testing literature is

white-box dynamic test generation [14, 48, 106, 120, 121]. Dynamic test genera-

tion [72] consists of executing a program while gathering symbolic constraints on

inputs from predicates encountered in branch statements, and of using a constraint

solver to infer new program inputs from previous constraints in order to steer next

executions towards some new program paths. This technique is now the founda-

tion of several bug detection tools [2, 47, 49, 120]. These tools vary by the type

of programs they can analyze, the type of constraints their symbolic execution can

generate and by the constraint solver they use. Dynamic test generation techniques

are powerful and efficient for handling primitive data yet require special handling

for complex data structures.

Assertion-based repair combines the advantages of the two techniques to ef-

ficiently repair corrupt data structures. It employs a systematic search similar to the

one used in Korat which is powerful for solving structural constraints, in conjunc-

tion with a symbolic execution similar to the one used for dynamic test generation

which is effective for generating and solving data constraints. Repair optimizes the

efficiency of the testing techniques by introducing the recurrent analysis and the

checkpoint-based backtracking.

8.4 Invariant Detection

The repair algorithm expects the user to provide the integrity constraints

by writing the repOk predicate. For complex constraints, writing a precise pred-

icate is error-prone. Existing constraint-synthesis tools can be used to help users

156

formulate the predicates correctly. Several static and dynamic techniques exist for

synthesizing various forms of specifications, such as loop invariants [28,105], heap

abstractions [91, 103], and API level specifications [111, 118]. Daikon [39] is a

popular framework for dynamically discovering likely program invariants, and has

been used for data structure repair but not for linked-data structures, which our

approach handles readily. Dwyer et al. [25] identified specification templates for

temporal logic properties to assist users formulate their specifications but they do

not consider error recovery.

A recently developed tool, Deryaft [83], specializes in generating constraints

of complex data structures. Deryaft takes as input a handful of concrete data struc-

tures of small sizes and generates a repOk predicate that represents their structural

integrity constraints. The constraints generated by Deryaft can be either directly

used for repair, or used as a skeleton to help the users correctly formulate the repOk

methods.

8.5 Model Checking

Structural constraint solving, state space exploration, and backtracking are

commonly used techniques by software model checkers [46, 59, 100, 114].

Java PathFinder (JPF) [114] is a general purpose model checker that has

also been used a solver for imperative predicates [72]. JPF performs stateful model

checking of (multi-threaded) Java programs. It implements a custom Java Vir-

tual Machine (JVM) that, unlike the standard JVM, enables non-deterministic re-

executions of Java programs to, theoretically, cover all the possible executions of a

157

program. JPF has been applied for testing data structure implementations both at

concrete and abstract levels [115–117].

The implementation techniques we use in Juzi are inspired by our experi-

ence in optimizing JPF. Juzi specializes some of the concepts used by JPF to enable

more efficient checking of properties. Juzi implements a lightweight backtracking

mechanism by performing code instrumentation rather than implementing a cus-

tom JVM, which is required by JPF. It performs efficient incremental state saving.

Rather than hashing the entire program state, and comparing it with the next state,

it incrementally saves state changes and their corresponding undo commands as the

changes occur in the program. While storing states incrementally (as “deltas”) is

a known technique in explicit-state model checking [23], repair performs it at an

abstract level.

158

Chapter 9

Future Work: Specification-based Error Recovery

We designed assertion-based repair to perform repair based on a single pro-

gram state. This limited the approach to repairing data structures that can be char-

acterized by their class invariant. This approach weakens the ability to reason about

the repaired structures. The efficiency of repair using a single program state, how-

ever, suggests a potential use of assertion-based repair for repairing richer program

properties. We envision an extension of assertion-based repair to program specifi-

cations. This enables reasoning on multiple program states and allows more precise

analysis of the output of repair.

We propose specification-based error recovery, a comprehensive frame-

work for repairing erroneous program states, which addresses the limitations of

assertion-based repair and is based on a radically new role for rich behavioral spec-

ifications: to repair erroneous executions.

9.1 A New Definition of Repair

Specification-based repair requires a new definition of repair. In Chapter 3

we defined repair in terms of a repOk method that describes the structural integrity

constraints of a data structure. The definition restricted the correctness specifica-

159

tion to state properties of only one program state. We would like to enable repair for

more general specifications, e.g., specifications that relate the pre-state of a method

to a post-state, to allow recovery even after an erroneous method execution. The

earlier definition also leaves the notion of similarity between the original and the

repaired structure undefined. While the repair algorithm tries to minimize the per-

turbation to the original structure, it does not guarantee a “closest neighbor” would

be generated. We would like to define the properties of the repaired structure pre-

cisely.

The new definition must include:

• Support for general specifications that relate properties across different states,

e.g., adding a new key to a binary search tree modifies the tree such that all

the old keys are still there and only the new key is added. Given such a

specification and an incorrect execution we would like repair to generate a

correct result using the specification.

• A definition of a distance-metric between graphs, which forms the basis of

the repair definition with respect to a bound on the distance between the ini-

tial structure and the new structure; the metric must define distances up to

isomorphism: isomorphic structures have distance zero.

9.2 The Design of a Specification Language

Specification-based repair requires the design of a language for writing re-

pair specifications. Two key requirements must be satisfied by the language design.

160

First, the language must be rich enough to express complex structural and data con-

straints. Second, the language design must enable algorithms to provide efficient

repair. There is an inherent tradeoff between these two requirements. We therefore

need to find a sweet spot between expressivity and feasibility.

We foresee two directions for the language design. The first is by using re-

lational bases to express repair [60] and using a veneer on Alloy as the specification

language. The second is by extending the notion of repOk to handle multiple pro-

gram states. Both directions have their advantages and disadvantages. While Alloy

provides a powerful language for expressing program properties, the scalability of

repair using Alloy remains questionable. We expect a repOk based approach to be

more feasible in terms of performance, yet, the implementation of repOk methods

to express the relationship between multiple program states can get very complex

and becomes error prone.

9.3 The Design of Repair Algorithms

New algorithms need to be developed for performing repair based on spec-

ifications. The heart of the repair algorithms will be a mechanical translation of the

repair specifications as well as the program pre and post states to an input language

of a target solver. For example, if Alloy is used for writing repair specifications,

then the repair algorithm must generate an Alloy model from the repair specifica-

tions and the corrupt program state and use the Alloy analyzer to repair the state.

Given repOk specifications, the structural constraint solver described in Chapter 3

must be extended to handle multiple program states. Unlike the case of repairing

161

a single program state, where the objects in the heap are restructured to satisfy

the given constraints, repairing multiple states requires additional features such as

creating new objects and extending the heap according to the specification. For ex-

ample, suppose that a buggy add method replaces an existing element in a binary

search tree. The repair algorithm must automatically add the necessary objects to

retain the elements of the tree.

9.4 Assisting the Users with Writing Repair Specifications

Our design for assertion-based repair considered usability as a key require-

ment. The repair framework required minimal effort from the user to integrate

repair in a program and provided repair logs to help the user understand the repair

actions. A similar, but more powerful approach, must be taken for specification-

based repair as the problem of writing specifications can get very complicated.

To help the user write correct specifications, algorithms need to be devel-

oped for checking specifications and for synthesizing skeletal specifications.

Specification checking: The repair performed at runtime is guided by the repair

specifications. An erroneously formulated specification can misguide the repair al-

gorithm. Algorithms need to be developed to run consistency analyses on repair

specifications; for example, to determine whether the repair specifications are sat-

isfiable at all. Additionally, algorithms must be developed to detect when a repair

specification is too weak and inform the user to either re-write the specification to

make it more precise or to inspect the repairs performed to notice any inconsistency

if they choose to run repair using the original specification.

162

Specification synthesis: Writing detailed repair specifications can be tedious, espe-

cially for inexperienced users. Algorithms can be developed that synthesize skeletal

repair specifications that the users can refine. Synthesis of skeletal specifications of-

fers two key benefits: (1) it helps new users ease into the use of repair specifications;

and (2) it reduces the burden on the user for writing specifications.

163

Chapter 10

Conclusions

We conclude this dissertation by providing a summary of our work on assertion-

based error recovery and arguing its meaning and impact.

10.1 Summary

We started our work by designing a core algorithm for assertion-based repair

(Chapter 3). The algorithm combines systematic search and symbolic execution to

repair corrupt data structures. Our key target while designing the algorithm was

the correctness of repair. The core repair algorithm is sound and complete with

respect to the given structural constraints. While the algorithm effectively repairs

data structures, the size of the structures is limited to those with up to few thousands

of nodes.

The next steps were to develop a framework for assertion-based repair that

could apply repair to general purpose Java programs and to devise optimizations to

improve the efficiency of the repair algorithm.

We developed Juzi (Chapter 4), a framework for repairing Java programs.

Juzi implements the core repair algorithm described in Chapter 3 and uses byte-

code instrumentation to integrate it into existing Java code. Juzi also provides pro-

164

grammers with the necessary API for writing repairable classes and asserting their

properties at runtime.

A powerful feature of Juzi is that users control the repair algorithm. Us-

ing Juzi, the user can control the fields that the repair algorithm mutates, the data

it introduces, the order of the field mutations, as well as the repair-logs which

can range from a log file that contains a summary of the repair actions to a vi-

sualization that allows the user to interact with the repair algorithm. The bina-

ries of the Juzi framework along with a usage tutorial can be found at http:

\\www.ece.utexas.edu\˜elkarabl.

To enhance the efficiency of the core repair algorithm we introduced a set

of key optimizations (Chapter 5) for scaling the performance of the original repair

algorithm to handle large data structures with hundreds of faults. The first optimiza-

tion was through a static analysis that identifies recurrent fields of the target data

structure and uses the information of the static analysis to guide the search to good

repair candidates. The second optimization was through an efficient backtracking

engine for repair. In contrast to re-execution-based approaches for backtracking,

it performs checkpoint-based backtracking by storing partial program states and

performing abstract undo operations. The heart of our approach is a light-weight

search that is performed purely through code instrumentation and that does not re-

quire special JVM support.

We evaluated the efficiency of repair by using it to repair corruptions in a

diverse set of library data structures (Chapter 6). The experimental results demon-

strated the scalability of the approach when repairing large data structures with

165

randomly injected faults in a feasible amount of time. We also evaluated the ac-

ceptability of the repaired results by using repair on three stand-alone applications.

The results showed that for applications with redundancy in their data structures,

the structures were fully repaired. For structures with corruptions in the data fields,

the structures were mutated but the program execution proceeded safely.

The efficiency of repair directed our attention to alternative uses of repair

in testing. We leverage the efficiency of repair for constraint based generation of

large data structures (Chapter 7). The work is inspired from the experiments on

repairing randomly injected faults. We introduce repair-based generation which

uses our approach to repair randomly generated graphs. By separating the gener-

ation tasks, repair based generation enables combining random graph generation

with data structure repair and constraint solving, to efficiently generate large data

structures based on specifications.

Experiments on generating large data structures using subjects with com-

plex structural and data constraints show that repair-based generation can efficiently

generate structures with up to a hundred thousand nodes. In comparison with two

existing constraint-based generation frameworks, repair-based generation is able to

generate structures that are up to 100 times larger.

The evaluation of assertion-based repair provides solid evidence of the fea-

sibility of repair. Our experience with repair suggested an extension of the repair

approach to program specifications. While prior uses of specifications have been

numerous, ranging from documentation, to testing, to runtime checking, rich be-

havioral specifications have not previously been used for error recovery.

166

10.2 Meaning

Methodologies that improve software reliability not only provide substantial

economic benefits but also improve our quality of life. To bring about a real change

in the current state of unreliable software, we must equip developers with state-of-

the-art tools as well as sound foundations in reasoning and logic.

Assertion-based repair leads to a substantial advance in our ability to de-

velop correct programs. For programs that already have assertions, error recovery

using the proposed approach can come for free. The same assertion can be used for

checking code before deployment using existing techniques as well as ensuring the

program executions do not go awry after deployment. Thus, this approach enables

a novel unification of software verification and error recovery. Such a unification

has not been possible before and is likely to substantially improve the quality of

software.

The benefits of assertions are widely recognized, but for the most part they

have not been realized, and programmers still view them as more trouble than they

are worth. Much progress has been made. Assertions are now better integrated with

programming languages; and they can handle the complexities of object-oriented

code. But to make them attractive to practitioners, we believe it is necessary to

squeeze more value from them, by providing new analyses for the same assertions.

The ability to recover from errors on-the-fly can make assertions significantly more

attractive and beneficial, and a fundamental element of developing dependable soft-

ware.

167

Bibliography

[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lil-

ley. The design and implementation of an intentional naming system. In

Proceedings of the 17th ACM Symposium on Operating Systems Principles

(SOSP), Kiawah Island, SC, December 1999.

[2] Saswat Ananad, Patrice Godefroid, and Nikolai Tillmann. Demand-driven

compositional symbolic execution. In Proceedings of the 14th Conference

on Tools and Algorithms for Construction and Analysis of Systems (TACAS),

Budapest, Hungary, March 2008.

[3] Tony Andrews, Shaz Qadeer, Sriram Rajamani, Jakob Rehof, and Yichen

Xie. Zing: A model checker for concurrent software. In Proceedings of

the 16th International Conference on Computer Aided Verification (CAV),

Boston, MA, July 2004.

[4] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sar-

fraz Khurshid, Mike Lowry, Corina Pasareanu, Grigore Rosu, Koushik Sen,

Willem Visser, and Rich Washington. Combining test case generation and

runtime verification. Theoretical Computer Science, 2005.

[5] Thomas Ball and Sriram Rajamani. Automatically validating temporal safety

properties of interfaces. In Proceedings of the 8th International Workshop

168

on Model Checking of Software (SPIN), Toronto, Canada, May 2001.

[6] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of

the cooperating validity checker. In Proceedings of the 16th International

Conference on Computer Aided Verification (CAV), Boston, MA, July 2004.

[7] Boris Beizer. Software Testing Techniques. International Thomson Com-

puter Press, 1990.

[8] Mike Berger. Borg calendar. http://borg-calendar.sourceforge.

net/.

[9] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel

Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump,

Han Lee, J. Eliot B. Moss, B. Moss, Aashish Phansalkar, Darko Stefanović,

Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The

DaCapo benchmarks: Java benchmarking development and analysis. In

Proceedings of the Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), 2006.

[10] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Au-

tomated testing based on Java predicates. In Proceedings of the Interna-

tional Symposium on Software Testing and Analysis (ISSTA), Rome, Italy,

July 2002.

169

[11] Olga Brukman, Shlomi Dolev, and Marcelo Sihman. Recovery oriented

programming. In Proceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP), Brighton, United Kingdom, October 2005.

[12] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: a code manip-

ulation tool to implement adaptable systems. In Adaptable and extensible

component systems, Grenoble, France, November 2002.

[13] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary

Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools

and applications. International Journal on Software Tools for Technology

Transfer (STTT), 2005.

[14] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson

Engler. Exe: Automatically generating inputs of death. ACM Transactions

on Information and System Security, 2008.

[15] Brendon Cahoon. Effective Compile-Time Analysis for Data Prefetching in

Java. PhD thesis, University of Massachusetts, Amherst, MA, 2002.

[16] Brendon Cahoon and Kathryn S. McKinley. Recurrence analysis for effec-

tive array prefetching in Java. Concurrency and Computation Practice and

Experience, 17, February 2005.

[17] Feng Chen and Grigore Roşu. Java-MOP: A monitoring oriented program-

ming environment for Java. In Proceedings of the 11th Conference on Tools

170

and Algorithms for Construction and Analysis of Systems (TACAS), Edin-

burgh, Scotland, April 2005.

[18] Yoonsik Cheon and Gary Leavens. A simple and practical approach to unit

testing: The JML and JUnit way. In Proceedings of the European Con-

ference on Object-Oriented Programming (ECOOP), Malaga, Spain, June

2002.

[19] Shigeru Chiba. Javassist—a reflection-based programming wizard for Java.

In Proceedings of the ACM OOPSLA’98 Workshop on Reflective Program-

ming in C++ and Java, October 1998.

[20] Microsoft chkdsk manual page. Chkdsk.

[21] Edmund Clarke, Orna Brumberg, and Doron Peled. Model Checking. MIT

Press, 1999.

[22] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking

ANSI-C programs. In Proceedings of the 10th Conference on Tools and

Algorithms for Construction and Analysis of Systems (TACAS), Barcelona,

Spain, March 2004.

[23] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.

The MIT Press, Cambridge, MA, 1999.

[24] Lee Copeland. A Practitioner’s Guide to Software Test Design. Artech

House, 2003.

171

[25] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby,

Shawn Laubach, and Hongjun Zheng. Bandera: Extracting finite-state mod-

els from Java source code. In Proceedings of the 22nd International Confer-

ence on Software Engineering (ICSE), Limerick, Ireland, June 2000.

[26] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-

tion to Algorithms. The MIT Press, Cambridge, MA, 1990.

[27] Standard Performance Evaluation Corporation. SPECjvm98 Documenta-

tion. Release 1.03 edition, March 1999.

[28] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-

straints among variables of a program. In Proceedings of the 5th Annual

ACM Symposium on the Principles of Programming Languages (POPL),

Tucson, Arizona, 1978.

[29] Christoph Csallner and Yannis Smaragdakis. Dynamically discovering likely

interface specifications. In Proceedings of the 28th International Conference

on Software Engineering (ICSE), Shanghai, China, 2006. Emerging results

track.

[30] Paul Darga and Chandrasekhar Boyapati. Efficient software model checking

of data structure properties. In Proceedings of the Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA),

Portland, OR, 2006.

172

[31] Brian Demsky. Data structure repair using goal-directed reasoning. PhD

thesis, Massachusetts Institute of Technology, January 2006.

[32] Brian Demsky, Michael Ernst, Philip Guo, Stephen McCamant, Jeff Perkins,

and Martin Rinard. Inference and enforcement of data structure consistency

specifications. In Proceedings of the International Symposium on Software

Testing and Analysis (ISSTA), July 2006.

[33] Brian Demsky and Martin Rinard. Automatic detection and repair of errors

in data structures. In Proceedings of the Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), Anaheim,

CA, 2003.

[34] Michael Donat. Automating formal specification based testing. In Proceed-

ings of the 7th International Conference on Theory and Practice of Software

Development (TAPSOFT), Lille, France, 1997.

[35] Bassem Elkarablieh, Iván Garcı́a, Yuk Lai Suen, and Sarfraz Khurshid. Assertion-

based repair of structurally complex data. In Proceedings of the 22th Confer-

ence on Automated Software Engineering (ASE), Atalanta, Georgia, Novem-

ber 2007.

[36] Bassem Elkarablieh, Sarfraz Khurshid, Duy Vu, and Kathryn S. McKinley.

Starc: Static analysis for efficient repair of complex data. In Proceedings of

the Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA), Montereal, Canada, October 2007.

173

[37] Myrvin Ellestad, editor. Stress Testing: Principles and Practice. Oxford

University Press, USA; 5th edition, 2003.

[38] Michael Ernst, Jeff Perkins, Philip Guo, Stephen McCamant, Carlos Pacheco,

Matthew Tschantz, and Chen Xiao. The Daikon system for dynamic detec-

tion of likely invariants. Science of Computer Programming, 2007.

[39] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.

Dynamically discovering likely program invariants to support program evo-

lution. IEEE Transactions on Software Engineering, 2001.

[40] The Eclipse Foundation. The Eclipse development platform. http://

www.eclipse.org/.

[41] Foundations of Software Engineering, Microsoft Research. The AsmL test

generator tool. http://research.microsoft.com/fse/asml/

doc/AsmLTester.html.

[42] Stefan Freudenberger, Jacob Schwartz, and Micha Sharir. Experience with

the SETL optimizer. ACM Transactions on Programming Languages and

Systems (TOPLAS), 1983.

[43] Ext2 fsck manual page. http://e2fsprogs.sourceforge.net/.

[44] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley

Professional Computing Series. Addison-Wesley Publishing Company, New

York, NY, 1995.

174

[45] Iván Garcı́a. Enabling symbolic execution of Java programs using bytecode

instrumentation. Master’s thesis, The University of Texas at Austin, May

2005.

[46] Patrice Godefroid. Model checking for programming languages using VeriSoft.

In Proceedings of the 24th Annual ACM Symposium on the Principles of Pro-

gramming Languages (POPL), Paris, France, January 1997.

[47] Patrice Godefroid, Adam Kieżun, and Michael Y. Levin. Grammar-based

whitebox fuzzing. In Proceedings of the ACM SIGPLAN’08 Conference on

Programming Language Design and Implementation (PLDI), Tucson, AZ,

USA, 2008.

[48] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed auto-

mated random testing. In Proceedings of the ACM SIGPLAN’05 Conference

on Programming Language Design and Implementation (PLDI), Chicago,

IL, 2005.

[49] Patrice Godefroid, Michael Levin, and David Molnar. Automated whitebox

fuzz testing. In Proceedings of the 15th Annual Symposium on Network and

Distributed System Security (NDSS), 2008.

[50] John Goodenough and Susan Gerhart. Toward a theory of test data selection.

IEEE Transactions on Software Engineering, June 1975.

[51] Pete Goodliffe. Code Craft: The Practice of Writing Excellent Code. No

Starch Press, San Francisco, CA, USA, 2006.

175

[52] Sudhakar Govindavajhala and Andrew Appel. Using memory errors to at-

tack a virtual machine. In Proceedings of the Symposium on Security and

Privacy (SSP), 2003.

[53] Andreas Griesmayer, Roderick Bloem, and Byron Cook. Repair of boolean

programs with an application to C. In Proceedings of the 18th International

Conference on Computer Aided Verification (CAV), 2006.

[54] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Specification and

Validation Methods. Oxford University Press, 1995.

[55] G. Haugk, F. Lax, R. Royer, and J. Williams. The 5ESS(TM) switching

system: Maintenance capabilities. AT&T Technical Journal, 64(6 part 2),

1985.

[56] Klaus Havelund and Thomas Pressburger. Model checking Java programs

using Java PathFinder. International Journal on Software Tools for Technol-

ogy Transfer, 1999.

[57] Klaus Havelund and Grigore Rosu. Workshops on Runtime Verification

(RV’01, RV’02, RV’04. 2001, 2002, 2004.

[58] Mats Heimdahl, Sanjai Rayadurgam, Willem Visser, Devaraj George, and

Jimin Gao. Auto-generating test sequences using model checkers: A case

study. In Proceedings of the 3rd International Workshop on Formal Ap-

proaches to Testing of Software (FATES), Montreal, Canada, October 2003.

176

[59] Gerald Holzmann. The model checker SPIN. IEEE Transactions on Soft-

ware Engineering, 23(5), May 1997.

[60] Daniel Jackson. Alloy: A lightweight object modeling notation. ACM

Transactions on Software Engineering and Methodology, April 2002.

[61] Daniel Jackson. Software Abstractions: Logic, Language and Analysis. The

MIT Press, Cambridge, MA, 2006.

[62] Daniel Jackson, Martyn Thomas, and Lynette I. Millett, editors. Software

for Dependable Systems: Sufficient Evidence? Committee on Certifiably

Dependable Software Systems, National Research Council, 2007.

[63] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program

repair as a game. In Proceedings of the 17th International Conference on

Computer Aided Verification (CAV), 2005.

[64] Cliff Jones. Systematic Software Development using VDM. Prentice-Hall,

1990.

[65] Maria Jump and Kathryn S. McKinley. Dynamic shape analysis via degree

metrics. In Proceedings of the International Symposium on Memory Man-

agement (ISMM), Dublin, Ireland, 2009.

[66] Yamini Kannan and Koushik Sen. Universal symbolic execution and its ap-

plication to likely data structure invariant generation. In Proceedings of the

International Symposium on Software Testing and Analysis (ISSTA), Seattle,

WA, 2008.

177

[67] Feras Karablieh, Rida A. Bazzi, and Margaret Hicks. Compiler-assisted

heterogeneous checkpointing. In Proceedings of the 20th Symposium on

Reliable Distributed Systems (SRDS), October 2001.

[68] Shadi Abdul Khalek, Bassem Elkarablieh, Ola Laleye, and Sarfraz Khurshid.

Query-aware test generation using a relational constraint solver. In Proceed-

ings of the 23th Conference on Automated Software Engineering (ASE), Sept

2008.

[69] Sarfraz Khurshid, Iván Garcı́a, and Yuk Lai Suen. Repairing structurally

complex data. In Proceedings of the 12th International Workshop on Model

Checking of Software (SPIN), San Francisco, CA, August 2005.

[70] Sarfraz Khurshid and Darko Marinov. Checking Java implementation of

a naming architecture using TestEra. In Electronic Notes in Theoretical

Computer Science (ENTCS), volume 55. Elsevier Science Publishers, 2001.

[71] Sarfraz Khurshid and Darko Marinov. TestEra: Specification-based test-

ing of Java programs using SAT. Automated Software Engineering Journal,

2004.

[72] Sarfraz Khurshid, Corina Pasareanu, and Willem Visser. Generalized sym-

bolic execution for model checking and testing. In Proceedings of the 9th

Conference on Tools and Algorithms for Construction and Analysis of Sys-

tems (TACAS), Warsaw, Poland, April 2003.

178

[73] Sarfraz Khurshid and Yuk Lai Suen. Generalizing symbolic execution to

library classes. In Proceedings of the 6th ACM Workshop on Program Anal-

ysis for Software Tools and Engineering (PASTE), Lisbon, Portugal, Septem-

ber 2005.

[74] Junguk Kim and Taesoon Park. An efficient protocol for checkpointing

recovery in distributed systems. IEEE Transactions on Parallel and Dis-

tributed Systems, Aug 1993.

[75] James C. King. Symbolic execution and program testing. Communications

of the ACM, 19(7), 1976.

[76] Eugene Kuleshov. Using ASM framework to implement common bytecode

transformation patterns. In Proceedings of the 6th International Conference

on Aspect-Oriented Software Development (AOSD), Vancouver, Canada, 2007.

[77] Gary Leavens. An overview of Larch/C++: Behavioral specifications for

C++ modules. In Specification of Behavioral Semantics in Object-Oriented

Information Modeling. Kluwer Academic Publishers, 1996.

[78] Gary Leavens, Albert Baker, and Clyde Ruby. Preliminary design of JML:

A behavioral interface specification language for Java. Technical Report TR

98-06i, Department of Computer Science, Iowa State University, June 1998.

[79] Flavio Lerda and Willem Visser. Addressing dynamic issues of program

model checking. In Proceedings of the 8th International Workshop on Model

Checking of Software (SPIN), Toronto, Canada, May 2001.

179

[80] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison Wesley, second edition, 1999.

[81] Barbara Liskov and John Guttag. Program Development in Java: Abstrac-

tion, Specification, and Object-Oriented Design. Addison-Wesley, 2000.

[82] Joshua Madadhain, Danyel Fisher, and Tom Nelson. Java universal net-

work/graph framework. http://jung.sourceforge.net/index.

html.

[83] Muhammad Zubair Malik, Aman Pervaiz, and Sarfraz Khurshid. Generating

representation invariants of structurally complex data. In Proceedings of the

13th Conference on Tools and Algorithms for Construction and Analysis of

Systems (TACAS), Braga, Portugal, March 2007.

[84] Muhammad Zubair Malik, Aman Pervaiz, Engin Uzuncaova, and Sarfraz

Khurshid. Deryaft: a tool for generating representation invariants of struc-

turally complex data. In Proceedings of the 30th International Conference

on Software Engineering (ICSE), Leipzig, Germany, 2008.

[85] Darko Marinov. Automatic Testing of Software with Structurally Complex

Inputs. PhD thesis, Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, 2004.

[86] Darko Marinov, Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and

Martin Rinard. An evaluation of exhaustive testing for data structures. Tech-

180

nical Report MIT-LCS-TR-921, MIT CSAIL, Cambridge, MA, September

2003.

[87] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for

automated testing of Java programs. In Proceedings of the 16th Conference

on Automated Software Engineering (ASE), San Diego, CA, November 2001.

[88] Bertrand Meyer. Eiffel: The Language. Prentice Hall, New York, N.Y.,

1992.

[89] Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khur-

shid. Korat: A tool for generating structurally complex test inputs. In

Proceedings of the 29th International Conference on Software Engineering

(ICSE), Washington, DC, 2007.

[90] Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khurshid,

and Darko Marinov. Parallel test generation and execution with Korat. In

Proceedings of the 15th ACM SIGSOFT Symposium on the Foundations of

Software Engineering (FSE), September 2007.

[91] Anders Moeller and Michael I. Schwartzbach. The pointer assertion logic

engine. In Proceedings of the ACM SIGPLAN’01 Conference on Program-

ming Language Design and Implementation (PLDI), Snowbird, UT, June

2001.

[92] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings

181

of the 38th Conference on Design Automation (DAC), June 2001.

[93] Samiha Mourad and Dorothy Andrews. On the reliability of the IBM MVS/XA

operating system. IEEE Transactions on Software Engineering, 13(10),

1987.

[94] Peter Müller, Arnd Poetzsch-Heffter, and Gary Leavens. Modular speci-

fication of frame properties in JML. Technical Report 02-02, Iowa State

University, February 2002.

[95] National Institute of Standards and Technology. The economic impacts of

inadequate infrastructure for software testing. Planning report 02-3, May

2002.

[96] Jeff Offutt and Aynur Abdurazik. Generating tests from UML specifications.

In Proceedings of the 2nd International Conference on the Unified Modeling

Language, October 1999.

[97] Corina Pasareanu and Willem Visser. Verification of Java programs using

symbolic execution and invariant generation. In Proceedings of the 11th

International Workshop on Model Checking of Software (SPIN), Barcelona,

Spain, April 2004.

[98] Apache J. Project. The byte code engineering library.

[99] The Jython Project. http://www.jython.org/.

182

[100] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: An extensible and

highly-modular software model checking framework. In Proceedings of the

11th ACM SIGSOFT Symposium on the Foundations of Software Engineer-

ing (FSE), Helsinki, Finland, September 2003.

[101] Robby, Edwin Rodrı́guez, Matthew Dwyer, and John Hatcliff. Checking

strong specifications using an extensible software model checking frame-

work. In Proceedings of the 10th Conference on Tools and Algorithms for

Construction and Analysis of Systems (TACAS), Barcelona, Spain, March

2004.

[102] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling

Language Reference Manual. Addison-Wesley Object Technology Series,

1998.

[103] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis

problems in languages with destructive updating. ACM Transactions on

Programming Languages and Systems (TOPLAS), January 1998.

[104] Roopsha Samanta, Jyotirmoy Deshmukh, and Ellen Emerson. Automatic

generation of local repairs for boolean programs. In Proceedings of the 9th

Formal Methods in Computer-Aided Design (FMCAD), Nov 2008.

[105] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Non-linear

loop invariant generation using grobner bases. In Proceedings of the 31th

Annual ACM Symposium on the Principles of Programming Languages (POPL),

Venice, Italy, 2004.

183

[106] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing

engine for C. In Proceedings of the 13th ACM SIGSOFT Symposium on the

Foundations of Software Engineering (FSE), Lisbon, Portugal, 2005.

[107] Alexey Smirnov and Tzi-cker Chiueh. DIRA: Automatic detection, identi-

fication, and repair of control-hijacking attacks. In Proceedings of the 12th

Annual Symposium on Network and Distributed System Security (NDSS), San

Diego, CA, February 2005.

[108] Graeme Smith. The Object-Z Specification Language. Kluwer Academic

Publishers, 2000.

[109] Mike Spivey. The Z Notation: A Reference Manual. Prentice Hall, second

edition, 1992.

[110] Yuk Lai Suen. Automatically repairing structurally complex data. Master’s

thesis, Department of Electrical and Computer Engineering, The University

of Texas at Austin, May 2005.

[111] Mana Taghdiri. Inferring specifications to detect errors in code. In Pro-

ceedings of the 19th Conference on Automated Software Engineering (ASE),

Washington, DC, 2004.

[112] The HSQLDB Development Group. HSQL database engine. http://

www.hsqldb.org/.

184

[113] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In

Proceedings of the 13th Conference on Tools and Algorithms for Construc-

tion and Analysis of Systems (TACAS), Braga, Portugal, March 2007.

[114] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model

checking programs. In Proceedings of the 15th Conference on Automated

Software Engineering (ASE), Grenoble, France, 2000.

[115] Willem Visser, Corina Pasareanu, and Sarfraz Khurshid. Test input gener-

ation with Java PathFinder. In Proceedings of the International Symposium

on Software Testing and Analysis (ISSTA), Boston, MA, 2004.

[116] Willem Visser, Corina Păsăreanu, and Radek Pelánek. Test input generation

for red-black trees using abstraction. In Proceedings of the 20th Conference

on Automated Software Engineering (ASE), Long Beach, CA, USA, 2005.

[117] Willem Visser, Corina Pǎsǎreanu, and Radek Pelánek. Test input gener-

ation for Java containers using state matching. In Proceedings of the In-

ternational Symposium on Software Testing and Analysis (ISSTA), Portland,

Maine, 2006.

[118] John Whaley, Michael Martin, and Monica Lam. Automatic extraction of

object-oriented component interfaces. In Proceedings of the International

Symposium on Software Testing and Analysis (ISSTA), July 2002.

[119] Joan Winston and Lynette Millett, editors. Summary of a Workshop on

Software-Intensive Systems and Uncertainty at Scale. National Research

185

Council, National Research Council, 2007.

[120] Tao Xie, Darko Marinov, and David Notkin. Rostra: A framework for de-

tecting redundant object-oriented unit tests. In Proceedings of the 19th Con-

ference on Automated Software Engineering (ASE), Linz, Austria, September

2004.

[121] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A

framework for generating object-oriented unit tests using symbolic execu-

tion. In Proceedings of the 11th Conference on Tools and Algorithms for

Construction and Analysis of Systems (TACAS), Edinburgh, Scotland, April

2005.

[122] Guoqing Xu, Atanas Rountev, Yan Tang, and Feng Qin. Efficient check-

pointing of Java software using context-sensitive capture and replay. In

Proceedings of the 15th ACM SIGSOFT Symposium on the Foundations of

Software Engineering (FSE), Dubrovnik, Croatia, 2007.

[123] Guoqing Xu and Zongyuan Yang. JMLAutoTest: A novel automated testing

framework based on JML and JUnit. In Proceedings of the 3rd International

Workshop on Formal Approaches to Testing of Software (FATES), Montreal,

Canada, October 2003.

[124] Fadi Zaraket, Adnan Aziz, and Sarfraz Khurshid. Sequential circuits for

relational analysis. In Proceedings of the 29th International Conference on

Software Engineering (ICSE), May 2007.

186

Vita

Bassem was born in Beirut, Lebanon in August 1982. He received his Bach-

elor of Engineering in July 2004 from the Lebanese American University, and his

Masters of Engineering degree in May 2006 from Syracuse University, New York.

Bassem has interned with Intel Corp. in summer 2006, with Google Corp. in sum-

mer 2007, and with Microsoft Research in summer 2008. His research interests

focus on discovering new techniques for increasing the reliability and degree of

confidence in software systems. Bassem enjoys playing soccer, and he is an excel-

lent chess player.

Permanent address: 3517 North Hills Dr.
Austin, Texas 78731

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

187

