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1. MOTIVATION AND SCENARIO

Wireless sensor networks (WSNs) involving actuation are increas-
ingly envisioned in a range of fields [1]. Among these, there is con-
siderable interest in leveraging off WSNs to improve safety in road
tunnels [6]. Researchers are envisioning tunnels equipped with
WSN nodes that gather physical readings such as temperature and
light, monitor the structural integrity of the tunnel, and sense the
presence of vehicles to detect a possible traffic congestion. Based
on sensed data, the system operates a variety of devices, such as
ventilation fans inside the tunnel, and traffic lights at the entrances.
For instance, when a sensor detects the presence of a fire in a sec-
tor, the fans in the same sector are activated, and the traffic lights
are turned red to prevent further vehicles from entering the tunnel.

To implement this class of systems, dedicated programming ab-
stractions and communication protocols are needed. Indeed, the
presence of heterogeneous nodes, coupled with a highly decentral-
ized form of processing, make mainstream solutions (e.g., [3,4]) no
longer applicable. These are usually designed with homogeneous
nodes in mind, and focus on a system-wide, centralized task (e.g.,
data gathering at a single sink). This approach is impractical in
systems involving actuation, as it may negatively impact on latency
and resource consumption [1]. Instead, in our tunnel scenario the
processing involves mostly subsets of nodes sharing similar char-
acteristics, e.g., all the nodes controlling a fan in a specific tunnel
sector. Therefore, the programmer must be provided with appro-
priate abstractions to “slice” the system based on the application
requirements. We tackled the above problem with Logical Neigh-
borhoods [8,9], a programming abstraction that allows developers
to redefine a node’s neighborhood based on logical properties of
the nodes, regardless of their physical position.

2. LOGICAL NEIGHBORHOODS

Logical neighborhoods are defined using a declarative program-
ming language we designed, called SPIDEY. This is conceived as
an extension of existing WSN programming frameworks. Program-
mers interact with the nodes in a logical neighborhood using an API
that mimics the traditional broadcast-based, message-passing com-
munication facility. Instead of the nodes within radio range, the
message recipients are now the nodes matching a given neighbor-
hood definition. Therefore, programmers still reason in terms of
neighboring relations, but retain control over how these are estab-
lished. A dedicated and yet efficient routing mechanism [8] enables
communication in a logical neighborhood. Our current implemen-
tations target the Contiki [2] and TinyOS [5] operating systems.

The definition of logical neighborhoods is based on two concepts:
nodes and neighborhoods. Nodes represent the portion of a real

node template Actuator
static Function
static Type
static Location
dynamic BatteryPower
operation Activate ()
operation Deactivate ()

create node tl from Actuator
Function as "actuator"
Type as "traffic_light"
Location as "entrance_east"
BatteryPower as getBatteryPower (
Activate () as turnLight (RED)
Deactivate () as turnLight (GREEN)

Fig. 1: Node definition and instantiation.

neighborhood template TrafficLights (loc)

with Function = "actuator" and
Type = "traffic_light" and
Location = loc

create neighborhood tl_east
from TrafficLights(loc: "entrance_east")
max hops 2 credits 30

Fig. 2: Neighborhood definition and instantiation.

node’s features made available to the definition of any logical neigh-
borhood. Their definition is encoded in a node template, which
specifies a node’s exported attributes. This is used to derive in-
stances of logical nodes, by specifying the actual source of data.
Figure 1 reports a fragment of SPIDEY code to define a template
for a generic actuator, and instantiate a logical node controlling a
traffic light. To this end, the node attributes are bound to constant
values or functions of the target language.

A logical neighborhood is defined using predicates on node tem-
plates. Analogously to nodes, a neighborhood is first defined in a
template which essentially encodes the corresponding membership
function, and then instantiated by specifying where and how the
template is to be evaluated. For instance, Figure 2 illustrates the
definition of a neighborhood which includes the nodes controlling
the traffic lights on a specific tunnel entrance. The template is in-
stantiated so that it evaluates only on nodes that are at a maximum
of 2 (physical) hops away from the node defining the neighbor-
hood, and by spending a maximum of 30 “credits”. The latter is an
application-defined notion of communication costs, which exposes
the trade-off between accuracy and resource consumption. The
more credits are attached to a logical neighborhood, the higher is
the coverage of the system as well as the resources spent to achieve
that coverage. More details on the SPIDEY language are in [9].

A pictorial representation of the logical neighborhood concept is
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Fig. 3: A pictorial representation of a logical neighborhood.

provided in Figure 3. The black node is the one defining the logi-
cal neighborhood, and its physical neighborhood (i.e., nodes lying
within its radio range) is denoted by the dashed circle. The grey
nodes are those satisfying the predicate in a neighborhood fem-
plate. However, the nodes included in the neighborhood instance
are only those lying within 2 hops from the sending node, as spec-
ified through the hops clause during instantiation in Figure 2.

Sending messages to a logical neighborhood is accomplished with a
modified version of the traditional broadcast communication prim-
itive, as in send (Neighborhood n,Message m). This is
supported by a dedicated routing protocol, whose characteristics
and performance are illustrated in [8].

3. DEMONSTRATION HIGHLIGHTS

To demonstrate a sample tunnel scenario, we use 20+ TMote Sky
nodes [7] to model three tunnel sectors, as illustrated in Figure 4.
We decrease the transmission power to create a multi-hop scenario
in a limited space. As for actuation, we modified some of the nodes
to control externally attached devices. Specifically, 12 V mini-fans
and lights are used to model the fans inside the tunnel and the traffic
lights at the entrances. For practical reasons, fire and presence sen-
sors are “implemented” with light sensors, triggered using flash-
lights. Our setup is shown in Figure 5. Based on this setup, we
showcase various use cases involving different logical neighbor-
hood definitions, such as:

Use case 1: when presence sensors recognize a traffic jam on a
lane, the fans are activated along the same lane from that
location to the corresponding entrance, and the traffic light
is turned red only on that lane. Figure 4 depicts the nodes
involved in this case.

Use case 2: when light sensors read values above a safety thresh-
old, the lights at the corresponding tunnel entrance are acti-
vated to avoid shadowing effects, and improve the visibility
to drivers entering the tunnel.

Use case 3: when fire sensors detect the presence of fire in a sector,
the fans in the same and adjacent sectors are activated, and
the traffic lights are turned red on both ends of the tunnel.

Our demonstration also involves two laptops. One is used for illus-
tration purposes, showing relevant code snippets and a high-level
descriptions of the processing involved. Instead, the second laptop
is moved inside the network to overhear packets in different posi-
tions. This lets the audience observe the current network topology,
as well as understand how our routing protocol operates. Further,
we plan to give flashlights to the public, to let them interact with
our demo directly.
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Fig. 4: Road tunnel scenario and nodes involved in use case 1.
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Fig. 5: Overall setup and nodes controlling fans and lights.
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