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Abstract

In open, anonymous environments such as the
Internet, mechanism design is complicated by
the fact that a single agent can participate in
the mechanism under multiple identifiers. One
way to address this is to design false-name-proof
mechanisms, which choose the outcome in such
a way that agents have no incentive to use more
than one identifier. Unfortunately, there are in-
herent limitations on what can be achieved with
false-name-proof mechanisms, and at least in
some cases, these limitations are crippling. An
alternative approach is to verify the identities of
all agents. This imposes significant overhead and
removes any benefits from anonymity.

In this paper, we propose a middle ground. Based
on the reported preferences, we check, for vari-
ous subsets of the reports, whether the reports in
the subset were all submitted by different agents.
If they were not, then we discard some of them.
We characterize when such a limited verifica-
tion protocol induces false-name-proofness for a
mechanism, that is, when the combination of the
mechanism and the verification protocol gives
the agents no incentive to use multiple identi-
fiers. This characterization leads to various op-
timization problems for minimizing verification
effort. We study how to solve these problems.
Throughout, we use combinatorial auctions (us-
ing the Clarke mechanism) and majority voting
as examples.

1 INTRODUCTION

There are many important settings in which a decision must
be made on the basis of multiple agents’ preferences. For
example, in (combinatorial) auctions, we typically want to
allocate the item(s) in a way that maximizes the sum of

the bidders’ valuations.1 As another example, in elections,
we typically want to elect an alternative that many of the
voters prefer to many of the other alternatives. A naı̈ve ap-
proach to aggregating the agents’ preferences is to simply
ask each agent to report her preferences, and then choose
the optimal outcome for the reported preferences. Unfor-
tunately, under this naı̈ve approach, an agent may have an
incentive to lie about her preferences to obtain an outcome
that is better for herself. This can be detrimental to our ob-
jective, because an outcome that is good with respect to the
reported preferences need not be good with respect to the
true preferences. Mechanism design studies how to choose
outcomes so that good results (with respect to the true pref-
erences) are obtained even when agents behave selfishly.
By a result known as the revelation principle [Gibbard,
1973; Green and Laffont, 1977; Myerson, 1979, 1981], it
suffices to consider mechanisms under which 1) agents re-
veal their preferences directly to the mechanism, and 2)
agents have no incentive to misreport their preferences.
Within this framework, both positive and negative results
have been derived. The positive results consist of mech-
anisms that have some desirable properties—for example,
the Clarke mechanism [Clarke, 1971], which chooses the
optimal allocation for the reported preferences, is strategy-
proof (no agent ever has an incentive to misreport) due to
payments that the agents must make, and has several other
nice properties. (The Clarke mechanism is a generalization
of the Vickrey auction [Vickrey, 1961], and is itself gener-
alized by the class of Groves mechanisms [Groves, 1973].
Due to this, the Clarke mechanism is sometimes also re-
ferred to as the Generalized Vickrey Auction (GVA) or the
Vickrey-Clarke-Groves (VCG) mechanism.) The negative
results show that in some settings, no mechanism exists that
has all of a list of properties—for example, the Gibbard-
Satterthwaite theorem [Gibbard, 1973; Satterthwaite, 1975]
shows that in elections with at least three alternatives and
unrestricted preferences, any deterministic strategy-proof
mechanism is either dictatorial (it always elects the most-
preferred alternative of the same voter) or rules out certain

1An alternative objective is to maximize expected rev-
enue [Myerson, 1981; Goldberg et al., 2001].
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alternatives ex ante, that is, no votes will make such an al-
ternative win.

While mechanism design has focused mostly on address-
ing the problem of agents reporting false preferences, there
are other ways in which agents may manipulate the mecha-
nism. For example, in open, anonymous environments such
as the Internet, it is possible for an agent to participate in the
mechanism under multiple identifiers (e.g. multiple e-mail
addresses) [Yokoo et al., 2001, 2004]. The party running
the mechanism (known as the center) generally does not
know whether multiple identifiers correspond to the same
agent, so each identifier must be treated as a separate agent.
Because of this, using multiple identifiers can be beneficial
even if the mechanism is strategy-proof.

One way to address this is to design mechanisms that are
false-name-proof [Yokoo et al., 2001, 2004]. A mecha-
nism is false-name-proof if no agent ever has an incentive
to use more than one identifier. Various false-name-proof
mechanisms have been designed for combinatorial auc-
tions [Yokoo et al., 2001; Yokoo, 2003; Yokoo et al., 2006;
Matsuo et al., 2006]. Unfortunately, none of these mecha-
nisms are completely satisfactory, in the following sense: it
is known that it is impossible for a false-name-proof mech-
anism to always choose the efficient (value maximizing)
allocation [Yokoo et al., 2004].

For other settings, there seems to be little hope of creating
any reasonable false-name-proof mechanism. Consider the
simple example of voting over which one of two alterna-
tives, a and b, to elect. If it is not possible to submit false
names, then this setting does not pose any problems from
a mechanism design perspective: the majority rule (choose
the alternative that is preferred by more voters) is strategy-
proof. On the other hand, if it is possible to use false names,
then each voter can submit an unlimited number of votes
for either alternative. Hence, the number of votes submit-
ted for an alternative becomes almost2 meaningless.

It is clear that false-name-proof mechanisms provide us
with only limited options for running mechanisms in open,
anonymous environments. Fortunately, in practice, there
are often ways to check that preference reports (such as
bids or votes) came from different agents. One way is
to make (some of) the agents submit verifiable real-world
identifiers, such as credit card numbers, phone numbers,3

2If nobody prefers alternative a, this will still be reflected
in a’s number of votes (zero). Therefore, one false-name-proof
mechanism is the following “unanimity” mechanism: if all voters
prefer the same alternative, elect that alternative; otherwise, ran-
domly elect an alternative. Clearly, this is not a very satisfactory
voting mechanism. Nevertheless, by a general characterization of
false-name-proof voting mechanisms [Conitzer, 2007], it is in fact
the best false-name-proof mechanism for this setting.

3For example, one way of signing up for a GmailTMaccount
is to submit a mobile phone number, to which an invitation code
will then be sent. This is explicitly done to prevent a single person
from signing up for many accounts.

etc. Care must be taken that one agent cannot use multiple
real-world identifiers that she owns: we must check that the
credit cards or phone numbers belong to different agents,
or at least argue that it would be economically impractical
for an agent to own sufficiently many credit cards or phone
numbers to have a significant impact on the outcome of the
mechanism. Care must also be taken that an agent can-
not use the real-world identifiers of unwilling other agents:
we can call the phone number to check that its owner is
aware of its use in the mechanism, or place an insignificant
charge on the credit card. Of course, if another agent is
willing to let her real-world identifier be used in this way,
then there does not appear to be much that can be done—
but this is more akin to collusion than to submitting false
names. While collusion is an important problem, we will
not address it in this paper.

We can also think of other, perhaps more creative ways of
checking that reports came from different agents. For ex-
ample, we can require a subset of the agents to appear in
an Internet chat room at a certain time, and to each (simul-
taneously) carry on a short, insignificant conversation with
the center. Presumably, it is extremely difficult to pretend
to be two different agents and carry on two different con-
versations at once: it would be noticeable that whenever
one of the two agents is typing, the other is not. (Moreover,
artificial intelligence is not yet at the level that a computer
could carry on the conversation, cf. the Turing Test.) One
could get a friend to act as the other agent, but again, this
would be more akin to collusion.

If there is a way to check that reports came from different
agents, then we can ensure that agents have no incentive to
use multiple identifiers, as follows. After the reports have
been submitted, check that all of them came from different
agents. If not, choose an outcome that is a worst-case sce-
nario for all agents—burn all the items in the auction, elect
a far underqualified candidate as president, etc. This dra-
conian approach is unsatisfactory for several reasons. The
first reason is that using the worst-case outcome may not
be feasible in practice. It may be too risky: if even one
agent decides to submit false names anyway (for example,
because she (erroneously!) believes that she can circum-
vent the verification mechanism, or because she has not
understood the incentives), the worst-case outcome will re-
sult. It will also be difficult to commit to using the worst-
case outcome: one can imagine that the center will want to
backtrack on burning the items. A more satisfactory solu-
tion would be to simply discard (some of) the false-name
reports and run the mechanism again with the remaining
ones, but the effect of this on incentives is less clear.

The second reason is that this approach requires the veri-
fication of all submitted reports. This seems excessive—
for instance, do we really need to check bids that did not
win? It would be much preferable to do only the minimum
amount of verification that is necessary to make using mul-
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tiple identifiers strategically suboptimal, thereby preserv-
ing as much anonymity as possible and minimizing verifi-
cation effort.

In this paper, we propose an approach where only limited
subsets of the reports are checked to see whether they came
from different agents. Reports that are not confirmed are
simply discarded. We characterize when such a limited
verification protocol incentivizes agents to use only a sin-
gle identifier, and study how to minimize verification effort
given this characterization.

2 DEFINITIONS

In this section, we cover the required mechanism design
background and define verification protocols.

2.1 MECHANISM DESIGN

A mechanism design setting can be described as follows.
There is a set of agents, and a set of outcomes that we must
decide among. Each outcome specifies information such as
the elected alternative, the allocation of items, the payment
to be made by each agent, etc. In settings where the set
of agents is initially unknown to the center, the outcome
space is often, to some extent, also unknown (e.g. we do
not know which agents will be around to make payments
or win items). Because of this, in a slight deviation from
standard notation, let O denote the set of outcomes for a
single agent participating in the mechanism. For example,
in a combinatorial auction (which will be defined shortly),
an element of O is a subset of the items (that the agent will
receive) and a payment (to be made by the agent). (This
is assuming no externalities, that is, an agent does not care
about what the other agents receive or pay.) On the other
hand, if the agents are voting over multiple alternatives, an
element of O specifies which alternative is elected. Since
we will be concerned with anonymous settings, O should
be the same for each agent.

Each agent has privately held preferences over O. This is
formalized as follows: each agent has a (privately held)
type θ ∈ Θ, which encodes her preferences, and there is a
(commonly known) utility function u : Θ×O → R relating
these types to utilities. That is, u(θ, o) is the utility for an
agent of type θ for receiving outcome o.

A direct revelation mechanism is defined as follows. Each
agent submits a report r ∈ Θ of her type, after which a
function f (the mechanism) chooses an outcome for each
agent based on these reports. That is, if R is the (multi)set
of all submitted reports, then an agent that reported r ∈ R
receives outcome f(r, R − {r}) ∈ O. (Again, this is a
slight deviation from standard notation.) We note that not
all such functions f define a sensible mechanism: for ex-
ample, some functions f would award the same item to
multiple agents, or elect different alternatives for different

agents. However, all that is important for our purposes
is that every sensible mechanism can be described in this
way. Randomized mechanisms can be accommodated by
making O the set of all distributions over (deterministic)
outcomes for a single agent.

A mechanism is (ex-post) individually rational (IR) if par-
ticipating in the mechanism is never harmful to an agent
(assuming she reports her true type). That is, for any
type θ and any (multi)set S of reports by other agents,
u(θ, f(θ, S)) ≥ u(θ, f(∅, S)). A mechanism is strategy-
proof if no agent ever benefits from misreporting her type.
That is, for any θ, θ′ ∈ Θ, for any S, u(θ, f(θ, S)) ≥
u(θ, f(θ′, S)). Throughout, we will restrict our attention to
mechanisms f that are both IR and strategy-proof, so that
we need not worry about an agent submitting no reports at
all or submitting a single false report.

2.1.1 Example: combinatorial auctions using the
Clarke mechanism

In a combinatorial auction, there is a set of items I simul-
taneously for sale. Assuming no externalities, an outcome
for an agent (bidder) in a combinatorial auction consists
of a subset of the items, plus a payment that she has to
make. That is, O = 2I × R. We will assume that bid-
ders have quasilinear preferences, that is, u(θ, (I ′, π)) =
v(θ, I ′) − π. We will be especially interested in single-
minded bidders, for whom there is some I ′′ ⊆ I such that
v(θ, I ′) = v(θ, I ′′) if I ′′ ⊆ I ′, and v(θ, I ′) = 0 otherwise.

Of course, the mechanism cannot allocate the same item to
multiple bidders. Typical mechanisms allocate the items to
maximize efficiency, that is, the sum of the bidders’ valu-
ations,

∑
i vi(θi, Ii) (where Ii is the set of items allocated

to i).4 Items may remain unallocated (free disposal is al-
lowed). The problem of determining who wins what is (in
general) NP-hard [Rothkopf et al., 1998], even to approx-
imate [Håstad, 1999; Sandholm, 2002], though in practice
it can typically be solved reasonably fast [Sandholm et al.,
2006; Sandholm, 2006].

We still need to specify the bidders’ payments. The Clarke
mechanism [Clarke, 1971] determines the payments as fol-
lows: bidder i pays

∑
j 6=i vj(θj , I

−i
j ) − vj(θj , Ij), where

I−i
j is the set of items that would have been allocated to j if

i had not been present. That is, each bidder pays the amount
by which her presence makes the other bidders worse off
(in terms of the allocation of items). Combinatorial auc-
tions that use the Clarke mechanism (also known as Gen-
eralized Vickrey Auctions) are well-known to be IR and
strategy-proof.

4Mechanisms that maximize expected revenue do not always
maximize efficiency, but we will not concern ourselves with rev-
enue in this paper.
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2.1.2 Example: majority voting with two alternatives

Suppose we need to decide between two alternatives, a
and b. The agents (voters) can vote over these alternatives,
declaring a preference either for a or for b. We can use the
majority rule: the alternative that receives more votes wins
(if there is a tie, we choose the winner randomly). The
majority rule is IR and strategy-proof. (By the Gibbard-
Satterthwaite impossibility result [Gibbard, 1973; Satterth-
waite, 1975] mentioned above, under minor restrictions
on the mechanism, strategy-proofness cannot be obtained
when there are three or more alternatives, unless there are
restrictions on the preferences of the voters.)

2.2 FALSE-NAME-PROOFNESS

In open, anonymous environments such as the Internet, we
are confronted with the issue that a single agent may use
multiple identifiers to submit multiple reports (and the cen-
ter will not know that they came from the same agent). In
combinatorial auctions using the Clarke mechanism, such
false-name bidding is known to sometimes be advanta-
geous [Yokoo et al., 2004]. For example, if one bidder
bids ({a, b}, 1) (that is, 1 on the bundle of items {a, b}),
then a second bidder can obtain both items by bidding
({a, b}, k) with k > 1 to obtain both items at a price of
1, but she would be better off submitting two bids ({a}, 2)
and ({b}, 2), in which case she would obtain both items
and pay 0. Moreover, this phenomenon occurs not just un-
der the Clarke mechanism, but under any mechanism that
allocates the items efficiently [Yokoo et al., 2004]. Also,
in majority voting, submitting multiple votes for one’s pre-
ferred alternative can obviously be beneficial.

We denote the outcome that an agent obtains by submitting
a set of reports S when the others’ reports are R − S by
f(S, R− S). A mechanism f that is IR and strategy-proof
is false-name-proof if for any θ, S, and S′, u(θ, f(θ, S′)) ≥
u(θ, f(S, S′)). As we just showed, neither combinatorial
auctions using the Clarke mechanism nor majority elec-
tions are false-name-proof.

2.3 VERIFICATION PROTOCOLS

We now move on to the contributions of this paper. A ver-
ification protocol P for a mechanism f works as follows.
For every set of reports R, P can check any subset S ⊆ R.
When S is checked, a message is sent to the agents that
reported S that they must confirm these reports (by sub-
mitting a real-world identifier, appearing in a chat room,
etc.). In response to such a request, each agent can confirm
at most one of her reports in S. Thus, if one agent sub-
mitted multiple reports in S, the protocol P will discover
that someone submitted multiple reports, because some of
the reports will not be confirmed. However, the agent that
submitted multiple reports can still confirm one of her re-

ports, and there is no way for P to know that this one con-
firmed report belongs to the agent that submitted multiple
reports. P will know, however, that each confirmed report
in S came from a different agent.

It sometimes makes sense to check multiple subsets of the
reports in sequence. For example, if the center uses the
chat room verification protocol described above, perhaps
the center can carry on a conversation with at most two
agents at the same time (e.g. because the center has only
two employees available for chatting with agents). In this
case, if we first check reports r1 and r2, and then reports
r2 and r3, we still cannot be sure that r1 and r3 were not
submitted by the same agent. This scenario does not make
sense, however, when we verify using real-world identifiers
such as credit card or phone numbers (as described above):
with this technique, for any two reports for which we have
obtained real-world identifiers, we will know whether they
were submitted by the same agent. Thus, with this tech-
nique, there is effectively only a single subset of reports
that is checked.

A protocol is thus defined by a function that takes as input a
set of reports R, and as output produces a finite sequence of
subsets S1, S2, . . . , Sk of R that it will check, in that order.
(We will only consider deterministic verification protocols
in this paper.) If for some check Si, some reports F ⊆ Si

are not confirmed, then the protocol discards F and restarts
with R− F as the set of reports. Since the set of reports is
finite, the protocol can restart only finitely many times, and
thus must eventually terminate. When it does, the outcome
that the mechanism f prescribes for the remaining set of
reports Rfinal is chosen.

Example 1 Consider a combinatorial auction with three
items {a, b, c} for sale. In this example, all bidders are
single-minded. Bidder 1 submits a bid of 4 for {a, b}. Bid-
der 2 submits a bid of 4 for {b, c}. Bidder 3 submits a bid of
5 for {a}. Bidder 4 submits two bids (under different iden-
tities): one of 5 for {b}, and one of 5 for {c}. If we run the
Clarke mechanism (without verification), then bidder 3’s
bid and bidder 4’s two bids are accepted, and neither of 3
and 4 will pay anything (since the mechanism must assume
that all bids came from different bidders). Also, if 4 had not
been able to use multiple identifiers, then 4 would have had
to pay 4 to win {b, c}. With a verification protocol P , the
following sequence of events may occur. P checks the set
of bids {({a}, 5), ({b}, 5)}. Bidders 3 and 4 confirm these
bids. Then, P checks the set of bids {({b}, 5), ({c}, 5)}.
Because both of these bids were submitted by 4, she can
confirm only one of them; say she confirms ({b}, 5). P dis-
cards ({c}, 5), and restarts with the remaining bids.

The use of a verification protocol changes the incentives for
the agents participating in the mechanism. For example,
whereas without verification, it may have been beneficial
for a bidder to place multiple bids in a combinatorial auc-
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tion (using multiple identifiers), when the verification pro-
tocol is added this may no longer be beneficial, because the
bidder may not be able to prevent some of them from being
discarded. We now formalize when a verification protocol
is effective in discouraging the use of multiple identifiers.

Definition 1 Let f be an IR and strategy-proof mechanism.
We say that verification protocol P induces false-name-
proofness for f if under the combination (f, P ), it is al-
ways optimal for an agent to use only a single identifier,
report her true type, and always confirm her report when
it is checked, given that the others do so as well. That is,
behaving honestly is an ex-post equilibrium.

In the next section, we characterize when a verification pro-
tocol induces false-name-proofness.

3 CHARACTERIZING VERIFICATION
PROTOCOLS THAT INDUCE
FALSE-NAME-PROOFNESS

We start with the following definition.

Definition 2 Given an IR and strategy-proof mechanism
f and a (multi)set of reports R, we say that S ⊆ R re-
quires verification if there exists some θ ∈ Θ such that
u(θ, f(S, R− S)) > u(θ, f(θ, R− S)).

Informally, a subset S of the reports R requires verification
if an agent could have a type θ such that, if the agent knew
that the other agents’ reports were R − S, then the agent
would be better off reporting S than θ.5 A set S consist-
ing of only a single type θ′ never requires verification, be-
cause by the strategy-proofness of f , u(θ, f(S, R − S)) =
u(θ, f(θ′, R − S)) ≤ u(θ, f(θ, R − S)) for all θ ∈ Θ.
Also, the empty set never requires verification, because by
IR, u(θ, f(∅, S)) ≤ u(θ, f(θ, S)) for all S and θ ∈ Θ.

Example 2 Consider again Example 1. The set of bids
S = {({b}, 5), ({c}, 5)} requires verification, for the fol-
lowing reason. Consider a single-minded type θ that
indicates having a utility of 5 for the bundle {b, c}.
u(θ, f(S, R − S)) = 5, because no payment is re-
quired of the bids in S. However, u(θ, f(θ, R − S)) =
5 − 4 = 1, because the bid θ will win {b, c} but
be required to pay 4. By symmetry, the set of bids
{({a}, 5), ({b}, 5)} also requires verification. Finally, the
set of bids {({a}, 5), ({b}, 5), ({c}, 5)} requires verifica-
tion.

5For combinatorial auctions, Matsuo et al. [2006] also con-
sider a notion of which bids are “suspicious” in the sense that they
may have been submitted by a false-name bidder. Based on this
notion, they design a false-name-proof mechanism (without any
verification of identities). Under this mechanism, the items that
the Clarke mechanism would have allocated to suspicious bidders
are sold to these bidders as a single bundle, by means of a second-
price auction with a reserve price.

Example 3 Consider an election between two alterna-
tives, a and b, using the majority rule. Suppose that there
are 4 votes for a and 2 votes for b. Any subset of at least
3 votes for a requires verification, because if these 3 or
more votes were submitted by the same voter (who prefers
a), that voter is better off having submitted these votes than
she would have been submitting only a single vote for a
(which would have resulted in a tie at best). Also, any sub-
set of 4 votes for a and 1 vote for b requires verification.
By contrast, no subset of 2 votes for a requires verification,
because if these 2 votes had been submitted by the same
voter (who prefers a), that voter would have been equally
well off casting only a single vote for a.

The goal of the verification protocol will be to verify, for
every subset that requires verification, that that subset was
not submitted by a single agent. This does not require
checking that every report in the subset was submitted by a
different agent. Rather, it only requires checking that there
are at least two reports in the subset that were submitted by
different agents. The next definition makes this precise.

Definition 3 We say that a verification protocol P for an
IR and strategy-proof mechanism f has sufficiently verified
reports R if, for every S ⊆ R that requires verification,
there are two reports s1, s2 ∈ S for which the protocol has
verified that s1 and s2 were submitted by different agents.
That is, for every S ⊆ R that requires verification, P has
checked a subset S′ ⊆ R with |S ∩ S′| ≥ 2 (and all the
reports were confirmed).

We say that a verification protocol is sufficient for f if it
sufficiently verifies any reports. More precisely:

Definition 4 We say that a verification protocol P is suffi-
cient for an IR and strategy-proof mechanism f if, for any
set of reports R, it will check a sequence of subsets that
will allow it to sufficiently verify R. That is, for any set of
reports R, for any subset S ⊆ R that requires verification,
P will eventually check a subset S′ ⊆ R with |S ∩ S′| ≥ 2
(unless some report fails to be confirmed before that).

In the remainder of this section, we show that this notion
of sufficiency characterizes when a protocol induces false-
name-proofness.

Lemma 1 If a verification protocol P is sufficient for an
IR and strategy-proof mechanism f , then in the set of re-
maining reports Rfinal that is eventually used to choose
the outcome under (f, P ), if S ⊆ Rfinal requires verifica-
tion, then the reports in S cannot all have been submitted
by the same agent.

Proof: Because S requires verification in Rfinal, and P is
sufficient for f , P must have checked a subset S′ ⊆ Rfinal

with |S ∩ S′| ≥ 2. Since no reports in S′ failed to be con-
firmed (as this would have caused them to be discarded),
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all reports in S ∩ S′ must have been submitted by different
agents.

Theorem 1 If a verification protocol P is sufficient for an
IR and strategy-proof mechanism f , then it induces false-
name-proofness for f .

Proof: We must show that it is an ex-post equilibrium for
each agent to behave honestly, that is, to submit only a sin-
gle report, consisting of the agent’s true type, and to con-
firm that report whenever the protocol checks it. Let us
suppose that all agents other than i behave in this way. Re-
gardless of how agent i acts, when the verification protocol
terminates, by Lemma 1, the set of reports submitted by i
that were not discarded (call this set Sfinal

i ) cannot con-
stitute a set that requires verification. That is, for any true
type θ that i may have, u(θ, f(Sfinal

i , Rfinal−Sfinal
i )) ≤

u(θ, f(θ, Rfinal − Sfinal
i )). Moreover, since the other

agents (−i) behaved honestly, Rfinal − Sfinal
i consists of

exactly the reports that the other agents submitted initially.
Hence, u(θ, f(θ, Rfinal − Sfinal

i )) is what agent i would
have obtained by behaving honestly. Thus, agent i would
have been at least as well off behaving honestly.

The converse is also true:

Theorem 2 If a verification protocol P induces false-
name-proofness for an IR and strategy-proof mechanism f ,
then it is sufficient for f .

Proof: Suppose that P is not sufficient for f . Then, there
must exist a set of reports R and a subset S ⊆ R that
requires verification, such that P never checks a subset
S′ ⊆ R with |S ∩ S′| ≥ 2. Let us consider the situa-
tion where each report in R − S is (truthfully) submitted
by a different agent (and these agents will always confirm
their report when it is checked), and there is one additional
agent i that is deciding what to report. Since S requires
verification, there exists some θ ∈ Θ that i could have such
that u(θ, f(S, R − S)) > u(θ, f(θ, R − S)). Moreover, if
the agent submits the set of reports S, she can in fact ob-
tain outcome f(S, R − S). This is because P will never
(simultaneously) check a pair of reports in S, so the agent
can always confirm every report in S (and all of the other
agents’ reports will always be confirmed as well). Thus,
if agent i has type θ, she would prefer submitting the set
of reports S over submitting θ. Thus behaving honestly is
not an ex-post equilibrium, that is, P does not induce false-
name-proofness.

4 DECIDING WHICH SETS TO CHECK

Now that we know when a protocol induces false-name-
proofness, we next investigate how this can be achieved

most efficiently—that is, how do we minimize the amount
of checking that we do? This question leads to several com-
putational optimization problems that we will study in this
section.

4.1 DEFINING THE COMPUTATIONAL
PROBLEM

Theorems 1 and 2 show that a verification protocol P for
an IR and strategy-proof mechanism f induces false-name-
proofness if and only if for every subset of the reports that
requires verification, P verifies that at least two of these
reports came from different agents (by checking another
subset that has at least two reports in common with the for-
mer subset). Typically, there are many ways to achieve this.
We can take a pair of reports from each subset that requires
verification, and check each of these pairs separately. Al-
ternatively, we can check a single subset of the reports that
has at least two reports in common with every subset that
requires verification. This may not be a decision that we
can make: as explained above, in a chat room we may only
be able to check subsets of limited sizes, whereas when we
use real-world identifiers for verification we are effectively
checking only a single subset. Hence, we will study both
techniques separately. Still, there is the choice to be made
of exactly which subset(s) to check. Presumably, we want
to minimize the number of checks, as well as the number
of reports in each check, to minimize verification effort and
maximize the anonymity of the agents.

One helpful observation is that we can expect reports to
always be confirmed, since, after all, the verification pro-
tocol induces false-name-proofness. Thus, there is no un-
certainty as to what will happen during verification. This
also means that we do not care about the order in which we
check subsets, rather we only care about which subsets we
check.6

We can now formalize the question of which subsets to
check as a computational problem in (at least) the following
ways. In the first problem, we try to minimize the number
of subsets checked when each subset checked can have size
at most k.

Definition 5 (BOUNDED-SUBSET-VERIFICATION)
We are given a set R (|R| = m), a collection of subsets
S = {S1, . . . , Sn} of R that require verification, a number

6When the verification protocol operates by asking the agents
for real-world identifiers, one may have wondered whether it
would be more efficient to ask the agents for their real-world iden-
tifiers sequentially rather than simultaneously, so that if a report
is not confirmed the protocol can restart immediately without first
asking the remaining agents for their real-world identifiers. One
may also have wondered whether, when the protocol restarts, it
would be more efficient to re-use some of the information ob-
tained before the restart. We can now see that both of these ideas
would not have contributed to verification efficiency, since we can
assume that all reports are always confirmed.
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k, and a number t. We are asked whether there exists a
collection {S′

1, . . . , S
′
t} of subsets of R, such that |S′

j | ≤ k
for every 1 ≤ j ≤ t, and for every 1 ≤ i ≤ n, there exists
1 ≤ j ≤ t such that |Si ∩ S′

j | ≥ 2.

An interesting special case of this problem occurs when
k = 2: in this case, every Si must be a superset of some
S′

j . The next problem considers the case where we check
only one subset, and asks for the smallest subset to check.

Definition 6 (SINGLE-SUBSET-VERIFICATION)
We are given a set R (|R| = m), a collection of subsets
S = {S1, . . . , Sn} of R that require verification, and a
number t. We are asked whether there exists a subset S′ of
R, |S′| ≤ t, such that for every 1 ≤ i ≤ n, |Si ∩ S′| ≥ 2.

Without loss of generality, we can assume that for any
i 6= j, Si 6⊆ Sj (if one subset that requires verification
is a subset of another subset that requires verification, we
can restrict our attention to the former one—that is, we only
need to consider the minimal subsets that require verifica-
tion). Also, without loss of generality, we can assume that
for any i, |Si| ≥ 2 (otherwise the answer would trivially be
“no”). Still, one may wonder if we are perhaps considering
computational problems that are too general for our spe-
cific purpose. Do instances of these computational prob-
lems that are derived from (say) bids in a combinatorial
auction using the Clarke mechanism have some additional
structure that makes them easier to solve? Or is it the case
that for any instance of the computational problems, that
is, any collection U = {U1, . . . , Un} of subsets of a finite
set T (where no subset in the collection is a subset of an-
other subset in the collection, and every subset has size at
least 2), we can construct a set of bids such that the collec-
tion S of (minimal) subsets of bids that require verification
corresponds exactly to U? The next proposition shows that
unfortunately, the latter is the case. Thus, at least for com-
binatorial auctions using the Clarke mechanism, we must
consider the above two computational problems in their full
generality. To prove the proposition, we first prove some
facts about subsets that require verification in combinato-
rial auctions using the Clarke mechanism. (These facts will
also be useful later.) The first lemma shows that if a subset
of the bids requires verification, then a single-minded bid-
der that is tremendously interested in the bundle of items
won by that subset of bids would have preferred to submit
that subset of bids.

Lemma 2 Consider a combinatorial auction using the
Clarke mechanism. Suppose that S ⊆ R is a subset of
the bids that requires verification. Let I(S) be the set of
items that S wins. For sufficiently large M , consider a
single-minded type θ that values the bundle I(S) (and any
supersets of I(S)) at M , and everything else at 0. Then
u(θ, f(S, R− S)) > u(θ, f(θ, R− S)).

Proof: Because S requires verification, we know that there

exists some type θ′ ∈ Θ such that u(θ′, f(S, R − S)) >
u(θ′, f(θ′, R − S)). Now, under the Clarke mechanism,
when a bidder faces opponent bids R − S, there will be
some price pI(S)(R − S) at which she can obtain I(S)
(without using false names). Thus, it must be the case
that by submitting bids S instead, the sum of the payments
charged to these bids is less than pI(S)(R − S) (otherwise
there would be no incentive to submit false names for a bid-
der of type θ′). Now, given that M is sufficiently large, a
bidder submitting θ when the other bids are R − S would
win the bundle I(S) and pay pI(S)(R − S). But then, a
bidder of type θ would prefer submitting bids S and win-
ning I(S) at a lower price. That is, u(θ, f(S, R − S)) >
u(θ, f(θ, R− S)).

The next lemma shows that in combinatorial auctions using
the Clarke mechanism, minimal subsets that require verifi-
cation never include losing bids.

Lemma 3 Consider a combinatorial auction using the
Clarke mechanism. Suppose that S ⊆ R is a subset of
the bids that requires verification, and r ∈ S is a losing bid
(r receives no items). Then S − {r} requires verification.

Proof: Let I(S) denote the set of items won by the set of
bids S. Because S requires verification, by Lemma 2, for
sufficiently large M , a single-minded type θ that values the
bundle I(S) (and any supersets of I(S)) at M , and every-
thing else at 0, will have the property that u(θ, f(S, R −
S)) > u(θ, f(θ, R− S)).

We also know that u(θ, f(S − {r}, R − (S − {r}))) =
u(θ, f(S, R − S)), since r receives no items and makes
no payment. Now let us consider f(θ, R − (S − {r}))—
that is, what does the Clarke mechanism do if the bids are
{θ} ∪R− (S − {r})? Because θ places such a high value
on I(S) (and on nothing else), θ will win that bundle. The
remaining allocation problem is to allocate the remaining
items I − I(S) to the bids R − (S − {r}). The same sub-
problem occurs when the bids are R, because there the bids
in S−{r} are awarded I(S), and we are thus left to award
I − I(S) to the bids R − (S − {r}). Thus, the optimal
solutions to the remaining allocation problem must be the
same in both cases, implying that r does not win when the
bids are {θ} ∪ R − (S − {r}). Hence the allocation when
the bids are {θ} ∪ R − (S − {r}) is the same as when the
bids are {θ} ∪R− S.

To determine θ’s Clarke payment when the bids are {θ} ∪
R − (S − {r}), we still need to determine the value of the
optimal allocation when θ is removed and R − (S − {r})
remains. Naturally, this value is at least the value of the
optimal allocation for bids R−S. It follows that θ’s Clarke
payment when the other bids are R−S is at most θ’s Clarke
payment when the other bids are R − (S − {r}). Hence
u(θ, f(θ, R − S)) ≥ u(θ, f(θ, R − (S − {r}))). Now we
have established that u(θ, f(S − {r}, R − (S − {r}))) =
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u(θ, f(S, R − S)) > u(θ, f(θ, R − S)) ≥ u(θ, f(θ, R −
(S −{r}))), and hence S −{r} requires verification.

We are now ready to prove the proposition.

Proposition 1 Consider an arbitrary set T (|T | = m) and
an arbitrary collection of subsets U = {U1, . . . , Un} of
T , with the properties that for any i 6= j, Ui 6⊆ Uj , and
for any i, |Ui| ≥ 2. There exists a set of single-minded
bids in a combinatorial auction such that, when f is the
Clarke mechanism, U corresponds exactly to the collection
of minimal subsets of bids that require verification.

Proof: Let T be the set of items. For every Ui ∈ U , let
there be a bid of value 1 on Ui. In addition, for every t ∈ T ,
let there be a singleton bid of value 2 on {t}. Clearly, all
the singleton bids win. Moreover, if we remove a singleton
bid, then the optimal solution is to accept all the remain-
ing singleton bids (and nothing else). Therefore, under the
Clarke mechanism, the singleton bids are charged 0.

Now let us consider which subsets of bids are the minimal
subsets that require verification. Because none of the Ui

bids win, these bids cannot be part of any minimal subset
requiring verification, by Lemma 3. Thus, we can consider
subsets S consisting of singleton bids only; let I(S) denote
the items that the bids in S bid on. First consider any set
S with for all i, Ui 6⊆ I(S). Then, if a single bidder cast
the bids S, that bidder would have been equally well off
placing a single bid of value 1 on I(S) instead: this bid
would have won (along with the remaining singleton bids),
and when this bid is removed, it remains optimal to accept
only the remaining singleton bids, for the following reason.
Each Ui must intersect with at least one remaining single-
ton bid because no Ui is contained in I(S), and the single-
ton bid has a higher value. Thus, the bidder would have had
to pay nothing. Hence S does not require verification. Now
consider a set S so that I(S) = Ui for some Ui. If a single
bidder that very much wanted to obtain Ui cast the bids S,
that bidder would have been worse off placing only a single
(winning) bid on Ui: this is because when this single bid is
removed, the other bid on Ui (of value 1) can be accepted,
so that the Clarke payment for the bidder is 1. It follows
that any set S of singleton bids so that I(S) = Ui for some
Ui requires verification (and that these are the minimal sets
that require verification). Because each singleton bid cor-
responds to a single item, U corresponds exactly to the col-
lection of minimal subsets that require verification.

While the previous proposition shows that combinatorial
auctions using the Clarke mechanism can produce any in-
stance of the BOUNDED-SUBSET-VERIFICATION and
SINGLE-SUBSET-VERIFICATION problems, this is not
necessarily the case for other mechanisms. Consider, for
example, voting over two alternatives using the majority
rule (as in Example 3).

Proposition 2 Consider an election between two alterna-
tives, a and b, using the majority rule. If w ∈ {a, b} wins
the election by l votes, then the collection S of minimal sub-
sets that require verification consists of all subsets of l + 1
votes for w. If the election is tied, then the collection S
of minimal subsets that require verification consists of all
subsets of 2 votes for a, and all subsets that consist of 2
votes for b.

Proof: For the case where w wins the election, consider
any subset of the votes that contains at most l votes for
w. If all of these votes were submitted by a single voter
that prefers w, then if that voter had submitted only a sin-
gle vote for w instead, w still would have won (w’s score
would have decreased by fewer than l votes). If they were
all submitted by a voter that prefers the other alternative,
obviously they did not make that voter better off (since w
won). On the other hand, a subset consisting of l + 1 votes
for w does require verification, because if all of these votes
were submitted by a single voter that prefers w, then if that
voter had submitted only a single vote for w instead, w’s
score would have decreased by l votes, leaving the election
tied.

For the case where the election is tied, no subset consisting
of at most one vote for each alternative requires verification
(it is easy to see that casting such a set of votes cannot
make a voter better off than simply casting a vote for her
more preferred alternative). On the other hand, a subset
consisting of 2 votes for the same alternative (without loss
of generality, a) requires verification, because if both of
these votes were submitted by a single voter that prefers
a, then if that voter had submitted only a single vote for a
instead, a’s score would have decreased by 1 vote, and b
would have won.

Knowing a characterization such as the one in Propo-
sition 2 can make solving the computational problems
much easier: for example, we can see that for major-
ity voting, if w wins the election by l votes, the op-
timal solution to SINGLE-SUBSET-VERIFICATION is
to check all but l − 1 of the votes for w (which will
guarantee that the checked subset has at least two votes
in common with every subset that requires verification,
since these subsets contain l + 1 votes for w). In the
next subsection, however, we study BOUNDED-SUBSET-
VERIFICATION and SINGLE-SUBSET-VERIFICATION
in their full generality.

4.2 ANALYZING THE COMPUTATIONAL
PROBLEM

The BOUNDED-SUBSET-VERIFICATION and
SINGLE-SUBSET-VERIFICATION problems are re-
lated to the (NP-complete) HITTING-SET [Karp, 1972]
problem.
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Definition 7 (HITTING-SET) We are given a set T
(|T | = m), a collection of subsets U = {U1, . . . , Un} of T ,
and a number t. We are asked whether there exists a subset
U ′ of T of size at most t such that for every 1 ≤ i ≤ n,
|Ui ∩ U ′| ≥ 1.

The definition of SINGLE-SUBSET-VERIFICATION is
almost exactly the same as that of HITTING-SET: the
only difference is that SINGLE-SUBSET-VERIFICATION
requires each Si to have at least two elements in com-
mon with S′. The special case of BOUNDED-SUBSET-
VERIFICATION where k = 2—that is, we can only check
subsets of size 2—is also closely related. We recall that for
this special case, for each Si, we need to check a subset
(of size 2) of Si. We can transform such an instance to a
HITTING-SET instance as follows: let T be the set of all
unordered pairs of elements of R, and let Ui be the set of
all unordered pairs of elements of Si. Then, a hitting set
for T and U corresponds to a solution to the BOUNDED-
SUBSET-VERIFICATION instance, and vice versa.

We are now ready to characterize the complexity of the
problems that we are interested in. Even though we have
formally defined the problems as decision problems, in a
slight abuse of terminology, we will also discuss their ap-
proximability (for each problem, the objective is to mini-
mize t). (The remaining proofs are omitted due to space
constraint.)

Theorem 3 Suppose that, under certain assumptions on
complexity classes, HITTING-SET cannot be approximated
to a ratio ρ(m,n). Then, under the same assump-
tions, SINGLE-SUBSET-VERIFICATION cannot be ap-
proximated to ratio ρ(m− 1, n)/2.

Theorem 4 Suppose that, under certain assumptions on
complexity classes, HITTING-SET cannot be approximated
to a ratio ρ(m,n). Then, under the same assumptions,
BOUNDED-SUBSET-VERIFICATION with k = 2 cannot
be approximated to ratio ρ(m/2, n).

It has been shown that HITTING-SET cannot be approx-
imated to within a factor (1 − o(1)) ln(n) unless NP has
quasi-polynomial time algorithms [Feige, 1998], so the re-
sults above imply similar logarithmic lower bounds on the
approximation ratios that can be obtained on our problems.
So, we have shown that negative results transfer from the
HITTING-SET problem to our problems. On the other
hand, the similarity of our problems to the HITTING-SET
problem can also be used in a positive way, by adapting
algorithms for the HITTING-SET problem to our prob-
lems. For example, the standard integer program for the
HITTING-SET problem (minimize

∑
s∈T xs subject to

for all 1 ≤ i ≤ n,
∑

s∈Ui
xs ≥ 1, xs ∈ {0, 1}) is

adapted to the SINGLE-SUBSET-VERIFICATION prob-
lem by simply changing the 1 in the constraint to a 2.
Also, any optimal or approximation algorithm A(T,U)

for HITTING-SET can be turned into the following ap-
proximation algorithm A′(R,S) for SINGLE-SUBSET-
VERIFICATION.

1. Using A, compute a hitting set U ′ for the problem in-
stance (R,S).

2. Remove all the Si ∈ S for which Si ∩ U ′ ≥ 2 from
the instance.

3. Remove all the elements in U ′ from the instance (both
from R and from the elements of S).

4. Compute a hitting set U ′′ for the remaining instance.

5. Return U ′ ∪ U ′′.

Proposition 3 If A always produces a ρ(m,n)-
approximation to the HITTING-SET problem (if A is
an optimal algorithm, then ρ(m,n) = 1), then A′ always
produces a 2ρ(m,n)-approximation to the SINGLE-
SUBSET-VERIFICATION problem.

The bound in Proposition 3 can be shown to be just about
tight. One famous greedy algorithm for HITTING-SET is
to repeatedly choose the element that hits the most sets that
were not hit previously; this algorithm obtains an lnn + 1
approximation ratio [Johnson, 1974]. Thus, if we use this
algorithm as A, then A′ also obtains an O(log n) approxi-
mation algorithm for SINGLE-SUBSET-VERIFICATION,
roughly matching the lower bound.

Any algorithm for HITTING-SET can also be used for
BOUNDED-SUBSET-VERIFICATION with k = 2: as we
described at the beginning of this subsection, an instance of
BOUNDED-SUBSET-VERIFICATION with k = 2, given
by (R,S), can be transformed into the HITTING-SET in-
stance where T is the set of all unordered pairs of ele-
ments in R, and Ui is the set of all unordered pairs of el-
ements in Si. Thus, a ρ(m,n) approximation algorithm
for HITTING-SET gives a ρ(

(
m
2

)
, n) approximation for

BOUNDED-SUBSET-VERIFICATION with k = 2. So,
using the greedy algorithm again gives us an O(log n) ap-
proximation, roughly matching the lower bound.

5 CONCLUSIONS

In open, anonymous environments such as the Internet,
mechanism design is complicated by the fact that a sin-
gle agent can participate in the mechanism under multiple
identifiers. One way to address this is to design false-name-
proof mechanisms, which choose the outcome in such a
way that agents have no incentive to use more than one
identifier. Unfortunately, there are inherent limitations on
what can be achieved with false-name-proof mechanisms,
and at least in some cases, these limitations are crippling.
An alternative approach is to verify the identities of all
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agents. This imposes significant overhead and removes any
benefits from anonymity.

In this paper, we proposed a middle ground. Based on the
reported preferences, we check, for various subsets of the
reports, whether the reports in the subset were all submit-
ted by different agents. If they were not, then we discard
some of them. We characterized when such a limited verifi-
cation protocol induces false-name-proofness for a mecha-
nism, that is, when the combination of the mechanism and
the verification protocol gives the agents no incentive to
use multiple identifiers. The characterization is the follow-
ing. A subset of the reports requires verification if an agent
could have been better off submitting this subset instead
of submitting a single, truthful report. Then, a protocol
induces false-name-proofness if and only if every subset
that requires verification has at least two reports in com-
mon with one of the checked subsets. This characterization
leads to various optimization problems for minimizing ver-
ification effort given the minimal subsets that require veri-
fication. We studied the complexity of these problems, and
showed that they are closely related to the NP-complete
HITTING-SET problem, in the sense that negative as well
as positive computational results for the HITTING-SET
problem carry over to our problems. In the longer version
of this paper, we also study how to efficiently determine the
minimal subsets that require verification.

Many directions for future research remain. One such
direction is to extend these concepts to mechanisms that
are not strategy-proof (but, perhaps, Bayes-Nash incentive
compatible). Another direction is to investigate random-
ized verification protocols: it should be possible to disin-
cent false-name reporting by ensuring only that there is a
high probability that some of a manipulating agent’s reports
will be checked.
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