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Abstract

We propose a principled approach to model
secrecy in multiagent systems, by defining
a set of possible observations and provid-
ing agents with algorithms used to distin-
guish the possible states of the system. Our
approach fits naturally within a knowledge-
based account of secrecy. By adjusting both
the kind of observations and the capabilities
of the agents, we can capture in a natural way
different forms of secrecy in the presence of
perfect cryptography. In particular, we show
how to model extraction secrecy. Our formal-
ization suggests a unified definition of secrecy
for cryptographic protocols and for systems
that seek to prevent inadmissible flows of in-
formation.

1 Introduction

An important problem facing applications of formal
methods to security is to develop general models for
specifying and verifying security properties. A good
general model enables a comparison and unification of
definitions occurring in different frameworks and tools.
Consider secrecy in cryptographic protocols as an ex-
ample. The goal of many protocols is to ensure that a
piece of data is transmitted secretly. Other protocols
whose goal is to ensure authentication often rely on the
secrecy of an authenticating token. Several definitions
of secrecy in the cryptographic protocol analysis liter-
ature have been proposed, capturing different forms of
secrets in the presence of different adversaries.

Our goal is to develop a framework to relate these
different definitions of secrecy for cryptographic pro-
tocols, and attempt to devise a general, unifying def-
inition. Relating fields with different perspectives on
cryptographic protocols and highlighting possible sub-

tleties underlying definitions in specific frameworks are
but two benefits of such a unifying definition.

Halpern and O’Neill [12] define a secret to be a fact
whose truth an agent cannot establish based only on
what she can observe.1 The Halpern-O’Neill definition
of secrecy relies on a direct notion of indistinguisha-
bility on states: two states are indistinguishable for an
agent if that agent has exactly the same local state at
those states. This notion of indistinguishability, how-
ever, is not immediately suitable for reasoning about
cryptographic protocols. For instance, if an agent does
not possess key k, then she should not be able to distin-
guish message v encrypted with key k (written {|v|}k)
from any other message v′ encrypted with key k, un-
der any reasonable encryption scheme. However, if
we define two states to be indistinguishable to agent
i when the local state of i is the same at both states,
then any two states where i’s local state differ only by
having one containing {|v|}k and the other containing
{|v′|}k (for some other message v′) are distinguishable
by agent i. Thus, a fact such as “v is the content of
the message in the local state” cannot be a secret with
respect to that indistinguishability relation; in a sense,
it is too strong. Many approaches have been used to
solve that problem.

The main contribution of our work is a principled ap-
proach for deriving an indistinguishability relation, to
be used as a foundation for reasoning about secrecy
in the presence of encryption. The approach is com-
putational: information might be present in the lo-
cal state of an agent (e.g., in an encrypted message),
but the agent cannot compute that information (e.g.,
cannot decrypt the message). We define a set of pos-
sible observations that agents can make, and supply
agents with algorithms that they use to access the in-
formation stored in their local states. Two states are

1This is a possibilistic definition of secrecy. Although
an agent may well learn that a fact has a higher probability
of being true than false, we do not consider probabilities
in this paper.



indistinguishable if the algorithms return the same in-
formation for all observations. By adjusting both ob-
servations and algorithms, we can model in a natu-
ral way different assumptions on the powers of agents
and capture various forms of secrecy described in the
cryptographic protocol analysis literature. Putting it
differently, our work can be understood as a princi-
pled way to apply the Halpern-O’Neill framework for
secrecy in the presence of cryptography. As an addi-
tional benefit, we inherit a characterization of secrecy
in terms of knowledge, giving us a language in which
to express facts to be kept secret.

We focus on secrecy in the presence of perfect cryp-
tography, and compare our definition with those used
in the symbolic cryptographic protocol analysis litera-
ture. (This lets us abstract away from probabilities, as
a first stab at the problem.) Symbolic cryptographic
protocol analysis is an approach to protocol analysis
that treats encryption and decryption as symbolic op-
erations operating on a term algebra of messages—
rather than concrete operations on bit strings—and
that assumes that agents can compose messages, re-
play them, or decipher them if they know the right
keys, but cannot otherwise “crack” encrypted mes-
sages [9]. Symbolic analysis enables automated anal-
ysis of protocols, using model checking [8, 19], theo-
rem proving [20], or programming language techniques
[1, 6, 21].

As evidence for the suitability of our approach, we re-
late our general definition of secrecy in the presence
of cryptography to existing definitions in the litera-
ture of cryptographic protocol analysis. In particular,
many approaches to cryptographic protocol analysis,
such as CSP-based approaches [18], capture secrecy
by restricting the direct computational power of the
adversary: a piece of information is secret if an adver-
sary cannot directly compute (or extract) that piece
of information from information he has available. We
show that under natural assumptions on the kind of
information to be kept secret, extraction secrecy can
be captured using a particular algorithm and set of
observations. In the full version of this paper, we also
relate our definition to that of secrecy in the spi calcu-
lus [1] and in the setting of information-flow security
[16].

The rest of the paper is structured as follows. In §2, we
review the Halpern-O’Neill model of secrecy. In §3, we
give a general definition of secrecy in multiagent sys-
tems that accounts for encrypted messages, and give
examples. In §4, we relate our definition of secrecy to
a definition based on the ability to extract data from
an agent’s local state.

2 The Halpern-O’Neill Model of
Secrecy

Halpern and O’Neill [12] introduced a framework to
study secrecy of partial information in multiagent sys-
tems that do not use cryptography, which we review
here.

A multiagent system [10] consists of n agents and an
environment, each of which is in some local state at
a given point in time. An agent’s local state encap-
sulates all the information to which the agent has
access (e.g., initial keys, messages sent and received,
clock readings). The environment state describes in-
formation relevant to the analysis which may not be
in any agent’s state. We can then view the whole
system as being in some global state, formally a tu-
ple (se, s1, . . . , sn), where si is agent i’s state, for
i = 1, . . . , n, and se is the environment state. For
the purpose of this paper, local states of agents are
sequences of events 〈init , e1, . . . , em〉, where init con-
tains data initially available to the agent, and ei for
i ≥ 1 is an event. The initial data of an agent may in-
clude information such as keys and nonces to be used
by the agent.

A run is a function from time to global states. Intu-
itively, a run is a complete description of what hap-
pens over time in one possible execution of the sys-
tem. A point is a pair (r,m) consisting of a run r and
a time m. For simplicity, we take time to range over
the natural numbers. At a point (r,m), the system is
in some global state r(m). If r(m) = (se, s1, . . . , sn),
then ri(m) is si, agent i’s local state at point (r,m).
Formally, a system is defined to be a set R of runs.
We define an equivalence relation K=

i per agent on
points, capturing when an agent has the same local
state: ((r,m), (r′,m′)) ∈ K=

i if ri(m) = r′i(m
′). We

write K=
i (r,m) for {(r′,m′) | ((r,m), (r′,m′)) ∈ K=

i }.

This definition of systems is arguably very gen-
eral. In this work, we generally consider message-
passing systems—systems where agents send and re-
ceive messages—in which events include send(i, v),
sending message v with the intention of being deliv-
ered to agent i, and recv(v), receiving message v. The
sender is not included in recv(v); intuitively, the re-
ceiver may not be able to determine the sender of a
message she receives. Message-passing systems will
generally satisfy a number of conditions on runs, such
as every recv event being preceded by a send event.
Moreover, systems will generally be derived from a de-
scription of a protocol for every agent [10]. None of
the results in this paper depend on the details of how
systems are generated, or on the conditions satisfied
by systems.



Partial information about an agent j can be modeled
as a function f that takes the same value in two global
states that j cannot distinguish. The intuition, which
goes back to Sutherland’s [23] work on nondeducibility,
is that an agent j maintains secrecy with respect to
agent i if, at every point in the system, agent i is
unable to rule out any of f ’s values. A j-information
function on systemR is a function f from the points of
R to some range that depends only on j’s local data: if
rj(m) = r′j(m

′) then f(r,m) = f(r′,m′). For example,
a function that assigns to every local state of agent j
a message in agent j’s possession is a j-information
function.
Definition 2.1. [12] If f is a j-information function,
then j maintains total f -secrecy with respect to i in
system R if for all points (r,m) of R and all v in the
range of f , we have K=

i (r,m) ∩ f−1(v) 6= ∅.

Halpern and O’Neill examine more specialized forms
of secrecy that, for instance, take time into account.
For simplicity, we focus on total f -secrecy only in this
paper. (The issues we consider here are largely orthog-
onal to the specific definition of secrecy considered.)

Total f -secrecy can be characterized using a formal
definition of knowledge. To reason about the knowl-
edge of agents in multiagent systems, we use the stan-
dard interpretation of knowledge in economics and ar-
tificial intelligence that goes back to Hintikka [14]. An
agent knows a fact ϕ if ϕ is true at all the worlds
that the agent considers as possible alternatives to the
actual world. This can be formalized using a logic
of knowledge LK . Starting with a set Φ0 of primitive
propositions, which we can think of as describing basic
facts about the system, such as “the key is k” or “agent
1 sent message x to agent 2”, formulas of the logic are
formed by closing off under negation, conjunction, and
the modal operators K1, . . . ,Kn. Formula Kiϕ is read
as “agent i knows fact ϕ”. As usual, we take ϕ ∨ ψ to
be an abbreviation for ¬(¬ϕ ∧ ¬ψ) and ϕ ⇒ ψ to be
an abbreviation for ¬ϕ ∨ ψ.

The standard models for this logic are based on the
idea of possible worlds and Kripke structures [17]. A
Kripke structure is a set of possible worlds along with
a possibility relation Ki on the worlds (one per agent),
where (w, v) ∈ Ki if agent i cannot distinguish world
w from world v (so that if w is the actual world, agent
i would consider v a possible world). An interpreted
system I = (R, π) is a system R along with an in-
terpretation π that assigns truth values to primitive
propositions at global states of R. The points of I
are simply the points of R. An interpretation π on
global states induces an interpretation over points of
I; simply take π(r,m) to be π(r(m)). An interpreted
system I = (R, π) can be viewed as a Kripke structure
by taking the possible worlds to be the points of R,

and by taking Ki to be the equivalence relation K=
i .

Thus, agent i considers a point (r′,m′) possible at a
point (r,m) if agent i has the same local state at both
points. The truth of a formula ϕ at a point (r,m) of
interpreted system I is defined inductively as follows:

(I, r,m) |= p iff π(r,m)(p) = true

(I, r,m) |= ¬ϕ iff (I, r,m) 6|= ϕ

(I, r,m) |= ϕ∧ψ iff (I, r,m) |= ϕ and (I, r,m) |= ψ

(I, r,m) |= Kiϕ iff (I, r′,m′) |= ϕ for all (r′,m′) ∈
K=

i (r,m).

Note the fourth clause, designed to capture the intu-
ition that agent i knows ϕ exactly if ϕ is true at all
points that i thinks are possible. We write I |= ϕ if
(I, r,m) |= ϕ for all points (r,m) of I.

Total f -secrecy in systems has an intuitive syntactic
characterization: j maintains total f -secrecy with re-
spect to i if and only if agent i can never know any
fact about the value of f . A fact about the value of
f in an interpreted system I is a formula ϕ whose
truth value at some point (r,m) depends entirely on
the value f(r,m), that is, if f(r,m) = f(r′,m′), then
(I, r,m) |= ϕ if and only if (I, r′,m′) |= ϕ. Call such
a formula f -local in I.
Proposition 2.2. [12] In any system R, j maintains
total f-secrecy with respect to i if and only if for all
interpretations π and all formulas ϕ that are f-local
in I = (R, π), if I 6|= ϕ, then I |= ¬Kiϕ.

Thus, secrecy, expressed semantically as “there are
enough worlds compatible with an agent’s local state”,
can also be captured by statements such as “an agent
never knows fact ϕ”. Expressing secrecy syntactically
using knowledge provides us with a precise language
for specifying what exactly is meant to be kept secret—
doing this using a language is sometimes easier than
doing it semantically. Moreover, not only do we get an
alternative description of secrecy, we can now bring to
bear on the problem the extensive machinery devel-
oped to reason about knowledge [10], such as proof
systems and verification procedures.

3 Observational Knowledge

We extend the Halpern-O’Neill framework to capture
the notion of secrecy in the presence of cryptography,
using a computational notion of indistinguishability.

We study secrecy under the assumption that cryptog-
raphy is perfect, that is, where the only way to decrypt
an encrypted message is to know the corresponding
decryption key. This assumption lets us reason about



cryptographic protocols independently of the specific
properties of the encryption scheme used by the proto-
col. The standard way to model perfect cryptography
is to consider a purely symbolic encryption scheme. A
message v is either an arbitrary string s in some given
set of plaintexts, a key k, an encryption {|v1|}k of mes-
sage v1 under key k, or a pair (v1, v2) of messages v1
and v2. Let M be the set of all such messages. For
simplicity, we assume that encryption is symmetric:
the same key is used to encrypt and decrypt messages.
(There is no difficulty in extending our work to asym-
metric encryption.)

Perfect encryption is further captured by assuming
that agents can perform only symbolic manipulation
on messages, and not attempt to “crack” encrypted
messages. This model, first described rigorously by
Dolev and Yao [9], can be formalized by a relation
H `DY v between a set H of messages and a message
v. Intuitively, H `DY v means that an agent can “ex-
tract” message v from a set of received messages and
keys H, using the allowed operations. The derivation
is defined using the following inference rules:

v ∈ H
H `DY v

H `DY {|v|}k H `DY k
H `DY v

H `DY (v1, v2)
H `DY v1

H `DY (v1, v2)
H `DY v2

.

(1)

For instance, if an agent receives messages H =
{{|v|}k1 , {|k1|}k2 , k2}, she can derive v using these in-
ference rules.

Observational Systems. Indistinguishability is
central to most definitions of secrecy. Roughly speak-
ing, a fact ϕ is secret relative to agent i if agent i
cannot distinguish an execution where ϕ is true from
an execution where ϕ is false. For instance, early se-
mantics for BAN-like logics [3] take two states to be
indistinguishable to an agent if they record the same
set of received messages, up to messages encrypted us-
ing keys not known to the agent. This approach cap-
tures the intuition that an agent cannot distinguish
messages encrypted using unknown keys. Many ap-
proaches have similar, often more complex, definitions
of indistinguishability.

We seek a unified and principled way to devise indis-
tinguishability relations. As we now argue, we can
use a computational intuition and consider two local
states indistinguishable to an agent if that agent can
compute the same observations in both states. Obser-
vations capture aspects of the state that are relevant,
and are represented as a set of facts Θ. To model
whether an agent can make a particular observation
in a local state, we supply every agent with an algo-
rithm that takes an observation θ and a local state as

inputs, and computes whether the agent can make ob-
servation θ in the given local state. When given θ, the
algorithm returns either “Yes”, θ is observed; “No”, θ
is not observed; or “?”, the agent has insufficient re-
sources to determine whether θ is observed. An obser-
vational system is a tuple (R, A1, . . . , An,Θ1, . . . ,Θn)
consisting of a system R and an algorithm Ai and set
of observations Θi for every agent in the system.

In observational system (R, A1, . . . , An,Θ1, . . . ,Θn),
two points (r,m) and (r′,m′) are observationally in-
distinguishable to agent i, written ((r,m), (r′,m′)) ∈
KAi,Θi

, if

for all θ ∈ Θi, Ai(θ, ri(m)) = Ai(θ, r′i(m
′)).

Thus, ((r,m), (r′,m′)) ∈ KAi,Θi
states that agent i

cannot distinguish global states r(m) and r′(m′) if he
only makes observations in Θi, subject to his observa-
tional capabilities as captured by Ai. It is immediate
that KAi,Θi is an equivalence relation on the points of
R. In the following, we define KAi,Θi

(r,m) to be the
set {(r′,m′) | ((r,m), (r′,m′)) ∈ KAi,Θi

} of all points
that agent i cannot observationally distinguish from
(r,m).

All definitions in §2 generalize in a straightfor-
ward way. In particular, given f a j-information
function, we can define j maintaining total f -
secrecy with respect to i in observational system
(R, A1, . . . , An,Θ1, . . . ,Θn), usingKAi,Θi forK=

i in Def-
inition 2.1.

Total f -secrecy in observational systems can also be
characterized in terms of a formal definition of knowl-
edge. This is especially interesting because knowledge
and the closely related notion of belief have been used
extensively as basic primitives in logics for reasoning
about cryptographic protocols [7, 3, 5, 11, 22, 24]. An
interpreted observational system I is just an obser-
vational system equipped with an interpretation π for
primitive propositions. (We do require that algorithms
in an interpreted observational system be sound with
respect to the interpretation of observations in Θi: at
every point (r,m) of interpreted observational system
I, and for every θ ∈ Θi, Ai(θ, ri(m)) = “Yes” implies
π(r,m)(θ) = true, and Ai(θ, ri(m)) = “No” implies
π(r,m)(θ) = false.)

This lets us interpret logic LK as in §2, where knowl-
edge is now interpreted using relation KAi,Θi

. Because
KAi,Θi

is an equivalence relation, the knowledge op-
erator is an S5 modal operator [15]. In particular,
Kiϕ ⇒ ϕ is valid in interpreted observational sys-
tems. The exact same proof as Proposition 2.2 gives
us that j maintains total f -secrecy with respect to i
in (R, A1, . . . , An,Θ1, . . . ,Θn) if and only if for all in-
terpretations π and all formulas ϕ that are f -local in
I = (R, π), if I 6|= ϕ, then I |= ¬Kiϕ.



Our working hypothesis is that total f -secrecy, for
suitable choices of f , Ai, and Θi, captures most fla-
vors of secrecy in the literature on symbolic analysis
of cryptographic protocols, as well as the literature on
information flow.

Dolev-Yao Indistinguishability. We can easily
model common indistinguishability relations in our
framework. What is interesting is that these indistin-
guishability relations are motivated in terms of obser-
vations. One of the core indistinguishability relations
when reasoning about perfect cryptography, Dolev-
Yao indistinguishability, states that an agent cannot
distinguish two states in which he has received differ-
ent messages, where the only difference between these
messages occurs in the content of encrypted messages
for which he does not have the key. For example,
an agent should not be able to distinguish messages
(v, {|v′|}k) and (v, {|v′′|}k) if the agent does not know
k, although (v, {|v′|}k) and ({|v′′|}k, v) should still be
distinguishable, because order of messages in tuples is
relevant.

For each agent i, we define a set ΘDY,i of observations
that permits us to express queries about the shape of
data in the local state of the agent. We have a great
deal of flexibility in how we choose this set. Here is
one approach that has the advantage of being easily
extensible. Observations θ are built according to the
following grammar:

t ::= x | s | k | {|t|}k | (t1, t2)
θ ::= msg i(t) | ∃x.θ.

Thus, terms t look like messages, except that they
may contain variables. Let ΘDY,i be the set of all ob-
servations θ given by the grammar above where ev-
ery variable appearing in θ is bound by an existential
quantifier ∃, and every bound variable x in ∃x.θ′ is
used at most once in θ′. For example, observation
∃y.msg i((v, y)) indicates that there is a message (v, y)
in agent i’s local state, for some unspecified message y.
Note that agent i can only use the msg i constructor.

The corresponding algorithm ADY,i is straightforward.
Recall that we take local states of an agent to contain
all messages sent and received by that agent, as well as
keys initially known to the agent. We write initkey(`)
for the set of keys initially known by an agent with
local state `. To compute ADY,i(θ, `), the algorithm
checks if some message received by agent i has the
shape prescribed by θ, taking into account the keys
known to that agent. Knowledge algorithm ADY,i is
given in Figure 1.

The induced indistinguishability relation KADY,i,ΘDY,i

is equivalent to the following well-known formulation,
taken from Abadi and Rogaway [2]. Given a message v

and a set of keys K, let [v]K be the result of replacing
every indecipherable message in v by special symbol
�. Formally, define:

[s]K = s

[k]K = k

[(v1, v2)]K = ([v1]K , [v2]K)

[{|v|}k]K =

{
{|[v]K |}k if k ∈ K
� otherwise.

Extend [−]K to sets of messages H by taking [H]K =
{[v]K | v ∈ H}, and define Keys(H) = {k | H `DY k}.
Let [H] stand for [H]Keys(H).

Why are we justified in calling this a form of Dolev-Yao
indistinguishability? It is easy to relate this definition
to derivation according to the Dolev-Yao rules (1); we
can check that whenever v is a plaintext s or a key k,
then H `DY v if and only if v is a subterm of [H].

The following result formally shows that in an observa-
tional system in which agent i uses algorithm ADY,i and
observations ΘDY,i, the induced indistinguishability re-
lation KADY,i,ΘDY,i corresponds exactly to the Abadi-
Rogaway formulation of equivalence on received mes-
sages.
Proposition 3.1. Let (R, A1, . . . , An,Θ1, . . . ,Θn) be
an observational system. If Ai = ADY,i and Θi =
ΘDY,i, then ((r,m), (r′,m′)) ∈ KAi,Θi

if and only if
[{v | recv(v) ∈ ri(m)}] = [{v | recv(v) ∈ r′i(m′)}].

Algorithm ADY,i and observations ΘDY,i generalize in
several ways. A variant is to allow an agent to perform
comparisons of encrypted messages even if he is not
able to decrypt them. Thus, for example, an agent
who does not know key k might be able to distinguish
message ({|v1|}k, {|v1|}k) from ({|v1|}k, {|v2|}k), but not
from ({|v2|}k, {|v2|}k). This corresponds to the following
choice of observations:

θ ::= msg i(t) | ∃x.θ,

where terms are as before; the difference is that we
do not require bound variables to appear only once
in the body of an existential ∃x.θ. (Of course, this
interpretation of observations makes sense only if we
assume that encryption is deterministic.)

Another variant is to take length into account [4]. We
associate a length with every message v ∈M. We add
a new primitive observation length(t, n), where t is a
term and n is an integer, and take observations to be
of the following form:

θ ::= msg i(t) | msg i(t1) ∧ length(t2, n) | ∃x.θ,

where terms are as before; we require that bound
variables appear at most once in any msg i(−) (al-
though they can appear unconstrained in any number



ADY,i(θ, `) = K ← keysof (`)
if some key in θ is not in K then return “?”
match θ as ∃x1, . . . , xn.msg i(t)
for each recv(v) ∈ ` do if match(t, v) then return “Yes”
return “No”

match(t, v) = if t = x then return true
if t = s and v = s then return true
if t = k and v = k then return true
if t = {|t1|}k and v = {|v1|}k then return match(t1, v1)
if t = (t1, t2) and v = (v1, v2) then return match(t1, v1) ∧match(t2, v2)
return false

keysof (`) = K ← initkeys(`)
loop until no change in K: K ←

⋃
recv(v)∈` getkeys(v,K)

return K

getkeys(v,K) = if v ∈ K then return {v}
if v is {|v1|}k and k ∈ K then return getkeys(v1,K)
if v is (v1, v2) then return getkeys(v1,K) ∪ getkeys(v2,K)
return {}

Figure 1: Algorithm ADY,i

of length(−).) We can thus write observations such as
∃x.msg i((v, x)) ∧ length(x, n), which says that agent
i has received a message of the form (v, x) for some
message x of length n.

Although we do not do so here, it should be clear that
we can impose other restrictions on algorithms, such
as restricting them to run in polynomial time, or using
limited resources.

4 Relationship with Extraction
Secrecy

A popular symbolic approach to dealing with secrecy
is to restrict the direct computational power of agents:
a piece of information is secret if an agent cannot di-
rectly compute that piece of information from infor-
mation she has available. This definition of secrecy,
which we call extraction secrecy here, relies on ensur-
ing that at no point of the system can an agent “ex-
tract” that piece of information from the messages she
has received. For a Dolev-Yao agent, this means en-
suring that at no point of the system can he derive
H `DY v, where H is the set of messages the adver-
sary has received at that point, and v is the secret
message. Extraction secrecy is used, for instance, in
CSP-based approaches [18]. In this section, we relate
extraction secrecy to observational secrecy.

Extraction secrecy is captured using algorithmic

knowledge [13]. Algorithmic knowledge can be added
to observational systems simply by augmenting logic
LK with a new operator Xiϕ, read “agent i algorith-
mically knows ϕ”, or “agent i can compute ϕ”. We
use an agent’s algorithm to determine whether that
agent algorithmically knows fact ϕ. (An agent’s algo-
rithm is called a knowledge algorithm in the context of
algorithmic knowledge.) The semantics of formulas in
interpreted observational systems is extended by:

(I, r,m) |= Xiϕ if Ai(ϕ, ri(m)) = “Yes”.

Roughly speaking, Ki captures what an agent implic-
itly knows given his observations of his local state,
while Xi captures what an agent can compute ex-
plicitly. It is well known that implicit knowledge suf-
fers from the problem of logical omniscience: an agent
knows all tautologies (i.e., Kiϕ is valid if ϕ is valid)
and all the logical consequences of her knowledge (i.e.,
Kiϕ ∧Ki(ϕ⇒ ψ)⇒ Kiψ is valid). In particular, the
definition of knowledge in §3 has this property. The
reasoning that allows an agent to infer properties of
a system also allows an agent to infer properties that
cannot be computed by realistic agents in any reason-
able amount of time. In contrast, it can be easily ver-
ified that algorithmic knowledge does not suffer from
logical omniscience.

What is the relationship between extraction secrecy
and observational secrecy? Both approaches, as cap-



tured here, rely on a computational intuition and use
knowledge algorithms, but in a different way. Extrac-
tion secrecy is obtained by restricting the ability of
agents to perform deductions based on what they ob-
serve, without focusing on what they can observe. Ob-
servational secrecy, on the other hand, captures what
agents would know with an arbitrary amount of com-
putation that does not involve looking at messages
that they are unable to decrypt, that is, we restrict
the observational power of agents but not their power
to perform deduction based on what they have ob-
served. The exact relationship and tradeoffs between
these two approaches is a largely unexplored topic.

We can immediately elucidate some aspects of the re-
lationship. Because of our soundness assumptions,
for observations θ ∈ Θ, algorithmic knowledge and
knowledge relative to Θ coincide when using the same
knowledge algorithm: (I, r,m) |= Xiθ if and only if
(I, r,m) |= Kiθ. In many cases, knowledge algorithms
are sound with respect to local states indistinguish-
able relative to Θ; that is, many knowledge algorithms
have the property that Ai(ϕ, ri(m)) = “Yes” implies
(I, r,m) |= Kiϕ, and Ai(ϕ, ri(m)) = “No” implies
(I, r,m) |= ¬Kiϕ. It will not, however, generally be
the case that (I, r,m) |= Kiϕ implies (I, r,m) |= Xiϕ,
if only because Ki is an S5 operator subject to logi-
cal omniscience while Xi does not. For instance, while
Kiϕ ⇒ ϕ is valid for every formula ϕ, it need not be
the case that Xiϕ⇒ ϕ is ever true.

In some cases, it is possible to establish a deeper con-
nection between extraction secrecy and observational
secrecy. In particular, it is possible to do so for secrecy
in the presence of Dolev-Yao agents: observational se-
crecy is in general more expressive than extraction se-
crecy (i.e., can express more properties), and in the
special case of message containment, both approaches
agree. The remainder of this section aims at making
this statement precise. We start by considering how to
capture extraction secrecy for a Dolev-Yao agent using
algorithmic knowledge [13]. We assume that the lan-
guage includes a primitive proposition contained i(v)
for every message v, saying that message v is con-
tained within a message that agent i has received. Ex-
traction secrecy will essentially aim at ensuring that
contained i(v) is kept secret from an adversary—an ad-
versary cannot derive v from messages he has received.

We can encode the Dolev-Yao capabilities via a knowl-
edge algorithm AXDY,i for agent i. Knowledge algo-
rithm AXDY,i is similar to ADY,i. Intuitively, knowledge
algorithm AXDY,i simply implements a search for the
derivation of a message v from the messages that the
agent has intercepted and the initial set of keys, us-
ing rules (1). The most interesting case in the defini-
tion of AXDY,i is when the formula is contained i(v). To

compute AXDY,i(contained i(v), `), the algorithm simply
checks whether some message received by agent i con-
tains v as a submessage, according to the keys that are
known to that agent. Checking whether v is a submes-
sage of v′ is performed by a function submsg . Knowl-
edge algorithm AXDY,i(contained i(v), `) is defined in
Figure 2. We assume that there is sufficient redun-
dancy in messages so that an agent can detect whether
a decryption is successful; this lets us use a function
decrypt that attempts to decrypt messages. It is easy
to show that AXDY,i correctly captures the Dolev-Yao
adversary: Xi(contained i(v)) is true at a state if and
only if agent i can derive v from messages he has in-
tercepted using the Dolev-Yao inference rules.

The connection between extraction secrecy and obser-
vational secrecy for Dolev-Yao adversaries can be cap-
tured as follows.
Proposition 4.1. Suppose

I = (R, A1, . . . , An,Θ1, . . . ,Θn, π)
I ′ = (R, A′1, . . . , A′n,Θ′

1, . . . ,Θ
′
n, π),

with a common R and π, with the property that
π(r,m)(contained i(v)) = true if and only if v is a
submessage of some message in ri(m). If Ai = ADY,i,
Θi = ΘDY,i, and A′i = AXDY,i, then for every plaintext
s and every point (r,m) of R,

(I, r,m) |= Ki(contained i(s)) if and only if
(I ′, r,m) |= Xi(contained i(s)).

This result, which essentially says that as far as secrecy
of contained plaintexts is concerned, extraction secrecy
and observational secrecy are equivalent, illustrates
why both extraction-based and indistinguishability-
based approaches for analysis of cryptographic proto-
cols have been used successfully and somewhat inter-
changeably. Proposition 4.1 generalizes beyond plain-
texts. In particular, it remains true for messages v
that can be constructed using plaintexts, concatena-
tion, and encryption under known keys. The con-
structibility assumption is important—if a message
is not constructible, say it is {|v|}k for a key k not
known to the agent, then we can easily construct I
and I ′ as in the statement of Proposition 4.1 in which
Xi(contained i({|v|}k)) is true at point (r,m) of I ′, but
Ki(contained i({|v|}k)) is false at point (r,m) of I.

5 Conclusion

We have presented a general framework to capture var-
ious notions of secrecy used in the symbolic crypto-
graphic protocol analysis literature in a principled way,
in terms of explicit observations managed by an algo-
rithm. We examined the relationship between our def-
inition and extraction secrecy in this paper, showing



AXDY,i(contained i(v), `) = if v ∈ initkeys(`) then return “Yes”
K ← keysof (`)
for each recv(v′) ∈ ` do if submsg(v, v′,K) then return “Yes”
return “?”

submsg(x, y,K) = if x = y then return “Yes”
if z = decrypt(y, k) for some k ∈ K then return submsg(x, z,K)
if z = decrypt(y, k) for some k 6∈ K then return “?”
if y is (z1, z2) then return submsg(x, z1,K) ∨ submsg(x , z2 ,K )
return “No”

Figure 2: Knowledge algorithm AXDY,i

that they agree in the case of Dolev-Yao capabilities.
In the full version of this paper, we further examine
the relationship between our definition of secrecy and
two other existing definitions in the literature: secrecy
as expressed in the spi calculus, and secrecy in the
context of information flow. In both cases, we cap-
ture an existing definition of secrecy by instantiating
our framework appropriately with specific observations
and a specific algorithm.

One feature of our framework is that it gives fine con-
trol over observational capabilities of agents. Our ap-
proach provides a way to generalize the kind of secrecy
existing approaches use, by simply changing the algo-
rithms.
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